

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Yii Documentation Style Guide

Guidelines to go by when writing or editing any Yii documentation.

This needs to be expanded.

General Style

	Try to use an active voice.

	Use short, declarative sentences.

	Demonstrate ideas using code as much as possible.

	Never use “we”. It’s the Yii development team or the Yii core team. Better yet to put things in terms of the framework or the guide.

	Use the Oxford comma (e.g., “this, that, and the other” not “this, that and the other”).

Formatting

	Use italics for emphasis, never capitalization, bold, or underlines.

Lists

	Numeric lists should be complete sentences that end with periods.

	Bullet lists should be fragments that end with semicolon except the last item, which should end with a period.

Blocks

Blocks use the Markdown > Type:. There are four block types:

	Warning, for bad security things and other problems

	Note, to emphasize key concepts, things to avoid

	Info, general information (an aside); not as strong as a “Note”

	Tip, pro tips, extras, can be useful but may not be needed by everyone all the time

The sentence after the colon should begin with a capital letter.

When translating documentation, these Block indicators should not be translated.
Keeps them intact as they are and only translate the block content.
For translating the Type word, each guide translation should have a blocktypes.json file
containing the translations. The following shows an example for German:

{
 "Warning:": "Achtung:",
 "Note:": "Hinweis:",
 "Info:": "Info:",
 "Tip:": "Tipp:"
}

References

	Yii 2.0 or Yii 2 (not Yii2 or Yii2.0)

	Each “page” of the guide is referred to as a “section”.

	References to Code objects:

	Refer to classes using the full namespace: yii\base\Model

	Refer to class properties using the static syntax even if they are not static: yii\base\Model::$validators

	Refer to class methods using the static syntax even if they are not static and include parenthesis to make it clear, that it is a method: yii\base\Model::validate()

	references to code objects should be writting in [[]] to generate links to the API documentation. E.g. [[yii\base\Model]], [[yii\base\Model::$validators]], or [[yii\base\Model::validate()]].

Capitalizations

	Web, not web

	the guide or this guide, not the Guide

Validating the docs

The following are some scripts that help find broken links and other issues in the guide:

Find broken links (some false-positives may occur):

grep -rniP "\[\[[^\],']+?\][^\]]" docs/guide*
grep -rniP "[^\[]\[[^\]\[,']+?\]\]" docs/guide*

Attribution of Translators

The names of the translators will be listed among the guide authors in the
rendered versions of the guide.
Therefor in each guide directory for a different language than english a translators.json file
should be created that contains an array of names of the people who have participated in the translation.

[
 "Jane Doe",
 "John Doe"
]

If you have contributed a significant part to the translation, feel free to send a pull request adding your name.

The Definitive Guide to Yii 2.0

This tutorial is released under the Terms of Yii Documentation [http://www.yiiframework.com/doc/terms/].

All Rights Reserved.

2014 (c) Yii Software LLC.

Introduction

	About Yii

	Upgrading from Version 1.1

Getting Started

	What do you need to know

	Installing Yii

	Running Applications

	Saying Hello

	Working with Forms

	Working with Databases

	Generating Code with Gii

	Looking Ahead

Application Structure

	Application Structure Overview

	Entry Scripts

	Applications

	Application Components

	Controllers

	Models

	Views

	Modules

	Filters

	Widgets

	Assets

	Extensions

Handling Requests

	Request Handling Overview

	Bootstrapping

	Routing and URL Creation

	Requests

	Responses

	Sessions and Cookies

	Handling Errors

	Logging

Key Concepts

	Components

	Properties

	Events

	Behaviors

	Configurations

	Aliases

	Class Autoloading

	Service Locator

	Dependency Injection Container

Working with Databases

	Database Access Objects: Connecting to a database, basic queries, transactions, and schema manipulation

	Query Builder: Querying the database using a simple abstraction layer

	Active Record: The Active Record ORM, retrieving and manipulating records, and defining relations

	Migrations: Apply version control to your databases in a team development environment

	Sphinx [https://www.yiiframework.com/extension/yiisoft/yii2-sphinx/doc/guide]

	Redis [https://www.yiiframework.com/extension/yiisoft/yii2-redis/doc/guide]

	MongoDB [https://www.yiiframework.com/extension/yiisoft/yii2-mongodb/doc/guide]

	ElasticSearch [https://www.yiiframework.com/extension/yiisoft/yii2-elasticsearch/doc/guide]

Getting Data from Users

	Creating Forms

	Validating Input

	Uploading Files

	Collecting Tabular Input

	Getting Data for Multiple Models

	Extending ActiveForm on the Client Side

Displaying Data

	Data Formatting

	Pagination

	Sorting

	Data Providers

	Data Widgets

	Working with Client Scripts

	Theming

Security

	Security Overview

	Authentication

	Authorization

	Working with Passwords

	Cryptography

	Auth Clients [https://www.yiiframework.com/extension/yiisoft/yii2-authclient/doc/guide]

	Best Practices

Caching

	Caching Overview

	Data Caching

	Fragment Caching

	Page Caching

	HTTP Caching

RESTful Web Services

	Quick Start

	Resources

	Controllers

	Routing

	Response Formatting

	Authentication

	Rate Limiting

	Versioning

	Error Handling

Development Tools

	Debug Toolbar and Debugger [https://www.yiiframework.com/extension/yiisoft/yii2-debug/doc/guide]

	Generating Code using Gii [https://www.yiiframework.com/extension/yiisoft/yii2-gii/doc/guide]

	Generating API Documentation [https://www.yiiframework.com/extension/yiisoft/yii2-apidoc]

Testing

	Testing Overview

	Testing environment setup

	Unit Tests

	Functional Tests

	Acceptance Tests

	Fixtures

Special Topics

	Advanced Project Template [https://www.yiiframework.com/extension/yiisoft/yii2-app-advanced/doc/guide]

	Building Application from Scratch

	Console Commands

	Core Validators

	Docker

	Internationalization

	Mailing

	Performance Tuning

	Shared Hosting Environment

	Template Engines

	Working with Third-Party Code

	Using Yii as a micro framework

Widgets

	GridView [https://www.yiiframework.com/doc-2.0/yii-grid-gridview.html]

	ListView [https://www.yiiframework.com/doc-2.0/yii-widgets-listview.html]

	DetailView [https://www.yiiframework.com/doc-2.0/yii-widgets-detailview.html]

	ActiveForm [https://www.yiiframework.com/doc-2.0/guide-input-forms.html#activerecord-based-forms-activeform]

	Pjax [https://www.yiiframework.com/doc-2.0/yii-widgets-pjax.html]

	Menu [https://www.yiiframework.com/doc-2.0/yii-widgets-menu.html]

	LinkPager [https://www.yiiframework.com/doc-2.0/yii-widgets-linkpager.html]

	LinkSorter [https://www.yiiframework.com/doc-2.0/yii-widgets-linksorter.html]

	Bootstrap Widgets [https://www.yiiframework.com/extension/yiisoft/yii2-bootstrap/doc/guide]

	jQuery UI Widgets [https://www.yiiframework.com/extension/yiisoft/yii2-jui/doc/guide]

Helpers

	Helpers Overview

	ArrayHelper

	Html

	Url

Data Caching

Data caching is about storing some PHP variables in cache and retrieving it later from cache.
It is also the foundation for more advanced caching features, such as query caching
and page caching.

The following code is a typical usage pattern of data caching, where $cache refers to
a cache component:

// try retrieving $data from cache
$data = $cache->get($key);

if ($data === false) {
 // $data is not found in cache, calculate it from scratch
 $data = $this->calculateSomething();

 // store $data in cache so that it can be retrieved next time
 $cache->set($key, $data);
}

// $data is available here

Since version 2.0.11, cache component provides [[yii\caching\Cache::getOrSet()|getOrSet()]] method
that simplifies code for data getting, calculating and storing. The following code does exactly the same as the
previous example:

$data = $cache->getOrSet($key, function () {
 return $this->calculateSomething();
});

When cache has data associated with the $key, the cached value will be returned.
Otherwise, the passed anonymous function will be executed to calculate the value that will be cached and returned.

If the anonymous function requires some data from the outer scope, you can pass it with the use statement.
For example:

$user_id = 42;
$data = $cache->getOrSet($key, function () use ($user_id) {
 return $this->calculateSomething($user_id);
});

Note: [[yii\caching\Cache::getOrSet()|getOrSet()]] method supports duration and dependencies as well.
See Cache Expiration and Cache Dependencies to know more.

Cache Components

Data caching relies on the so-called cache components which represent various cache storage,
such as memory, files, databases.

Cache components are usually registered as application components so
that they can be globally configurable
and accessible. The following code shows how to configure the cache application component to use
memcached [http://memcached.org/] with two cache servers:

'components' => [
 'cache' => [
 'class' => 'yii\caching\MemCache',
 'servers' => [
 [
 'host' => 'server1',
 'port' => 11211,
 'weight' => 100,
],
 [
 'host' => 'server2',
 'port' => 11211,
 'weight' => 50,
],
],
],
],

You can then access the above cache component using the expression Yii::$app->cache.

Because all cache components support the same set of APIs, you can swap the underlying cache component
with a different one by reconfiguring it in the application configuration without modifying the code that uses the cache.
For example, you can modify the above configuration to use [[yii\caching\ApcCache|APC cache]]:

'components' => [
 'cache' => [
 'class' => 'yii\caching\ApcCache',
],
],

Tip: You can register multiple cache application components. The component named cache is used
by default by many cache-dependent classes (e.g. [[yii\web\UrlManager]]).

Supported Cache Storage

Yii supports a wide range of cache storage. The following is a summary:

	[[yii\caching\ApcCache]]: uses PHP APC [http://php.net/manual/en/book.apc.php] extension. This option can be
considered as the fastest one when dealing with cache for a centralized thick application (e.g. one
server, no dedicated load balancers, etc.).

	[[yii\caching\DbCache]]: uses a database table to store cached data. To use this cache, you must
create a table as specified in [[yii\caching\DbCache::cacheTable]].

	[[yii\caching\ArrayCache]]: provides caching for the current request only by storing the values in an array.
For enhanced performance of ArrayCache, you can disable serialization of the stored data by setting
[[yii\caching\ArrayCache::$serializer]] to false.

	[[yii\caching\DummyCache]]: serves as a cache placeholder which does no real caching.
The purpose of this component is to simplify the code that needs to check the availability of cache.
For example, during development or if the server doesn’t have actual cache support, you may configure
a cache component to use this cache. When an actual cache support is enabled, you can switch to use
the corresponding cache component. In both cases, you may use the same code
Yii::$app->cache->get($key) to attempt retrieving data from the cache without worrying that
Yii::$app->cache might be null.

	[[yii\caching\FileCache]]: uses standard files to store cached data. This is particularly suitable
to cache large chunk of data, such as page content.

	[[yii\caching\MemCache]]: uses PHP memcache [http://php.net/manual/en/book.memcache.php]
and memcached [http://php.net/manual/en/book.memcached.php] extensions. This option can be considered as
the fastest one when dealing with cache in a distributed applications (e.g. with several servers, load
balancers, etc.)

	[[yii\redis\Cache]]: implements a cache component based on Redis [http://redis.io/] key-value store
(redis version 2.6.12 or higher is required).

	[[yii\caching\WinCache]]: uses PHP WinCache [http://iis.net/downloads/microsoft/wincache-extension]
(see also [http://php.net/manual/en/book.wincache.php]) extension.

	[[yii\caching\XCache]] (deprecated): uses PHP XCache [http://xcache.lighttpd.net/] extension.

	[[yii\caching\ZendDataCache]] (deprecated): uses
Zend Data Cache [http://files.zend.com/help/Zend-Server-6/zend-server.htm#data_cache_component.htm]
as the underlying caching medium.

Tip: You may use different cache storage in the same application. A common strategy is to use memory-based
cache storage to store data that is small but constantly used (e.g. statistical data), and use file-based
or database-based cache storage to store data that is big and less frequently used (e.g. page content).

Cache APIs

All cache components have the same base class [[yii\caching\Cache]] and thus support the following APIs:

	[[yii\caching\Cache::get()|get()]]: retrieves a data item from cache with a specified key. A false
value will be returned if the data item is not found in the cache or is expired/invalidated.

	[[yii\caching\Cache::set()|set()]]: stores a data item identified by a key in cache.

	[[yii\caching\Cache::add()|add()]]: stores a data item identified by a key in cache if the key is not found in the cache.

	[[yii\caching\Cache::getOrSet()|getOrSet()]]: retrieves a data item from cache with a specified key or executes passed
callback, stores return of the callback in a cache by a key and returns that data.

	[[yii\caching\Cache::multiGet()|multiGet()]]: retrieves multiple data items from cache with the specified keys.

	[[yii\caching\Cache::multiSet()|multiSet()]]: stores multiple data items in cache. Each item is identified by a key.

	[[yii\caching\Cache::multiAdd()|multiAdd()]]: stores multiple data items in cache. Each item is identified by a key.
If a key already exists in the cache, the data item will be skipped.

	[[yii\caching\Cache::exists()|exists()]]: returns a value indicating whether the specified key is found in the cache.

	[[yii\caching\Cache::delete()|delete()]]: removes a data item identified by a key from the cache.

	[[yii\caching\Cache::flush()|flush()]]: removes all data items from the cache.

Note: Do not cache a false boolean value directly because the [[yii\caching\Cache::get()|get()]] method uses
false return value to indicate the data item is not found in the cache. You may put false in an array and cache
this array instead to avoid this problem.

Some cache storage, such as MemCache, APC, support retrieving multiple cached values in a batch mode,
which may reduce the overhead involved in retrieving cached data. The APIs [[yii\caching\Cache::multiGet()|multiGet()]]
and [[yii\caching\Cache::multiAdd()|multiAdd()]] are provided to exploit this feature. In case the underlying cache storage
does not support this feature, it will be simulated.

Because [[yii\caching\Cache]] implements ArrayAccess, a cache component can be used like an array. The following
are some examples:

$cache['var1'] = $value1; // equivalent to: $cache->set('var1', $value1);
$value2 = $cache['var2']; // equivalent to: $value2 = $cache->get('var2');

Cache Keys

Each data item stored in cache is uniquely identified by a key. When you store a data item in cache,
you have to specify a key for it. Later when you retrieve the data item from cache, you should provide
the corresponding key.

You may use a string or an arbitrary value as a cache key. When a key is not a string, it will be automatically
serialized into a string.

A common strategy of defining a cache key is to include all determining factors in terms of an array.
For example, [[yii\db\Schema]] uses the following key to cache schema information about a database table:

[
 __CLASS__, // schema class name
 $this->db->dsn, // DB connection data source name
 $this->db->username, // DB connection login user
 $name, // table name
];

As you can see, the key includes all necessary information needed to uniquely specify a database table.

Note: Values stored in cache via [[yii\caching\Cache::multiSet()|multiSet()]] or [[yii\caching\Cache::multiAdd()|multiAdd()]] can
have only string or integer keys. If you need to set more complex key store the value separately via
[[yii\caching\Cache::set()|set()]] or [[yii\caching\Cache::add()|add()]].

When the same cache storage is used by different applications, you should specify a unique cache key prefix
for each application to avoid conflicts of cache keys. This can be done by configuring the [[yii\caching\Cache::keyPrefix]]
property. For example, in the application configuration you can write the following code:

'components' => [
 'cache' => [
 'class' => 'yii\caching\ApcCache',
 'keyPrefix' => 'myapp', // a unique cache key prefix
],
],

To ensure interoperability, only alphanumeric characters should be used.

Cache Expiration

A data item stored in a cache will remain there forever unless it is removed because of some caching policy
enforcement (e.g. caching space is full and the oldest data are removed). To change this behavior, you can provide
an expiration parameter when calling [[yii\caching\Cache::set()|set()]] to store a data item. The parameter
indicates for how many seconds the data item can remain valid in the cache. When you call
[[yii\caching\Cache::get()|get()]] to retrieve the data item, if it has passed the expiration time, the method
will return false, indicating the data item is not found in the cache. For example,

// keep the data in cache for at most 45 seconds
$cache->set($key, $data, 45);

sleep(50);

$data = $cache->get($key);
if ($data === false) {
 // $data is expired or is not found in the cache
}

Since 2.0.11 you may set [[yii\caching\Cache::$defaultDuration|defaultDuration]] value in your cache component configuration if you prefer a custom cache duration
over the default unlimited duration.
This will allow you not to pass custom duration parameter to [[yii\caching\Cache::set()|set()]] each time.

Cache Dependencies

Besides expiration setting, cached data item may also be invalidated by changes of the so-called cache dependencies.
For example, [[yii\caching\FileDependency]] represents the dependency of a file’s modification time.
When this dependency changes, it means the corresponding file is modified. As a result, any outdated
file content found in the cache should be invalidated and the [[yii\caching\Cache::get()|get()]] call
should return false.

Cache dependencies are represented as objects of [[yii\caching\Dependency]] descendant classes. When you call
[[yii\caching\Cache::set()|set()]] to store a data item in the cache, you can pass along an associated cache
dependency object. For example,

// Create a dependency on the modification time of file example.txt.
$dependency = new \yii\caching\FileDependency(['fileName' => 'example.txt']);

// The data will expire in 30 seconds.
// It may also be invalidated earlier if example.txt is modified.
$cache->set($key, $data, 30, $dependency);

// The cache will check if the data has expired.
// It will also check if the associated dependency was changed.
// It will return false if any of these conditions are met.
$data = $cache->get($key);

Below is a summary of the available cache dependencies:

	[[yii\caching\ChainedDependency]]: the dependency is changed if any of the dependencies on the chain is changed.

	[[yii\caching\DbDependency]]: the dependency is changed if the query result of the specified SQL statement is changed.

	[[yii\caching\ExpressionDependency]]: the dependency is changed if the result of the specified PHP expression is changed.

	[[yii\caching\FileDependency]]: the dependency is changed if the file’s last modification time is changed.

	[[yii\caching\TagDependency]]: associates a cached data item with one or multiple tags. You may invalidate
the cached data items with the specified tag(s) by calling [[yii\caching\TagDependency::invalidate()]].

Note: Avoid using [[yii\caching\Cache::exists()|exists()]] method along with dependencies. It does not check whether
the dependency associated with the cached data, if there is any, has changed. So a call to
[[yii\caching\Cache::get()|get()]] may return false while [[yii\caching\Cache::exists()|exists()]] returns true.

Query Caching

Query caching is a special caching feature built on top of data caching. It is provided to cache the result
of database queries.

Query caching requires a [[yii\db\Connection|DB connection]] and a valid cache application component.
The basic usage of query caching is as follows, assuming $db is a [[yii\db\Connection]] instance:

$result = $db->cache(function ($db) {

 // the result of the SQL query will be served from the cache
 // if query caching is enabled and the query result is found in the cache
 return $db->createCommand('SELECT * FROM customer WHERE id=1')->queryOne();

});

Query caching can be used for DAO as well as ActiveRecord:

$result = Customer::getDb()->cache(function ($db) {
 return Customer::find()->where(['id' => 1])->one();
});

Info: Some DBMS (e.g. MySQL [http://dev.mysql.com/doc/refman/5.1/en/query-cache.html])
also support query caching on the DB server-side. You may choose to use either query caching mechanism.
The query caching described above has the advantage that you may specify flexible cache dependencies
and are potentially more efficient.

Since 2.0.14 you can use the following shortcuts:

(new Query())->cache(7200)->all();
// and
User::find()->cache(7200)->all();

Configurations

Query caching has three global configurable options through [[yii\db\Connection]]:

	[[yii\db\Connection::enableQueryCache|enableQueryCache]]: whether to turn on or off query caching.
It defaults to true. Note that to effectively turn on query caching, you also need to have a valid
cache, as specified by [[yii\db\Connection::queryCache|queryCache]].

	[[yii\db\Connection::queryCacheDuration|queryCacheDuration]]: this represents the number of seconds
that a query result can remain valid in the cache. You can use 0 to indicate a query result should
remain in the cache forever. This property is the default value used when [[yii\db\Connection::cache()]]
is called without specifying a duration.

	[[yii\db\Connection::queryCache|queryCache]]: this represents the ID of the cache application component.
It defaults to 'cache'. Query caching is enabled only if there is a valid cache application component.

Usages

You can use [[yii\db\Connection::cache()]] if you have multiple SQL queries that need to take advantage of
query caching. The usage is as follows,

$duration = 60; // cache query results for 60 seconds.
$dependency = ...; // optional dependency

$result = $db->cache(function ($db) {

 // ... perform SQL queries here ...

 return $result;

}, $duration, $dependency);

Any SQL queries in the anonymous function will be cached for the specified duration with the specified dependency.
If the result of a query is found valid in the cache, the query will be skipped and the result will be served
from the cache instead. If you do not specify the $duration parameter, the value of
[[yii\db\Connection::queryCacheDuration|queryCacheDuration]] will be used instead.

Sometimes within cache(), you may want to disable query caching for some particular queries. You can use
[[yii\db\Connection::noCache()]] in this case.

$result = $db->cache(function ($db) {

 // SQL queries that use query caching

 $db->noCache(function ($db) {

 // SQL queries that do not use query caching

 });

 // ...

 return $result;
});

If you just want to use query caching for a single query, you can call [[yii\db\Command::cache()]] when building
the command. For example,

// use query caching and set query cache duration to be 60 seconds
$customer = $db->createCommand('SELECT * FROM customer WHERE id=1')->cache(60)->queryOne();

You can also use [[yii\db\Command::noCache()]] to disable query caching for a single command. For example,

$result = $db->cache(function ($db) {

 // SQL queries that use query caching

 // do not use query caching for this command
 $customer = $db->createCommand('SELECT * FROM customer WHERE id=1')->noCache()->queryOne();

 // ...

 return $result;
});

Limitations

Query caching does not work with query results that contain resource handlers. For example,
when using the BLOB column type in some DBMS, the query result will return a resource
handler for the column data.

Some caching storage has size limitation. For example, memcache limits the maximum size
of each entry to be 1MB. Therefore, if the size of a query result exceeds this limit,
the caching will fail.

Cache Flushing

 Fragment Caching

Fragment Caching

Fragment caching refers to caching a fragment of a Web page. For example, if a page displays a summary of
yearly sale in a table, you can store this table in cache to eliminate the time needed to generate this table
for each request. Fragment caching is built on top of data caching.

To use fragment caching, use the following construct in a view:

if ($this->beginCache($id)) {

 // ... generate content here ...

 $this->endCache();
}

That is, enclose content generation logic in a pair of [[yii\base\View::beginCache()|beginCache()]] and
[[yii\base\View::endCache()|endCache()]] calls. If the content is found in the cache, [[yii\base\View::beginCache()|beginCache()]]
will render the cached content and return false, thus skip the content generation logic.
Otherwise, your content generation logic will be called, and when [[yii\base\View::endCache()|endCache()]]
is called, the generated content will be captured and stored in the cache.

Like data caching, a unique $id is needed to identify a content cache.

Caching Options

You may specify additional options about fragment caching by passing the option array as the second
parameter to the [[yii\base\View::beginCache()|beginCache()]] method. Behind the scene, this option array
will be used to configure a [[yii\widgets\FragmentCache]] widget which implements the actual fragment caching
functionality.

Duration

Perhaps the most commonly used option of fragment caching is [[yii\widgets\FragmentCache::duration|duration]].
It specifies for how many seconds the content can remain valid in a cache. The following code
caches the content fragment for at most one hour:

if ($this->beginCache($id, ['duration' => 3600])) {

 // ... generate content here ...

 $this->endCache();
}

If the option is not set, it will take the default value 60, which means the cached content will expire in 60 seconds.

Dependencies

Like data caching, content fragment being cached can also have dependencies.
For example, the content of a post being displayed depends on whether or not the post is modified.

To specify a dependency, set the [[yii\widgets\FragmentCache::dependency|dependency]] option, which can be
either an [[yii\caching\Dependency]] object or a configuration array for creating a dependency object. The
following code specifies that the fragment content depends on the change of the updated_at column value:

$dependency = [
 'class' => 'yii\caching\DbDependency',
 'sql' => 'SELECT MAX(updated_at) FROM post',
];

if ($this->beginCache($id, ['dependency' => $dependency])) {

 // ... generate content here ...

 $this->endCache();
}

Variations

Content being cached may be variated according to some parameters. For example, for a Web application
supporting multiple languages, the same piece of view code may generate the content in different languages.
Therefore, you may want to make the cached content variated according to the current application language.

To specify cache variations, set the [[yii\widgets\FragmentCache::variations|variations]] option, which
should be an array of scalar values, each representing a particular variation factor. For example,
to make the cached content variated by the language, you may use the following code:

if ($this->beginCache($id, ['variations' => [Yii::$app->language]])) {

 // ... generate content here ...

 $this->endCache();
}

Toggling Caching

Sometimes you may want to enable fragment caching only when certain conditions are met. For example, for a page
displaying a form, you only want to cache the form when it is initially requested (via GET request). Any
subsequent display (via POST request) of the form should not be cached because the form may contain user input.
To do so, you may set the [[yii\widgets\FragmentCache::enabled|enabled]] option, like the following:

if ($this->beginCache($id, ['enabled' => Yii::$app->request->isGet])) {

 // ... generate content here ...

 $this->endCache();
}

Nested Caching

Fragment caching can be nested. That is, a cached fragment can be enclosed within another fragment which is also cached.
For example, the comments are cached in an inner fragment cache, and they are cached together with the
post content in an outer fragment cache. The following code shows how two fragment caches can be nested:

if ($this->beginCache($id1)) {

 // ...content generation logic...

 if ($this->beginCache($id2, $options2)) {

 // ...content generation logic...

 $this->endCache();
 }

 // ...content generation logic...

 $this->endCache();
}

Different caching options can be set for the nested caches. For example, the inner caches and the outer caches
can use different cache duration values. Even when the data cached in the outer cache is invalidated, the inner
cache may still provide the valid inner fragment. However, it is not true vice versa. If the outer cache is
evaluated to be valid, it will continue to provide the same cached copy even after the content in the
inner cache has been invalidated. Therefore, you must be careful in setting the durations or the dependencies
of the nested caches, otherwise the outdated inner fragments may be kept in the outer fragment.

Dynamic Content

When using fragment caching, you may encounter the situation where a large fragment of content is relatively
static except at one or a few places. For example, a page header may display the main menu bar together with
the name of the current user. Another problem is that the content being cached may contain PHP code that
must be executed for every request (e.g. the code for registering an asset bundle). Both problems can be solved
by the so-called dynamic content feature.

A dynamic content means a fragment of output that should not be cached even if it is enclosed within
a fragment cache. To make the content dynamic all the time, it has to be generated by executing some PHP code
for every request, even if the enclosing content is being served from cache.

You may call [[yii\base\View::renderDynamic()]] within a cached fragment to insert dynamic content
at the desired place, like the following,

if ($this->beginCache($id1)) {

 // ...content generation logic...

 echo $this->renderDynamic('return Yii::$app->user->identity->name;');

 // ...content generation logic...

 $this->endCache();
}

The [[yii\base\View::renderDynamic()|renderDynamic()]] method takes a piece of PHP code as its parameter.
The return value of the PHP code is treated as the dynamic content. The same PHP code will be executed
for every request, no matter the enclosing fragment is being served from cached or not.

Note: since version 2.0.14 a dynamic content API is exposed via the [[yii\base\DynamicContentAwareInterface]] interface and its [[yii\base\DynamicContentAwareTrait]] trait.
As an example, you may refer to the [[yii\widgets\FragmentCache]] class.

 HTTP Caching

HTTP Caching

Besides server-side caching that we have described in the previous sections, Web applications may
also exploit client-side caching to save the time for generating and transmitting the same page content.

To use client-side caching, you may configure [[yii\filters\HttpCache]] as a filter for controller
actions whose rendering result may be cached on the client-side. [[yii\filters\HttpCache|HttpCache]]
only works for GET and HEAD requests. It can handle three kinds of cache-related HTTP headers for these requests:

	[[yii\filters\HttpCache::lastModified|Last-Modified]]

	[[yii\filters\HttpCache::etagSeed|Etag]]

	[[yii\filters\HttpCache::cacheControlHeader|Cache-Control]]

Last-Modified Header

The Last-Modified header uses a timestamp to indicate if the page has been modified since the client caches it.

You may configure the [[yii\filters\HttpCache::lastModified]] property to enable sending
the Last-Modified header. The property should be a PHP callable returning a UNIX timestamp about
the page modification time. The signature of the PHP callable should be as follows,

/**
 * @param Action $action the action object that is being handled currently
 * @param array $params the value of the "params" property
 * @return int a UNIX timestamp representing the page modification time
 */
function ($action, $params)

The following is an example of making use of the Last-Modified header:

public function behaviors()
{
 return [
 [
 'class' => 'yii\filters\HttpCache',
 'only' => ['index'],
 'lastModified' => function ($action, $params) {
 $q = new \yii\db\Query();
 return $q->from('post')->max('updated_at');
 },
],
];
}

The above code states that HTTP caching should be enabled for the index action only. It should
generate a Last-Modified HTTP header based on the last update time of posts. When a browser visits
the index page for the first time, the page will be generated on the server and sent to the browser;
If the browser visits the same page again and there is no post being modified during the period,
the server will not re-generate the page, and the browser will use the cached version on the client-side.
As a result, server-side rendering and page content transmission are both skipped.

ETag Header

The “Entity Tag” (or ETag for short) header use a hash to represent the content of a page. If the page
is changed, the hash will be changed as well. By comparing the hash kept on the client-side with the hash
generated on the server-side, the cache may determine whether the page has been changed and should be re-transmitted.

You may configure the [[yii\filters\HttpCache::etagSeed]] property to enable sending the ETag header.
The property should be a PHP callable returning a seed for generating the ETag hash. The signature of the PHP callable
should be as follows,

/**
 * @param Action $action the action object that is being handled currently
 * @param array $params the value of the "params" property
 * @return string a string used as the seed for generating an ETag hash
 */
function ($action, $params)

The following is an example of making use of the ETag header:

public function behaviors()
{
 return [
 [
 'class' => 'yii\filters\HttpCache',
 'only' => ['view'],
 'etagSeed' => function ($action, $params) {
 $post = $this->findModel(\Yii::$app->request->get('id'));
 return serialize([$post->title, $post->content]);
 },
],
];
}

The above code states that HTTP caching should be enabled for the view action only. It should
generate an ETag HTTP header based on the title and content of the requested post. When a browser visits
the view page for the first time, the page will be generated on the server and sent to the browser;
If the browser visits the same page again and there is no change to the title and content of the post,
the server will not re-generate the page, and the browser will use the cached version on the client-side.
As a result, server-side rendering and page content transmission are both skipped.

ETags allow more complex and/or more precise caching strategies than Last-Modified headers.
For instance, an ETag can be invalidated if the site has switched to another theme.

Expensive ETag generation may defeat the purpose of using HttpCache and introduce unnecessary overhead,
since they need to be re-evaluated on every request. Try to find a simple expression that invalidates
the cache if the page content has been modified.

Note: In compliance to RFC 7232 [http://tools.ietf.org/html/rfc7232#section-2.4],
HttpCache will send out both ETag and Last-Modified headers if they are both configured.
And if the client sends both of the If-None-Match header and the If-Modified-Since header, only the former
will be respected.

Cache-Control Header

The Cache-Control header specifies the general caching policy for pages. You may send it by configuring
the [[yii\filters\HttpCache::cacheControlHeader]] property with the header value. By default, the following
header will be sent:

Cache-Control: public, max-age=3600

Session Cache Limiter

When a page uses session, PHP will automatically send some cache-related HTTP headers as specified in
the session.cache_limiter PHP INI setting. These headers may interfere or disable the caching
that you want from HttpCache. To prevent this problem, by default HttpCache will disable sending
these headers automatically. If you want to change this behavior, you should configure the
[[yii\filters\HttpCache::sessionCacheLimiter]] property. The property can take a string value, including
public, private, private_no_expire, and nocache. Please refer to the PHP manual about
session_cache_limiter() [http://www.php.net/manual/en/function.session-cache-limiter.php]
for explanations about these values.

SEO Implications

Search engine bots tend to respect cache headers. Since some crawlers have a limit on how many pages
per domain they process within a certain time span, introducing caching headers may help indexing your
site as they reduce the number of pages that need to be processed.

 Caching

Caching

Caching is a cheap and effective way to improve the performance of a Web application. By storing relatively
static data in cache and serving it from cache when requested, the application saves the time that would be
required to generate the data from scratch every time.

Caching can occur at different levels and places in a Web application. On the server-side, at the lower level,
cache may be used to store basic data, such as a list of most recent article information fetched from database;
and at the higher level, cache may be used to store fragments or whole of Web pages, such as the rendering result
of the most recent articles. On the client-side, HTTP caching may be used to keep most recently visited page content in
the browser cache.

Yii supports all these caching mechanisms:

	Data caching

	Fragment caching

	Page caching

	HTTP caching

 Page Caching

Page Caching

Page caching refers to caching the content of a whole page on the server-side. Later when the same page
is requested again, its content will be served from the cache instead of regenerating it from scratch.

Page caching is supported by [[yii\filters\PageCache]], an action filter.
It can be used like the following in a controller class:

public function behaviors()
{
 return [
 [
 'class' => 'yii\filters\PageCache',
 'only' => ['index'],
 'duration' => 60,
 'variations' => [
 \Yii::$app->language,
],
 'dependency' => [
 'class' => 'yii\caching\DbDependency',
 'sql' => 'SELECT COUNT(*) FROM post',
],
],
];
}

The above code states that page caching should be used only for the index action. The page content should
be cached for at most 60 seconds and should be variated by the current application language
and the cached page should be invalidated if the total number of posts is changed.

As you can see, page caching is very similar to fragment caching. They both support options such
as duration, dependencies, variations, and enabled. Their main difference is that page caching is
implemented as an action filter while fragment caching a widget.

You can use fragment caching as well as dynamic content
together with page caching.

 Aliases

Aliases

Aliases are used to represent file paths or URLs so that you don’t have to hard-code absolute paths or URLs in your
project. An alias must start with the @ character to be differentiated from normal file paths and URLs. Alias defined
without leading @ will be prefixed with @ character.

Yii has many pre-defined aliases already available. For example, the alias @yii represents the installation path of
the Yii framework; @web represents the base URL for the currently running Web application.

Defining Aliases

You can define an alias for a file path or URL by calling [[Yii::setAlias()]]:

// an alias of a file path
Yii::setAlias('@foo', '/path/to/foo');

// an alias of a URL
Yii::setAlias('@bar', 'http://www.example.com');

// an alias of a concrete file that contains a \foo\Bar class
Yii::setAlias('@foo/Bar.php', '/definitely/not/foo/Bar.php');

Note: The file path or URL being aliased may not necessarily refer to an existing file or resource.

Given a defined alias, you may derive a new alias (without the need of calling [[Yii::setAlias()]]) by appending
a slash / followed with one or more path segments. The aliases defined via [[Yii::setAlias()]] becomes the
root alias, while aliases derived from it are derived aliases. For example, @foo is a root alias,
while @foo/bar/file.php is a derived alias.

You can define an alias using another alias (either root or derived):

Yii::setAlias('@foobar', '@foo/bar');

Root aliases are usually defined during the bootstrapping stage.
For example, you may call [[Yii::setAlias()]] in the entry script.
For convenience, Application provides a writable property named aliases
that you can configure in the application configuration:

return [
 // ...
 'aliases' => [
 '@foo' => '/path/to/foo',
 '@bar' => 'http://www.example.com',
],
];

Resolving Aliases

You can call [[Yii::getAlias()]] to resolve a root alias into the file path or URL it represents.
The same method can also resolve a derived alias into the corresponding file path or URL:

echo Yii::getAlias('@foo'); // displays: /path/to/foo
echo Yii::getAlias('@bar'); // displays: http://www.example.com
echo Yii::getAlias('@foo/bar/file.php'); // displays: /path/to/foo/bar/file.php

The path/URL represented by a derived alias is determined by replacing the root alias part with its corresponding
path/URL in the derived alias.

Note: The [[Yii::getAlias()]] method does not check whether the resulting path/URL refers to an existing file or resource.

A root alias may also contain slash / characters. The [[Yii::getAlias()]] method
is intelligent enough to tell which part of an alias is a root alias and thus correctly determines
the corresponding file path or URL:

Yii::setAlias('@foo', '/path/to/foo');
Yii::setAlias('@foo/bar', '/path2/bar');
Yii::getAlias('@foo/test/file.php'); // displays: /path/to/foo/test/file.php
Yii::getAlias('@foo/bar/file.php'); // displays: /path2/bar/file.php

If @foo/bar is not defined as a root alias, the last statement would display /path/to/foo/bar/file.php.

Using Aliases

Aliases are recognized in many places in Yii without needing to call [[Yii::getAlias()]] to convert
them into paths or URLs. For example, [[yii\caching\FileCache::cachePath]] can accept both a file path
and an alias representing a file path, thanks to the @ prefix which allows it to differentiate a file path
from an alias.

use yii\caching\FileCache;

$cache = new FileCache([
 'cachePath' => '@runtime/cache',
]);

Please pay attention to the API documentation to see if a property or method parameter supports aliases.

Predefined Aliases

Yii predefines a set of aliases to easily reference commonly used file paths and URLs:

	@yii, the directory where the BaseYii.php file is located (also called the framework directory).

	@app, the [[yii\base\Application::basePath|base path]] of the currently running application.

	@runtime, the [[yii\base\Application::runtimePath|runtime path]] of the currently running application. Defaults to @app/runtime.

	@webroot, the Web root directory of the currently running Web application. It is determined based on the directory
containing the entry script.

	@web, the base URL of the currently running Web application. It has the same value as [[yii\web\Request::baseUrl]].

	@vendor, the [[yii\base\Application::vendorPath|Composer vendor directory]]. Defaults to @app/vendor.

	@bower, the root directory that contains bower packages [http://bower.io/]. Defaults to @vendor/bower.

	@npm, the root directory that contains npm packages [https://www.npmjs.org/]. Defaults to @vendor/npm.

The @yii alias is defined when you include the Yii.php file in your entry script.
The rest of the aliases are defined in the application constructor when applying the application
configuration.

Note: @web and @webroot aliases as their descriptions indicate are defined within [[yii\web\Application|Web application]] and therefore are not available for [[yii\console\Application|Console application]] by default.

Extension Aliases

An alias is automatically defined for each extension that is installed via Composer.
Each alias is named after the root namespace of the extension as declared in its composer.json file, and each alias
represents the root directory of the package. For example, if you install the yiisoft/yii2-jui extension,
you will automatically have the alias @yii/jui defined during the bootstrapping stage, equivalent to:

Yii::setAlias('@yii/jui', 'VendorPath/yiisoft/yii2-jui');

 Class Autoloading

Class Autoloading

Yii relies on the class autoloading mechanism [http://www.php.net/manual/en/language.oop5.autoload.php]
to locate and include all required class files. It provides a high-performance class autoloader that is compliant with the
PSR-4 standard [https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-4-autoloader.md].
The autoloader is installed when you include the Yii.php file.

Note: For simplicity of description, in this section we will only talk about autoloading of classes. However, keep in
mind that the content we are describing here applies to autoloading of interfaces and traits as well.

Using the Yii Autoloader

To make use of the Yii class autoloader, you should follow two simple rules when creating and naming your classes:

	Each class must be under a namespace [http://php.net/manual/en/language.namespaces.php] (e.g. foo\bar\MyClass)

	Each class must be saved in an individual file whose path is determined by the following algorithm:

// $className is a fully qualified class name without the leading backslash
$classFile = Yii::getAlias('@' . str_replace('\\', '/', $className) . '.php');

For example, if a class name and namespace is foo\bar\MyClass, the alias for the corresponding class file path
would be @foo/bar/MyClass.php. In order for this alias to be resolvable into a file path,
either @foo or @foo/bar must be a root alias.

When using the Basic Project Template, you may put your classes under the top-level
namespace app so that they can be autoloaded by Yii without the need of defining a new alias. This is because
@app is a predefined alias, and a class name like app\components\MyClass
can be resolved into the class file AppBasePath/components/MyClass.php, according to the algorithm just described.

In the Advanced Project Template [https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/README.md], each tier has its own root alias. For example,
the front-end tier has a root alias @frontend, while the back-end tier root alias is @backend. As a result,
you may put the front-end classes under the namespace frontend while the back-end classes are under backend. This will
allow these classes to be autoloaded by the Yii autoloader.

To add a custom namespace to the autoloader you need to define an alias for the base directory of the namespace using [[Yii::setAlias()]].
For example to load classes in the foo namespace that are located in the path/to/foo directory you will call Yii::setAlias('@foo', 'path/to/foo').

Class Map

The Yii class autoloader supports the class map feature, which maps class names to the corresponding class file paths.
When the autoloader is loading a class, it will first check if the class is found in the map. If so, the corresponding
file path will be included directly without further checks. This makes class autoloading super fast. In fact,
all core Yii classes are autoloaded this way.

You may add a class to the class map, stored in Yii::$classMap, using:

Yii::$classMap['foo\bar\MyClass'] = 'path/to/MyClass.php';

Aliases can be used to specify class file paths. You should set the class map in the
bootstrapping process so that the map is ready before your classes are used.

Using Other Autoloaders

Because Yii embraces Composer as a package dependency manager, it is recommended that you also install
the Composer autoloader. If you are using 3rd-party libraries that have their own autoloaders, you should
also install those.

When using the Yii autoloader together with other autoloaders, you should include the Yii.php file
after all other autoloaders are installed. This will make the Yii autoloader the first one responding to
any class autoloading request. For example, the following code is extracted from
the entry script of the Basic Project Template. The first
line installs the Composer autoloader, while the second line installs the Yii autoloader:

require __DIR__ . '/../vendor/autoload.php';
require __DIR__ . '/../vendor/yiisoft/yii2/Yii.php';

You may use the Composer autoloader alone without the Yii autoloader. However, by doing so, the performance
of your class autoloading may be degraded, and you must follow the rules set by Composer in order for your classes
to be autoloadable.

Info: If you do not want to use the Yii autoloader, you must create your own version of the Yii.php file
and include it in your entry script.

Autoloading Extension Classes

The Yii autoloader is capable of autoloading extension classes. The sole requirement
is that an extension specifies the autoload section correctly in its composer.json file. Please refer to the
Composer documentation [https://getcomposer.org/doc/04-schema.md#autoload] for more details about specifying autoload.

In case you do not use the Yii autoloader, the Composer autoloader can still autoload extension classes for you.

 Behaviors

Behaviors

Behaviors are instances of [[yii\base\Behavior]], or of a child class. Behaviors, also known
as mixins [http://en.wikipedia.org/wiki/Mixin], allow you to enhance the functionality
of an existing [[yii\base\Component|component]] class without needing to change the class’s inheritance.
Attaching a behavior to a component “injects” the behavior’s methods and properties into the component, making those methods and properties accessible as if they were defined in the component class itself. Moreover, a behavior
can respond to the events triggered by the component, which allows behaviors to also customize the normal
code execution of the component.

Defining Behaviors

To define a behavior, create a class that extends [[yii\base\Behavior]], or extends a child class. For example:

namespace app\components;

use yii\base\Behavior;

class MyBehavior extends Behavior
{
 public $prop1;

 private $_prop2;

 public function getProp2()
 {
 return $this->_prop2;
 }

 public function setProp2($value)
 {
 $this->_prop2 = $value;
 }

 public function foo()
 {
 // ...
 }
}

The above code defines the behavior class app\components\MyBehavior, with two properties
prop1 and prop2 and one method foo(). Note that property prop2
is defined via the getter getProp2() and the setter setProp2(). This is the case because [[yii\base\Behavior]] extends [[yii\base\BaseObject]] and therefore supports defining properties via getters and setters.

Because this class is a behavior, when it is attached to a component, that component will then also have the prop1 and prop2 properties and the foo() method.

Tip: Within a behavior, you can access the component that the behavior is attached to through the [[yii\base\Behavior::owner]] property.

Note: In case [[yii\base\Behavior::__get()]] and/or [[yii\base\Behavior::__set()]] method of behavior is overridden you
need to override [[yii\base\Behavior::canGetProperty()]] and/or [[yii\base\Behavior::canSetProperty()]] as well.

Handling Component Events

If a behavior needs to respond to the events triggered by the component it is attached to, it should override the
[[yii\base\Behavior::events()]] method. For example:

namespace app\components;

use yii\db\ActiveRecord;
use yii\base\Behavior;

class MyBehavior extends Behavior
{
 // ...

 public function events()
 {
 return [
 ActiveRecord::EVENT_BEFORE_VALIDATE => 'beforeValidate',
];
 }

 public function beforeValidate($event)
 {
 // ...
 }
}

The [[yii\base\Behavior::events()|events()]] method should return a list of events and their corresponding handlers.
The above example declares that the [[yii\db\ActiveRecord::EVENT_BEFORE_VALIDATE|EVENT_BEFORE_VALIDATE]] event exists and defines
its handler, beforeValidate(). When specifying an event handler, you may use one of the following formats:

	a string that refers to the name of a method of the behavior class, like the example above

	an array of an object or class name, and a method name as a string (without parentheses), e.g., [$object, 'methodName'];

	an anonymous function

The signature of an event handler should be as follows, where $event refers to the event parameter. Please refer
to the Events section for more details about events.

function ($event) {
}

Attaching Behaviors

You can attach a behavior to a [[yii\base\Component|component]] either statically or dynamically. The former is more common in practice.

To attach a behavior statically, override the [[yii\base\Component::behaviors()|behaviors()]] method of the component
class to which the behavior is being attached. The [[yii\base\Component::behaviors()|behaviors()]] method should return a list of behavior configurations.
Each behavior configuration can be either a behavior class name or a configuration array:

namespace app\models;

use yii\db\ActiveRecord;
use app\components\MyBehavior;

class User extends ActiveRecord
{
 public function behaviors()
 {
 return [
 // anonymous behavior, behavior class name only
 MyBehavior::className(),

 // named behavior, behavior class name only
 'myBehavior2' => MyBehavior::className(),

 // anonymous behavior, configuration array
 [
 'class' => MyBehavior::className(),
 'prop1' => 'value1',
 'prop2' => 'value2',
],

 // named behavior, configuration array
 'myBehavior4' => [
 'class' => MyBehavior::className(),
 'prop1' => 'value1',
 'prop2' => 'value2',
]
];
 }
}

You may associate a name with a behavior by specifying the array key corresponding to the behavior configuration. In this case, the behavior is called a named behavior. In the above example, there are two named behaviors:
myBehavior2 and myBehavior4. If a behavior is not associated with a name, it is called an anonymous behavior.

To attach a behavior dynamically, call the [[yii\base\Component::attachBehavior()]] method of the component to which the behavior is being attached:

use app\components\MyBehavior;

// attach a behavior object
$component->attachBehavior('myBehavior1', new MyBehavior);

// attach a behavior class
$component->attachBehavior('myBehavior2', MyBehavior::className());

// attach a configuration array
$component->attachBehavior('myBehavior3', [
 'class' => MyBehavior::className(),
 'prop1' => 'value1',
 'prop2' => 'value2',
]);

You may attach multiple behaviors at once using the [[yii\base\Component::attachBehaviors()]] method:

$component->attachBehaviors([
 'myBehavior1' => new MyBehavior, // a named behavior
 MyBehavior::className(), // an anonymous behavior
]);

You may also attach behaviors through configurations like the following:

[
 'as myBehavior2' => MyBehavior::className(),

 'as myBehavior3' => [
 'class' => MyBehavior::className(),
 'prop1' => 'value1',
 'prop2' => 'value2',
],
]

For more details,
please refer to the Configurations section.

Using Behaviors

To use a behavior, first attach it to a [[yii\base\Component|component]] per the instructions above. Once a behavior is attached to a component, its usage is straightforward.

You can access a public member variable or a property defined by a getter and/or a setter
of the behavior through the component it is attached to:

// "prop1" is a property defined in the behavior class
echo $component->prop1;
$component->prop1 = $value;

You can also call a public method of the behavior similarly:

// foo() is a public method defined in the behavior class
$component->foo();

As you can see, although $component does not define prop1 and foo(), they can be used as if they are part
of the component definition due to the attached behavior.

If two behaviors define the same property or method and they are both attached to the same component,
the behavior that is attached to the component first will take precedence when the property or method is accessed.

A behavior may be associated with a name when it is attached to a component. If this is the case, you may
access the behavior object using the name:

$behavior = $component->getBehavior('myBehavior');

You may also get all behaviors attached to a component:

$behaviors = $component->getBehaviors();

Detaching Behaviors

To detach a behavior, call [[yii\base\Component::detachBehavior()]] with the name associated with the behavior:

$component->detachBehavior('myBehavior1');

You may also detach all behaviors:

$component->detachBehaviors();

Using TimestampBehavior

To wrap up, let’s take a look at [[yii\behaviors\TimestampBehavior]]. This behavior supports automatically
updating the timestamp attributes of an [[yii\db\ActiveRecord|Active Record]] model anytime the model is saved via
insert(), update() or save() method.

First, attach this behavior to the [[yii\db\ActiveRecord|Active Record]] class that you plan to use:

namespace app\models\User;

use yii\db\ActiveRecord;
use yii\behaviors\TimestampBehavior;

class User extends ActiveRecord
{
 // ...

 public function behaviors()
 {
 return [
 [
 'class' => TimestampBehavior::className(),
 'attributes' => [
 ActiveRecord::EVENT_BEFORE_INSERT => ['created_at', 'updated_at'],
 ActiveRecord::EVENT_BEFORE_UPDATE => ['updated_at'],
],
 // if you're using datetime instead of UNIX timestamp:
 // 'value' => new Expression('NOW()'),
],
];
 }
}

The behavior configuration above specifies that when the record is being:

	inserted, the behavior should assign the current UNIX timestamp to
the created_at and updated_at attributes

	updated, the behavior should assign the current UNIX timestamp to the updated_at attribute

Note: For the above implementation to work with MySQL database, please declare the columns(created_at, updated_at) as int(11) for being UNIX timestamp.

With that code in place, if you have a User object and try to save it, you will find its created_at and updated_at are automatically
filled with the current UNIX timestamp:

$user = new User;
$user->email = 'test@example.com';
$user->save();
echo $user->created_at; // shows the current timestamp

The [[yii\behaviors\TimestampBehavior|TimestampBehavior]] also offers a useful method
[[yii\behaviors\TimestampBehavior::touch()|touch()]], which will assign the current timestamp
to a specified attribute and save it to the database:

$user->touch('login_time');

Other behaviors

There are several built-in and external behaviors available:

	[[yii\behaviors\BlameableBehavior]] - automatically fills the specified attributes with the current user ID.

	[[yii\behaviors\SluggableBehavior]] - automatically fills the specified attribute with a value that can be used
as a slug in a URL.

	[[yii\behaviors\AttributeBehavior]] - automatically assigns a specified value to one or multiple attributes of
an ActiveRecord object when certain events happen.

	yii2tech\ar\softdelete\SoftDeleteBehavior [https://github.com/yii2tech/ar-softdelete] - provides methods to soft-delete
and soft-restore ActiveRecord i.e. set flag or status which marks record as deleted.

	yii2tech\ar\position\PositionBehavior [https://github.com/yii2tech/ar-position] - allows managing records order in an
integer field by providing reordering methods.

Comparing Behaviors with Traits

While behaviors are similar to traits [http://www.php.net/traits] in that they both “inject” their
properties and methods to the primary class, they differ in many aspects. As explained below, they
both have pros and cons. They are more like complements to each other rather than alternatives.

Reasons to Use Behaviors

Behavior classes, like normal classes, support inheritance. Traits, on the other hand,
can be considered as language-supported copy and paste. They do not support inheritance.

Behaviors can be attached and detached to a component dynamically without requiring modification of the component class.
To use a trait, you must modify the code of the class using it.

Behaviors are configurable while traits are not.

Behaviors can customize the code execution of a component by responding to its events.

When there can be name conflicts among different behaviors attached to the same component, the conflicts are
automatically resolved by prioritizing the behavior attached to the component first.
Name conflicts caused by different traits requires manual resolution by renaming the affected
properties or methods.

Reasons to Use Traits

Traits are much more efficient than behaviors as behaviors are objects that take both time and memory.

IDEs are more friendly to traits as they are a native language construct.

 Components

Components

Components are the main building blocks of Yii applications. Components are instances of [[yii\base\Component]],
or an extended class. The three main features that components provide to other classes are:

	Properties

	Events

	Behaviors

Separately and combined, these features make Yii classes much more customizable and easier to use. For example,
the included [[yii\jui\DatePicker|date picker widget]], a user interface component, can be used in a view
to generate an interactive date picker:

use yii\jui\DatePicker;

echo DatePicker::widget([
 'language' => 'ru',
 'name' => 'country',
 'clientOptions' => [
 'dateFormat' => 'yy-mm-dd',
],
]);

The widget’s properties are easily writable because the class extends [[yii\base\Component]].

While components are very powerful, they are a bit heavier than normal objects, due to the fact that
it takes extra memory and CPU time to support event and behavior functionality in particular.
If your components do not need these two features, you may consider extending your component class from
[[yii\base\BaseObject]] instead of [[yii\base\Component]]. Doing so will make your components as efficient as normal PHP objects,
but with added support for properties.

When extending your class from [[yii\base\Component]] or [[yii\base\BaseObject]], it is recommended that you follow
these conventions:

	If you override the constructor, specify a $config parameter as the constructor’s last parameter, and then pass this parameter
to the parent constructor.

	Always call the parent constructor at the end of your overriding constructor.

	If you override the [[yii\base\BaseObject::init()]] method, make sure you call the parent implementation of init() at the beginning of your init() method.

For example:

<?php

namespace yii\components\MyClass;

use yii\base\BaseObject;

class MyClass extends BaseObject
{
 public $prop1;
 public $prop2;

 public function __construct($param1, $param2, $config = [])
 {
 // ... initialization before configuration is applied

 parent::__construct($config);
 }

 public function init()
 {
 parent::init();

 // ... initialization after configuration is applied
 }
}

Following these guidelines will make your components configurable when they are created. For example:

$component = new MyClass(1, 2, ['prop1' => 3, 'prop2' => 4]);
// alternatively
$component = \Yii::createObject([
 'class' => MyClass::className(),
 'prop1' => 3,
 'prop2' => 4,
], [1, 2]);

Info: While the approach of calling [[Yii::createObject()]] looks more complicated, it is more powerful because it is
implemented on top of a dependency injection container.

The [[yii\base\BaseObject]] class enforces the following object lifecycle:

	Pre-initialization within the constructor. You can set default property values here.

	Object configuration via $config. The configuration may overwrite the default values set within the constructor.

	Post-initialization within [[yii\base\BaseObject::init()|init()]]. You may override this method to perform sanity checks and normalization of the properties.

	Object method calls.

The first three steps all happen within the object’s constructor. This means that once you get a class instance (i.e., an object),
that object has already been initialized to a proper, reliable state.

 Configurations

Configurations

Configurations are widely used in Yii when creating new objects or initializing existing objects.
Configurations usually include the class name of the object being created, and a list of initial values
that should be assigned to the object’s properties. Configurations may also include a list of
handlers that should be attached to the object’s events and/or a list of
behaviors that should also be attached to the object.

In the following, a configuration is used to create and initialize a database connection:

$config = [
 'class' => 'yii\db\Connection',
 'dsn' => 'mysql:host=127.0.0.1;dbname=demo',
 'username' => 'root',
 'password' => '',
 'charset' => 'utf8',
];

$db = Yii::createObject($config);

The [[Yii::createObject()]] method takes a configuration array as its argument, and creates an object by instantiating
the class named in the configuration. When the object is instantiated, the rest of the configuration
will be used to initialize the object’s properties, event handlers, and behaviors.

If you already have an object, you may use [[Yii::configure()]] to initialize the object’s properties with
a configuration array:

Yii::configure($object, $config);

Note that, in this case, the configuration array should not contain a class element.

Configuration Format

The format of a configuration can be formally described as:

[
 'class' => 'ClassName',
 'propertyName' => 'propertyValue',
 'on eventName' => $eventHandler,
 'as behaviorName' => $behaviorConfig,
]

where

	The class element specifies a fully qualified class name for the object being created.

	The propertyName elements specify the initial values for the named property. The keys are the property names, and the
values are the corresponding initial values. Only public member variables and properties
defined by getters/setters can be configured.

	The on eventName elements specify what handlers should be attached to the object’s events.
Notice that the array keys are formed by prefixing event names with on. Please refer to
the Events section for supported event handler formats.

	The as behaviorName elements specify what behaviors should be attached to the object.
Notice that the array keys are formed by prefixing behavior names with as; the value, $behaviorConfig, represents
the configuration for creating a behavior, like a normal configuration described here.

Below is an example showing a configuration with initial property values, event handlers, and behaviors:

[
 'class' => 'app\components\SearchEngine',
 'apiKey' => 'xxxxxxxx',
 'on search' => function ($event) {
 Yii::info("Keyword searched: " . $event->keyword);
 },
 'as indexer' => [
 'class' => 'app\components\IndexerBehavior',
 // ... property init values ...
],
]

Using Configurations

Configurations are used in many places in Yii. At the beginning of this section, we have shown how to
create an object according to a configuration by using [[Yii::createObject()]]. In this subsection, we will
describe application configurations and widget configurations - two major usages of configurations.

Application Configurations

The configuration for an application is probably one of the most complex arrays in Yii.
This is because the [[yii\web\Application|application]] class has a lot of configurable properties and events.
More importantly, its [[yii\web\Application::components|components]] property can receive an array of configurations
for creating components that are registered through the application. The following is an abstract from the application
configuration file for the Basic Project Template.

$config = [
 'id' => 'basic',
 'basePath' => dirname(__DIR__),
 'extensions' => require __DIR__ . '/../vendor/yiisoft/extensions.php',
 'components' => [
 'cache' => [
 'class' => 'yii\caching\FileCache',
],
 'mailer' => [
 'class' => 'yii\swiftmailer\Mailer',
],
 'log' => [
 'class' => 'yii\log\Dispatcher',
 'traceLevel' => YII_DEBUG ? 3 : 0,
 'targets' => [
 [
 'class' => 'yii\log\FileTarget',
],
],
],
 'db' => [
 'class' => 'yii\db\Connection',
 'dsn' => 'mysql:host=localhost;dbname=stay2',
 'username' => 'root',
 'password' => '',
 'charset' => 'utf8',
],
],
];

The configuration does not have a class key. This is because it is used as follows in
an entry script, where the class name is already given,

(new yii\web\Application($config))->run();

More details about configuring the components property of an application can be found
in the Applications section and the Service Locator section.

Since version 2.0.11, the application configuration supports Dependency Injection Container
configuration using container property. For example:

$config = [
 'id' => 'basic',
 'basePath' => dirname(__DIR__),
 'extensions' => require __DIR__ . '/../vendor/yiisoft/extensions.php',
 'container' => [
 'definitions' => [
 'yii\widgets\LinkPager' => ['maxButtonCount' => 5]
],
 'singletons' => [
 // Dependency Injection Container singletons configuration
]
]
];

To know more about the possible values of definitions and singletons configuration arrays and real-life examples,
please read Advanced Practical Usage subsection of the
Dependency Injection Container article.

Widget Configurations

When using widgets, you often need to use configurations to customize the widget properties.
Both of the [[yii\base\Widget::widget()]] and [[yii\base\Widget::begin()]] methods can be used to create
a widget. They take a configuration array, like the following,

use yii\widgets\Menu;

echo Menu::widget([
 'activateItems' => false,
 'items' => [
 ['label' => 'Home', 'url' => ['site/index']],
 ['label' => 'Products', 'url' => ['product/index']],
 ['label' => 'Login', 'url' => ['site/login'], 'visible' => Yii::$app->user->isGuest],
],
]);

The above code creates a Menu widget and initializes its activateItems property to be false.
The items property is also configured with menu items to be displayed.

Note that because the class name is already given, the configuration array should NOT have the class key.

Configuration Files

When a configuration is very complex, a common practice is to store it in one or multiple PHP files, known as
configuration files. A configuration file returns a PHP array representing the configuration.
For example, you may keep an application configuration in a file named web.php, like the following,

return [
 'id' => 'basic',
 'basePath' => dirname(__DIR__),
 'extensions' => require __DIR__ . '/../vendor/yiisoft/extensions.php',
 'components' => require __DIR__ . '/components.php',
];

Because the components configuration is complex too, you store it in a separate file called components.php
and “require” this file in web.php as shown above. The content of components.php is as follows,

return [
 'cache' => [
 'class' => 'yii\caching\FileCache',
],
 'mailer' => [
 'class' => 'yii\swiftmailer\Mailer',
],
 'log' => [
 'class' => 'yii\log\Dispatcher',
 'traceLevel' => YII_DEBUG ? 3 : 0,
 'targets' => [
 [
 'class' => 'yii\log\FileTarget',
],
],
],
 'db' => [
 'class' => 'yii\db\Connection',
 'dsn' => 'mysql:host=localhost;dbname=stay2',
 'username' => 'root',
 'password' => '',
 'charset' => 'utf8',
],
];

To get a configuration stored in a configuration file, simply “require” it, like the following:

$config = require 'path/to/web.php';
(new yii\web\Application($config))->run();

Default Configurations

The [[Yii::createObject()]] method is implemented based on a dependency injection container.
It allows you to specify a set of the so-called default configurations which will be applied to ALL instances of
the specified classes when they are being created using [[Yii::createObject()]]. The default configurations
can be specified by calling Yii::$container->set() in the bootstrapping code.

For example, if you want to customize [[yii\widgets\LinkPager]] so that ALL link pagers will show at most 5 page buttons
(the default value is 10), you may use the following code to achieve this goal:

\Yii::$container->set('yii\widgets\LinkPager', [
 'maxButtonCount' => 5,
]);

Without using default configurations, you would have to configure maxButtonCount in every place where you use
link pagers.

Environment Constants

Configurations often vary according to the environment in which an application runs. For example,
in development environment, you may want to use a database named mydb_dev, while on production server
you may want to use the mydb_prod database. To facilitate switching environments, Yii provides a constant
named YII_ENV that you may define in the entry script of your application.
For example,

defined('YII_ENV') or define('YII_ENV', 'dev');

You may define YII_ENV as one of the following values:

	prod: production environment. The constant YII_ENV_PROD will evaluate as true.
This is the default value of YII_ENV if you do not define it.

	dev: development environment. The constant YII_ENV_DEV will evaluate as true.

	test: testing environment. The constant YII_ENV_TEST will evaluate as true.

With these environment constants, you may specify your configurations conditionally based on
the current environment. For example, your application configuration may contain the following
code to enable the debug toolbar and debugger in development environment.

$config = [...];

if (YII_ENV_DEV) {
 // configuration adjustments for 'dev' environment
 $config['bootstrap'][] = 'debug';
 $config['modules']['debug'] = 'yii\debug\Module';
}

return $config;

 Dependency Injection Container

Dependency Injection Container

A dependency injection (DI) container is an object that knows how to instantiate and configure objects and
all their dependent objects. Martin Fowler’s article [http://martinfowler.com/articles/injection.html] has well
explained why DI container is useful. Here we will mainly explain the usage of the DI container provided by Yii.

Dependency Injection

Yii provides the DI container feature through the class [[yii\di\Container]]. It supports the following kinds of
dependency injection:

	Constructor injection;

	Method injection;

	Setter and property injection;

	PHP callable injection;

Constructor Injection

The DI container supports constructor injection with the help of type hints for constructor parameters.
The type hints tell the container which classes or interfaces are dependent when it is used to create a new object.
The container will try to get the instances of the dependent classes or interfaces and then inject them
into the new object through the constructor. For example,

class Foo
{
 public function __construct(Bar $bar)
 {
 }
}

$foo = $container->get('Foo');
// which is equivalent to the following:
$bar = new Bar;
$foo = new Foo($bar);

Method Injection

Usually the dependencies of a class are passed to the constructor and are available inside of the class during the whole lifecycle.
With Method Injection it is possible to provide a dependency that is only needed by a single method of the class
and passing it to the constructor may not be possible or may cause too much overhead in the majority of use cases.

A class method can be defined like the doSomething() method in the following example:

class MyClass extends \yii\base\Component
{
 public function __construct(/*Some lightweight dependencies here*/, $config = [])
 {
 // ...
 }

 public function doSomething($param1, \my\heavy\Dependency $something)
 {
 // do something with $something
 }
}

You may call that method either by passing an instance of \my\heavy\Dependency yourself or using [[yii\di\Container::invoke()]] like the following:

$obj = new MyClass(/*...*/);
Yii::$container->invoke([$obj, 'doSomething'], ['param1' => 42]); // $something will be provided by the DI container

Setter and Property Injection

Setter and property injection is supported through configurations.
When registering a dependency or when creating a new object, you can provide a configuration which
will be used by the container to inject the dependencies through the corresponding setters or properties.
For example,

use yii\base\BaseObject;

class Foo extends BaseObject
{
 public $bar;

 private $_qux;

 public function getQux()
 {
 return $this->_qux;
 }

 public function setQux(Qux $qux)
 {
 $this->_qux = $qux;
 }
}

$container->get('Foo', [], [
 'bar' => $container->get('Bar'),
 'qux' => $container->get('Qux'),
]);

Info: The [[yii\di\Container::get()]] method takes its third parameter as a configuration array that should
be applied to the object being created. If the class implements the [[yii\base\Configurable]] interface (e.g.
[[yii\base\BaseObject]]), the configuration array will be passed as the last parameter to the class constructor;
otherwise, the configuration will be applied after the object is created.

PHP Callable Injection

In this case, the container will use a registered PHP callable to build new instances of a class.
Each time when [[yii\di\Container::get()]] is called, the corresponding callable will be invoked.
The callable is responsible to resolve the dependencies and inject them appropriately to the newly
created objects. For example,

$container->set('Foo', function ($container, $params, $config) {
 $foo = new Foo(new Bar);
 // ... other initializations ...
 return $foo;
});

$foo = $container->get('Foo');

To hide the complex logic for building a new object, you may use a static class method as callable. For example,

class FooBuilder
{
 public static function build($container, $params, $config)
 {
 $foo = new Foo(new Bar);
 // ... other initializations ...
 return $foo;
 }
}

$container->set('Foo', ['app\helper\FooBuilder', 'build']);

$foo = $container->get('Foo');

By doing so, the person who wants to configure the Foo class no longer needs to be aware of how it is built.

Registering Dependencies

You can use [[yii\di\Container::set()]] to register dependencies. The registration requires a dependency name
as well as a dependency definition. A dependency name can be a class name, an interface name, or an alias name;
and a dependency definition can be a class name, a configuration array, or a PHP callable.

$container = new \yii\di\Container;

// register a class name as is. This can be skipped.
$container->set('yii\db\Connection');

// register an interface
// When a class depends on the interface, the corresponding class
// will be instantiated as the dependent object
$container->set('yii\mail\MailInterface', 'yii\swiftmailer\Mailer');

// register an alias name. You can use $container->get('foo')
// to create an instance of Connection
$container->set('foo', 'yii\db\Connection');

// register a class with configuration. The configuration
// will be applied when the class is instantiated by get()
$container->set('yii\db\Connection', [
 'dsn' => 'mysql:host=127.0.0.1;dbname=demo',
 'username' => 'root',
 'password' => '',
 'charset' => 'utf8',
]);

// register an alias name with class configuration
// In this case, a "class" element is required to specify the class
$container->set('db', [
 'class' => 'yii\db\Connection',
 'dsn' => 'mysql:host=127.0.0.1;dbname=demo',
 'username' => 'root',
 'password' => '',
 'charset' => 'utf8',
]);

// register a PHP callable
// The callable will be executed each time when $container->get('db') is called
$container->set('db', function ($container, $params, $config) {
 return new \yii\db\Connection($config);
});

// register a component instance
// $container->get('pageCache') will return the same instance each time it is called
$container->set('pageCache', new FileCache);

Tip: If a dependency name is the same as the corresponding dependency definition, you do not
need to register it with the DI container.

A dependency registered via set() will generate an instance each time the dependency is needed.
You can use [[yii\di\Container::setSingleton()]] to register a dependency that only generates
a single instance:

$container->setSingleton('yii\db\Connection', [
 'dsn' => 'mysql:host=127.0.0.1;dbname=demo',
 'username' => 'root',
 'password' => '',
 'charset' => 'utf8',
]);

Resolving Dependencies

Once you have registered dependencies, you can use the DI container to create new objects,
and the container will automatically resolve dependencies by instantiating them and injecting
them into the newly created objects. The dependency resolution is recursive, meaning that
if a dependency has other dependencies, those dependencies will also be resolved automatically.

You can use [[yii\di\Container::get()|get()]] to either create or get object instance.
The method takes a dependency name, which can be a class name, an interface name or an alias name.
The dependency name may be registered via [[yii\di\Container::set()|set()]]
or [[yii\di\Container::setSingleton()|setSingleton()]]. You may optionally provide a list of class
constructor parameters and a configuration to configure the newly created object.

For example:

// "db" is a previously registered alias name
$db = $container->get('db');

// equivalent to: $engine = new \app\components\SearchEngine($apiKey, $apiSecret, ['type' => 1]);
$engine = $container->get('app\components\SearchEngine', [$apiKey, $apiSecret], ['type' => 1]);

Behind the scene, the DI container does much more work than just creating a new object.
The container will first inspect the class constructor to find out dependent class or interface names
and then automatically resolve those dependencies recursively.

The following code shows a more sophisticated example. The UserLister class depends on an object implementing
the UserFinderInterface interface; the UserFinder class implements this interface and depends on
a Connection object. All these dependencies are declared through type hinting of the class constructor parameters.
With proper dependency registration, the DI container is able to resolve these dependencies automatically
and creates a new UserLister instance with a simple call of get('userLister').

namespace app\models;

use yii\base\BaseObject;
use yii\db\Connection;
use yii\di\Container;

interface UserFinderInterface
{
 function findUser();
}

class UserFinder extends BaseObject implements UserFinderInterface
{
 public $db;

 public function __construct(Connection $db, $config = [])
 {
 $this->db = $db;
 parent::__construct($config);
 }

 public function findUser()
 {
 }
}

class UserLister extends BaseObject
{
 public $finder;

 public function __construct(UserFinderInterface $finder, $config = [])
 {
 $this->finder = $finder;
 parent::__construct($config);
 }
}

$container = new Container;
$container->set('yii\db\Connection', [
 'dsn' => '...',
]);
$container->set('app\models\UserFinderInterface', [
 'class' => 'app\models\UserFinder',
]);
$container->set('userLister', 'app\models\UserLister');

$lister = $container->get('userLister');

// which is equivalent to:

$db = new \yii\db\Connection(['dsn' => '...']);
$finder = new UserFinder($db);
$lister = new UserLister($finder);

Practical Usage

Yii creates a DI container when you include the Yii.php file in the entry script
of your application. The DI container is accessible via [[Yii::$container]]. When you call [[Yii::createObject()]],
the method will actually call the container’s [[yii\di\Container::get()|get()]] method to create a new object.
As aforementioned, the DI container will automatically resolve the dependencies (if any) and inject them
into obtained object. Because Yii uses [[Yii::createObject()]] in most of its core code to create
new objects, this means you can customize the objects globally by dealing with [[Yii::$container]].

For example, let’s customize globally the default number of pagination buttons of [[yii\widgets\LinkPager]].

\Yii::$container->set('yii\widgets\LinkPager', ['maxButtonCount' => 5]);

Now if you use the widget in a view with the following code, the maxButtonCount property will be initialized
as 5 instead of the default value 10 as defined in the class.

echo \yii\widgets\LinkPager::widget();

You can still override the value set via DI container, though:

echo \yii\widgets\LinkPager::widget(['maxButtonCount' => 20]);

Note: Properties given in the widget call will always override the definition in the DI container.
Even if you specify an array, e.g. 'options' => ['id' => 'mypager'] these will not be merged
with other options but replace them.

Another example is to take advantage of the automatic constructor injection of the DI container.
Assume your controller class depends on some other objects, such as a hotel booking service. You
can declare the dependency through a constructor parameter and let the DI container to resolve it for you.

namespace app\controllers;

use yii\web\Controller;
use app\components\BookingInterface;

class HotelController extends Controller
{
 protected $bookingService;

 public function __construct($id, $module, BookingInterface $bookingService, $config = [])
 {
 $this->bookingService = $bookingService;
 parent::__construct($id, $module, $config);
 }
}

If you access this controller from browser, you will see an error complaining the BookingInterface
cannot be instantiated. This is because you need to tell the DI container how to deal with this dependency:

\Yii::$container->set('app\components\BookingInterface', 'app\components\BookingService');

Now if you access the controller again, an instance of app\components\BookingService will be
created and injected as the 3rd parameter to the controller’s constructor.

Advanced Practical Usage

Say we work on API application and have:

	app\components\Request class that extends yii\web\Request and provides additional functionality

	app\components\Response class that extends yii\web\Response and should have format property
set to json on creation

	app\storage\FileStorage and app\storage\DocumentsReader classes that implement some logic on
working with documents that are located in some file storage:

class FileStorage
{
 public function __construct($root) {
 // whatever
 }
}

class DocumentsReader
{
 public function __construct(FileStorage $fs) {
 // whatever
 }
}

It is possible to configure multiple definitions at once, passing configuration array to
[[yii\di\Container::setDefinitions()|setDefinitions()]] or [[yii\di\Container::setSingletons()|setSingletons()]] method.
Iterating over the configuration array, the methods will call [[yii\di\Container::set()|set()]]
or [[yii\di\Container::setSingleton()|setSingleton()]] respectively for each item.

The configuration array format is:

	key: class name, interface name or alias name. The key will be passed to the
[[yii\di\Container::set()|set()]] method as a first argument $class.

	value: the definition associated with $class. Possible values are described in [[yii\di\Container::set()|set()]]
documentation for the $definition parameter. Will be passed to the [[set()]] method as
the second argument $definition.

For example, let’s configure our container to follow the aforementioned requirements:

$container->setDefinitions([
 'yii\web\Request' => 'app\components\Request',
 'yii\web\Response' => [
 'class' => 'app\components\Response',
 'format' => 'json'
],
 'app\storage\DocumentsReader' => function ($container, $params, $config) {
 $fs = new app\storage\FileStorage('/var/tempfiles');
 return new app\storage\DocumentsReader($fs);
 }
]);

$reader = $container->get('app\storage\DocumentsReader');
// Will create DocumentReader object with its dependencies as described in the config

Tip: Container may be configured in declarative style using application configuration since version 2.0.11.
Check out the Application Configurations subsection of
the Configurations guide article.

Everything works, but in case we need to create DocumentWriter class,
we shall copy-paste the line that creates FileStorage object, that is not the smartest way, obviously.

As described in the Resolving Dependencies subsection, [[yii\di\Container::set()|set()]]
and [[yii\di\Container::setSingleton()|setSingleton()]] can optionally take dependency’s constructor parameters as
a third argument. To set the constructor parameters, you may use the following configuration array format:

	key: class name, interface name or alias name. The key will be passed to the
[[yii\di\Container::set()|set()]] method as a first argument $class.

	value: array of two elements. The first element will be passed to the [[yii\di\Container::set()|set()]] method as the
second argument $definition, the second one — as $params.

Let’s modify our example:

$container->setDefinitions([
 'tempFileStorage' => [// we've created an alias for convenience
 ['class' => 'app\storage\FileStorage'],
 ['/var/tempfiles'] // could be extracted from some config files
],
 'app\storage\DocumentsReader' => [
 ['class' => 'app\storage\DocumentsReader'],
 [Instance::of('tempFileStorage')]
],
 'app\storage\DocumentsWriter' => [
 ['class' => 'app\storage\DocumentsWriter'],
 [Instance::of('tempFileStorage')]
]
]);

$reader = $container->get('app\storage\DocumentsReader);
// Will behave exactly the same as in the previous example.

You might notice Instance::of('tempFileStorage') notation. It means, that the [[yii\di\Container|Container]]
will implicitly provide a dependency registered with the name of tempFileStorage and pass it as the first argument
of app\storage\DocumentsWriter constructor.

Note: [[yii\di\Container::setDefinitions()|setDefinitions()]] and [[yii\di\Container::setSingletons()|setSingletons()]]
methods are available since version 2.0.11.

Another step on configuration optimization is to register some dependencies as singletons.
A dependency registered via [[yii\di\Container::set()|set()]] will be instantiated each time it is needed.
Some classes do not change the state during runtime, therefore they may be registered as singletons
in order to increase the application performance.

A good example could be app\storage\FileStorage class, that executes some operations on file system with a simple
API (e.g. $fs->read(), $fs->write()). These operations do not change the internal class state, so we can
create its instance once and use it multiple times.

$container->setSingletons([
 'tempFileStorage' => [
 ['class' => 'app\storage\FileStorage'],
 ['/var/tempfiles']
],
]);

$container->setDefinitions([
 'app\storage\DocumentsReader' => [
 ['class' => 'app\storage\DocumentsReader'],
 [Instance::of('tempFileStorage')]
],
 'app\storage\DocumentsWriter' => [
 ['class' => 'app\storage\DocumentsWriter'],
 [Instance::of('tempFileStorage')]
]
]);

$reader = $container->get('app\storage\DocumentsReader');

When to Register Dependencies

Because dependencies are needed when new objects are being created, their registration should be done
as early as possible. The following are the recommended practices:

	If you are the developer of an application, you can register your dependencies using application configuration.
Please, read the Application Configurations subsection of
the Configurations guide article.

	If you are the developer of a redistributable extension, you can register dependencies
in the bootstrapping class of the extension.

Summary

Both dependency injection and service locator are popular design patterns
that allow building software in a loosely-coupled and more testable fashion. We highly recommend you to read
Martin’s article [http://martinfowler.com/articles/injection.html] to get a deeper understanding of
dependency injection and service locator.

Yii implements its service locator on top of the dependency injection (DI) container.
When a service locator is trying to create a new object instance, it will forward the call to the DI container.
The latter will resolve the dependencies automatically as described above.

 Events

Events

Events allow you to inject custom code into existing code at certain execution points. You can attach custom
code to an event so that when the event is triggered, the code gets executed automatically. For example,
a mailer object may trigger a messageSent event when it successfully sends a message. If you want to keep
track of the messages that are successfully sent, you could then simply attach the tracking code to the messageSent event.

Yii introduces a base class called [[yii\base\Component]] to support events. If a class needs to trigger
events, it should extend from [[yii\base\Component]], or from a child class.

Event Handlers

An event handler is a PHP callback [http://www.php.net/manual/en/language.types.callable.php] that gets executed
when the event it is attached to is triggered. You can use any of the following callbacks:

	a global PHP function specified as a string (without parentheses), e.g., 'trim';

	an object method specified as an array of an object and a method name as a string (without parentheses), e.g., [$object, 'methodName'];

	a static class method specified as an array of a class name and a method name as a string (without parentheses), e.g., ['ClassName', 'methodName'];

	an anonymous function, e.g., function ($event) { ... }.

The signature of an event handler is:

function ($event) {
 // $event is an object of yii\base\Event or a child class
}

Through the $event parameter, an event handler may get the following information about the event that occurred:

	[[yii\base\Event::name|event name]];

	[[yii\base\Event::sender|event sender]]: the object whose trigger() method was called;

	[[yii\base\Event::data|custom data]]: the data that is provided when attaching the event handler (to be explained next).

Attaching Event Handlers

You can attach a handler to an event by calling the [[yii\base\Component::on()]] method. For example:

$foo = new Foo();

// this handler is a global function
$foo->on(Foo::EVENT_HELLO, 'function_name');

// this handler is an object method
$foo->on(Foo::EVENT_HELLO, [$object, 'methodName']);

// this handler is a static class method
$foo->on(Foo::EVENT_HELLO, ['app\components\Bar', 'methodName']);

// this handler is an anonymous function
$foo->on(Foo::EVENT_HELLO, function ($event) {
 // event handling logic
});

You may also attach event handlers through configurations. For more details, please
refer to the Configurations section.

When attaching an event handler, you may provide additional data as the third parameter to [[yii\base\Component::on()]].
The data will be made available to the handler when the event is triggered and the handler is called. For example:

// The following code will display "abc" when the event is triggered
// because $event->data contains the data passed as the 3rd argument to "on"
$foo->on(Foo::EVENT_HELLO, 'function_name', 'abc');

function function_name($event) {
 echo $event->data;
}

Event Handler Order

You may attach one or more handlers to a single event. When an event is triggered, the attached handlers
will be called in the order that they were attached to the event. If a handler needs to stop the invocation of the
handlers that follow it, it may set the [[yii\base\Event::handled]] property of the $event parameter to be true:

$foo->on(Foo::EVENT_HELLO, function ($event) {
 $event->handled = true;
});

By default, a newly attached handler is appended to the existing handler queue for the event.
As a result, the handler will be called in the last place when the event is triggered.
To insert the new handler at the start of the handler queue so that the handler gets called first, you may call [[yii\base\Component::on()]], passing false for the fourth parameter $append:

$foo->on(Foo::EVENT_HELLO, function ($event) {
 // ...
}, $data, false);

Triggering Events

Events are triggered by calling the [[yii\base\Component::trigger()]] method. The method requires an event name,
and optionally an event object that describes the parameters to be passed to the event handlers. For example:

namespace app\components;

use yii\base\Component;
use yii\base\Event;

class Foo extends Component
{
 const EVENT_HELLO = 'hello';

 public function bar()
 {
 $this->trigger(self::EVENT_HELLO);
 }
}

With the above code, any calls to bar() will trigger an event named hello.

Tip: It is recommended to use class constants to represent event names. In the above example, the constant
EVENT_HELLO represents the hello event. This approach has three benefits. First, it prevents typos. Second, it can make events recognizable for IDE
auto-completion support. Third, you can tell what events are supported in a class by simply checking its constant declarations.

Sometimes when triggering an event you may want to pass along additional information to the event handlers.
For example, a mailer may want to pass the message information to the handlers of the messageSent event so that the handlers
can know the particulars of the sent messages. To do so, you can provide an event object as the second parameter to
the [[yii\base\Component::trigger()]] method. The event object must be an instance of the [[yii\base\Event]] class
or a child class. For example:

namespace app\components;

use yii\base\Component;
use yii\base\Event;

class MessageEvent extends Event
{
 public $message;
}

class Mailer extends Component
{
 const EVENT_MESSAGE_SENT = 'messageSent';

 public function send($message)
 {
 // ...sending $message...

 $event = new MessageEvent;
 $event->message = $message;
 $this->trigger(self::EVENT_MESSAGE_SENT, $event);
 }
}

When the [[yii\base\Component::trigger()]] method is called, it will call all handlers attached to
the named event.

Detaching Event Handlers

To detach a handler from an event, call the [[yii\base\Component::off()]] method. For example:

// the handler is a global function
$foo->off(Foo::EVENT_HELLO, 'function_name');

// the handler is an object method
$foo->off(Foo::EVENT_HELLO, [$object, 'methodName']);

// the handler is a static class method
$foo->off(Foo::EVENT_HELLO, ['app\components\Bar', 'methodName']);

// the handler is an anonymous function
$foo->off(Foo::EVENT_HELLO, $anonymousFunction);

Note that in general you should not try to detach an anonymous function unless you store it
somewhere when it is attached to the event. In the above example, it is assumed that the anonymous
function is stored as a variable $anonymousFunction.

To detach all handlers from an event, simply call [[yii\base\Component::off()]] without the second parameter:

$foo->off(Foo::EVENT_HELLO);

Class-Level Event Handlers

The above subsections described how to attach a handler to an event on an instance level.
Sometimes, you may want to respond to an event triggered by every instance of a class instead of only by
a specific instance. Instead of attaching an event handler to every instance, you may attach the handler
on the class level by calling the static method [[yii\base\Event::on()]].

For example, an Active Record object will trigger an [[yii\db\BaseActiveRecord::EVENT_AFTER_INSERT|EVENT_AFTER_INSERT]]
event whenever it inserts a new record into the database. In order to track insertions done by every
Active Record object, you may use the following code:

use Yii;
use yii\base\Event;
use yii\db\ActiveRecord;

Event::on(ActiveRecord::className(), ActiveRecord::EVENT_AFTER_INSERT, function ($event) {
 Yii::debug(get_class($event->sender) . ' is inserted');
});

The event handler will be invoked whenever an instance of [[yii\db\ActiveRecord|ActiveRecord]], or one of its child classes, triggers
the [[yii\db\BaseActiveRecord::EVENT_AFTER_INSERT|EVENT_AFTER_INSERT]] event. In the handler, you can get the object
that triggered the event through $event->sender.

When an object triggers an event, it will first call instance-level handlers, followed by the class-level handlers.

You may trigger a class-level event by calling the static method [[yii\base\Event::trigger()]]. A class-level
event is not associated with a particular object. As a result, it will cause the invocation of class-level event
handlers only. For example:

use yii\base\Event;

Event::on(Foo::className(), Foo::EVENT_HELLO, function ($event) {
 var_dump($event->sender); // displays "null"
});

Event::trigger(Foo::className(), Foo::EVENT_HELLO);

Note that, in this case, $event->sender is null instead of an object instance.

Note: Because a class-level handler will respond to an event triggered by any instance of that class, or any child
classes, you should use it carefully, especially if the class is a low-level base class, such as [[yii\base\BaseObject]].

To detach a class-level event handler, call [[yii\base\Event::off()]]. For example:

// detach $handler
Event::off(Foo::className(), Foo::EVENT_HELLO, $handler);

// detach all handlers of Foo::EVENT_HELLO
Event::off(Foo::className(), Foo::EVENT_HELLO);

Events using interfaces

There is even more abstract way to deal with events. You can create a separated interface for the special event and
implement it in classes, where you need it.

For example, we can create the following interface:

namespace app\interfaces;

interface DanceEventInterface
{
 const EVENT_DANCE = 'dance';
}

And two classes, that implement it:

class Dog extends Component implements DanceEventInterface
{
 public function meetBuddy()
 {
 echo "Woof!";
 $this->trigger(DanceEventInterface::EVENT_DANCE);
 }
}

class Developer extends Component implements DanceEventInterface
{
 public function testsPassed()
 {
 echo "Yay!";
 $this->trigger(DanceEventInterface::EVENT_DANCE);
 }
}

To handle the EVENT_DANCE, triggered by any of these classes, call [[yii\base\Event::on()|Event::on()]] and
pass the interface class name as the first argument:

Event::on('app\interfaces\DanceEventInterface', DanceEventInterface::EVENT_DANCE, function ($event) {
 Yii::debug(get_class($event->sender) . ' just danced'); // Will log that Dog or Developer danced
});

You can trigger the event of those classes:

// trigger event for Dog class
Event::trigger(Dog::className(), DanceEventInterface::EVENT_DANCE);

// trigger event for Developer class
Event::trigger(Developer::className(), DanceEventInterface::EVENT_DANCE);

But please notice, that you can not trigger all the classes, that implement the interface:

// DOES NOT WORK. Classes that implement this interface will NOT be triggered.
Event::trigger('app\interfaces\DanceEventInterface', DanceEventInterface::EVENT_DANCE);

To detach event handler, call [[yii\base\Event::off()|Event::off()]]. For example:

// detaches $handler
Event::off('app\interfaces\DanceEventInterface', DanceEventInterface::EVENT_DANCE, $handler);

// detaches all handlers of DanceEventInterface::EVENT_DANCE
Event::off('app\interfaces\DanceEventInterface', DanceEventInterface::EVENT_DANCE);

Global Events

Yii supports a so-called global event, which is actually a trick based on the event mechanism described above.
The global event requires a globally accessible Singleton, such as the application instance itself.

To create the global event, an event sender calls the Singleton’s trigger() method
to trigger the event, instead of calling the sender’s own trigger() method. Similarly, the event handlers are attached to the event on the Singleton. For example:

use Yii;
use yii\base\Event;
use app\components\Foo;

Yii::$app->on('bar', function ($event) {
 echo get_class($event->sender); // displays "app\components\Foo"
});

Yii::$app->trigger('bar', new Event(['sender' => new Foo]));

A benefit of using global events is that you do not need an object when attaching a handler to the event
which will be triggered by the object. Instead, the handler attachment and the event triggering are both
done through the Singleton (e.g. the application instance).

However, because the namespace of the global events is shared by all parties, you should name the global events
wisely, such as introducing some sort of namespace (e.g. “frontend.mail.sent”, “backend.mail.sent”).

Wildcard Events

Since 2.0.14 you can setup event handler for multiple events matching wildcard pattern.
For example:

use Yii;

$foo = new Foo();

$foo->on('foo.event.*', function ($event) {
 // triggered for any event, which name starts on 'foo.event.'
 Yii::debug('trigger event: ' . $event->name);
});

Wildcard patterns can be used for class-level events as well. For example:

use yii\base\Event;
use Yii;

Event::on('app\models*', 'before*', function ($event) {
 // triggered for any class in namespace 'app\models' for any event, which name starts on 'before'
 Yii::debug('trigger event: ' . $event->name . ' for class: ' . get_class($event->sender));
});

This allows you catching all application events by single handler using following code:

use yii\base\Event;
use Yii;

Event::on('*', '*', function ($event) {
 // triggered for any event at any class
 Yii::debug('trigger event: ' . $event->name);
});

Note: usage wildcards for event handlers setup may reduce the application performance.
It is better to be avoided if possible.

In order to detach event handler specified by wildcard pattern, you should repeat same pattern at
[[yii\base\Component::off()]] or [[yii\base\Event::off()]] invocation. Keep in mind that passing wildcard
during detaching of event handler will detach only the handler specified for this wildcard, while handlers
attached for regular event names will remain even if they match the pattern. For example:

use Yii;

$foo = new Foo();

// attach regular handler
$foo->on('event.hello', function ($event) {
 echo 'direct-handler'
});

// attach wildcard handler
$foo->on('*', function ($event) {
 echo 'wildcard-handler'
});

// detach wildcard handler only!
$foo->off('*');

$foo->trigger('event.hello'); // outputs: 'direct-handler'

 Properties

Properties

In PHP, class member variables are also called properties. These variables are part of the class definition, and are used
to represent the state of a class instance (i.e., to differentiate one instance of the class from another).
In practice, you may often want to handle the reading or writing of properties in special ways. For example,
you may want to always trim a string when it is being assigned
to a label property. You could use the following code to achieve this task:

$object->label = trim($label);

The drawback of the above code is that you would have to call trim() everywhere in your code where you might set the label
property. If, in the future, the label property gets a new requirement, such as the first letter must be capitalized,
you would again have to modify every bit of code that assigns a value to label.
The repetition of code leads to bugs, and is a practice you want to avoid as much as possible.

To solve this problem, Yii introduces a base class called [[yii\base\BaseObject]] that supports defining properties
based on getter and setter class methods. If a class needs that functionality, it should extend from
[[yii\base\BaseObject]], or from a child class.

Info: Nearly every core class in the Yii framework extends from [[yii\base\BaseObject]] or a child class.
This means, that whenever you see a getter or setter in a core class, you can use it like a property.

A getter method is a method whose name starts with the word get; a setter method starts with set.
The name after the get or set prefix defines the name of a property. For example, a getter getLabel() and/or
a setter setLabel() defines a property named label, as shown in the following code:

namespace app\components;

use yii\base\BaseObject;

class Foo extends BaseObject
{
 private $_label;

 public function getLabel()
 {
 return $this->_label;
 }

 public function setLabel($value)
 {
 $this->_label = trim($value);
 }
}

To be clear, the getter and setter methods create the property label, which in this case internally refers to a private
property named _label.

Properties defined by getters and setters can be used like class member variables. The main difference is that
when such property is being read, the corresponding getter method will be called; when the property is
being assigned a value, the corresponding setter method will be called. For example:

// equivalent to $label = $object->getLabel();
$label = $object->label;

// equivalent to $object->setLabel('abc');
$object->label = 'abc';

A property defined by a getter without a setter is read only. Trying to assign a value to such a property will cause
an [[yii\base\InvalidCallException|InvalidCallException]]. Similarly, a property defined by a setter without a getter
is write only, and trying to read such a property will also cause an exception. It is not common to have write-only
properties.

There are several special rules for, and limitations on, the properties defined via getters and setters:

	The names of such properties are case-insensitive. For example, $object->label and $object->Label are the same.
This is because method names in PHP are case-insensitive.

	If the name of such a property is the same as a class member variable, the latter will take precedence.
For example, if the above Foo class has a member variable label, then the assignment $object->label = 'abc'
will affect the member variable label; that line would not call the setLabel() setter method.

	These properties do not support visibility. It makes no difference to the defining getter or setter method if the property is public, protected or private.

	The properties can only be defined by non-static getters and/or setters. Static methods will not be treated in the same manner.

	A normal call to property_exists() does not work to determine magic properties. You should call [[yii\base\BaseObject::canGetProperty()|canGetProperty()]]
or [[yii\base\BaseObject::canSetProperty()|canSetProperty()]] respectively.

Returning back to the problem described at the beginning of this guide, instead of calling trim() everywhere a label value is assigned,
trim() now only needs to be invoked within the setter setLabel().
And if a new requirement makes it necessary that the label be initially capitalized, the setLabel() method can quickly
be modified without touching any other code. The one change will universally affect every assignment to label.

 Service Locator

Service Locator

A service locator is an object that knows how to provide all sorts of services (or components) that an application
might need. Within a service locator, each component exists as only a single instance, uniquely identified by an ID.
You use the ID to retrieve a component from the service locator.

In Yii, a service locator is simply an instance of [[yii\di\ServiceLocator]] or a child class.

The most commonly used service locator in Yii is the application object, which can be accessed through
\Yii::$app. The services it provides are called application components, such as the request, response, and
urlManager components. You may configure these components, or even replace them with your own implementations, easily
through functionality provided by the service locator.

Besides the application object, each module object is also a service locator. Modules implement tree traversal.

To use a service locator, the first step is to register components with it. A component can be registered
via [[yii\di\ServiceLocator::set()]]. The following code shows different ways of registering components:

use yii\di\ServiceLocator;
use yii\caching\FileCache;

$locator = new ServiceLocator;

// register "cache" using a class name that can be used to create a component
$locator->set('cache', 'yii\caching\ApcCache');

// register "db" using a configuration array that can be used to create a component
$locator->set('db', [
 'class' => 'yii\db\Connection',
 'dsn' => 'mysql:host=localhost;dbname=demo',
 'username' => 'root',
 'password' => '',
]);

// register "search" using an anonymous function that builds a component
$locator->set('search', function () {
 return new app\components\SolrService;
});

// register "pageCache" using a component
$locator->set('pageCache', new FileCache);

Once a component has been registered, you can access it using its ID, in one of the two following ways:

$cache = $locator->get('cache');
// or alternatively
$cache = $locator->cache;

As shown above, [[yii\di\ServiceLocator]] allows you to access a component like a property using the component ID.
When you access a component for the first time, [[yii\di\ServiceLocator]] will use the component registration
information to create a new instance of the component and return it. Later, if the component is accessed again,
the service locator will return the same instance.

You may use [[yii\di\ServiceLocator::has()]] to check if a component ID has already been registered.
If you call [[yii\di\ServiceLocator::get()]] with an invalid ID, an exception will be thrown.

Because service locators are often being created with configurations,
a writable property named [[yii\di\ServiceLocator::setComponents()|components]] is provided. This allows you
to configure and register multiple components at once. The following code shows a configuration array
that can be used to configure a service locator (e.g. an application) with
the db, cache, tz and search components:

return [
 // ...
 'components' => [
 'db' => [
 'class' => 'yii\db\Connection',
 'dsn' => 'mysql:host=localhost;dbname=demo',
 'username' => 'root',
 'password' => '',
],
 'cache' => 'yii\caching\ApcCache',
 'tz' => function() {
 return new \DateTimeZone(Yii::$app->formatter->defaultTimeZone);
 },
 'search' => function () {
 $solr = new app\components\SolrService('127.0.0.1');
 // ... other initializations ...
 return $solr;
 },
],
];

In the above, there is an alternative way to configure the search component. Instead of directly writing a PHP
callback which builds a SolrService instance, you can use a static class method to return such a callback, like
shown as below:

class SolrServiceBuilder
{
 public static function build($ip)
 {
 return function () use ($ip) {
 $solr = new app\components\SolrService($ip);
 // ... other initializations ...
 return $solr;
 };
 }
}

return [
 // ...
 'components' => [
 // ...
 'search' => SolrServiceBuilder::build('127.0.0.1'),
],
];

This alternative approach is most preferable when you are releasing a Yii component which encapsulates some non-Yii
3rd-party library. You use the static method like shown above to represent the complex logic of building the
3rd-party object, and the user of your component only needs to call the static method to configure the component.

Tree traversal

Modules allow arbitrary nesting; a Yii application is essentially a tree of modules.
Since each of these modules is a service locator it makes sense for children to have access to their parent.
This allows modules to use $this->get('db') instead of referencing the root service locator Yii::$app->get('db').
Added benefit is the option for a developer to override configuration in a module.

Any request for a service to be retrieved from a module will be passed on to its parent in case the module is not able to satisfy it.

Note that configuration from components in a module is never merged with configuration from a component in a parent module. The Service Locator pattern allows us to define named services but one cannot assume servicees with the same name use the same configuration parameters.

 Active Record

Active Record

Active Record [http://en.wikipedia.org/wiki/Active_record_pattern] provides an object-oriented interface
for accessing and manipulating data stored in databases. An Active Record class is associated with a database table,
an Active Record instance corresponds to a row of that table, and an attribute of an Active Record
instance represents the value of a particular column in that row. Instead of writing raw SQL statements,
you would access Active Record attributes and call Active Record methods to access and manipulate the data stored
in database tables.

For example, assume Customer is an Active Record class which is associated with the customer table
and name is a column of the customer table. You can write the following code to insert a new
row into the customer table:

$customer = new Customer();
$customer->name = 'Qiang';
$customer->save();

The above code is equivalent to using the following raw SQL statement for MySQL, which is less
intuitive, more error prone, and may even have compatibility problems if you are using a different kind of database:

$db->createCommand('INSERT INTO `customer` (`name`) VALUES (:name)', [
 ':name' => 'Qiang',
])->execute();

Yii provides the Active Record support for the following relational databases:

	MySQL 4.1 or later: via [[yii\db\ActiveRecord]]

	PostgreSQL 7.3 or later: via [[yii\db\ActiveRecord]]

	SQLite 2 and 3: via [[yii\db\ActiveRecord]]

	Microsoft SQL Server 2008 or later: via [[yii\db\ActiveRecord]]

	Oracle: via [[yii\db\ActiveRecord]]

	CUBRID 9.3 or later: via [[yii\db\ActiveRecord]] (Note that due to a bug [http://jira.cubrid.org/browse/APIS-658] in
the cubrid PDO extension, quoting of values will not work, so you need CUBRID 9.3 as the client as well as the server)

	Sphinx: via [[yii\sphinx\ActiveRecord]], requires the yii2-sphinx extension

	ElasticSearch: via [[yii\elasticsearch\ActiveRecord]], requires the yii2-elasticsearch extension

Additionally, Yii also supports using Active Record with the following NoSQL databases:

	Redis 2.6.12 or later: via [[yii\redis\ActiveRecord]], requires the yii2-redis extension

	MongoDB 1.3.0 or later: via [[yii\mongodb\ActiveRecord]], requires the yii2-mongodb extension

In this tutorial, we will mainly describe the usage of Active Record for relational databases.
However, most content described here are also applicable to Active Record for NoSQL databases.

Declaring Active Record Classes

To get started, declare an Active Record class by extending [[yii\db\ActiveRecord]].

Setting a table name

By default each Active Record class is associated with its database table.
The [[yii\db\ActiveRecord::tableName()|tableName()]] method returns the table name by converting the class name via [[yii\helpers\Inflector::camel2id()]].
You may override this method if the table is not named after this convention.

Also a default [[yii\db\Connection::$tablePrefix|tablePrefix]] can be applied. For example if
[[yii\db\Connection::$tablePrefix|tablePrefix]] is tbl_, Customer becomes tbl_customer and OrderItem becomes tbl_order_item.

If a table name is given as {{%TableName}}, then the percentage character % will be replaced with the table prefix.
For example, {{%post}} becomes {{tbl_post}}. The brackets around the table name are used for
quoting in an SQL query.

In the following example, we declare an Active Record class named Customer for the customer database table.

namespace app\models;

use yii\db\ActiveRecord;

class Customer extends ActiveRecord
{
 const STATUS_INACTIVE = 0;
 const STATUS_ACTIVE = 1;

 /**
 * @return string the name of the table associated with this ActiveRecord class.
 */
 public static function tableName()
 {
 return '{{customer}}';
 }
}

Active records are called “models”

Active Record instances are considered as models. For this reason, we usually put Active Record
classes under the app\models namespace (or other namespaces for keeping model classes).

Because [[yii\db\ActiveRecord]] extends from [[yii\base\Model]], it inherits all model features,
such as attributes, validation rules, data serialization, etc.

Connecting to Databases

By default, Active Record uses the db application component
as the [[yii\db\Connection|DB connection]] to access and manipulate the database data. As explained in
Database Access Objects, you can configure the db component in the application configuration like shown
below,

return [
 'components' => [
 'db' => [
 'class' => 'yii\db\Connection',
 'dsn' => 'mysql:host=localhost;dbname=testdb',
 'username' => 'demo',
 'password' => 'demo',
],
],
];

If you want to use a different database connection other than the db component, you should override
the [[yii\db\ActiveRecord::getDb()|getDb()]] method:

class Customer extends ActiveRecord
{
 // ...

 public static function getDb()
 {
 // use the "db2" application component
 return \Yii::$app->db2;
 }
}

Querying Data

After declaring an Active Record class, you can use it to query data from the corresponding database table.
The process usually takes the following three steps:

	Create a new query object by calling the [[yii\db\ActiveRecord::find()]] method;

	Build the query object by calling query building methods;

	Call a query method to retrieve data in terms of Active Record instances.

As you can see, this is very similar to the procedure with query builder. The only difference
is that instead of using the new operator to create a query object, you call [[yii\db\ActiveRecord::find()]]
to return a new query object which is of class [[yii\db\ActiveQuery]].

Below are some examples showing how to use Active Query to query data:

// return a single customer whose ID is 123
// SELECT * FROM `customer` WHERE `id` = 123
$customer = Customer::find()
 ->where(['id' => 123])
 ->one();

// return all active customers and order them by their IDs
// SELECT * FROM `customer` WHERE `status` = 1 ORDER BY `id`
$customers = Customer::find()
 ->where(['status' => Customer::STATUS_ACTIVE])
 ->orderBy('id')
 ->all();

// return the number of active customers
// SELECT COUNT(*) FROM `customer` WHERE `status` = 1
$count = Customer::find()
 ->where(['status' => Customer::STATUS_ACTIVE])
 ->count();

// return all customers in an array indexed by customer IDs
// SELECT * FROM `customer`
$customers = Customer::find()
 ->indexBy('id')
 ->all();

In the above, $customer is a Customer object while $customers is an array of Customer objects. They are
all populated with the data retrieved from the customer table.

Info: Because [[yii\db\ActiveQuery]] extends from [[yii\db\Query]], you can use all query building methods and
query methods as described in the Section Query Builder.

Because it is a common task to query by primary key values or a set of column values, Yii provides two shortcut
methods for this purpose:

	[[yii\db\ActiveRecord::findOne()]]: returns a single Active Record instance populated with the first row of the query result.

	[[yii\db\ActiveRecord::findAll()]]: returns an array of Active Record instances populated with all query result.

Both methods can take one of the following parameter formats:

	a scalar value: the value is treated as the desired primary key value to be looked for. Yii will determine
automatically which column is the primary key column by reading database schema information.

	an array of scalar values: the array is treated as the desired primary key values to be looked for.

	an associative array: the keys are column names and the values are the corresponding desired column values to
be looked for. Please refer to Hash Format for more details.

The following code shows how these methods can be used:

// returns a single customer whose ID is 123
// SELECT * FROM `customer` WHERE `id` = 123
$customer = Customer::findOne(123);

// returns customers whose ID is 100, 101, 123 or 124
// SELECT * FROM `customer` WHERE `id` IN (100, 101, 123, 124)
$customers = Customer::findAll([100, 101, 123, 124]);

// returns an active customer whose ID is 123
// SELECT * FROM `customer` WHERE `id` = 123 AND `status` = 1
$customer = Customer::findOne([
 'id' => 123,
 'status' => Customer::STATUS_ACTIVE,
]);

// returns all inactive customers
// SELECT * FROM `customer` WHERE `status` = 0
$customers = Customer::findAll([
 'status' => Customer::STATUS_INACTIVE,
]);

Warning: If you need to pass user input to these methods, make sure the input value is scalar or in case of
array condition, make sure the array structure can not be changed from the outside:

// yii\web\Controller ensures that $id is scalar
public function actionView($id)
{
 $model = Post::findOne($id);
 // ...
}

// explicitly specifying the column to search, passing a scalar or array here will always result in finding a single record
$model = Post::findOne(['id' => Yii::$app->request->get('id')]);

// do NOT use the following code! it is possible to inject an array condition to filter by arbitrary column values!
$model = Post::findOne(Yii::$app->request->get('id'));

Note: Neither [[yii\db\ActiveRecord::findOne()]] nor [[yii\db\ActiveQuery::one()]] will add LIMIT 1 to
the generated SQL statement. If your query may return many rows of data, you should call limit(1) explicitly
to improve the performance, e.g., Customer::find()->limit(1)->one().

Besides using query building methods, you can also write raw SQLs to query data and populate the results into
Active Record objects. You can do so by calling the [[yii\db\ActiveRecord::findBySql()]] method:

// returns all inactive customers
$sql = 'SELECT * FROM customer WHERE status=:status';
$customers = Customer::findBySql($sql, [':status' => Customer::STATUS_INACTIVE])->all();

Do not call extra query building methods after calling [[yii\db\ActiveRecord::findBySql()|findBySql()]] as they
will be ignored.

Accessing Data

As aforementioned, the data brought back from the database are populated into Active Record instances, and
each row of the query result corresponds to a single Active Record instance. You can access the column values
by accessing the attributes of the Active Record instances, for example,

// "id" and "email" are the names of columns in the "customer" table
$customer = Customer::findOne(123);
$id = $customer->id;
$email = $customer->email;

Note: The Active Record attributes are named after the associated table columns in a case-sensitive manner.
Yii automatically defines an attribute in Active Record for every column of the associated table.
You should NOT redeclare any of the attributes.

Because Active Record attributes are named after table columns, you may find you are writing PHP code like
$customer->first_name, which uses underscores to separate words in attribute names if your table columns are
named in this way. If you are concerned about code style consistency, you should rename your table columns accordingly
(to use camelCase, for example).

Data Transformation

It often happens that the data being entered and/or displayed are in a format which is different from the one used in
storing the data in a database. For example, in the database you are storing customers’ birthdays as UNIX timestamps
(which is not a good design, though), while in most cases you would like to manipulate birthdays as strings in
the format of 'YYYY/MM/DD'. To achieve this goal, you can define data transformation methods in the Customer
Active Record class like the following:

class Customer extends ActiveRecord
{
 // ...

 public function getBirthdayText()
 {
 return date('Y/m/d', $this->birthday);
 }

 public function setBirthdayText($value)
 {
 $this->birthday = strtotime($value);
 }
}

Now in your PHP code, instead of accessing $customer->birthday, you would access $customer->birthdayText, which
will allow you to input and display customer birthdays in the format of 'YYYY/MM/DD'.

Tip: The above example shows a generic way of transforming data in different formats. If you are working with
date values, you may use DateValidator and [[yii\jui\DatePicker|DatePicker]],
which is easier to use and more powerful.

Retrieving Data in Arrays

While retrieving data in terms of Active Record objects is convenient and flexible, it is not always desirable
when you have to bring back a large amount of data due to the big memory footprint. In this case, you can retrieve
data using PHP arrays by calling [[yii\db\ActiveQuery::asArray()|asArray()]] before executing a query method:

// return all customers
// each customer is returned as an associative array
$customers = Customer::find()
 ->asArray()
 ->all();

Note: While this method saves memory and improves performance, it is closer to the lower DB abstraction layer
and you will lose most of the Active Record features. A very important distinction lies in the data type of
the column values. When you return data in Active Record instances, column values will be automatically typecast
according to the actual column types; on the other hand when you return data in arrays, column values will be
strings (since they are the result of PDO without any processing), regardless their actual column types.

Retrieving Data in Batches

In Query Builder, we have explained that you may use batch query to minimize your memory
usage when querying a large amount of data from the database. You may use the same technique in Active Record. For example,

// fetch 10 customers at a time
foreach (Customer::find()->batch(10) as $customers) {
 // $customers is an array of 10 or fewer Customer objects
}

// fetch 10 customers at a time and iterate them one by one
foreach (Customer::find()->each(10) as $customer) {
 // $customer is a Customer object
}

// batch query with eager loading
foreach (Customer::find()->with('orders')->each() as $customer) {
 // $customer is a Customer object with the 'orders' relation populated
}

Saving Data

Using Active Record, you can easily save data to the database by taking the following steps:

	Prepare an Active Record instance

	Assign new values to Active Record attributes

	Call [[yii\db\ActiveRecord::save()]] to save the data into database.

For example,

// insert a new row of data
$customer = new Customer();
$customer->name = 'James';
$customer->email = 'james@example.com';
$customer->save();

// update an existing row of data
$customer = Customer::findOne(123);
$customer->email = 'james@newexample.com';
$customer->save();

The [[yii\db\ActiveRecord::save()|save()]] method can either insert or update a row of data, depending on the state
of the Active Record instance. If the instance is newly created via the new operator, calling
[[yii\db\ActiveRecord::save()|save()]] will cause insertion of a new row; If the instance is the result of a query method,
calling [[yii\db\ActiveRecord::save()|save()]] will update the row associated with the instance.

You can differentiate the two states of an Active Record instance by checking its
[[yii\db\ActiveRecord::isNewRecord|isNewRecord]] property value. This property is also used by
[[yii\db\ActiveRecord::save()|save()]] internally as follows:

public function save($runValidation = true, $attributeNames = null)
{
 if ($this->getIsNewRecord()) {
 return $this->insert($runValidation, $attributeNames);
 } else {
 return $this->update($runValidation, $attributeNames) !== false;
 }
}

Tip: You can call [[yii\db\ActiveRecord::insert()|insert()]] or [[yii\db\ActiveRecord::update()|update()]]
directly to insert or update a row.

Data Validation

Because [[yii\db\ActiveRecord]] extends from [[yii\base\Model]], it shares the same data validation feature.
You can declare validation rules by overriding the [[yii\db\ActiveRecord::rules()|rules()]] method and perform
data validation by calling the [[yii\db\ActiveRecord::validate()|validate()]] method.

When you call [[yii\db\ActiveRecord::save()|save()]], by default it will call [[yii\db\ActiveRecord::validate()|validate()]]
automatically. Only when the validation passes, will it actually save the data; otherwise it will simply return false,
and you can check the [[yii\db\ActiveRecord::errors|errors]] property to retrieve the validation error messages.

Tip: If you are certain that your data do not need validation (e.g., the data comes from trustable sources),
you can call save(false) to skip the validation.

Massive Assignment

Like normal models, Active Record instances also enjoy the massive assignment feature.
Using this feature, you can assign values to multiple attributes of an Active Record instance in a single PHP statement,
like shown below. Do remember that only safe attributes can be massively assigned, though.

$values = [
 'name' => 'James',
 'email' => 'james@example.com',
];

$customer = new Customer();

$customer->attributes = $values;
$customer->save();

Updating Counters

It is a common task to increment or decrement a column in a database table. We call these columns “counter columns”.
You can use [[yii\db\ActiveRecord::updateCounters()|updateCounters()]] to update one or multiple counter columns.
For example,

$post = Post::findOne(100);

// UPDATE `post` SET `view_count` = `view_count` + 1 WHERE `id` = 100
$post->updateCounters(['view_count' => 1]);

Note: If you use [[yii\db\ActiveRecord::save()]] to update a counter column, you may end up with inaccurate result,
because it is likely the same counter is being saved by multiple requests which read and write the same counter value.

Dirty Attributes

When you call [[yii\db\ActiveRecord::save()|save()]] to save an Active Record instance, only dirty attributes
are being saved. An attribute is considered dirty if its value has been modified since it was loaded from DB or
saved to DB most recently. Note that data validation will be performed regardless if the Active Record
instance has dirty attributes or not.

Active Record automatically maintains the list of dirty attributes. It does so by maintaining an older version of
the attribute values and comparing them with the latest one. You can call [[yii\db\ActiveRecord::getDirtyAttributes()]]
to get the attributes that are currently dirty. You can also call [[yii\db\ActiveRecord::markAttributeDirty()]]
to explicitly mark an attribute as dirty.

If you are interested in the attribute values prior to their most recent modification, you may call
[[yii\db\ActiveRecord::getOldAttributes()|getOldAttributes()]] or [[yii\db\ActiveRecord::getOldAttribute()|getOldAttribute()]].

Note: The comparison of old and new values will be done using the === operator so a value will be considered dirty
even if it has the same value but a different type. This is often the case when the model receives user input from
HTML forms where every value is represented as a string.
To ensure the correct type for e.g. integer values you may apply a validation filter:
['attributeName', 'filter', 'filter' => 'intval']. This works with all the typecasting functions of PHP like
intval() [http://php.net/manual/en/function.intval.php], floatval() [http://php.net/manual/en/function.floatval.php],
boolval [http://php.net/manual/en/function.boolval.php], etc…

Default Attribute Values

Some of your table columns may have default values defined in the database. Sometimes, you may want to pre-populate your
Web form for an Active Record instance with these default values. To avoid writing the same default values again,
you can call [[yii\db\ActiveRecord::loadDefaultValues()|loadDefaultValues()]] to populate the DB-defined default values
into the corresponding Active Record attributes:

$customer = new Customer();
$customer->loadDefaultValues();
// $customer->xyz will be assigned the default value declared when defining the "xyz" column

Attributes Typecasting

Being populated by query results, [[yii\db\ActiveRecord]] performs automatic typecast for its attribute values, using
information from database table schema. This allows data retrieved from table column
declared as integer to be populated in ActiveRecord instance with PHP integer, boolean with boolean and so on.
However, typecasting mechanism has several limitations:

	Float values are not be converted and will be represented as strings, otherwise they may loose precision.

	Conversion of the integer values depends on the integer capacity of the operation system you use. In particular:
values of column declared as ‘unsigned integer’ or ‘big integer’ will be converted to PHP integer only at 64-bit
operation system, while on 32-bit ones - they will be represented as strings.

Note that attribute typecast is performed only during populating ActiveRecord instance from query result. There is no
automatic conversion for the values loaded from HTTP request or set directly via property access.
The table schema will also be used while preparing SQL statements for the ActiveRecord data saving, ensuring
values are bound to the query with correct type. However, ActiveRecord instance attribute values will not be
converted during saving process.

Tip: you may use [[yii\behaviors\AttributeTypecastBehavior]] to facilitate attribute values typecasting
on ActiveRecord validation or saving.

Since 2.0.14, Yii ActiveRecord supports complex data types, such as JSON or multidimensional arrays.

JSON in MySQL and PostgreSQL

After data population, the value from JSON column will be automatically decoded from JSON according to standard JSON
decoding rules.

To save attribute value to a JSON column, ActiveRecord will automatically create a [[yii\db\JsonExpression|JsonExpression]] object
that will be encoded to a JSON string on QueryBuilder level.

Arrays in PostgreSQL

After data population, the value from Array column will be automatically decoded from PgSQL notation to an [[yii\db\ArrayExpression|ArrayExpression]]
object. It implements PHP ArrayAccess interface, so you can use it as an array, or call ->getValue() to get the array itself.

To save attribute value to an array column, ActiveRecord will automatically create an [[yii\db\ArrayExpression|ArrayExpression]] object
that will be encoded by QueryBuilder to an PgSQL string representation of array.

You can also use conditions for JSON columns:

$query->andWhere(['=', 'json', new ArrayExpression(['foo' => 'bar'])

To learn more about expressions building system read the Query Builder – Adding custom Conditions and Expressions
article.

Updating Multiple Rows

The methods described above all work on individual Active Record instances, causing inserting or updating of individual
table rows. To update multiple rows simultaneously, you should call [[yii\db\ActiveRecord::updateAll()|updateAll()]], instead,
which is a static method.

// UPDATE `customer` SET `status` = 1 WHERE `email` LIKE `%@example.com%`
Customer::updateAll(['status' => Customer::STATUS_ACTIVE], ['like', 'email', '@example.com']);

Similarly, you can call [[yii\db\ActiveRecord::updateAllCounters()|updateAllCounters()]] to update counter columns of
multiple rows at the same time.

// UPDATE `customer` SET `age` = `age` + 1
Customer::updateAllCounters(['age' => 1]);

Deleting Data

To delete a single row of data, first retrieve the Active Record instance corresponding to that row and then call
the [[yii\db\ActiveRecord::delete()]] method.

$customer = Customer::findOne(123);
$customer->delete();

You can call [[yii\db\ActiveRecord::deleteAll()]] to delete multiple or all rows of data. For example,

Customer::deleteAll(['status' => Customer::STATUS_INACTIVE]);

Note: Be very careful when calling [[yii\db\ActiveRecord::deleteAll()|deleteAll()]] because it may totally
erase all data from your table if you make a mistake in specifying the condition.

Active Record Life Cycles

It is important to understand the life cycles of Active Record when it is used for different purposes.
During each life cycle, a certain sequence of methods will be invoked, and you can override these methods
to get a chance to customize the life cycle. You can also respond to certain Active Record events triggered
during a life cycle to inject your custom code. These events are especially useful when you are developing
Active Record behaviors which need to customize Active Record life cycles.

In the following, we will summarize the various Active Record life cycles and the methods/events that are involved
in the life cycles.

New Instance Life Cycle

When creating a new Active Record instance via the new operator, the following life cycle will happen:

	Class constructor.

	[[yii\db\ActiveRecord::init()|init()]]: triggers an [[yii\db\ActiveRecord::EVENT_INIT|EVENT_INIT]] event.

Querying Data Life Cycle

When querying data through one of the querying methods, each newly populated Active Record will
undergo the following life cycle:

	Class constructor.

	[[yii\db\ActiveRecord::init()|init()]]: triggers an [[yii\db\ActiveRecord::EVENT_INIT|EVENT_INIT]] event.

	[[yii\db\ActiveRecord::afterFind()|afterFind()]]: triggers an [[yii\db\ActiveRecord::EVENT_AFTER_FIND|EVENT_AFTER_FIND]] event.

Saving Data Life Cycle

When calling [[yii\db\ActiveRecord::save()|save()]] to insert or update an Active Record instance, the following
life cycle will happen:

	an [[yii\db\ActiveRecord::EVENT_BEFORE_VALIDATE|EVENT_BEFORE_VALIDATE]] event. If the method returns false
or [[yii\base\ModelEvent::isValid]] is false, the rest of the steps will be skipped.

	Performs data validation. If data validation fails, the steps after Step 3 will be skipped.

	an [[yii\db\ActiveRecord::EVENT_AFTER_VALIDATE|EVENT_AFTER_VALIDATE]] event.

	an [[yii\db\ActiveRecord::EVENT_BEFORE_INSERT|EVENT_BEFORE_INSERT]]
or [[yii\db\ActiveRecord::EVENT_BEFORE_UPDATE|EVENT_BEFORE_UPDATE]] event. If the method returns false
or [[yii\base\ModelEvent::isValid]] is false, the rest of the steps will be skipped.

	Performs the actual data insertion or updating.

	an [[yii\db\ActiveRecord::EVENT_AFTER_INSERT|EVENT_AFTER_INSERT]]
or [[yii\db\ActiveRecord::EVENT_AFTER_UPDATE|EVENT_AFTER_UPDATE]] event.

Deleting Data Life Cycle

When calling [[yii\db\ActiveRecord::delete()|delete()]] to delete an Active Record instance, the following
life cycle will happen:

	an [[yii\db\ActiveRecord::EVENT_BEFORE_DELETE|EVENT_BEFORE_DELETE]] event. If the method returns false
or [[yii\base\ModelEvent::isValid]] is false, the rest of the steps will be skipped.

	Performs the actual data deletion.

	an [[yii\db\ActiveRecord::EVENT_AFTER_DELETE|EVENT_AFTER_DELETE]] event.

Note: Calling any of the following methods will NOT initiate any of the above life cycles because they work on the
database directly and not on a record basis:

	[[yii\db\ActiveRecord::updateAll()]]

	[[yii\db\ActiveRecord::deleteAll()]]

	[[yii\db\ActiveRecord::updateCounters()]]

	[[yii\db\ActiveRecord::updateAllCounters()]]

Refreshing Data Life Cycle

When calling [[yii\db\ActiveRecord::refresh()|refresh()]] to refresh an Active Record instance, the
[[yii\db\ActiveRecord::EVENT_AFTER_REFRESH|EVENT_AFTER_REFRESH]] event is triggered if refresh is successful and the method returns true.

Working with Transactions

There are two ways of using transactions while working with Active Record.

The first way is to explicitly enclose Active Record method calls in a transactional block, like shown below,

$customer = Customer::findOne(123);

Customer::getDb()->transaction(function($db) use ($customer) {
 $customer->id = 200;
 $customer->save();
 // ...other DB operations...
});

// or alternatively

$transaction = Customer::getDb()->beginTransaction();
try {
 $customer->id = 200;
 $customer->save();
 // ...other DB operations...
 $transaction->commit();
} catch(\Exception $e) {
 $transaction->rollBack();
 throw $e;
} catch(\Throwable $e) {
 $transaction->rollBack();
 throw $e;
}

Note: in the above code we have two catch-blocks for compatibility
with PHP 5.x and PHP 7.x. \Exception implements the \Throwable interface [http://php.net/manual/en/class.throwable.php]
since PHP 7.0, so you can skip the part with \Exception if your app uses only PHP 7.0 and higher.

The second way is to list the DB operations that require transactional support in the [[yii\db\ActiveRecord::transactions()]]
method. For example,

class Customer extends ActiveRecord
{
 public function transactions()
 {
 return [
 'admin' => self::OP_INSERT,
 'api' => self::OP_INSERT | self::OP_UPDATE | self::OP_DELETE,
 // the above is equivalent to the following:
 // 'api' => self::OP_ALL,
];
 }
}

The [[yii\db\ActiveRecord::transactions()]] method should return an array whose keys are scenario
names and values are the corresponding operations that should be enclosed within transactions. You should use the following
constants to refer to different DB operations:

	[[yii\db\ActiveRecord::OP_INSERT|OP_INSERT]]: insertion operation performed by [[yii\db\ActiveRecord::insert()|insert()]];

	[[yii\db\ActiveRecord::OP_UPDATE|OP_UPDATE]]: update operation performed by [[yii\db\ActiveRecord::update()|update()]];

	[[yii\db\ActiveRecord::OP_DELETE|OP_DELETE]]: deletion operation performed by [[yii\db\ActiveRecord::delete()|delete()]].

Use the | operators to concatenate the above constants to indicate multiple operations. You may also use the shortcut
constant [[yii\db\ActiveRecord::OP_ALL|OP_ALL]] to refer to all three operations above.

Transactions that are created using this method will be started before calling [yii\db\ActiveRecord::beforeSave()|beforeSave()]
and will be committed after [yii\db\ActiveRecord::afterSave()|afterSave()] has run.

Optimistic Locks

Optimistic locking is a way to prevent conflicts that may occur when a single row of data is being
updated by multiple users. For example, both user A and user B are editing the same wiki article
at the same time. After user A saves his edits, user B clicks on the “Save” button in an attempt to
save his edits as well. Because user B was actually working on an outdated version of the article,
it would be desirable to have a way to prevent him from saving the article and show him some hint message.

Optimistic locking solves the above problem by using a column to record the version number of each row.
When a row is being saved with an outdated version number, a [[yii\db\StaleObjectException]] exception
will be thrown, which prevents the row from being saved. Optimistic locking is only supported when you
update or delete an existing row of data using [[yii\db\ActiveRecord::update()]] or [[yii\db\ActiveRecord::delete()]],
respectively.

To use optimistic locking,

	Create a column in the DB table associated with the Active Record class to store the version number of each row.
The column should be of big integer type (in MySQL it would be BIGINT DEFAULT 0).

	Override the [[yii\db\ActiveRecord::optimisticLock()]] method to return the name of this column.

	Implement [[\yii\behaviors\OptimisticLockBehavior|OptimisticLockBehavior]] inside your model class to automatically parse its value from received requests.
Remove the version attribute from validation rules as [[\yii\behaviors\OptimisticLockBehavior|OptimisticLockBehavior]] should handle it.

	In the Web form that takes user inputs, add a hidden field to store the current version number of the row being updated.

	In the controller action that updates the row using Active Record, try and catch the [[yii\db\StaleObjectException]]
exception. Implement necessary business logic (e.g. merging the changes, prompting staled data) to resolve the conflict.

For example, assume the version column is named as version. You can implement optimistic locking with the code like
the following.

// ------ view code -------

use yii\helpers\Html;

// ...other input fields
echo Html::activeHiddenInput($model, 'version');

// ------ controller code -------

use yii\db\StaleObjectException;

public function actionUpdate($id)
{
 $model = $this->findModel($id);

 try {
 if ($model->load(Yii::$app->request->post()) && $model->save()) {
 return $this->redirect(['view', 'id' => $model->id]);
 } else {
 return $this->render('update', [
 'model' => $model,
]);
 }
 } catch (StaleObjectException $e) {
 // logic to resolve the conflict
 }
}

// ------ model code -------

use yii\behaviors\OptimisticLockBehavior;

public function behaviors()
{
 return [
 OptimisticLockBehavior::className(),
];
}

Note: Because [[\yii\behaviors\OptimisticLockBehavior|OptimisticLockBehavior]] will ensure the record is only saved
if user submits a valid version number by directly parsing [[\yii\web\Request::getBodyParam()|getBodyParam()]], it
may be useful to extend your model class and do step 2 in parent model while attaching the behavior (step 3) to the child
class so you can have an instance dedicated to internal use while tying the other to controllers responsible of receiving
end user inputs. Alternatively, you can implement your own logic by configuring its [[\yii\behaviors\OptimisticLockBehavior::$value|value]] property.

Working with Relational Data

Besides working with individual database tables, Active Record is also capable of bringing together related data,
making them readily accessible through the primary data. For example, the customer data is related with the order
data because one customer may have placed one or multiple orders. With appropriate declaration of this relation,
you’ll be able to access a customer’s order information using the expression $customer->orders which gives
back the customer’s order information in terms of an array of Order Active Record instances.

Declaring Relations

To work with relational data using Active Record, you first need to declare relations in Active Record classes.
The task is as simple as declaring a relation method for every interested relation, like the following,

class Customer extends ActiveRecord
{
 // ...

 public function getOrders()
 {
 return $this->hasMany(Order::className(), ['customer_id' => 'id']);
 }
}

class Order extends ActiveRecord
{
 // ...

 public function getCustomer()
 {
 return $this->hasOne(Customer::className(), ['id' => 'customer_id']);
 }
}

In the above code, we have declared an orders relation for the Customer class, and a customer relation
for the Order class.

Each relation method must be named as getXyz. We call xyz (the first letter is in lower case) the relation name.
Note that relation names are case sensitive.

While declaring a relation, you should specify the following information:

	the multiplicity of the relation: specified by calling either [[yii\db\ActiveRecord::hasMany()|hasMany()]]
or [[yii\db\ActiveRecord::hasOne()|hasOne()]]. In the above example you may easily read in the relation
declarations that a customer has many orders while an order only has one customer.

	the name of the related Active Record class: specified as the first parameter to
either [[yii\db\ActiveRecord::hasMany()|hasMany()]] or [[yii\db\ActiveRecord::hasOne()|hasOne()]].
A recommended practice is to call Xyz::className() to get the class name string so that you can receive
IDE auto-completion support as well as error detection at compiling stage.

	the link between the two types of data: specifies the column(s) through which the two types of data are related.
The array values are the columns of the primary data (represented by the Active Record class that you are declaring
relations), while the array keys are the columns of the related data.

An easy rule to remember this is, as you see in the example above, you write the column that belongs to the related
Active Record directly next to it. You see there that customer_id is a property of Order and id is a property
of Customer.

Accessing Relational Data

After declaring relations, you can access relational data through relation names. This is just like accessing
an object property defined by the relation method. For this reason, we call it relation property.
For example,

// SELECT * FROM `customer` WHERE `id` = 123
$customer = Customer::findOne(123);

// SELECT * FROM `order` WHERE `customer_id` = 123
// $orders is an array of Order objects
$orders = $customer->orders;

Info: When you declare a relation named xyz via a getter method getXyz(), you will be able to access
xyz like an object property. Note that the name is case sensitive.

If a relation is declared with [[yii\db\ActiveRecord::hasMany()|hasMany()]], accessing this relation property
will return an array of the related Active Record instances; if a relation is declared with
[[yii\db\ActiveRecord::hasOne()|hasOne()]], accessing the relation property will return the related
Active Record instance or null if no related data is found.

When you access a relation property for the first time, a SQL statement will be executed, like shown in the
above example. If the same property is accessed again, the previous result will be returned without re-executing
the SQL statement. To force re-executing the SQL statement, you should unset the relation property
first: unset($customer->orders).

Note: While this concept looks similar to the object property feature, there is an
important difference. For normal object properties the property value is of the same type as the defining getter method.
A relation method however returns an [[yii\db\ActiveQuery]] instance, while accessing a relation property will either
return a [[yii\db\ActiveRecord]] instance or an array of these.

$customer->orders; // is an array of `Order` objects
$customer->getOrders(); // returns an ActiveQuery instance

This is useful for creating customized queries, which is described in the next section.

Dynamic Relational Query

Because a relation method returns an instance of [[yii\db\ActiveQuery]], you can further build this query
using query building methods before performing DB query. For example,

$customer = Customer::findOne(123);

// SELECT * FROM `order` WHERE `customer_id` = 123 AND `subtotal` > 200 ORDER BY `id`
$orders = $customer->getOrders()
 ->where(['>', 'subtotal', 200])
 ->orderBy('id')
 ->all();

Unlike accessing a relation property, each time you perform a dynamic relational query via a relation method,
a SQL statement will be executed, even if the same dynamic relational query was performed before.

Sometimes you may even want to parametrize a relation declaration so that you can more easily perform
dynamic relational query. For example, you may declare a bigOrders relation as follows,

class Customer extends ActiveRecord
{
 public function getBigOrders($threshold = 100)
 {
 return $this->hasMany(Order::className(), ['customer_id' => 'id'])
 ->where('subtotal > :threshold', [':threshold' => $threshold])
 ->orderBy('id');
 }
}

Then you will be able to perform the following relational queries:

// SELECT * FROM `order` WHERE `customer_id` = 123 AND `subtotal` > 200 ORDER BY `id`
$orders = $customer->getBigOrders(200)->all();

// SELECT * FROM `order` WHERE `customer_id` = 123 AND `subtotal` > 100 ORDER BY `id`
$orders = $customer->bigOrders;

Relations via a Junction Table

In database modelling, when the multiplicity between two related tables is many-to-many,
a junction table [https://en.wikipedia.org/wiki/Junction_table] is usually introduced. For example, the order
table and the item table may be related via a junction table named order_item. One order will then correspond
to multiple order items, while one product item will also correspond to multiple order items.

When declaring such relations, you would call either [[yii\db\ActiveQuery::via()|via()]] or [[yii\db\ActiveQuery::viaTable()|viaTable()]]
to specify the junction table. The difference between [[yii\db\ActiveQuery::via()|via()]] and [[yii\db\ActiveQuery::viaTable()|viaTable()]]
is that the former specifies the junction table in terms of an existing relation name while the latter directly uses
the junction table. For example,

class Order extends ActiveRecord
{
 public function getItems()
 {
 return $this->hasMany(Item::className(), ['id' => 'item_id'])
 ->viaTable('order_item', ['order_id' => 'id']);
 }
}

or alternatively,

class Order extends ActiveRecord
{
 public function getOrderItems()
 {
 return $this->hasMany(OrderItem::className(), ['order_id' => 'id']);
 }

 public function getItems()
 {
 return $this->hasMany(Item::className(), ['id' => 'item_id'])
 ->via('orderItems');
 }
}

The usage of relations declared with a junction table is the same as that of normal relations. For example,

// SELECT * FROM `order` WHERE `id` = 100
$order = Order::findOne(100);

// SELECT * FROM `order_item` WHERE `order_id` = 100
// SELECT * FROM `item` WHERE `item_id` IN (...)
// returns an array of Item objects
$items = $order->items;

Chaining relation definitions via multiple tables

Its further possible to define relations via multiple tables by chaining relation definitions using [[yii\db\ActiveQuery::via()|via()]].
Considering the examples above, we have classes Customer, Order, and Item.
We can add a relation to the Customer class that lists all items from all the orders they placed,
and name it getPurchasedItems(), the chaining of relations is show in the following code example:

class Customer extends ActiveRecord
{
 // ...

 public function getPurchasedItems()
 {
 // customer's items, matching 'id' column of `Item` to 'item_id' in OrderItem
 return $this->hasMany(Item::className(), ['id' => 'item_id'])
 ->via('orderItems');
 }

 public function getOrderItems()
 {
 // customer's order items, matching 'id' column of `Order` to 'order_id' in OrderItem
 return $this->hasMany(OrderItem::className(), ['order_id' => 'id'])
 ->via('orders');
 }

 public function getOrders()
 {
 // same as above
 return $this->hasMany(Order::className(), ['customer_id' => 'id']);
 }
}

Lazy Loading and Eager Loading

In Accessing Relational Data, we explained that you can access a relation property
of an Active Record instance like accessing a normal object property. A SQL statement will be executed only when
you access the relation property the first time. We call such relational data accessing method lazy loading.
For example,

// SELECT * FROM `customer` WHERE `id` = 123
$customer = Customer::findOne(123);

// SELECT * FROM `order` WHERE `customer_id` = 123
$orders = $customer->orders;

// no SQL executed
$orders2 = $customer->orders;

Lazy loading is very convenient to use. However, it may suffer from a performance issue when you need to access
the same relation property of multiple Active Record instances. Consider the following code example. How many
SQL statements will be executed?

// SELECT * FROM `customer` LIMIT 100
$customers = Customer::find()->limit(100)->all();

foreach ($customers as $customer) {
 // SELECT * FROM `order` WHERE `customer_id` = ...
 $orders = $customer->orders;
}

As you can see from the code comment above, there are 101 SQL statements being executed! This is because each
time you access the orders relation property of a different Customer object in the for-loop, a SQL statement
will be executed.

To solve this performance problem, you can use the so-called eager loading approach as shown below,

// SELECT * FROM `customer` LIMIT 100;
// SELECT * FROM `orders` WHERE `customer_id` IN (...)
$customers = Customer::find()
 ->with('orders')
 ->limit(100)
 ->all();

foreach ($customers as $customer) {
 // no SQL executed
 $orders = $customer->orders;
}

By calling [[yii\db\ActiveQuery::with()]], you instruct Active Record to bring back the orders for the first 100
customers in one single SQL statement. As a result, you reduce the number of the executed SQL statements from 101 to 2!

You can eagerly load one or multiple relations. You can even eagerly load nested relations. A nested relation is a relation
that is declared within a related Active Record class. For example, Customer is related with Order through the orders
relation, and Order is related with Item through the items relation. When querying for Customer, you can eagerly
load items using the nested relation notation orders.items.

The following code shows different usage of [[yii\db\ActiveQuery::with()|with()]]. We assume the Customer class
has two relations orders and country, while the Order class has one relation items.

// eager loading both "orders" and "country"
$customers = Customer::find()->with('orders', 'country')->all();
// equivalent to the array syntax below
$customers = Customer::find()->with(['orders', 'country'])->all();
// no SQL executed
$orders= $customers[0]->orders;
// no SQL executed
$country = $customers[0]->country;

// eager loading "orders" and the nested relation "orders.items"
$customers = Customer::find()->with('orders.items')->all();
// access the items of the first order of the first customer
// no SQL executed
$items = $customers[0]->orders[0]->items;

You can eagerly load deeply nested relations, such as a.b.c.d. All parent relations will be eagerly loaded.
That is, when you call [[yii\db\ActiveQuery::with()|with()]] using a.b.c.d, you will eagerly load
a, a.b, a.b.c and a.b.c.d.

Info: In general, when eagerly loading N relations among which M relations are defined with a
junction table, a total number of N+M+1 SQL statements will be executed.
Note that a nested relation a.b.c.d counts as 4 relations.

When eagerly loading a relation, you can customize the corresponding relational query using an anonymous function.
For example,

// find customers and bring back together their country and active orders
// SELECT * FROM `customer`
// SELECT * FROM `country` WHERE `id` IN (...)
// SELECT * FROM `order` WHERE `customer_id` IN (...) AND `status` = 1
$customers = Customer::find()->with([
 'country',
 'orders' => function ($query) {
 $query->andWhere(['status' => Order::STATUS_ACTIVE]);
 },
])->all();

When customizing the relational query for a relation, you should specify the relation name as an array key
and use an anonymous function as the corresponding array value. The anonymous function will receive a $query parameter
which represents the [[yii\db\ActiveQuery]] object used to perform the relational query for the relation.
In the code example above, we are modifying the relational query by appending an additional condition about order status.

Note: If you call [[yii\db\Query::select()|select()]] while eagerly loading relations, you have to make sure
the columns referenced in the relation declarations are being selected. Otherwise, the related models may not
be loaded properly. For example,

$orders = Order::find()->select(['id', 'amount'])->with('customer')->all();
// $orders[0]->customer is always `null`. To fix the problem, you should do the following:
$orders = Order::find()->select(['id', 'amount', 'customer_id'])->with('customer')->all();

Joining with Relations

Note: The content described in this subsection is only applicable to relational databases, such as
MySQL, PostgreSQL, etc.

The relational queries that we have described so far only reference the primary table columns when
querying for the primary data. In reality we often need to reference columns in the related tables. For example,
we may want to bring back the customers who have at least one active order. To solve this problem, we can
build a join query like the following:

// SELECT `customer`.* FROM `customer`
// LEFT JOIN `order` ON `order`.`customer_id` = `customer`.`id`
// WHERE `order`.`status` = 1
//
// SELECT * FROM `order` WHERE `customer_id` IN (...)
$customers = Customer::find()
 ->select('customer.*')
 ->leftJoin('order', '`order`.`customer_id` = `customer`.`id`')
 ->where(['order.status' => Order::STATUS_ACTIVE])
 ->with('orders')
 ->all();

Note: It is important to disambiguate column names when building relational queries involving JOIN SQL statements.
A common practice is to prefix column names with their corresponding table names.

However, a better approach is to exploit the existing relation declarations by calling [[yii\db\ActiveQuery::joinWith()]]:

$customers = Customer::find()
 ->joinWith('orders')
 ->where(['order.status' => Order::STATUS_ACTIVE])
 ->all();

Both approaches execute the same set of SQL statements. The latter approach is much cleaner and drier, though.

By default, [[yii\db\ActiveQuery::joinWith()|joinWith()]] will use LEFT JOIN to join the primary table with the
related table. You can specify a different join type (e.g. RIGHT JOIN) via its third parameter $joinType. If
the join type you want is INNER JOIN, you can simply call [[yii\db\ActiveQuery::innerJoinWith()|innerJoinWith()]], instead.

Calling [[yii\db\ActiveQuery::joinWith()|joinWith()]] will eagerly load the related data by default.
If you do not want to bring in the related data, you can specify its second parameter $eagerLoading as false.

Note: Even when using [[yii\db\ActiveQuery::joinWith()|joinWith()]] or [[yii\db\ActiveQuery::innerJoinWith()|innerJoinWith()]]
with eager loading enabled the related data will not be populated from the result of the JOIN query. So there’s
still an extra query for each joined relation as explained in the section on eager loading.

Like [[yii\db\ActiveQuery::with()|with()]], you can join with one or multiple relations; you may customize the relation
queries on-the-fly; you may join with nested relations; and you may mix the use of [[yii\db\ActiveQuery::with()|with()]]
and [[yii\db\ActiveQuery::joinWith()|joinWith()]]. For example,

$customers = Customer::find()->joinWith([
 'orders' => function ($query) {
 $query->andWhere(['>', 'subtotal', 100]);
 },
])->with('country')
 ->all();

Sometimes when joining two tables, you may need to specify some extra conditions in the ON part of the JOIN query.
This can be done by calling the [[yii\db\ActiveQuery::onCondition()]] method like the following:

// SELECT `customer`.* FROM `customer`
// LEFT JOIN `order` ON `order`.`customer_id` = `customer`.`id` AND `order`.`status` = 1
//
// SELECT * FROM `order` WHERE `customer_id` IN (...)
$customers = Customer::find()->joinWith([
 'orders' => function ($query) {
 $query->onCondition(['order.status' => Order::STATUS_ACTIVE]);
 },
])->all();

This above query brings back all customers, and for each customer it brings back all active orders.
Note that this differs from our earlier example which only brings back customers who have at least one active order.

Info: When [[yii\db\ActiveQuery]] is specified with a condition via [[yii\db\ActiveQuery::onCondition()|onCondition()]],
the condition will be put in the ON part if the query involves a JOIN query. If the query does not involve
JOIN, the on-condition will be automatically appended to the WHERE part of the query.
Thus it may only contain conditions including columns of the related table.

Relation table aliases

As noted before, when using JOIN in a query, we need to disambiguate column names. Therefor often an alias is
defined for a table. Setting an alias for the relational query would be possible by customizing the relation query in the following way:

$query->joinWith([
 'orders' => function ($q) {
 $q->from(['o' => Order::tableName()]);
 },
])

This however looks very complicated and involves either hardcoding the related objects table name or calling Order::tableName().
Since version 2.0.7, Yii provides a shortcut for this. You may now define and use the alias for the relation table like the following:

// join the orders relation and sort the result by orders.id
$query->joinWith(['orders o'])->orderBy('o.id');

The above syntax works for simple relations. If you need an alias for an intermediate table when joining over
nested relations, e.g. $query->joinWith(['orders.product']),
you need to nest the joinWith calls like in the following example:

$query->joinWith(['orders o' => function($q) {
 $q->joinWith('product p');
 }])
 ->where('o.amount > 100');

Inverse Relations

Relation declarations are often reciprocal between two Active Record classes. For example, Customer is related
to Order via the orders relation, and Order is related back to Customer via the customer relation.

class Customer extends ActiveRecord
{
 public function getOrders()
 {
 return $this->hasMany(Order::className(), ['customer_id' => 'id']);
 }
}

class Order extends ActiveRecord
{
 public function getCustomer()
 {
 return $this->hasOne(Customer::className(), ['id' => 'customer_id']);
 }
}

Now consider the following piece of code:

// SELECT * FROM `customer` WHERE `id` = 123
$customer = Customer::findOne(123);

// SELECT * FROM `order` WHERE `customer_id` = 123
$order = $customer->orders[0];

// SELECT * FROM `customer` WHERE `id` = 123
$customer2 = $order->customer;

// displays "not the same"
echo $customer2 === $customer ? 'same' : 'not the same';

We would think $customer and $customer2 are the same, but they are not! Actually they do contain the same
customer data, but they are different objects. When accessing $order->customer, an extra SQL statement
is executed to populate a new object $customer2.

To avoid the redundant execution of the last SQL statement in the above example, we should tell Yii that
customer is an inverse relation of orders by calling the [[yii\db\ActiveQuery::inverseOf()|inverseOf()]] method
like shown below:

class Customer extends ActiveRecord
{
 public function getOrders()
 {
 return $this->hasMany(Order::className(), ['customer_id' => 'id'])->inverseOf('customer');
 }
}

With this modified relation declaration, we will have:

// SELECT * FROM `customer` WHERE `id` = 123
$customer = Customer::findOne(123);

// SELECT * FROM `order` WHERE `customer_id` = 123
$order = $customer->orders[0];

// No SQL will be executed
$customer2 = $order->customer;

// displays "same"
echo $customer2 === $customer ? 'same' : 'not the same';

Note: Inverse relations cannot be defined for relations involving a junction table.
That is, if a relation is defined with [[yii\db\ActiveQuery::via()|via()]] or [[yii\db\ActiveQuery::viaTable()|viaTable()]],
you should not call [[yii\db\ActiveQuery::inverseOf()|inverseOf()]] further.

Saving Relations

When working with relational data, you often need to establish relationships between different data or destroy
existing relationships. This requires setting proper values for the columns that define the relations. Using Active Record,
you may end up writing the code like the following:

$customer = Customer::findOne(123);
$order = new Order();
$order->subtotal = 100;
// ...

// setting the attribute that defines the "customer" relation in Order
$order->customer_id = $customer->id;
$order->save();

Active Record provides the [[yii\db\ActiveRecord::link()|link()]] method that allows you to accomplish this task more nicely:

$customer = Customer::findOne(123);
$order = new Order();
$order->subtotal = 100;
// ...

$order->link('customer', $customer);

The [[yii\db\ActiveRecord::link()|link()]] method requires you to specify the relation name and the target Active Record
instance that the relationship should be established with. The method will modify the values of the attributes that
link two Active Record instances and save them to the database. In the above example, it will set the customer_id
attribute of the Order instance to be the value of the id attribute of the Customer instance and then save it
to the database.

Note: You cannot link two newly created Active Record instances.

The benefit of using [[yii\db\ActiveRecord::link()|link()]] is even more obvious when a relation is defined via
a junction table. For example, you may use the following code to link an Order instance
with an Item instance:

$order->link('items', $item);

The above code will automatically insert a row in the order_item junction table to relate the order with the item.

Info: The [[yii\db\ActiveRecord::link()|link()]] method will NOT perform any data validation while
saving the affected Active Record instance. It is your responsibility to validate any input data before
calling this method.

The opposite operation to [[yii\db\ActiveRecord::link()|link()]] is [[yii\db\ActiveRecord::unlink()|unlink()]]
which breaks an existing relationship between two Active Record instances. For example,

$customer = Customer::find()->with('orders')->where(['id' => 123])->one();
$customer->unlink('orders', $customer->orders[0]);

By default, the [[yii\db\ActiveRecord::unlink()|unlink()]] method will set the foreign key value(s) that specify
the existing relationship to be null. You may, however, choose to delete the table row that contains the foreign key value
by passing the $delete parameter as true to the method.

When a junction table is involved in a relation, calling [[yii\db\ActiveRecord::unlink()|unlink()]] will cause
the foreign keys in the junction table to be cleared, or the deletion of the corresponding row in the junction table
if $delete is true.

Cross-Database Relations

Active Record allows you to declare relations between Active Record classes that are powered by different databases.
The databases can be of different types (e.g. MySQL and PostgreSQL, or MS SQL and MongoDB), and they can run on
different servers. You can use the same syntax to perform relational queries. For example,

// Customer is associated with the "customer" table in a relational database (e.g. MySQL)
class Customer extends \yii\db\ActiveRecord
{
 public static function tableName()
 {
 return 'customer';
 }

 public function getComments()
 {
 // a customer has many comments
 return $this->hasMany(Comment::className(), ['customer_id' => 'id']);
 }
}

// Comment is associated with the "comment" collection in a MongoDB database
class Comment extends \yii\mongodb\ActiveRecord
{
 public static function collectionName()
 {
 return 'comment';
 }

 public function getCustomer()
 {
 // a comment has one customer
 return $this->hasOne(Customer::className(), ['id' => 'customer_id']);
 }
}

$customers = Customer::find()->with('comments')->all();

You can use most of the relational query features that have been described in this section.

Note: Usage of [[yii\db\ActiveQuery::joinWith()|joinWith()]] is limited to databases that allow cross-database JOIN queries.
For this reason, you cannot use this method in the above example because MongoDB does not support JOIN.

Customizing Query Classes

By default, all Active Record queries are supported by [[yii\db\ActiveQuery]]. To use a customized query class
in an Active Record class, you should override the [[yii\db\ActiveRecord::find()]] method and return an instance
of your customized query class. For example,

// file Comment.php
namespace app\models;

use yii\db\ActiveRecord;

class Comment extends ActiveRecord
{
 public static function find()
 {
 return new CommentQuery(get_called_class());
 }
}

Now whenever you are performing a query (e.g. find(), findOne()) or defining a relation (e.g. hasOne())
with Comment, you will be calling an instance of CommentQuery instead of ActiveQuery.

You now have to define the CommentQuery class, which can be customized in many creative ways to improve your query building experience. For example,

// file CommentQuery.php
namespace app\models;

use yii\db\ActiveQuery;

class CommentQuery extends ActiveQuery
{
 // conditions appended by default (can be skipped)
 public function init()
 {
 $this->andOnCondition(['deleted' => false]);
 parent::init();
 }

 // ... add customized query methods here ...

 public function active($state = true)
 {
 return $this->andOnCondition(['active' => $state]);
 }
}

Note: Instead of calling [[yii\db\ActiveQuery::onCondition()|onCondition()]], you usually should call
[[yii\db\ActiveQuery::andOnCondition()|andOnCondition()]] or [[yii\db\ActiveQuery::orOnCondition()|orOnCondition()]]
to append additional conditions when defining new query building methods so that any existing conditions are not overwritten.

This allows you to write query building code like the following:

$comments = Comment::find()->active()->all();
$inactiveComments = Comment::find()->active(false)->all();

Tip: In big projects, it is recommended that you use customized query classes to hold most query-related code
so that the Active Record classes can be kept clean.

You can also use the new query building methods when defining relations about Comment or performing relational query:

class Customer extends \yii\db\ActiveRecord
{
 public function getActiveComments()
 {
 return $this->hasMany(Comment::className(), ['customer_id' => 'id'])->active();
 }
}

$customers = Customer::find()->joinWith('activeComments')->all();

// or alternatively
class Customer extends \yii\db\ActiveRecord
{
 public function getComments()
 {
 return $this->hasMany(Comment::className(), ['customer_id' => 'id']);
 }
}

$customers = Customer::find()->joinWith([
 'comments' => function($q) {
 $q->active();
 }
])->all();

Info: In Yii 1.1, there is a concept called scope. Scope is no longer directly supported in Yii 2.0,
and you should use customized query classes and query methods to achieve the same goal.

Selecting extra fields

When Active Record instance is populated from query results, its attributes are filled up by corresponding column
values from received data set.

You are able to fetch additional columns or values from query and store it inside the Active Record.
For example, assume we have a table named room, which contains information about rooms available in the hotel.
Each room stores information about its geometrical size using fields length, width, height.
Imagine we need to retrieve list of all available rooms with their volume in descendant order.
So you can not calculate volume using PHP, because we need to sort the records by its value, but you also want volume
to be displayed in the list.
To achieve the goal, you need to declare an extra field in your Room Active Record class, which will store volume value:

class Room extends \yii\db\ActiveRecord
{
 public $volume;

 // ...
}

Then you need to compose a query, which calculates volume of the room and performs the sort:

$rooms = Room::find()
 ->select([
 '{{room}}.*', // select all columns
 '([[length]] * [[width]] * [[height]]) AS volume', // calculate a volume
])
 ->orderBy('volume DESC') // apply sort
 ->all();

foreach ($rooms as $room) {
 echo $room->volume; // contains value calculated by SQL
}

Ability to select extra fields can be exceptionally useful for aggregation queries.
Assume you need to display a list of customers with the count of orders they have made.
First of all, you need to declare a Customer class with orders relation and extra field for count storage:

class Customer extends \yii\db\ActiveRecord
{
 public $ordersCount;

 // ...

 public function getOrders()
 {
 return $this->hasMany(Order::className(), ['customer_id' => 'id']);
 }
}

Then you can compose a query, which joins the orders and calculates their count:

$customers = Customer::find()
 ->select([
 '{{customer}}.*', // select all customer fields
 'COUNT({{order}}.id) AS ordersCount' // calculate orders count
])
 ->joinWith('orders') // ensure table junction
 ->groupBy('{{customer}}.id') // group the result to ensure aggregation function works
 ->all();

A disadvantage of using this method would be that, if the information isn’t loaded on the SQL query - it has to be calculated
separately. Thus, if you have found particular record via regular query without extra select statements, it
will be unable to return actual value for the extra field. Same will happen for the newly saved record.

$room = new Room();
$room->length = 100;
$room->width = 50;
$room->height = 2;

$room->volume; // this value will be `null`, since it was not declared yet

Using the [[yii\db\BaseActiveRecord::__get()|__get()]] and [[yii\db\BaseActiveRecord::__set()|__set()]] magic methods
we can emulate the behavior of a property:

class Room extends \yii\db\ActiveRecord
{
 private $_volume;

 public function setVolume($volume)
 {
 $this->_volume = (float) $volume;
 }

 public function getVolume()
 {
 if (empty($this->length) || empty($this->width) || empty($this->height)) {
 return null;
 }

 if ($this->_volume === null) {
 $this->setVolume(
 $this->length * $this->width * $this->height
);
 }

 return $this->_volume;
 }

 // ...
}

When the select query doesn’t provide the volume, the model will be able to calculate it automatically using
the attributes of the model.

You can calculate the aggregation fields as well using defined relations:

class Customer extends \yii\db\ActiveRecord
{
 private $_ordersCount;

 public function setOrdersCount($count)
 {
 $this->_ordersCount = (int) $count;
 }

 public function getOrdersCount()
 {
 if ($this->isNewRecord) {
 return null; // this avoid calling a query searching for null primary keys
 }

 if ($this->_ordersCount === null) {
 $this->setOrdersCount($this->getOrders()->count()); // calculate aggregation on demand from relation
 }

 return $this->_ordersCount;
 }

 // ...

 public function getOrders()
 {
 return $this->hasMany(Order::className(), ['customer_id' => 'id']);
 }
}

With this code, in case ‘ordersCount’ is present in ‘select’ statement - Customer::ordersCount will be populated
by query results, otherwise it will be calculated on demand using Customer::orders relation.

This approach can be as well used for creation of the shortcuts for some relational data, especially for the aggregation.
For example:

class Customer extends \yii\db\ActiveRecord
{
 /**
 * Defines read-only virtual property for aggregation data.
 */
 public function getOrdersCount()
 {
 if ($this->isNewRecord) {
 return null; // this avoid calling a query searching for null primary keys
 }

 return empty($this->ordersAggregation) ? 0 : $this->ordersAggregation[0]['counted'];
 }

 /**
 * Declares normal 'orders' relation.
 */
 public function getOrders()
 {
 return $this->hasMany(Order::className(), ['customer_id' => 'id']);
 }

 /**
 * Declares new relation based on 'orders', which provides aggregation.
 */
 public function getOrdersAggregation()
 {
 return $this->getOrders()
 ->select(['customer_id', 'counted' => 'count(*)'])
 ->groupBy('customer_id')
 ->asArray(true);
 }

 // ...
}

foreach (Customer::find()->with('ordersAggregation')->all() as $customer) {
 echo $customer->ordersCount; // outputs aggregation data from relation without extra query due to eager loading
}

$customer = Customer::findOne($pk);
$customer->ordersCount; // output aggregation data from lazy loaded relation

 Database Access Objects

Database Access Objects

Built on top of PDO [http://www.php.net/manual/en/book.pdo.php], Yii DAO (Database Access Objects) provides an
object-oriented API for accessing relational databases. It is the foundation for other more advanced database
access methods, including query builder and active record.

When using Yii DAO, you mainly need to deal with plain SQLs and PHP arrays. As a result, it is the most efficient
way to access databases. However, because SQL syntax may vary for different databases, using Yii DAO also means
you have to take extra effort to create a database-agnostic application.

In Yii 2.0, DAO supports the following databases out of the box:

	MySQL [http://www.mysql.com/]

	MariaDB [https://mariadb.com/]

	SQLite [http://sqlite.org/]

	PostgreSQL [http://www.postgresql.org/]: version 8.4 or higher

	CUBRID [http://www.cubrid.org/]: version 9.3 or higher.

	Oracle [http://www.oracle.com/us/products/database/overview/index.html]

	MSSQL [https://www.microsoft.com/en-us/sqlserver/default.aspx]: version 2008 or higher.

Info: In Yii 2.1 and later, the DAO supports for CUBRID, Oracle and MSSQL are no longer provided as the built-in
core components of the framework. They have to be installed as the separated extensions.
There are yiisoft/yii2-oracle [https://www.yiiframework.com/extension/yiisoft/yii2-oracle] and
yiisoft/yii2-mssql [https://www.yiiframework.com/extension/yiisoft/yii2-mssql] in the
official extensions [https://www.yiiframework.com/extensions/official].

Note: New version of pdo_oci for PHP 7 currently exists only as the source code. Follow
instruction provided by community [https://github.com/yiisoft/yii2/issues/10975#issuecomment-248479268]
to compile it or use PDO emulation layer [https://github.com/taq/pdooci].

Creating DB Connections

To access a database, you first need to connect to it by creating an instance of [[yii\db\Connection]]:

$db = new yii\db\Connection([
 'dsn' => 'mysql:host=localhost;dbname=example',
 'username' => 'root',
 'password' => '',
 'charset' => 'utf8',
]);

Because a DB connection often needs to be accessed in different places, a common practice is to configure it
in terms of an application component like the following:

return [
 // ...
 'components' => [
 // ...
 'db' => [
 'class' => 'yii\db\Connection',
 'dsn' => 'mysql:host=localhost;dbname=example',
 'username' => 'root',
 'password' => '',
 'charset' => 'utf8',
],
],
 // ...
];

You can then access the DB connection via the expression Yii::$app->db.

Tip: You can configure multiple DB application components if your application needs to access multiple databases.

When configuring a DB connection, you should always specify its Data Source Name (DSN) via the [[yii\db\Connection::dsn|dsn]]
property. The format of DSN varies for different databases. Please refer to the PHP manual [http://www.php.net/manual/en/function.PDO-construct.php]
for more details. Below are some examples:

	MySQL, MariaDB: mysql:host=localhost;dbname=mydatabase

	SQLite: sqlite:/path/to/database/file

	PostgreSQL: pgsql:host=localhost;port=5432;dbname=mydatabase

	CUBRID: cubrid:dbname=demodb;host=localhost;port=33000

	MS SQL Server (via sqlsrv driver): sqlsrv:Server=localhost;Database=mydatabase

	MS SQL Server (via dblib driver): dblib:host=localhost;dbname=mydatabase

	MS SQL Server (via mssql driver): mssql:host=localhost;dbname=mydatabase

	Oracle: oci:dbname=//localhost:1521/mydatabase

Note that if you are connecting with a database via ODBC, you should configure the [[yii\db\Connection::driverName]]
property so that Yii can know the actual database type. For example,

'db' => [
 'class' => 'yii\db\Connection',
 'driverName' => 'mysql',
 'dsn' => 'odbc:Driver={MySQL};Server=localhost;Database=test',
 'username' => 'root',
 'password' => '',
],

Besides the [[yii\db\Connection::dsn|dsn]] property, you often need to configure [[yii\db\Connection::username|username]]
and [[yii\db\Connection::password|password]]. Please refer to [[yii\db\Connection]] for the full list of configurable properties.

Info: When you create a DB connection instance, the actual connection to the database is not established until
you execute the first SQL or you call the [[yii\db\Connection::open()|open()]] method explicitly.

Tip: Sometimes you may want to execute some queries right after the database connection is established to initialize
some environment variables (e.g., to set the timezone or character set). You can do so by registering an event handler
for the [[yii\db\Connection::EVENT_AFTER_OPEN|afterOpen]] event
of the database connection. You may register the handler directly in the application configuration like so:

'db' => [
 // ...
 'on afterOpen' => function($event) {
 // $event->sender refers to the DB connection
 $event->sender->createCommand("SET time_zone = 'UTC'")->execute();
 }
],

Executing SQL Queries

Once you have a database connection instance, you can execute a SQL query by taking the following steps:

	Create a [[yii\db\Command]] with a plain SQL query;

	Bind parameters (optional);

	Call one of the SQL execution methods in [[yii\db\Command]].

The following example shows various ways of fetching data from a database:

// return a set of rows. each row is an associative array of column names and values.
// an empty array is returned if the query returned no results
$posts = Yii::$app->db->createCommand('SELECT * FROM post')
 ->queryAll();

// return a single row (the first row)
// false is returned if the query has no result
$post = Yii::$app->db->createCommand('SELECT * FROM post WHERE id=1')
 ->queryOne();

// return a single column (the first column)
// an empty array is returned if the query returned no results
$titles = Yii::$app->db->createCommand('SELECT title FROM post')
 ->queryColumn();

// return a scalar value
// false is returned if the query has no result
$count = Yii::$app->db->createCommand('SELECT COUNT(*) FROM post')
 ->queryScalar();

Note: To preserve precision, the data fetched from databases are all represented as strings, even if the corresponding
database column types are numerical.

Binding Parameters

When creating a DB command from a SQL with parameters, you should almost always use the approach of binding parameters
to prevent SQL injection attacks. For example,

$post = Yii::$app->db->createCommand('SELECT * FROM post WHERE id=:id AND status=:status')
 ->bindValue(':id', $_GET['id'])
 ->bindValue(':status', 1)
 ->queryOne();

In the SQL statement, you can embed one or multiple parameter placeholders (e.g. :id in the above example). A parameter
placeholder should be a string starting with a colon. You may then call one of the following parameter binding methods
to bind the parameter values:

	[[yii\db\Command::bindValue()|bindValue()]]: bind a single parameter value

	[[yii\db\Command::bindValues()|bindValues()]]: bind multiple parameter values in one call

	[[yii\db\Command::bindParam()|bindParam()]]: similar to [[yii\db\Command::bindValue()|bindValue()]] but also
support binding parameter references.

The following example shows alternative ways of binding parameters:

$params = [':id' => $_GET['id'], ':status' => 1];

$post = Yii::$app->db->createCommand('SELECT * FROM post WHERE id=:id AND status=:status')
 ->bindValues($params)
 ->queryOne();

$post = Yii::$app->db->createCommand('SELECT * FROM post WHERE id=:id AND status=:status', $params)
 ->queryOne();

Parameter binding is implemented via prepared statements [http://php.net/manual/en/mysqli.quickstart.prepared-statements.php].
Besides preventing SQL injection attacks, it may also improve performance by preparing a SQL statement once and
executing it multiple times with different parameters. For example,

$command = Yii::$app->db->createCommand('SELECT * FROM post WHERE id=:id');

$post1 = $command->bindValue(':id', 1)->queryOne();
$post2 = $command->bindValue(':id', 2)->queryOne();
// ...

Because [[yii\db\Command::bindParam()|bindParam()]] supports binding parameters by references, the above code
can also be written like the following:

$command = Yii::$app->db->createCommand('SELECT * FROM post WHERE id=:id')
 ->bindParam(':id', $id);

$id = 1;
$post1 = $command->queryOne();

$id = 2;
$post2 = $command->queryOne();
// ...

Notice that you bind the placeholder to the $id variable before the execution, and then change the value of that variable
before each subsequent execution (this is often done with loops). Executing queries in this manner can be vastly
more efficient than running a new query for every different parameter value.

Info: Parameter binding is only used in places where values need to be inserted into strings that contain plain SQL.
In many places in higher abstraction layers like query builder and active record
you often specify an array of values which will be transformed into SQL. In these places parameter binding is done by Yii
internally, so there is no need to specify params manually.

Executing Non-SELECT Queries

The queryXyz() methods introduced in the previous sections all deal with SELECT queries which fetch data from databases.
For queries that do not bring back data, you should call the [[yii\db\Command::execute()]] method instead. For example,

Yii::$app->db->createCommand('UPDATE post SET status=1 WHERE id=1')
 ->execute();

The [[yii\db\Command::execute()]] method returns the number of rows affected by the SQL execution.

For INSERT, UPDATE and DELETE queries, instead of writing plain SQLs, you may call [[yii\db\Command::insert()|insert()]],
[[yii\db\Command::update()|update()]], [[yii\db\Command::delete()|delete()]], respectively, to build the corresponding
SQLs. These methods will properly quote table and column names and bind parameter values. For example,

// INSERT (table name, column values)
Yii::$app->db->createCommand()->insert('user', [
 'name' => 'Sam',
 'age' => 30,
])->execute();

// UPDATE (table name, column values, condition)
Yii::$app->db->createCommand()->update('user', ['status' => 1], 'age > 30')->execute();

// DELETE (table name, condition)
Yii::$app->db->createCommand()->delete('user', 'status = 0')->execute();

You may also call [[yii\db\Command::batchInsert()|batchInsert()]] to insert multiple rows in one shot, which is much
more efficient than inserting one row at a time:

// table name, column names, column values
Yii::$app->db->createCommand()->batchInsert('user', ['name', 'age'], [
 ['Tom', 30],
 ['Jane', 20],
 ['Linda', 25],
])->execute();

Another useful method is [[yii\db\Command::upsert()|upsert()]]. Upsert is an atomic operation that inserts rows into
a database table if they do not already exist (matching unique constraints), or update them if they do:

Yii::$app->db->createCommand()->upsert('pages', [
 'name' => 'Front page',
 'url' => 'http://example.com/', // url is unique
 'visits' => 0,
], [
 'visits' => new \yii\db\Expression('visits + 1'),
], $params)->execute();

The code above will either insert a new page record or increment its visit counter atomically.

Note that the aforementioned methods only create the query and you always have to call [[yii\db\Command::execute()|execute()]]
to actually run them.

Quoting Table and Column Names

When writing database-agnostic code, properly quoting table and column names is often a headache because
different databases have different name quoting rules. To overcome this problem, you may use the following
quoting syntax introduced by Yii:

	[[column name]]: enclose a column name to be quoted in double square brackets;

	{{table name}}: enclose a table name to be quoted in double curly brackets.

Yii DAO will automatically convert such constructs into the corresponding quoted column or table names using the
DBMS specific syntax.
For example,

// executes this SQL for MySQL: SELECT COUNT(`id`) FROM `employee`
$count = Yii::$app->db->createCommand("SELECT COUNT([[id]]) FROM {{employee}}")
 ->queryScalar();

Using Table Prefix

If most of your DB tables names share a common prefix, you may use the table prefix feature provided
by Yii DAO.

First, specify the table prefix via the [[yii\db\Connection::tablePrefix]] property in the application config:

return [
 // ...
 'components' => [
 // ...
 'db' => [
 // ...
 'tablePrefix' => 'tbl_',
],
],
];

Then in your code, whenever you need to refer to a table whose name contains such a prefix, use the syntax
{{%table_name}}. The percentage character will be automatically replaced with the table prefix that you have specified
when configuring the DB connection. For example,

// executes this SQL for MySQL: SELECT COUNT(`id`) FROM `tbl_employee`
$count = Yii::$app->db->createCommand("SELECT COUNT([[id]]) FROM {{%employee}}")
 ->queryScalar();

Performing Transactions

When running multiple related queries in a sequence, you may need to wrap them in a transaction to ensure the integrity
and consistency of your database. If any of the queries fails, the database will be rolled back to the state as if
none of these queries were executed.

The following code shows a typical way of using transactions:

Yii::$app->db->transaction(function($db) {
 $db->createCommand($sql1)->execute();
 $db->createCommand($sql2)->execute();
 // ... executing other SQL statements ...
});

The above code is equivalent to the following, which gives you more control about the error handling code:

$db = Yii::$app->db;
$transaction = $db->beginTransaction();
try {
 $db->createCommand($sql1)->execute();
 $db->createCommand($sql2)->execute();
 // ... executing other SQL statements ...

 $transaction->commit();
} catch(\Exception $e) {
 $transaction->rollBack();
 throw $e;
} catch(\Throwable $e) {
 $transaction->rollBack();
 throw $e;
}

By calling the [[yii\db\Connection::beginTransaction()|beginTransaction()]] method, a new transaction is started.
The transaction is represented as a [[yii\db\Transaction]] object stored in the $transaction variable. Then,
the queries being executed are enclosed in a try...catch... block. If all queries are executed successfully,
the [[yii\db\Transaction::commit()|commit()]] method is called to commit the transaction. Otherwise, if an exception
will be triggered and caught, the [[yii\db\Transaction::rollBack()|rollBack()]] method is called to roll back
the changes made by the queries prior to that failed query in the transaction. throw $e will then re-throw the
exception as if we had not caught it, so the normal error handling process will take care of it.

Note: in the above code we have two catch-blocks for compatibility
with PHP 5.x and PHP 7.x. \Exception implements the \Throwable interface [http://php.net/manual/en/class.throwable.php]
since PHP 7.0, so you can skip the part with \Exception if your app uses only PHP 7.0 and higher.

Specifying Isolation Levels

Yii also supports setting isolation levels [http://en.wikipedia.org/wiki/Isolation_%28database_systems%29#Isolation_levels] for your transactions. By default, when starting a new transaction,
it will use the default isolation level set by your database system. You can override the default isolation level as follows,

$isolationLevel = \yii\db\Transaction::REPEATABLE_READ;

Yii::$app->db->transaction(function ($db) {

}, $isolationLevel);

// or alternatively

$transaction = Yii::$app->db->beginTransaction($isolationLevel);

Yii provides four constants for the most common isolation levels:

	[[\yii\db\Transaction::READ_UNCOMMITTED]] - the weakest level, Dirty reads, non-repeatable reads and phantoms may occur.

	[[\yii\db\Transaction::READ_COMMITTED]] - avoid dirty reads.

	[[\yii\db\Transaction::REPEATABLE_READ]] - avoid dirty reads and non-repeatable reads.

	[[\yii\db\Transaction::SERIALIZABLE]] - the strongest level, avoids all of the above named problems.

Besides using the above constants to specify isolation levels, you may also use strings with a valid syntax supported
by the DBMS that you are using. For example, in PostgreSQL, you may use "SERIALIZABLE READ ONLY DEFERRABLE".

Note that some DBMS allow setting the isolation level only for the whole connection. Any subsequent transactions
will get the same isolation level even if you do not specify any. When using this feature
you may need to set the isolation level for all transactions explicitly to avoid conflicting settings.
At the time of this writing, only MSSQL and SQLite are affected by this limitation.

Note: SQLite only supports two isolation levels, so you can only use READ UNCOMMITTED and SERIALIZABLE.
Usage of other levels will result in an exception being thrown.

Note: PostgreSQL does not allow setting the isolation level before the transaction starts so you can not
specify the isolation level directly when starting the transaction.
You have to call [[yii\db\Transaction::setIsolationLevel()]] in this case after the transaction has started.

Nesting Transactions

If your DBMS supports Savepoint, you may nest multiple transactions like the following:

Yii::$app->db->transaction(function ($db) {
 // outer transaction

 $db->transaction(function ($db) {
 // inner transaction
 });
});

Or alternatively,

$db = Yii::$app->db;
$outerTransaction = $db->beginTransaction();
try {
 $db->createCommand($sql1)->execute();

 $innerTransaction = $db->beginTransaction();
 try {
 $db->createCommand($sql2)->execute();
 $innerTransaction->commit();
 } catch (\Exception $e) {
 $innerTransaction->rollBack();
 throw $e;
 } catch (\Throwable $e) {
 $innerTransaction->rollBack();
 throw $e;
 }

 $outerTransaction->commit();
} catch (\Exception $e) {
 $outerTransaction->rollBack();
 throw $e;
} catch (\Throwable $e) {
 $outerTransaction->rollBack();
 throw $e;
}

Replication and Read-Write Splitting

Many DBMS support database replication [http://en.wikipedia.org/wiki/Replication_(computing)#Database_replication]
to get better database availability and faster server response time. With database replication, data are replicated
from the so-called master servers to slave servers. All writes and updates must take place on the master servers,
while reads may also take place on the slave servers.

To take advantage of database replication and achieve read-write splitting, you can configure a [[yii\db\Connection]]
component like the following:

[
 'class' => 'yii\db\Connection',

 // configuration for the master
 'dsn' => 'dsn for master server',
 'username' => 'master',
 'password' => '',

 // common configuration for slaves
 'slaveConfig' => [
 'username' => 'slave',
 'password' => '',
 'attributes' => [
 // use a smaller connection timeout
 PDO::ATTR_TIMEOUT => 10,
],
],

 // list of slave configurations
 'slaves' => [
 ['dsn' => 'dsn for slave server 1'],
 ['dsn' => 'dsn for slave server 2'],
 ['dsn' => 'dsn for slave server 3'],
 ['dsn' => 'dsn for slave server 4'],
],
]

The above configuration specifies a setup with a single master and multiple slaves. One of the slaves will
be connected and used to perform read queries, while the master will be used to perform write queries.
Such read-write splitting is accomplished automatically with this configuration. For example,

// create a Connection instance using the above configuration
Yii::$app->db = Yii::createObject($config);

// query against one of the slaves
$rows = Yii::$app->db->createCommand('SELECT * FROM user LIMIT 10')->queryAll();

// query against the master
Yii::$app->db->createCommand("UPDATE user SET username='demo' WHERE id=1")->execute();

Info: Queries performed by calling [[yii\db\Command::execute()]] are considered as write queries, while
all other queries done through one of the “query” methods of [[yii\db\Command]] are read queries.
You can get the currently active slave connection via Yii::$app->db->slave.

The Connection component supports load balancing and failover between slaves.
When performing a read query for the first time, the Connection component will randomly pick a slave and
try connecting to it. If the slave is found “dead”, it will try another one. If none of the slaves is available,
it will connect to the master. By configuring a [[yii\db\Connection::serverStatusCache|server status cache]],
a “dead” server can be remembered so that it will not be tried again during a
[[yii\db\Connection::serverRetryInterval|certain period of time]].

Info: In the above configuration, a connection timeout of 10 seconds is specified for every slave.
This means if a slave cannot be reached in 10 seconds, it is considered as “dead”. You can adjust this parameter
based on your actual environment.

You can also configure multiple masters with multiple slaves. For example,

[
 'class' => 'yii\db\Connection',

 // common configuration for masters
 'masterConfig' => [
 'username' => 'master',
 'password' => '',
 'attributes' => [
 // use a smaller connection timeout
 PDO::ATTR_TIMEOUT => 10,
],
],

 // list of master configurations
 'masters' => [
 ['dsn' => 'dsn for master server 1'],
 ['dsn' => 'dsn for master server 2'],
],

 // common configuration for slaves
 'slaveConfig' => [
 'username' => 'slave',
 'password' => '',
 'attributes' => [
 // use a smaller connection timeout
 PDO::ATTR_TIMEOUT => 10,
],
],

 // list of slave configurations
 'slaves' => [
 ['dsn' => 'dsn for slave server 1'],
 ['dsn' => 'dsn for slave server 2'],
 ['dsn' => 'dsn for slave server 3'],
 ['dsn' => 'dsn for slave server 4'],
],
]

The above configuration specifies two masters and four slaves. The Connection component also supports
load balancing and failover between masters just as it does between slaves. A difference is that when none
of the masters are available an exception will be thrown.

Note: When you use the [[yii\db\Connection::masters|masters]] property to configure one or multiple
masters, all other properties for specifying a database connection (e.g. dsn, username, password)
with the Connection object itself will be ignored.

By default, transactions use the master connection. And within a transaction, all DB operations will use
the master connection. For example,

$db = Yii::$app->db;
// the transaction is started on the master connection
$transaction = $db->beginTransaction();

try {
 // both queries are performed against the master
 $rows = $db->createCommand('SELECT * FROM user LIMIT 10')->queryAll();
 $db->createCommand("UPDATE user SET username='demo' WHERE id=1")->execute();

 $transaction->commit();
} catch(\Exception $e) {
 $transaction->rollBack();
 throw $e;
} catch(\Throwable $e) {
 $transaction->rollBack();
 throw $e;
}

If you want to start a transaction with the slave connection, you should explicitly do so, like the following:

$transaction = Yii::$app->db->slave->beginTransaction();

Sometimes, you may want to force using the master connection to perform a read query. This can be achieved
with the useMaster() method:

$rows = Yii::$app->db->useMaster(function ($db) {
 return $db->createCommand('SELECT * FROM user LIMIT 10')->queryAll();
});

You may also directly set Yii::$app->db->enableSlaves to be false to direct all queries to the master connection.

Working with Database Schema

Yii DAO provides a whole set of methods to let you manipulate the database schema, such as creating new tables,
dropping a column from a table, etc. These methods are listed as follows:

	[[yii\db\Command::createTable()|createTable()]]: creating a table

	[[yii\db\Command::renameTable()|renameTable()]]: renaming a table

	[[yii\db\Command::dropTable()|dropTable()]]: removing a table

	[[yii\db\Command::truncateTable()|truncateTable()]]: removing all rows in a table

	[[yii\db\Command::addColumn()|addColumn()]]: adding a column

	[[yii\db\Command::renameColumn()|renameColumn()]]: renaming a column

	[[yii\db\Command::dropColumn()|dropColumn()]]: removing a column

	[[yii\db\Command::alterColumn()|alterColumn()]]: altering a column

	[[yii\db\Command::addPrimaryKey()|addPrimaryKey()]]: adding a primary key

	[[yii\db\Command::dropPrimaryKey()|dropPrimaryKey()]]: removing a primary key

	[[yii\db\Command::addForeignKey()|addForeignKey()]]: adding a foreign key

	[[yii\db\Command::dropForeignKey()|dropForeignKey()]]: removing a foreign key

	[[yii\db\Command::createIndex()|createIndex()]]: creating an index

	[[yii\db\Command::dropIndex()|dropIndex()]]: removing an index

These methods can be used like the following:

// CREATE TABLE
Yii::$app->db->createCommand()->createTable('post', [
 'id' => 'pk',
 'title' => 'string',
 'text' => 'text',
]);

The above array describes the name and types of the columns to be created. For the column types, Yii provides
a set of abstract data types, that allow you to define a database agnostic schema. These are converted to
DBMS specific type definitions dependent on the database, the table is created in.
Please refer to the API documentation of the [[yii\db\Command::createTable()|createTable()]]-method for more information.

Besides changing the database schema, you can also retrieve the definition information about a table through
the [[yii\db\Connection::getTableSchema()|getTableSchema()]] method of a DB connection. For example,

$table = Yii::$app->db->getTableSchema('post');

The method returns a [[yii\db\TableSchema]] object which contains the information about the table’s columns,
primary keys, foreign keys, etc. All these information are mainly utilized by query builder
and active record to help you write database-agnostic code.

 Database Migration

Database Migration

During the course of developing and maintaining a database-driven application, the structure of the database
being used evolves just like the source code does. For example, during the development of an application,
a new table may be found necessary; after the application is deployed to production, it may be discovered
that an index should be created to improve the query performance; and so on. Because a database structure change
often requires some source code changes, Yii supports the so-called database migration feature that allows
you to keep track of database changes in terms of database migrations which are version-controlled together
with the source code.

The following steps show how database migration can be used by a team during development:

	Tim creates a new migration (e.g. creates a new table, changes a column definition, etc.).

	Tim commits the new migration into the source control system (e.g. Git, Mercurial).

	Doug updates his repository from the source control system and receives the new migration.

	Doug applies the migration to his local development database, thereby synchronizing his database
to reflect the changes that Tim has made.

And the following steps show how to deploy a new release with database migrations to production:

	Scott creates a release tag for the project repository that contains some new database migrations.

	Scott updates the source code on the production server to the release tag.

	Scott applies any accumulated database migrations to the production database.

Yii provides a set of migration command line tools that allow you to:

	create new migrations;

	apply migrations;

	revert migrations;

	re-apply migrations;

	show migration history and status.

All these tools are accessible through the command yii migrate. In this section we will describe in detail
how to accomplish various tasks using these tools. You may also get the usage of each tool via the help
command yii help migrate.

Tip: migrations could affect not only database schema but adjust existing data to fit new schema, create RBAC
hierarchy or clean up cache.

Note: When manipulating data using a migration you may find that using your Active Record classes
for this might be useful because some of the logic is already implemented there. Keep in mind however, that in contrast
to code written in the migrations, who’s nature is to stay constant forever, application logic is subject to change.
So when using Active Record in migration code, changes to the logic in the Active Record layer may accidentally break
existing migrations. For this reason migration code should be kept independent from other application logic such
as Active Record classes.

Creating Migrations

To create a new migration, run the following command:

yii migrate/create <name>

The required name argument gives a brief description about the new migration. For example, if
the migration is about creating a new table named news, you may use the name create_news_table
and run the following command:

yii migrate/create create_news_table

Note: Because the name argument will be used as part of the generated migration class name,
it should only contain letters, digits, and/or underscore characters.

The above command will create a new PHP class file named m150101_185401_create_news_table.php
in the @app/migrations directory. The file contains the following code which mainly declares
a migration class m150101_185401_create_news_table with the skeleton code:

<?php

use yii\db\Migration;

class m150101_185401_create_news_table extends Migration
{
 public function up()
 {

 }

 public function down()
 {
 echo "m101129_185401_create_news_table cannot be reverted.\n";

 return false;
 }

 /*
 // Use safeUp/safeDown to run migration code within a transaction
 public function safeUp()
 {
 }

 public function safeDown()
 {
 }
 */
}

Each database migration is defined as a PHP class extending from [[yii\db\Migration]]. The migration
class name is automatically generated in the format of m<YYMMDD_HHMMSS>_<Name>, where

	<YYMMDD_HHMMSS> refers to the UTC datetime at which the migration creation command is executed.

	<Name> is the same as the value of the name argument that you provide to the command.

In the migration class, you are expected to write code in the up() method that makes changes to the database structure.
You may also want to write code in the down() method to revert the changes made by up(). The up() method is invoked
when you upgrade the database with this migration, while the down() method is invoked when you downgrade the database.
The following code shows how you may implement the migration class to create a news table:

<?php

use yii\db\Schema;
use yii\db\Migration;

class m150101_185401_create_news_table extends Migration
{
 public function up()
 {
 $this->createTable('news', [
 'id' => Schema::TYPE_PK,
 'title' => Schema::TYPE_STRING . ' NOT NULL',
 'content' => Schema::TYPE_TEXT,
]);
 }

 public function down()
 {
 $this->dropTable('news');
 }
}

Info: Not all migrations are reversible. For example, if the up() method deletes a row of a table, you may
not be able to recover this row in the down() method. Sometimes, you may be just too lazy to implement
the down(), because it is not very common to revert database migrations. In this case, you should return
false in the down() method to indicate that the migration is not reversible.

The base migration class [[yii\db\Migration]] exposes a database connection via the [[yii\db\Migration::db|db]]
property. You can use it to manipulate the database schema using the methods as described in
Working with Database Schema.

Rather than using physical types, when creating a table or column you should use abstract types
so that your migrations are independent of specific DBMS. The [[yii\db\Schema]] class defines
a set of constants to represent the supported abstract types. These constants are named in the format
of TYPE_<Name>. For example, TYPE_PK refers to auto-incremental primary key type; TYPE_STRING
refers to a string type. When a migration is applied to a particular database, the abstract types
will be translated into the corresponding physical types. In the case of MySQL, TYPE_PK will be turned
into int(11) NOT NULL AUTO_INCREMENT PRIMARY KEY, while TYPE_STRING becomes varchar(255).

You can append additional constraints when using abstract types. In the above example, NOT NULL is appended
to Schema::TYPE_STRING to specify that the column cannot be null.

Info: The mapping between abstract types and physical types is specified by
the [[yii\db\QueryBuilder::$typeMap|$typeMap]] property in each concrete QueryBuilder class.

Since version 2.0.6, you can make use of the newly introduced schema builder which provides more convenient way of defining column schema.
So the migration above could be written like the following:

<?php

use yii\db\Migration;

class m150101_185401_create_news_table extends Migration
{
 public function up()
 {
 $this->createTable('news', [
 'id' => $this->primaryKey(),
 'title' => $this->string()->notNull(),
 'content' => $this->text(),
]);
 }

 public function down()
 {
 $this->dropTable('news');
 }
}

A list of all available methods for defining the column types is available in the API documentation of [[yii\db\SchemaBuilderTrait]].

Generating Migrations

Since version 2.0.7 migration console provides a convenient way to create migrations.

If the migration name is of a special form, for example create_xxx_table or drop_xxx_table then the generated migration
file will contain extra code, in this case for creating/dropping tables.
In the following all variants of this feature are described.

Create Table

yii migrate/create create_post_table

generates

/**
 * Handles the creation for table `post`.
 */
class m150811_220037_create_post_table extends Migration
{
 /**
 * {@inheritdoc}
 */
 public function up()
 {
 $this->createTable('post', [
 'id' => $this->primaryKey()
]);
 }

 /**
 * {@inheritdoc}
 */
 public function down()
 {
 $this->dropTable('post');
 }
}

To create table fields right away, specify them via --fields option.

yii migrate/create create_post_table --fields="title:string,body:text"

generates

/**
 * Handles the creation for table `post`.
 */
class m150811_220037_create_post_table extends Migration
{
 /**
 * {@inheritdoc}
 */
 public function up()
 {
 $this->createTable('post', [
 'id' => $this->primaryKey(),
 'title' => $this->string(),
 'body' => $this->text(),
]);
 }

 /**
 * {@inheritdoc}
 */
 public function down()
 {
 $this->dropTable('post');
 }
}

You can specify more field parameters.

yii migrate/create create_post_table --fields="title:string(12):notNull:unique,body:text"

generates

/**
 * Handles the creation for table `post`.
 */
class m150811_220037_create_post_table extends Migration
{
 /**
 * {@inheritdoc}
 */
 public function up()
 {
 $this->createTable('post', [
 'id' => $this->primaryKey(),
 'title' => $this->string(12)->notNull()->unique(),
 'body' => $this->text()
]);
 }

 /**
 * {@inheritdoc}
 */
 public function down()
 {
 $this->dropTable('post');
 }
}

Note: primary key is added automatically and is named id by default. If you want to use another name you may
specify it explicitly like --fields="name:primaryKey".

Foreign keys

Since 2.0.8 the generator supports foreign keys using the foreignKey keyword.

yii migrate/create create_post_table --fields="author_id:integer:notNull:foreignKey(user),category_id:integer:defaultValue(1):foreignKey,title:string,body:text"

generates

/**
 * Handles the creation for table `post`.
 * Has foreign keys to the tables:
 *
 * - `user`
 * - `category`
 */
class m160328_040430_create_post_table extends Migration
{
 /**
 * {@inheritdoc}
 */
 public function up()
 {
 $this->createTable('post', [
 'id' => $this->primaryKey(),
 'author_id' => $this->integer()->notNull(),
 'category_id' => $this->integer()->defaultValue(1),
 'title' => $this->string(),
 'body' => $this->text(),
]);

 // creates index for column `author_id`
 $this->createIndex(
 'idx-post-author_id',
 'post',
 'author_id'
);

 // add foreign key for table `user`
 $this->addForeignKey(
 'fk-post-author_id',
 'post',
 'author_id',
 'user',
 'id',
 'CASCADE'
);

 // creates index for column `category_id`
 $this->createIndex(
 'idx-post-category_id',
 'post',
 'category_id'
);

 // add foreign key for table `category`
 $this->addForeignKey(
 'fk-post-category_id',
 'post',
 'category_id',
 'category',
 'id',
 'CASCADE'
);
 }

 /**
 * {@inheritdoc}
 */
 public function down()
 {
 // drops foreign key for table `user`
 $this->dropForeignKey(
 'fk-post-author_id',
 'post'
);

 // drops index for column `author_id`
 $this->dropIndex(
 'idx-post-author_id',
 'post'
);

 // drops foreign key for table `category`
 $this->dropForeignKey(
 'fk-post-category_id',
 'post'
);

 // drops index for column `category_id`
 $this->dropIndex(
 'idx-post-category_id',
 'post'
);

 $this->dropTable('post');
 }
}

The position of the foreignKey keyword in the column description doesn’t
change the generated code. That means:

	author_id:integer:notNull:foreignKey(user)

	author_id:integer:foreignKey(user):notNull

	author_id:foreignKey(user):integer:notNull

All generate the same code.

The foreignKey keyword can take a parameter between parenthesis which will be
the name of the related table for the generated foreign key. If no parameter
is passed then the table name will be deduced from the column name.

In the example above author_id:integer:notNull:foreignKey(user) will generate a
column named author_id with a foreign key to the user table while
category_id:integer:defaultValue(1):foreignKey will generate a column
category_id with a foreign key to the category table.

Since 2.0.11, foreignKey keyword accepts a second parameter, separated by whitespace.
It accepts the name of the related column for the foreign key generated.
If no second parameter is passed, the column name will be fetched from table schema.
If no schema exists, primary key isn’t set or is composite, default name id will be used.

Drop Table

yii migrate/create drop_post_table --fields="title:string(12):notNull:unique,body:text"

generates

class m150811_220037_drop_post_table extends Migration
{
 public function up()
 {
 $this->dropTable('post');
 }

 public function down()
 {
 $this->createTable('post', [
 'id' => $this->primaryKey(),
 'title' => $this->string(12)->notNull()->unique(),
 'body' => $this->text()
]);
 }
}

Add Column

If the migration name is of the form add_xxx_column_to_yyy_table then the file
content would contain addColumn and dropColumn statements necessary.

To add column:

yii migrate/create add_position_column_to_post_table --fields="position:integer"

generates

class m150811_220037_add_position_column_to_post_table extends Migration
{
 public function up()
 {
 $this->addColumn('post', 'position', $this->integer());
 }

 public function down()
 {
 $this->dropColumn('post', 'position');
 }
}

You can specify multiple columns as follows:

yii migrate/create add_xxx_column_yyy_column_to_zzz_table --fields="xxx:integer,yyy:text"

Drop Column

If the migration name is of the form drop_xxx_column_from_yyy_table then
the file content would contain addColumn and dropColumn statements necessary.

yii migrate/create drop_position_column_from_post_table --fields="position:integer"

generates

class m150811_220037_drop_position_column_from_post_table extends Migration
{
 public function up()
 {
 $this->dropColumn('post', 'position');
 }

 public function down()
 {
 $this->addColumn('post', 'position', $this->integer());
 }
}

Add Junction Table

If the migration name is of the form create_junction_table_for_xxx_and_yyy_tables or create_junction_xxx_and_yyy_tables
then code necessary to create junction table will be generated.

yii migrate/create create_junction_table_for_post_and_tag_tables --fields="created_at:dateTime"

generates

/**
 * Handles the creation for table `post_tag`.
 * Has foreign keys to the tables:
 *
 * - `post`
 * - `tag`
 */
class m160328_041642_create_junction_table_for_post_and_tag_tables extends Migration
{
 /**
 * {@inheritdoc}
 */
 public function up()
 {
 $this->createTable('post_tag', [
 'post_id' => $this->integer(),
 'tag_id' => $this->integer(),
 'created_at' => $this->dateTime(),
 'PRIMARY KEY(post_id, tag_id)',
]);

 // creates index for column `post_id`
 $this->createIndex(
 'idx-post_tag-post_id',
 'post_tag',
 'post_id'
);

 // add foreign key for table `post`
 $this->addForeignKey(
 'fk-post_tag-post_id',
 'post_tag',
 'post_id',
 'post',
 'id',
 'CASCADE'
);

 // creates index for column `tag_id`
 $this->createIndex(
 'idx-post_tag-tag_id',
 'post_tag',
 'tag_id'
);

 // add foreign key for table `tag`
 $this->addForeignKey(
 'fk-post_tag-tag_id',
 'post_tag',
 'tag_id',
 'tag',
 'id',
 'CASCADE'
);
 }

 /**
 * {@inheritdoc}
 */
 public function down()
 {
 // drops foreign key for table `post`
 $this->dropForeignKey(
 'fk-post_tag-post_id',
 'post_tag'
);

 // drops index for column `post_id`
 $this->dropIndex(
 'idx-post_tag-post_id',
 'post_tag'
);

 // drops foreign key for table `tag`
 $this->dropForeignKey(
 'fk-post_tag-tag_id',
 'post_tag'
);

 // drops index for column `tag_id`
 $this->dropIndex(
 'idx-post_tag-tag_id',
 'post_tag'
);

 $this->dropTable('post_tag');
 }
}

Since 2.0.11 foreign key column names for junction tables are fetched from table schema.
In case table isn’t defined in schema, or the primary key isn’t set or is composite, default name id is used.

Transactional Migrations

While performing complex DB migrations, it is important to ensure each migration to either succeed or fail as a whole
so that the database can maintain integrity and consistency. To achieve this goal, it is recommended that you
enclose the DB operations of each migration in a transaction.

An even easier way of implementing transactional migrations is to put migration code in the safeUp() and safeDown()
methods. These two methods differ from up() and down() in that they are enclosed implicitly in a transaction.
As a result, if any operation in these methods fails, all prior operations will be rolled back automatically.

In the following example, besides creating the news table we also insert an initial row into this table.

<?php

use yii\db\Migration;

class m150101_185401_create_news_table extends Migration
{
 public function safeUp()
 {
 $this->createTable('news', [
 'id' => $this->primaryKey(),
 'title' => $this->string()->notNull(),
 'content' => $this->text(),
]);

 $this->insert('news', [
 'title' => 'test 1',
 'content' => 'content 1',
]);
 }

 public function safeDown()
 {
 $this->delete('news', ['id' => 1]);
 $this->dropTable('news');
 }
}

Note that usually when you perform multiple DB operations in safeUp(), you should reverse their execution order
in safeDown(). In the above example we first create the table and then insert a row in safeUp(); while
in safeDown() we first delete the row and then drop the table.

Note: Not all DBMS support transactions. And some DB queries cannot be put into a transaction. For some examples,
please refer to implicit commit [http://dev.mysql.com/doc/refman/5.7/en/implicit-commit.html]. If this is the case,
you should still implement up() and down(), instead.

Database Accessing Methods

The base migration class [[yii\db\Migration]] provides a set of methods to let you access and manipulate databases.
You may find these methods are named similarly as the DAO methods provided by the [[yii\db\Command]] class.
For example, the [[yii\db\Migration::createTable()]] method allows you to create a new table,
just like [[yii\db\Command::createTable()]] does.

The benefit of using the methods provided by [[yii\db\Migration]] is that you do not need to explicitly
create [[yii\db\Command]] instances and the execution of each method will automatically display useful messages
telling you what database operations are done and how long they take.

Below is the list of all these database accessing methods:

	[[yii\db\Migration::execute()|execute()]]: executing a SQL statement

	[[yii\db\Migration::insert()|insert()]]: inserting a single row

	[[yii\db\Migration::batchInsert()|batchInsert()]]: inserting multiple rows

	[[yii\db\Migration::update()|update()]]: updating rows

	[[yii\db\Migration::delete()|delete()]]: deleting rows

	[[yii\db\Migration::createTable()|createTable()]]: creating a table

	[[yii\db\Migration::renameTable()|renameTable()]]: renaming a table

	[[yii\db\Migration::dropTable()|dropTable()]]: removing a table

	[[yii\db\Migration::truncateTable()|truncateTable()]]: removing all rows in a table

	[[yii\db\Migration::addColumn()|addColumn()]]: adding a column

	[[yii\db\Migration::renameColumn()|renameColumn()]]: renaming a column

	[[yii\db\Migration::dropColumn()|dropColumn()]]: removing a column

	[[yii\db\Migration::alterColumn()|alterColumn()]]: altering a column

	[[yii\db\Migration::addPrimaryKey()|addPrimaryKey()]]: adding a primary key

	[[yii\db\Migration::dropPrimaryKey()|dropPrimaryKey()]]: removing a primary key

	[[yii\db\Migration::addForeignKey()|addForeignKey()]]: adding a foreign key

	[[yii\db\Migration::dropForeignKey()|dropForeignKey()]]: removing a foreign key

	[[yii\db\Migration::createIndex()|createIndex()]]: creating an index

	[[yii\db\Migration::dropIndex()|dropIndex()]]: removing an index

	[[yii\db\Migration::addCommentOnColumn()|addCommentOnColumn()]]: adding comment to column

	[[yii\db\Migration::dropCommentFromColumn()|dropCommentFromColumn()]]: dropping comment from column

	[[yii\db\Migration::addCommentOnTable()|addCommentOnTable()]]: adding comment to table

	[[yii\db\Migration::dropCommentFromTable()|dropCommentFromTable()]]: dropping comment from table

Info: [[yii\db\Migration]] does not provide a database query method. This is because you normally do not need
to display extra message about retrieving data from a database. It is also because you can use the powerful
Query Builder to build and run complex queries.
Using Query Builder in a migration may look like this:

// update status field for all users
foreach((new Query)->from('users')->each() as $user) {
 $this->update('users', ['status' => 1], ['id' => $user['id']]);
}

Applying Migrations

To upgrade a database to its latest structure, you should apply all available new migrations using the following command:

yii migrate

This command will list all migrations that have not been applied so far. If you confirm that you want to apply
these migrations, it will run the up() or safeUp() method in every new migration class, one after another,
in the order of their timestamp values. If any of the migrations fails, the command will quit without applying
the rest of the migrations.

Tip: In case you don’t have command line at your server you may try web shell [https://github.com/samdark/yii2-webshell]
extension.

For each migration that has been successfully applied, the command will insert a row into a database table named
migration to record the successful application of the migration. This will allow the migration tool to identify
which migrations have been applied and which have not.

Info: The migration tool will automatically create the migration table in the database specified by
the [[yii\console\controllers\MigrateController::db|db]] option of the command. By default, the database
is specified by the db application component.

Sometimes, you may only want to apply one or a few new migrations, instead of all available migrations.
You can do so by specifying the number of migrations that you want to apply when running the command.
For example, the following command will try to apply the next three available migrations:

yii migrate 3

You can also explicitly specify a particular migration to which the database should be migrated
by using the migrate/to command in one of the following formats:

yii migrate/to 150101_185401 # using timestamp to specify the migration
yii migrate/to "2015-01-01 18:54:01" # using a string that can be parsed by strtotime()
yii migrate/to m150101_185401_create_news_table # using full name
yii migrate/to 1392853618 # using UNIX timestamp

If there are any unapplied migrations earlier than the specified one, they will all be applied before the specified
migration is applied.

If the specified migration has already been applied before, any later applied migrations will be reverted.

Reverting Migrations

To revert (undo) one or multiple migrations that have been applied before, you can run the following command:

yii migrate/down # revert the most recently applied migration
yii migrate/down 3 # revert the most 3 recently applied migrations

Note: Not all migrations are reversible. Trying to revert such migrations will cause an error and stop the
entire reverting process.

Redoing Migrations

Redoing migrations means first reverting the specified migrations and then applying again. This can be done
as follows:

yii migrate/redo # redo the last applied migration
yii migrate/redo 3 # redo the last 3 applied migrations

Note: If a migration is not reversible, you will not be able to redo it.

Refreshing Migrations

Since Yii 2.0.13 you can delete all tables and foreign keys from the database and apply all migrations from the beginning.

yii migrate/fresh # Truncate the database and apply all migrations from the beginning.

Listing Migrations

To list which migrations have been applied and which are not, you may use the following commands:

yii migrate/history # showing the last 10 applied migrations
yii migrate/history 5 # showing the last 5 applied migrations
yii migrate/history all # showing all applied migrations

yii migrate/new # showing the first 10 new migrations
yii migrate/new 5 # showing the first 5 new migrations
yii migrate/new all # showing all new migrations

Modifying Migration History

Instead of actually applying or reverting migrations, sometimes you may simply want to mark that your database
has been upgraded to a particular migration. This often happens when you manually change the database to a particular
state and you do not want the migration(s) for that change to be re-applied later. You can achieve this goal with
the following command:

yii migrate/mark 150101_185401 # using timestamp to specify the migration
yii migrate/mark "2015-01-01 18:54:01" # using a string that can be parsed by strtotime()
yii migrate/mark m150101_185401_create_news_table # using full name
yii migrate/mark 1392853618 # using UNIX timestamp

The command will modify the migration table by adding or deleting certain rows to indicate that the database
has been applied migrations to the specified one. No migrations will be applied or reverted by this command.

Customizing Migrations

There are several ways to customize the migration command.

Using Command Line Options

The migration command comes with a few command-line options that can be used to customize its behaviors:

	interactive: boolean (defaults to true), specifies whether to perform migrations in an interactive mode.
When this is true, the user will be prompted before the command performs certain actions.
You may want to set this to false if the command is being used in a background process.

	migrationPath: string|array (defaults to @app/migrations), specifies the directory storing all migration
class files. This can be specified as either a directory path or a path alias.
Note that the directory must exist, or the command may trigger an error. Since version 2.0.12 an array can be
specified for loading migrations from multiple sources.

	migrationTable: string (defaults to migration), specifies the name of the database table for storing
migration history information. The table will be automatically created by the command if it does not exist.
You may also manually create it using the structure version varchar(255) primary key, apply_time integer.

	db: string (defaults to db), specifies the ID of the database application component.
It represents the database that will be migrated using this command.

	templateFile: string (defaults to @yii/views/migration.php), specifies the path of the template file
that is used for generating skeleton migration class files. This can be specified as either a file path
or a path alias. The template file is a PHP script in which you can use a predefined variable
named $className to get the migration class name.

	generatorTemplateFiles: array (defaults to ['create_table' => '@yii/views/createTableMigration.php', 'drop_table' => '@yii/views/dropTableMigration.php', 'add_column' => '@yii/views/addColumnMigration.php', 'drop_column' => '@yii/views/dropColumnMigration.php', 'create_junction' => '@yii/views/createTableMigration.php']), specifies template files for generating migration code. See “Generating Migrations”
for more details.

	fields: array of column definition strings used for creating migration code. Defaults to []. The format of each
definition is COLUMN_NAME:COLUMN_TYPE:COLUMN_DECORATOR. For example, --fields=name:string(12):notNull produces
a string column of size 12 which is not null.

The following example shows how you can use these options.

For example, if we want to migrate a forum module whose migration files
are located within the module’s migrations directory, we can use the following
command:

migrate the migrations in a forum module non-interactively
yii migrate --migrationPath=@app/modules/forum/migrations --interactive=0

Configuring Command Globally

Instead of entering the same option values every time you run the migration command, you may configure it
once for all in the application configuration like shown below:

return [
 'controllerMap' => [
 'migrate' => [
 'class' => 'yii\console\controllers\MigrateController',
 'migrationTable' => 'backend_migration',
],
],
];

With the above configuration, each time you run the migration command, the backend_migration table
will be used to record the migration history. You no longer need to specify it via the migrationTable
command-line option.

Namespaced Migrations

Since 2.0.10 you can use namespaces for the migration classes. You can specify the list of the migration namespaces via
[[yii\console\controllers\MigrateController::migrationNamespaces|migrationNamespaces]]. Using of the namespaces for
migration classes allows you usage of the several source locations for the migrations. For example:

return [
 'controllerMap' => [
 'migrate' => [
 'class' => 'yii\console\controllers\MigrateController',
 'migrationPath' => null, // disable non-namespaced migrations if app\migrations is listed below
 'migrationNamespaces' => [
 'app\migrations', // Common migrations for the whole application
 'module\migrations', // Migrations for the specific project's module
 'some\extension\migrations', // Migrations for the specific extension
],
],
],
];

Note: migrations applied from different namespaces will create a single migration history, e.g. you might be
unable to apply or revert migrations from particular namespace only.

While operating namespaced migrations: creating new, reverting and so on, you should specify full namespace before
migration name. Note that backslash (\) symbol is usually considered a special character in the shell, so you need
to escape it properly to avoid shell errors or incorrect behavior. For example:

yii migrate/create 'app\\migrations\\createUserTable'

Note: migrations specified via [[yii\console\controllers\MigrateController::migrationPath|migrationPath]] can not
contain a namespace, namespaced migration can be applied only via [[yii\console\controllers\MigrateController::migrationNamespaces]]
property.

Since version 2.0.12 the [[yii\console\controllers\MigrateController::migrationPath|migrationPath]] property
also accepts an array for specifying multiple directories that contain migrations without a namespace.
This is mainly added to be used in existing projects which use migrations from different locations. These migrations mainly come
from external sources, like Yii extensions developed by other developers,
which can not be changed to use namespaces easily when starting to use the new approach.

Separated Migrations

Sometimes using single migration history for all project migrations is not desirable. For example: you may install some
‘blog’ extension, which contains fully separated functionality and contain its own migrations, which should not affect
the ones dedicated to main project functionality.

If you want several migrations to be applied and tracked down completely separated from each other, you can configure multiple
migration commands which will use different namespaces and migration history tables:

return [
 'controllerMap' => [
 // Common migrations for the whole application
 'migrate-app' => [
 'class' => 'yii\console\controllers\MigrateController',
 'migrationNamespaces' => ['app\migrations'],
 'migrationTable' => 'migration_app',
 'migrationPath' => null,
],
 // Migrations for the specific project's module
 'migrate-module' => [
 'class' => 'yii\console\controllers\MigrateController',
 'migrationNamespaces' => ['module\migrations'],
 'migrationTable' => 'migration_module',
 'migrationPath' => null,
],
 // Migrations for the specific extension
 'migrate-rbac' => [
 'class' => 'yii\console\controllers\MigrateController',
 'migrationPath' => '@yii/rbac/migrations',
 'migrationTable' => 'migration_rbac',
],
],
];

Note that to synchronize database you now need to run multiple commands instead of one:

yii migrate-app
yii migrate-module
yii migrate-rbac

Migrating Multiple Databases

By default, migrations are applied to the same database specified by the db application component.
If you want them to be applied to a different database, you may specify the db command-line option like shown below,

yii migrate --db=db2

The above command will apply migrations to the db2 database.

Sometimes it may happen that you want to apply some of the migrations to one database, while some others to another
database. To achieve this goal, when implementing a migration class you should explicitly specify the DB component
ID that the migration would use, like the following:

<?php

use yii\db\Migration;

class m150101_185401_create_news_table extends Migration
{
 public function init()
 {
 $this->db = 'db2';
 parent::init();
 }
}

The above migration will be applied to db2, even if you specify a different database through the db command-line
option. Note that the migration history will still be recorded in the database specified by the db command-line option.

If you have multiple migrations that use the same database, it is recommended that you create a base migration class
with the above init() code. Then each migration class can extend from this base class.

Tip: Besides setting the [[yii\db\Migration::db|db]] property, you can also operate on different databases
by creating new database connections to them in your migration classes. You then use the DAO methods
with these connections to manipulate different databases.

Another strategy that you can take to migrate multiple databases is to keep migrations for different databases in
different migration paths. Then you can migrate these databases in separate commands like the following:

yii migrate --migrationPath=@app/migrations/db1 --db=db1
yii migrate --migrationPath=@app/migrations/db2 --db=db2
...

The first command will apply migrations in @app/migrations/db1 to the db1 database, the second command
will apply migrations in @app/migrations/db2 to db2, and so on.

 Query Builder

Query Builder

Built on top of Database Access Objects, query builder allows you to construct a SQL query
in a programmatic and DBMS-agnostic way. Compared to writing raw SQL statements, using query builder will help you write
more readable SQL-related code and generate more secure SQL statements.

Using query builder usually involves two steps:

	Build a [[yii\db\Query]] object to represent different parts (e.g. SELECT, FROM) of a SELECT SQL statement.

	Execute a query method (e.g. all()) of [[yii\db\Query]] to retrieve data from the database.

The following code shows a typical way of using query builder:

$rows = (new \yii\db\Query())
 ->select(['id', 'email'])
 ->from('user')
 ->where(['last_name' => 'Smith'])
 ->limit(10)
 ->all();

The above code generates and executes the following SQL query, where the :last_name parameter is bound with the
string 'Smith'.

SELECT `id`, `email`
FROM `user`
WHERE `last_name` = :last_name
LIMIT 10

Info: You usually mainly work with [[yii\db\Query]] instead of [[yii\db\QueryBuilder]]. The latter is invoked
by the former implicitly when you call one of the query methods. [[yii\db\QueryBuilder]] is the class responsible
for generating DBMS-dependent SQL statements (e.g. quoting table/column names differently) from DBMS-independent
[[yii\db\Query]] objects.

Building Queries

To build a [[yii\db\Query]] object, you call different query building methods to specify different parts of
a SQL query. The names of these methods resemble the SQL keywords used in the corresponding parts of the SQL
statement. For example, to specify the FROM part of a SQL query, you would call the [[yii\db\Query::from()|from()]] method.
All the query building methods return the query object itself, which allows you to chain multiple calls together.

In the following, we will describe the usage of each query building method.

[[yii\db\Query::select()|select()]]

The [[yii\db\Query::select()|select()]] method specifies the SELECT fragment of a SQL statement. You can specify
columns to be selected in either an array or a string, like the following. The column names being selected will
be automatically quoted when the SQL statement is being generated from a query object.

$query->select(['id', 'email']);

// equivalent to:

$query->select('id, email');

The column names being selected may include table prefixes and/or column aliases, like you do when writing raw SQL queries.
For example,

$query->select(['user.id AS user_id', 'email']);

// equivalent to:

$query->select('user.id AS user_id, email');

If you are using the array format to specify columns, you can also use the array keys to specify the column aliases.
For example, the above code can be rewritten as follows,

$query->select(['user_id' => 'user.id', 'email']);

If you do not call the [[yii\db\Query::select()|select()]] method when building a query, * will be selected, which
means selecting all columns.

Besides column names, you can also select DB expressions. You must use the array format when selecting a DB expression
that contains commas to avoid incorrect automatic name quoting. For example,

$query->select(["CONCAT(first_name, ' ', last_name) AS full_name", 'email']);

As with all places where raw SQL is involved, you may use the DBMS agnostic quoting syntax
for table and column names when writing DB expressions in select.

Starting from version 2.0.1, you may also select sub-queries. You should specify each sub-query in terms of
a [[yii\db\Query]] object. For example,

$subQuery = (new Query())->select('COUNT(*)')->from('user');

// SELECT `id`, (SELECT COUNT(*) FROM `user`) AS `count` FROM `post`
$query = (new Query())->select(['id', 'count' => $subQuery])->from('post');

To select distinct rows, you may call [[yii\db\Query::distinct()|distinct()]], like the following:

// SELECT DISTINCT `user_id` ...
$query->select('user_id')->distinct();

You can call [[yii\db\Query::addSelect()|addSelect()]] to select additional columns. For example,

$query->select(['id', 'username'])
 ->addSelect(['email']);

[[yii\db\Query::from()|from()]]

The [[yii\db\Query::from()|from()]] method specifies the FROM fragment of a SQL statement. For example,

// SELECT * FROM `user`
$query->from('user');

You can specify the table(s) being selected from in either a string or an array. The table names may contain
schema prefixes and/or table aliases, like you do when writing raw SQL statements. For example,

$query->from(['public.user u', 'public.post p']);

// equivalent to:

$query->from('public.user u, public.post p');

If you are using the array format, you can also use the array keys to specify the table aliases, like the following:

$query->from(['u' => 'public.user', 'p' => 'public.post']);

Besides table names, you can also select from sub-queries by specifying them in terms of [[yii\db\Query]] objects.
For example,

$subQuery = (new Query())->select('id')->from('user')->where('status=1');

// SELECT * FROM (SELECT `id` FROM `user` WHERE status=1) u
$query->from(['u' => $subQuery]);

Prefixes

Also a default [[yii\db\Connection::$tablePrefix|tablePrefix]] can be applied. Implementation instructions
are in the “Quoting Tables” section of the “Database Access Objects” guide.

[[yii\db\Query::where()|where()]]

The [[yii\db\Query::where()|where()]] method specifies the WHERE fragment of a SQL query. You can use one of
the four formats to specify a WHERE condition:

	string format, e.g., 'status=1'

	hash format, e.g. ['status' => 1, 'type' => 2]

	operator format, e.g. ['like', 'name', 'test']

	object format, e.g. new LikeCondition('name', 'LIKE', 'test')

String Format

String format is best used to specify very simple conditions or if you need to use built-in functions of the DBMS.
It works as if you are writing a raw SQL. For example,

$query->where('status=1');

// or use parameter binding to bind dynamic parameter values
$query->where('status=:status', [':status' => $status]);

// raw SQL using MySQL YEAR() function on a date field
$query->where('YEAR(somedate) = 2015');

Do NOT embed variables directly in the condition like the following, especially if the variable values come from
end user inputs, because this will make your application subject to SQL injection attacks.

// Dangerous! Do NOT do this unless you are very certain $status must be an integer.
$query->where("status=$status");

When using parameter binding, you may call [[yii\db\Query::params()|params()]] or [[yii\db\Query::addParams()|addParams()]]
to specify parameters separately.

$query->where('status=:status')
 ->addParams([':status' => $status]);

As with all places where raw SQL is involved, you may use the DBMS agnostic quoting syntax
for table and column names when writing conditions in string format.

Hash Format

Hash format is best used to specify multiple AND-concatenated sub-conditions each being a simple equality assertion.
It is written as an array whose keys are column names and values the corresponding values that the columns should be.
For example,

// ...WHERE (`status` = 10) AND (`type` IS NULL) AND (`id` IN (4, 8, 15))
$query->where([
 'status' => 10,
 'type' => null,
 'id' => [4, 8, 15],
]);

As you can see, the query builder is intelligent enough to properly handle values that are nulls or arrays.

You can also use sub-queries with hash format like the following:

$userQuery = (new Query())->select('id')->from('user');

// ...WHERE `id` IN (SELECT `id` FROM `user`)
$query->where(['id' => $userQuery]);

Using the Hash Format, Yii internally applies parameter binding for values, so in contrast to the string format,
here you do not have to add parameters manually. However, note that Yii never escapes column names, so if you pass
a variable obtained from user side as a column name without any additional checks, the application will become vulnerable
to SQL injection attack. In order to keep the application secure, either do not use variables as column names or
filter variable against white list. In case you need to get column name from user, read the Filtering Data
guide article. For example the following code is vulnerable:

// Vulnerable code:
$column = $request->get('column');
$value = $request->get('value');
$query->where([$column => $value]);
// $value is safe, but $column name won't be encoded!

Operator Format

Operator format allows you to specify arbitrary conditions in a programmatic way. It takes the following format:

[operator, operand1, operand2, ...]

where the operands can each be specified in string format, hash format or operator format recursively, while
the operator can be one of the following:

	and: the operands should be concatenated together using AND. For example,
['and', 'id=1', 'id=2'] will generate id=1 AND id=2. If an operand is an array,
it will be converted into a string using the rules described here. For example,
['and', 'type=1', ['or', 'id=1', 'id=2']] will generate type=1 AND (id=1 OR id=2).
The method will NOT do any quoting or escaping.

	or: similar to the and operator except that the operands are concatenated using OR.

	not: requires only operand 1, which will be wrapped in NOT(). For example, ['not', 'id=1'] will generate NOT (id=1). Operand 1 may also be an array to describe multiple expressions. For example ['not', ['status' => 'draft', 'name' => 'example']] will generate NOT ((status='draft') AND (name='example')).

	between: operand 1 should be the column name, and operand 2 and 3 should be the
starting and ending values of the range that the column is in.
For example, ['between', 'id', 1, 10] will generate id BETWEEN 1 AND 10.
In case you need to build a condition where value is between two columns (like 11 BETWEEN min_id AND max_id),
you should use [[yii\db\conditions\BetweenColumnsCondition|BetweenColumnsCondition]].
See Conditions – Object Format chapter to learn more about object definition of conditions.

	not between: similar to between except the BETWEEN is replaced with NOT BETWEEN
in the generated condition.

	in: operand 1 should be a column or DB expression. Operand 2 can be either an array or a Query object.
It will generate an IN condition. If Operand 2 is an array, it will represent the range of the values
that the column or DB expression should be; If Operand 2 is a Query object, a sub-query will be generated
and used as the range of the column or DB expression. For example,
['in', 'id', [1, 2, 3]] will generate id IN (1, 2, 3).
The method will properly quote the column name and escape values in the range.
The in operator also supports composite columns. In this case, operand 1 should be an array of the columns,
while operand 2 should be an array of arrays or a Query object representing the range of the columns.

	not in: similar to the in operator except that IN is replaced with NOT IN in the generated condition.

	like: operand 1 should be a column or DB expression, and operand 2 be a string or an array representing
the values that the column or DB expression should be like.
For example, ['like', 'name', 'tester'] will generate name LIKE '%tester%'.
When the value range is given as an array, multiple LIKE predicates will be generated and concatenated
using AND. For example, ['like', 'name', ['test', 'sample']] will generate
name LIKE '%test%' AND name LIKE '%sample%'.
You may also provide an optional third operand to specify how to escape special characters in the values.
The operand should be an array of mappings from the special characters to their
escaped counterparts. If this operand is not provided, a default escape mapping will be used.
You may use false or an empty array to indicate the values are already escaped and no escape
should be applied. Note that when using an escape mapping (or the third operand is not provided),
the values will be automatically enclosed within a pair of percentage characters.

Note: When using PostgreSQL you may also use ilike [http://www.postgresql.org/docs/8.3/static/functions-matching.html#FUNCTIONS-LIKE]
instead of like for case-insensitive matching.

	or like: similar to the like operator except that OR is used to concatenate the LIKE
predicates when operand 2 is an array.

	not like: similar to the like operator except that LIKE is replaced with NOT LIKE
in the generated condition.

	or not like: similar to the not like operator except that OR is used to concatenate
the NOT LIKE predicates.

	exists: requires one operand which must be an instance of [[yii\db\Query]] representing the sub-query.
It will build an EXISTS (sub-query) expression.

	not exists: similar to the exists operator and builds a NOT EXISTS (sub-query) expression.

	>, <=, or any other valid DB operator that takes two operands: the first operand must be a column name
while the second operand a value. For example, ['>', 'age', 10] will generate age>10.

Using the Operator Format, Yii internally uses parameter binding for values, so in contrast to the string format,
here you do not have to add parameters manually. However, note that Yii never escapes column names, so if you pass
a variable as a column name, the application will likely become vulnerable to SQL injection attack. In order to keep
application secure, either do not use variables as column names or filter variable against white list.
In case you need to get column name from user, read the Filtering Data
guide article. For example the following code is vulnerable:

// Vulnerable code:
$column = $request->get('column');
$value = $request->get('value);
$query->where(['=', $column, $value]);
// $value is safe, but $column name won't be encoded!

Object Format

Object Form is available since 2.0.14 and is both most powerful and most complex way to define conditions.
You need to follow it either if you want to build your own abstraction over query builder or if you want to implement
your own complex conditions.

Instances of condition classes are immutable. Their only purpose is to store condition data and provide getters
for condition builders. Condition builder is a class that holds the logic that transforms data
stored in condition into the SQL expression.

Internally the formats described above are implicitly converted to object format prior to building raw SQL,
so it is possible to combine formats in a single condition:

$query->andWhere(new OrCondition([
 new InCondition('type', 'in', $types),
 ['like', 'name', '%good%'],
 'disabled=false'
]))

Conversion from operator format into object format is performed according to
[[yii\db\QueryBuilder::conditionClasses|QueryBuilder::conditionClasses]] property, that maps operators names
to representative class names:

	AND, OR -> yii\db\conditions\ConjunctionCondition

	NOT -> yii\db\conditions\NotCondition

	IN, NOT IN -> yii\db\conditions\InCondition

	BETWEEN, NOT BETWEEN -> yii\db\conditions\BetweenCondition

And so on.

Using the object format makes it possible to create your own conditions or to change the way default ones are built.
See Adding Custom Conditions and Expressions chapter to learn more.

Appending Conditions

You can use [[yii\db\Query::andWhere()|andWhere()]] or [[yii\db\Query::orWhere()|orWhere()]] to append
additional conditions to an existing one. You can call them multiple times to append multiple conditions
separately. For example,

$status = 10;
$search = 'yii';

$query->where(['status' => $status]);

if (!empty($search)) {
 $query->andWhere(['like', 'title', $search]);
}

If $search is not empty, the following WHERE condition will be generated:

WHERE (`status` = 10) AND (`title` LIKE '%yii%')

Filter Conditions

When building WHERE conditions based on input from end users, you usually want to ignore those input values, that are empty.
For example, in a search form that allows you to search by username and email, you would like to ignore the username/email
condition if the user does not enter anything in the username/email input field. You can achieve this goal by
using the [[yii\db\Query::filterWhere()|filterWhere()]] method:

// $username and $email are from user inputs
$query->filterWhere([
 'username' => $username,
 'email' => $email,
]);

The only difference between [[yii\db\Query::filterWhere()|filterWhere()]] and [[yii\db\Query::where()|where()]]
is that the former will ignore empty values provided in the condition in hash format. So if $email
is empty while $username is not, the above code will result in the SQL condition WHERE username=:username.

Info: A value is considered empty if it is null, an empty array, an empty string or a string consisting of whitespaces only.

Like [[yii\db\Query::andWhere()|andWhere()]] and [[yii\db\Query::orWhere()|orWhere()]], you can use
[[yii\db\Query::andFilterWhere()|andFilterWhere()]] and [[yii\db\Query::orFilterWhere()|orFilterWhere()]]
to append additional filter conditions to the existing one.

Additionally, there is [[yii\db\Query::andFilterCompare()]] that can intelligently determine operator based on what’s
in the value:

$query->andFilterCompare('name', 'John Doe');
$query->andFilterCompare('rating', '>9');
$query->andFilterCompare('value', '<=100');

You can also specify operator explicitly:

$query->andFilterCompare('name', 'Doe', 'like');

Since Yii 2.0.11 there are similar methods for HAVING condition:

	[[yii\db\Query::filterHaving()|filterHaving()]]

	[[yii\db\Query::andFilterHaving()|andFilterHaving()]]

	[[yii\db\Query::orFilterHaving()|orFilterHaving()]]

[[yii\db\Query::orderBy()|orderBy()]]

The [[yii\db\Query::orderBy()|orderBy()]] method specifies the ORDER BY fragment of a SQL query. For example,

// ... ORDER BY `id` ASC, `name` DESC
$query->orderBy([
 'id' => SORT_ASC,
 'name' => SORT_DESC,
]);

In the above code, the array keys are column names while the array values are the corresponding order by directions.
The PHP constant SORT_ASC specifies ascending sort and SORT_DESC descending sort.

If ORDER BY only involves simple column names, you can specify it using a string, just like you do when writing
raw SQL statements. For example,

$query->orderBy('id ASC, name DESC');

Note: You should use the array format if ORDER BY involves some DB expression.

You can call [[yii\db\Query::addOrderBy()|addOrderBy()]] to add additional columns to the ORDER BY fragment.
For example,

$query->orderBy('id ASC')
 ->addOrderBy('name DESC');

[[yii\db\Query::groupBy()|groupBy()]]

The [[yii\db\Query::groupBy()|groupBy()]] method specifies the GROUP BY fragment of a SQL query. For example,

// ... GROUP BY `id`, `status`
$query->groupBy(['id', 'status']);

If GROUP BY only involves simple column names, you can specify it using a string, just like you do when writing
raw SQL statements. For example,

$query->groupBy('id, status');

Note: You should use the array format if GROUP BY involves some DB expression.

You can call [[yii\db\Query::addGroupBy()|addGroupBy()]] to add additional columns to the GROUP BY fragment.
For example,

$query->groupBy(['id', 'status'])
 ->addGroupBy('age');

[[yii\db\Query::having()|having()]]

The [[yii\db\Query::having()|having()]] method specifies the HAVING fragment of a SQL query. It takes
a condition which can be specified in the same way as that for where(). For example,

// ... HAVING `status` = 1
$query->having(['status' => 1]);

Please refer to the documentation for where() for more details about how to specify a condition.

You can call [[yii\db\Query::andHaving()|andHaving()]] or [[yii\db\Query::orHaving()|orHaving()]] to append
additional conditions to the HAVING fragment. For example,

// ... HAVING (`status` = 1) AND (`age` > 30)
$query->having(['status' => 1])
 ->andHaving(['>', 'age', 30]);

[[yii\db\Query::limit()|limit()]] and [[yii\db\Query::offset()|offset()]]

The [[yii\db\Query::limit()|limit()]] and [[yii\db\Query::offset()|offset()]] methods specify the LIMIT
and OFFSET fragments of a SQL query. For example,

// ... LIMIT 10 OFFSET 20
$query->limit(10)->offset(20);

If you specify an invalid limit or offset (e.g. a negative value), it will be ignored.

Info: For DBMS that do not support LIMIT and OFFSET (e.g. MSSQL), query builder will generate a SQL
statement that emulates the LIMIT/OFFSET behavior.

[[yii\db\Query::join()|join()]]

The [[yii\db\Query::join()|join()]] method specifies the JOIN fragment of a SQL query. For example,

// ... LEFT JOIN `post` ON `post`.`user_id` = `user`.`id`
$query->join('LEFT JOIN', 'post', 'post.user_id = user.id');

The [[yii\db\Query::join()|join()]] method takes four parameters:

	$type: join type, e.g., 'INNER JOIN', 'LEFT JOIN'.

	$table: the name of the table to be joined.

	$on: optional, the join condition, i.e., the ON fragment. Please refer to where() for details
about specifying a condition. Note, that the array syntax does not work for specifying a column based
condition, e.g. ['user.id' => 'comment.userId'] will result in a condition where the user id must be equal
to the string 'comment.userId'. You should use the string syntax instead and specify the condition as
'user.id = comment.userId'.

	$params: optional, the parameters to be bound to the join condition.

You can use the following shortcut methods to specify INNER JOIN, LEFT JOIN and RIGHT JOIN, respectively.

	[[yii\db\Query::innerJoin()|innerJoin()]]

	[[yii\db\Query::leftJoin()|leftJoin()]]

	[[yii\db\Query::rightJoin()|rightJoin()]]

For example,

$query->leftJoin('post', 'post.user_id = user.id');

To join with multiple tables, call the above join methods multiple times, once for each table.

Besides joining with tables, you can also join with sub-queries. To do so, specify the sub-queries to be joined
as [[yii\db\Query]] objects. For example,

$subQuery = (new \yii\db\Query())->from('post');
$query->leftJoin(['u' => $subQuery], 'u.id = author_id');

In this case, you should put the sub-query in an array and use the array key to specify the alias.

[[yii\db\Query::union()|union()]]

The [[yii\db\Query::union()|union()]] method specifies the UNION fragment of a SQL query. For example,

$query1 = (new \yii\db\Query())
 ->select("id, category_id AS type, name")
 ->from('post')
 ->limit(10);

$query2 = (new \yii\db\Query())
 ->select('id, type, name')
 ->from('user')
 ->limit(10);

$query1->union($query2);

You can call [[yii\db\Query::union()|union()]] multiple times to append more UNION fragments.

Query Methods

[[yii\db\Query]] provides a whole set of methods for different query purposes:

	[[yii\db\Query::all()|all()]]: returns an array of rows with each row being an associative array of name-value pairs.

	[[yii\db\Query::one()|one()]]: returns the first row of the result.

	[[yii\db\Query::column()|column()]]: returns the first column of the result.

	[[yii\db\Query::scalar()|scalar()]]: returns a scalar value located at the first row and first column of the result.

	[[yii\db\Query::exists()|exists()]]: returns a value indicating whether the query contains any result.

	[[yii\db\Query::count()|count()]]: returns the result of a COUNT query.

	Other aggregation query methods, including [[yii\db\Query::sum()|sum($q)]], [[yii\db\Query::average()|average($q)]],
[[yii\db\Query::max()|max($q)]], [[yii\db\Query::min()|min($q)]]. The $q parameter is mandatory for these methods
and can be either a column name or a DB expression.

For example,

// SELECT `id`, `email` FROM `user`
$rows = (new \yii\db\Query())
 ->select(['id', 'email'])
 ->from('user')
 ->all();

// SELECT * FROM `user` WHERE `username` LIKE `%test%`
$row = (new \yii\db\Query())
 ->from('user')
 ->where(['like', 'username', 'test'])
 ->one();

Note: The [[yii\db\Query::one()|one()]] method only returns the first row of the query result. It does NOT
add LIMIT 1 to the generated SQL statement. This is fine and preferred if you know the query will return only one
or a few rows of data (e.g. if you are querying with some primary keys). However, if the query may potentially
result in many rows of data, you should call limit(1) explicitly to improve the performance, e.g.,
(new \yii\db\Query())->from('user')->limit(1)->one().

All these query methods take an optional $db parameter representing the [[yii\db\Connection|DB connection]] that
should be used to perform a DB query. If you omit this parameter, the db application component will be used
as the DB connection. Below is another example using the [[yii\db\Query::count()|count()]] query method:

// executes SQL: SELECT COUNT(*) FROM `user` WHERE `last_name`=:last_name
$count = (new \yii\db\Query())
 ->from('user')
 ->where(['last_name' => 'Smith'])
 ->count();

When you call a query method of [[yii\db\Query]], it actually does the following work internally:

	Call [[yii\db\QueryBuilder]] to generate a SQL statement based on the current construct of [[yii\db\Query]];

	Create a [[yii\db\Command]] object with the generated SQL statement;

	Call a query method (e.g. [[yii\db\Command::queryAll()|queryAll()]]) of [[yii\db\Command]] to execute the SQL statement and retrieve the data.

Sometimes, you may want to examine or use the SQL statement built from a [[yii\db\Query]] object. You can
achieve this goal with the following code:

$command = (new \yii\db\Query())
 ->select(['id', 'email'])
 ->from('user')
 ->where(['last_name' => 'Smith'])
 ->limit(10)
 ->createCommand();

// show the SQL statement
echo $command->sql;
// show the parameters to be bound
print_r($command->params);

// returns all rows of the query result
$rows = $command->queryAll();

Indexing Query Results

When you call [[yii\db\Query::all()|all()]], it will return an array of rows which are indexed by consecutive integers.
Sometimes you may want to index them differently, such as indexing by a particular column or expression values.
You can achieve this goal by calling [[yii\db\Query::indexBy()|indexBy()]] before [[yii\db\Query::all()|all()]].
For example,

// returns [100 => ['id' => 100, 'username' => '...', ...], 101 => [...], 103 => [...], ...]
$query = (new \yii\db\Query())
 ->from('user')
 ->limit(10)
 ->indexBy('id')
 ->all();

To index by expression values, pass an anonymous function to the [[yii\db\Query::indexBy()|indexBy()]] method:

$query = (new \yii\db\Query())
 ->from('user')
 ->indexBy(function ($row) {
 return $row['id'] . $row['username'];
 })->all();

The anonymous function takes a parameter $row which contains the current row data and should return a scalar
value which will be used as the index value for the current row.

Note: In contrast to query methods like [[yii\db\Query::groupBy()|groupBy()]] or [[yii\db\Query::orderBy()|orderBy()]]
which are converted to SQL and are part of the query, this method works after the data has been fetched from the database.
That means that only those column names can be used that have been part of SELECT in your query.
Also if you selected a column with table prefix, e.g. customer.id, the result set will only contain id so you have to call
->indexBy('id') without table prefix.

Batch Query

When working with large amounts of data, methods such as [[yii\db\Query::all()]] are not suitable
because they require loading the whole query result into the client’s memory. To solve this issue
Yii provides batch query support. The server holds the query result, and the client uses a cursor
to iterate over the result set one batch at a time.

Warning: There are known limitations and workarounds for the MySQL implementation of batch queries. See below.

Batch query can be used like the following:

use yii\db\Query;

$query = (new Query())
 ->from('user')
 ->orderBy('id');

foreach ($query->batch() as $users) {
 // $users is an array of 100 or fewer rows from the user table
}

// or to iterate the row one by one
foreach ($query->each() as $user) {
 // data is being fetched from the server in batches of 100,
 // but $user represents one row of data from the user table
}

The method [[yii\db\Query::batch()]] and [[yii\db\Query::each()]] return an [[yii\db\BatchQueryResult]]
object which implements the Iterator interface and thus can be used in the foreach construct.
During the first iteration, a SQL query is made to the database. Data is then fetched in batches
in the remaining iterations. By default, the batch size is 100, meaning 100 rows of data are being fetched in each batch.
You can change the batch size by passing the first parameter to the batch() or each() method.

Compared to the [[yii\db\Query::all()]], the batch query only loads 100 rows of data at a time into the memory.

If you specify the query result to be indexed by some column via [[yii\db\Query::indexBy()]],
the batch query will still keep the proper index.

For example:

$query = (new \yii\db\Query())
 ->from('user')
 ->indexBy('username');

foreach ($query->batch() as $users) {
 // $users is indexed by the "username" column
}

foreach ($query->each() as $username => $user) {
 // ...
}

Limitations of batch query in MySQL

MySQL implementation of batch queries relies on the PDO driver library. By default, MySQL queries are
buffered [http://php.net/manual/en/mysqlinfo.concepts.buffering.php]. This defeats the purpose
of using the cursor to get the data, because it doesn’t prevent the whole result set from being
loaded into the client’s memory by the driver.

Note: When libmysqlclient is used (typical of PHP5), PHP’s memory limit won’t count the memory
used for result sets. It may seem that batch queries work correctly, but in reality the whole
dataset is loaded into client’s memory, and has the potential of using it up.

To disable buffering and reduce client memory requirements, PDO connection property
PDO::MYSQL_ATTR_USE_BUFFERED_QUERY must be set to false. However, until the whole dataset has
been retrieved, no other query can be made through the same connection. This may prevent ActiveRecord
from making a query to get the table schema when it needs to. If this is not a problem
(the table schema is cached already), it is possible to switch the original connection into
unbuffered mode, and then roll back when the batch query is done.

Yii::$app->db->pdo->setAttribute(\PDO::MYSQL_ATTR_USE_BUFFERED_QUERY, false);

// Do batch query

Yii::$app->db->pdo->setAttribute(\PDO::MYSQL_ATTR_USE_BUFFERED_QUERY, true);

Note: In the case of MyISAM, for the duration of the batch query, the table may become locked,
delaying or denying write access for other connections. When using unbuffered queries,
try to keep the cursor open for as little time as possible.

If the schema is not cached, or it is necessary to run other queries while the batch query is
being processed, you can create a separate unbuffered connection to the database:

$unbufferedDb = new \yii\db\Connection([
 'dsn' => Yii::$app->db->dsn,
 'username' => Yii::$app->db->username,
 'password' => Yii::$app->db->password,
 'charset' => Yii::$app->db->charset,
]);
$unbufferedDb->open();
$unbufferedDb->pdo->setAttribute(\PDO::MYSQL_ATTR_USE_BUFFERED_QUERY, false);

If you want to ensure that the $unbufferedDb has exactly the same PDO attributes like the original
buffered $db but the PDO::MYSQL_ATTR_USE_BUFFERED_QUERY is false,
consider a deep copy of $db [https://github.com/yiisoft/yii2/issues/8420#issuecomment-301423833],
set it to false manually.

Then, queries are created normally. The new connection is used to run batch queries and retrieve
results either in batches or one by one:

// getting data in batches of 1000
foreach ($query->batch(1000, $unbufferedDb) as $users) {
 // ...
}

// data is fetched from server in batches of 1000, but is iterated one by one
foreach ($query->each(1000, $unbufferedDb) as $user) {
 // ...
}

When the connection is no longer necessary and the result set has been retrieved, it can be closed:

$unbufferedDb->close();

Note: unbuffered query uses less memory on the PHP-side, but can increase the load on the MySQL server.
It is recommended to design your own code with your production practice for extra massive data,
for example, divide the range for integer keys, loop them with Unbuffered Queries [https://github.com/yiisoft/yii2/issues/8420#issuecomment-296109257].

Adding custom Conditions and Expressions

As it was mentioned in Conditions – Object Format chapter, it is possible to create custom condition
classes. For example, let’s create a condition that will check that specific columns are less than some value.
Using the operator format, it would look like the following:

[
 'and',
 '>', 'posts', $minLimit,
 '>', 'comments', $minLimit,
 '>', 'reactions', $minLimit,
 '>', 'subscriptions', $minLimit
]

When such condition applied once, it is fine. In case it is used multiple times in a single query it can
be optimized a lot. Let’s create a custom condition object to demonstrate it.

Yii has a [[yii\db\conditions\ConditionInterface|ConditionInterface]], that must be used to mark classes, that represent
a condition. It requires fromArrayDefinition() method implementation, in order to make possible to create condition
from array format. In case you don’t need it, you can implement this method with exception throwing.

Since we create our custom condition class, we can build API that suits our task the most.

namespace app\db\conditions;

class AllGreaterCondition implements \yii\db\conditions\ConditionInterface
{
 private $columns;
 private $value;

 /**
 * @param string[] $columns Array of columns that must be greater, than $value
 * @param mixed $value the value to compare each $column against.
 */
 public function __construct(array $columns, $value)
 {
 $this->columns = $columns;
 $this->value = $value;
 }

 public static function fromArrayDefinition($operator, $operands)
 {
 throw new InvalidArgumentException('Not implemented yet, but we will do it later');
 }

 public function getColumns() { return $this->columns; }
 public function getValue() { return $this->vaule; }
}

So we can create a condition object:

$conditon = new AllGreaterCondition(['col1', 'col2'], 42);

But QueryBuilder still does not know, to make an SQL condition out of this object.
Now we need to create a builder for this condition. It must implement [[yii\db\ExpressionBuilderInterface]]
that requires us to implement a build() method.

namespace app\db\conditions;

class AllGreaterConditionBuilder implements \yii\db\ExpressionBuilderInterface
{
 use \yii\db\ExpressionBuilderTrait; // Contains constructor and `queryBuilder` property.

 /**
 * @param ExpressionInterface $condition the condition to be built
 * @param array $params the binding parameters.
 * @return AllGreaterCondition
 */
 public function build(ExpressionInterface $expression, array &$params = [])
 {
 $value = $condition->getValue();

 $conditions = [];
 foreach ($expression->getColumns() as $column) {
 $conditions[] = new SimpleCondition($column, '>', $value);
 }

 return $this->queryBuilder->buildCondition(new AndCondition($conditions), $params);
 }
}

Then simple let [[yii\db\QueryBuilder|QueryBuilder]] know about our new condition – add a mapping for it to
the expressionBuilders array. It could be done right from the application configuration:

'db' => [
 'class' => 'yii\db\mysql\Connection',
 // ...
 'queryBuilder' => [
 'expressionBuilders' => [
 'app\db\conditions\AllGreaterCondition' => 'app\db\conditions\AllGreaterConditionBuilder',
],
],
],

Now we can use our condition in where():

$query->andWhere(new AllGreaterCondition(['posts', 'comments', 'reactions', 'subscriptions'], $minValue));

If we want to make it possible to create our custom condition using operator format, we should declare it in
[[yii\db\QueryBuilder::conditionClasses|QueryBuilder::conditionClasses]]:

'db' => [
 'class' => 'yii\db\mysql\Connection',
 // ...
 'queryBuilder' => [
 'expressionBuilders' => [
 'app\db\conditions\AllGreaterCondition' => 'app\db\conditions\AllGreaterConditionBuilder',
],
 'conditionClasses' => [
 'ALL>' => 'app\db\conditions\AllGreaterCondition',
],
],
],

And create a real implementation of AllGreaterCondition::fromArrayDefinition() method
in app\db\conditions\AllGreaterCondition:

namespace app\db\conditions;

class AllGreaterCondition implements \yii\db\conditions\ConditionInterface
{
 // ... see the implementation above

 public static function fromArrayDefinition($operator, $operands)
 {
 return new static($operands[0], $operands[1]);
 }
}

After that, we can create our custom condition using shorter operator format:

$query->andWhere(['ALL>', ['posts', 'comments', 'reactions', 'subscriptions'], $minValue]);

You might notice, that there was two concepts used: Expressions and Conditions. There is a [[yii\db\ExpressionInterface]]
that should be used to mark objects, that require an Expression Builder class, that implements
[[yii\db\ExpressionBuilderInterface]] to be built. Also there is a [[yii\db\condition\ConditionInterface]], that extends
[[yii\db\ExpressionInterface|ExpressionInterface]] and should be used to objects, that can be created from array definition
as it was shown above, but require builder as well.

To summarise:

	Expression – is a Data Transfer Object (DTO) for a dataset, that can be somehow compiled to some SQL
statement (an operator, string, array, JSON, etc).

	Condition – is an Expression superset, that aggregates multiple Expressions (or scalar values) that can be compiled
to a single SQL condition.

You can create your own classes that implement [[yii\db\ExpressionInterface|ExpressionInterface]] to hide the complexity
of transforming data to SQL statements. You will learn more about other examples of Expressions in the
next article;

 A

A

alias

Alias is a string that’s used by Yii to refer to the class or directory such as @app/vendor.

application

The application is the central object during HTTP request. It contains a number of components and with these is getting info from request and dispatching it to an appropriate controller for further processing.

The application object is instantiated as a singleton by the entry script. The application singleton can be accessed at any place via \Yii::$app.

assets

Asset refers to a resource file. Typically it contains JavaScript or CSS code but can be anything else that is accessed via HTTP.

attribute

An attribute is a model property (a class member variable or a magic property defined via __get()/__set()) that stores business data.

B

bundle

Bundle, known as package in Yii 1.1, refers to a number of assets and a configuration file that describes dependencies and lists assets.

C

configuration

Configuration may refer either to the process of setting properties of an object or to a configuration file that stores settings for an object or a class of objects.

E

extension

Extension is a set of classes, asset bundles and configurations that adds more features to the application.

I

installation

Installation is a process of preparing something to work either by following a readme file or by executing specially prepared script. In case of Yii it’s setting permissions and fullfilling software requirements.

M

module

Module is a sub-application which contains MVC elements by itself, such as models, views, controllers, etc. and can be used withing the main application. Typically by forwarding requests to the module instead of handling it via controllers.

N

namespace

Namespace refers to a PHP language feature [http://php.net/manual/en/language.namespaces.php] which is actively used in Yii 2.

P

package

See bundle.

V

vendor

Vendor is an organization or individual developer providing code in form of extensions, modules or libraries.

 ArrayHelper

ArrayHelper

Additionally to the rich set of PHP array functions [http://php.net/manual/en/book.array.php], the Yii array helper provides
extra static methods allowing you to deal with arrays more efficiently.

Getting Values

Retrieving values from an array, an object or a complex structure consisting of both using standard PHP is quite
repetitive. You have to check if key exists with isset first, then if it does you’re getting it, if not,
providing default value:

class User
{
 public $name = 'Alex';
}

$array = [
 'foo' => [
 'bar' => new User(),
]
];

$value = isset($array['foo']['bar']->name) ? $array['foo']['bar']->name : null;

Yii provides a very convenient method to do it:

$value = ArrayHelper::getValue($array, 'foo.bar.name');

First method argument is where we’re getting value from. Second argument specifies how to get the data. It could be one
of the following:

	Name of array key or object property to retrieve value from.

	Set of dot separated array keys or object property names. The one we’ve used in the example above.

	A callback returning a value.

The callback should be the following:

$fullName = ArrayHelper::getValue($user, function ($user, $defaultValue) {
 return $user->firstName . ' ' . $user->lastName;
});

Third optional argument is default value which is null if not specified. Could be used as follows:

$username = ArrayHelper::getValue($comment, 'user.username', 'Unknown');

Setting values

$array = [
 'key' => [
 'in' => ['k' => 'value']
]
];

ArrayHelper::setValue($array, 'key.in', ['arr' => 'val']);
// the path to write the value in `$array` can be specified as an array
ArrayHelper::setValue($array, ['key', 'in'], ['arr' => 'val']);

As a result, initial value of $array['key']['in'] will be overwritten by new value

[
 'key' => [
 'in' => ['arr' => 'val']
]
]

If the path contains a nonexistent key, it will be created

// if `$array['key']['in']['arr0']` is not empty, the value will be added to the array
ArrayHelper::setValue($array, 'key.in.arr0.arr1', 'val');

// if you want to completely override the value `$array['key']['in']['arr0']`
ArrayHelper::setValue($array, 'key.in.arr0', ['arr1' => 'val']);

The result will be

[
 'key' => [
 'in' => [
 'k' => 'value',
 'arr0' => ['arr1' => 'val']
]
]
]

Take a value from an array

In case you want to get a value and then immediately remove it from an array you can use remove method:

$array = ['type' => 'A', 'options' => [1, 2]];
$type = ArrayHelper::remove($array, 'type');

After executing the code $array will contain ['options' => [1, 2]] and $type will be A. Note that unlike
getValue method, remove supports simple key names only.

Checking Existence of Keys

ArrayHelper::keyExists works the same way as array_key_exists [http://php.net/manual/en/function.array-key-exists.php]
except that it also supports case-insensitive key comparison. For example,

$data1 = [
 'userName' => 'Alex',
];

$data2 = [
 'username' => 'Carsten',
];

if (!ArrayHelper::keyExists('username', $data1, false) || !ArrayHelper::keyExists('username', $data2, false)) {
 echo "Please provide username.";
}

Retrieving Columns

Often you need to get a column of values from array of data rows or objects. Common example is getting a list of IDs.

$array = [
 ['id' => '123', 'data' => 'abc'],
 ['id' => '345', 'data' => 'def'],
];
$ids = ArrayHelper::getColumn($array, 'id');

The result will be ['123', '345'].

If additional transformations are required or the way of getting value is complex, second argument could be specified
as an anonymous function:

$result = ArrayHelper::getColumn($array, function ($element) {
 return $element['id'];
});

Re-indexing Arrays

In order to index an array according to a specified key, the index method can be used. The input should be either
multidimensional array or an array of objects. The $key can be either a key name of the sub-array, a property name of
object, or an anonymous function that must return the value that will be used as a key.

The $groups attribute is an array of keys, that will be used to group the input array into one or more sub-arrays
based on keys specified.

If the $key attribute or its value for the particular element is null and $groups is not defined, the array
element will be discarded. Otherwise, if $groups is specified, array element will be added to the result array
without any key.

For example:

$array = [
 ['id' => '123', 'data' => 'abc', 'device' => 'laptop'],
 ['id' => '345', 'data' => 'def', 'device' => 'tablet'],
 ['id' => '345', 'data' => 'hgi', 'device' => 'smartphone'],
];
$result = ArrayHelper::index($array, 'id');

The result will be an associative array, where the key is the value of id attribute:

[
 '123' => ['id' => '123', 'data' => 'abc', 'device' => 'laptop'],
 '345' => ['id' => '345', 'data' => 'hgi', 'device' => 'smartphone']
 // The second element of an original array is overwritten by the last element because of the same id
]

Anonymous function, passed as a $key, gives the same result:

$result = ArrayHelper::index($array, function ($element) {
 return $element['id'];
});

Passing id as a third argument will group $array by id:

$result = ArrayHelper::index($array, null, 'id');

The result will be a multidimensional array grouped by id on the first level and not indexed on the second level:

[
 '123' => [
 ['id' => '123', 'data' => 'abc', 'device' => 'laptop']
],
 '345' => [// all elements with this index are present in the result array
 ['id' => '345', 'data' => 'def', 'device' => 'tablet'],
 ['id' => '345', 'data' => 'hgi', 'device' => 'smartphone'],
]
]

An anonymous function can be used in the grouping array as well:

$result = ArrayHelper::index($array, 'data', [function ($element) {
 return $element['id'];
}, 'device']);

The result will be a multidimensional array grouped by id on the first level, by device on the second level and
indexed by data on the third level:

[
 '123' => [
 'laptop' => [
 'abc' => ['id' => '123', 'data' => 'abc', 'device' => 'laptop']
]
],
 '345' => [
 'tablet' => [
 'def' => ['id' => '345', 'data' => 'def', 'device' => 'tablet']
],
 'smartphone' => [
 'hgi' => ['id' => '345', 'data' => 'hgi', 'device' => 'smartphone']
]
]
]

Building Maps

In order to build a map (key-value pairs) from a multidimensional array or an array of objects you can use map method.
The $from and $to parameters specify the key names or property names to set up the map. Optionally, one can further
group the map according to a grouping field $group. For example,

$array = [
 ['id' => '123', 'name' => 'aaa', 'class' => 'x'],
 ['id' => '124', 'name' => 'bbb', 'class' => 'x'],
 ['id' => '345', 'name' => 'ccc', 'class' => 'y'],
];

$result = ArrayHelper::map($array, 'id', 'name');
// the result is:
// [
// '123' => 'aaa',
// '124' => 'bbb',
// '345' => 'ccc',
//]

$result = ArrayHelper::map($array, 'id', 'name', 'class');
// the result is:
// [
// 'x' => [
// '123' => 'aaa',
// '124' => 'bbb',
//],
// 'y' => [
// '345' => 'ccc',
//],
//]

Multidimensional Sorting

multisort method helps to sort an array of objects or nested arrays by one or several keys. For example,

$data = [
 ['age' => 30, 'name' => 'Alexander'],
 ['age' => 30, 'name' => 'Brian'],
 ['age' => 19, 'name' => 'Barney'],
];
ArrayHelper::multisort($data, ['age', 'name'], [SORT_ASC, SORT_DESC]);

After sorting we’ll get the following in $data:

[
 ['age' => 19, 'name' => 'Barney'],
 ['age' => 30, 'name' => 'Brian'],
 ['age' => 30, 'name' => 'Alexander'],
];

Second argument that specifies keys to sort by can be a string if it’s a single key, an array in case of multiple keys
or an anonymous function like the following one:

ArrayHelper::multisort($data, function($item) {
 return isset($item['age']) ? ['age', 'name'] : 'name';
});

Third argument is direction. In case of sorting by a single key it could be either SORT_ASC or
SORT_DESC. If sorting by multiple values you can sort each value differently by providing an array of
sort direction.

Last argument is PHP sort flag that could take the same values as the ones passed to
PHP sort() [http://php.net/manual/en/function.sort.php].

Detecting Array Types

It is handy to know whether an array is indexed or an associative. Here’s an example:

// no keys specified
$indexed = ['Qiang', 'Paul'];
echo ArrayHelper::isIndexed($indexed);

// all keys are strings
$associative = ['framework' => 'Yii', 'version' => '2.0'];
echo ArrayHelper::isAssociative($associative);

HTML Encoding and Decoding Values

In order to encode or decode special characters in an array of strings into HTML entities you can use the following:

$encoded = ArrayHelper::htmlEncode($data);
$decoded = ArrayHelper::htmlDecode($data);

Only values will be encoded by default. By passing second argument as false you can encode array’s keys as well.
Encoding will use application charset and could be changed via third argument.

Merging Arrays

You can use [[yii\helpers\ArrayHelper::merge()|ArrayHelper::merge()]] to merge two or more arrays into one recursively.
If each array has an element with the same string key value, the latter will overwrite the former
(different from array_merge_recursive() [http://php.net/manual/en/function.array-merge-recursive.php]).
Recursive merging will be conducted if both arrays have an element of array type and are having the same key.
For integer-keyed elements, the elements from the latter array will be appended to the former array.
You can use [[yii\helpers\UnsetArrayValue]] object to unset value from previous array or
[[yii\helpers\ReplaceArrayValue]] to force replace former value instead of recursive merging.

For example:

$array1 = [
 'name' => 'Yii',
 'version' => '1.1',
 'ids' => [
 1,
],
 'validDomains' => [
 'example.com',
 'www.example.com',
],
 'emails' => [
 'admin' => 'admin@example.com',
 'dev' => 'dev@example.com',
],
];

$array2 = [
 'version' => '2.0',
 'ids' => [
 2,
],
 'validDomains' => new \yii\helpers\ReplaceArrayValue([
 'yiiframework.com',
 'www.yiiframework.com',
]),
 'emails' => [
 'dev' => new \yii\helpers\UnsetArrayValue(),
],
];

$result = ArrayHelper::merge($array1, $array2);

The result will be:

[
 'name' => 'Yii',
 'version' => '2.0',
 'ids' => [
 1,
 2,
],
 'validDomains' => [
 'yiiframework.com',
 'www.yiiframework.com',
],
 'emails' => [
 'admin' => 'admin@example.com',
],
]

Converting Objects to Arrays

Often you need to convert an object or an array of objects into an array. The most common case is converting active record
models in order to serve data arrays via REST API or use it otherwise. The following code could be used to do it:

$posts = Post::find()->limit(10)->all();
$data = ArrayHelper::toArray($posts, [
 'app\models\Post' => [
 'id',
 'title',
 // the key name in array result => property name
 'createTime' => 'created_at',
 // the key name in array result => anonymous function
 'length' => function ($post) {
 return strlen($post->content);
 },
],
]);

The first argument contains the data we want to convert. In our case we’re converting a Post AR model.

The second argument is conversion mapping per class. We’re setting a mapping for Post model.
Each mapping array contains a set of mappings. Each mapping could be:

	A field name to include as is.

	A key-value pair of desired array key name and model column name to take value from.

	A key-value pair of desired array key name and a callback which returns value.

The result of conversion above for single model will be:

[
 'id' => 123,
 'title' => 'test',
 'createTime' => '2013-01-01 12:00AM',
 'length' => 301,
]

It is possible to provide default way of converting object to array for a specific class by implementing
[[yii\base\Arrayable|Arrayable]] interface in that class.

Testing against Arrays

Often you need to check if an element is in an array or a set of elements is a subset of another.
While PHP offers in_array(), this does not support subsets or \Traversable objects.

To aid these kinds of tests, [[yii\helpers\ArrayHelper]] provides [[yii\helpers\ArrayHelper::isIn()|isIn()]]
and [[yii\helpers\ArrayHelper::isSubset()|isSubset()]] with the same signature as
in_array() [http://php.net/manual/en/function.in-array.php].

// true
ArrayHelper::isIn('a', ['a']);
// true
ArrayHelper::isIn('a', new ArrayObject(['a']));

// true
ArrayHelper::isSubset(new ArrayObject(['a', 'c']), new ArrayObject(['a', 'b', 'c']));

 Html helper

Html helper

Every web application generates lots of HTML markup. If the markup is static, it can be done efficiently by
mixing PHP and HTML in a single file [http://php.net/manual/en/language.basic-syntax.phpmode.php], but when it is
generated dynamically it starts to get tricky to handle it without extra help. Yii provides such help in the form
of an Html helper, which provides a set of static methods for handling commonly used HTML tags, their options, and their content.

Note: If your markup is nearly static, it’s better to use HTML directly. There’s no need to wrap absolutely everything
in Html helper calls.

Basics

Since building dynamic HTML by string concatenation can get messy very fast, Yii provides a set of methods to
manipulate tag options and build tags based on these options.

Generating Tags

The code for generating a tag looks like the following:

<?= Html::tag('p', Html::encode($user->name), ['class' => 'username']) ?>

The first argument is the tag name. The second one is the content to be enclosed between the start and end tags.
Note that we are using Html::encode —

 that’s because the content isn’t encoded automatically to allow using HTML when needed.
The third one is an array of HTML options, or in other words, tag attributes.
In this array the key is the name of the attribute (such as class, href or target), and the value is its value.

The code above will generate the following HTML:

<p class="username">samdark</p>

In case you need just an opening or closing tag, you can use the Html::beginTag() and Html::endTag() methods.

Options are used in many methods of the Html helper and various widgets. In all these cases there is some extra handling to
know about:

	If a value is null, the corresponding attribute will not be rendered.

	Attributes whose values are of boolean type will be treated as
boolean attributes [http://www.w3.org/TR/html5/infrastructure.html#boolean-attributes].

	The values of attributes will be HTML-encoded using [[yii\helpers\Html::encode()|Html::encode()]].

	If the value of an attribute is an array, it will be handled as follows:

	If the attribute is a data attribute as listed in [[yii\helpers\Html::$dataAttributes]], such as data or ng,
a list of attributes will be rendered, one for each element in the value array. For example,
'data' => ['id' => 1, 'name' => 'yii'] generates data-id="1" data-name="yii"; and
'data' => ['params' => ['id' => 1, 'name' => 'yii'], 'status' => 'ok'] generates
data-params='{"id":1,"name":"yii"}' data-status="ok". Note that in the latter example JSON format is used
to render a sub-array.

	If the attribute is NOT a data attribute, the value will be JSON-encoded. For example,
['params' => ['id' => 1, 'name' => 'yii'] generates params='{"id":1,"name":"yii"}'.

Forming CSS Classes and Styles

When building options for HTML tags we often start with defaults which we need to modify. In order to add or
remove a CSS class you can use the following:

$options = ['class' => 'btn btn-default'];

if ($type === 'success') {
 Html::removeCssClass($options, 'btn-default');
 Html::addCssClass($options, 'btn-success');
}

echo Html::tag('div', 'Pwede na', $options);

// if the value of $type is 'success' it will render
// <div class="btn btn-success">Pwede na</div>

You may specify multiple CSS classes using the array style as well:

$options = ['class' => ['btn', 'btn-default']];

echo Html::tag('div', 'Save', $options);
// renders '<div class="btn btn-default">Save</div>'

You may also use the array style when adding or removing classes:

$options = ['class' => 'btn'];

if ($type === 'success') {
 Html::addCssClass($options, ['btn-success', 'btn-lg']);
}

echo Html::tag('div', 'Save', $options);
// renders '<div class="btn btn-success btn-lg">Save</div>'

Html::addCssClass() prevents duplication, so you don’t need to worry about the same class appearing twice:

$options = ['class' => 'btn btn-default'];

Html::addCssClass($options, 'btn-default'); // class 'btn-default' is already present

echo Html::tag('div', 'Save', $options);
// renders '<div class="btn btn-default">Save</div>'

If the CSS class option is specified using the array style, you may use a named key to mark the logical purpose of the class.
In this case, a class with the same key in the array style will be ignored in Html::addCssClass():

$options = [
 'class' => [
 'btn',
 'theme' => 'btn-default',
]
];

Html::addCssClass($options, ['theme' => 'btn-success']); // 'theme' key is already taken

echo Html::tag('div', 'Save', $options);
// renders '<div class="btn btn-default">Save</div>'

CSS styles can be set up in similar way using the style attribute:

$options = ['style' => ['width' => '100px', 'height' => '100px']];

// gives style="width: 100px; height: 200px; position: absolute;"
Html::addCssStyle($options, 'height: 200px; position: absolute;');

// gives style="position: absolute;"
Html::removeCssStyle($options, ['width', 'height']);

When using [[yii\helpers\Html::addCssStyle()|addCssStyle()]], you can specify either an array of key-value pairs,
corresponding to CSS property names and values, or a string such as width: 100px; height: 200px;. These formats
can be converted from one to the other using [[yii\helpers\Html::cssStyleFromArray()|cssStyleFromArray()]] and
[[yii\helpers\Html::cssStyleToArray()|cssStyleToArray()]]. The [[yii\helpers\Html::removeCssStyle()|removeCssStyle()]]
method accepts an array of properties to remove. If it’s a single property, it can be specified as a string.

Encoding and Decoding Content

In order for content to be displayed properly and securely in HTML, special characters in the content should be encoded.
In PHP this is done with htmlspecialchars [http://www.php.net/manual/en/function.htmlspecialchars.php] and
htmlspecialchars_decode [http://www.php.net/manual/en/function.htmlspecialchars-decode.php]. The issue with using
these methods directly is that you have to specify encoding and extra flags all the time. Since these flags are the same
all the time and the encoding should match the one of the application in order to prevent security issues, Yii provides two
compact and simple-to-use methods:

$userName = Html::encode($user->name);
echo $userName;

$decodedUserName = Html::decode($userName);

Forms

Dealing with form markup is quite repetitive and error prone. Because of that, there is a group of methods to help
dealing with them.

Note: consider using [[yii\widgets\ActiveForm|ActiveForm]] in case you’re dealing with models and need validation.

Creating Forms

Forms can be opened with [[yii\helpers\Html::beginForm()|beginForm()]] method like the following:

<?= Html::beginForm(['order/update', 'id' => $id], 'post', ['enctype' => 'multipart/form-data']) ?>

The first argument is the URL the form will be submitted to. It can be specified in the form of a Yii route and parameters accepted by [[yii\helpers\Url::to()|Url::to()]].
The second one is the method to use. post is the default. The third one is an array of options
for the form tag. In this case we’re changing the encoding of the form data in the POST request to multipart/form-data,
which is required in order to upload files.

Closing the form tag is simple:

<?= Html::endForm() ?>

Buttons

In order to generate buttons, you can use the following code:

<?= Html::button('Press me!', ['class' => 'teaser']) ?>
<?= Html::submitButton('Submit', ['class' => 'submit']) ?>
<?= Html::resetButton('Reset', ['class' => 'reset']) ?>

The first argument for all three methods is the button title, and the second one is an array of options.
The title isn’t encoded, so if you’re displaying data from the end user, encode it with [[yii\helpers\Html::encode()|Html::encode()]].

Input Fields

There are two groups of input methods. The ones starting with active, which are called active inputs, and the ones not starting with it.
Active inputs take data from the model and attribute specified, while in the case of a regular input, data is specified
directly.

The most generic methods are:

type, input name, input value, options
<?= Html::input('text', 'username', $user->name, ['class' => $username]) ?>

type, model, model attribute name, options
<?= Html::activeInput('text', $user, 'name', ['class' => $username]) ?>

If you know the input type in advance, it’s more convenient to use the shortcut methods:

	[[yii\helpers\Html::buttonInput()]]

	[[yii\helpers\Html::submitInput()]]

	[[yii\helpers\Html::resetInput()]]

	[[yii\helpers\Html::textInput()]], [[yii\helpers\Html::activeTextInput()]]

	[[yii\helpers\Html::hiddenInput()]], [[yii\helpers\Html::activeHiddenInput()]]

	[[yii\helpers\Html::passwordInput()]] / [[yii\helpers\Html::activePasswordInput()]]

	[[yii\helpers\Html::fileInput()]], [[yii\helpers\Html::activeFileInput()]]

	[[yii\helpers\Html::textarea()]], [[yii\helpers\Html::activeTextarea()]]

Radios and checkboxes are a bit different in terms of method signature:

<?= Html::radio('agree', true, ['label' => 'I agree']) ?>
<?= Html::activeRadio($model, 'agree', ['class' => 'agreement']) ?>

<?= Html::checkbox('agree', true, ['label' => 'I agree']) ?>
<?= Html::activeCheckbox($model, 'agree', ['class' => 'agreement']) ?>

Dropdown lists and list boxes can be rendered like the following:

<?= Html::dropDownList('list', $currentUserId, ArrayHelper::map($userModels, 'id', 'name')) ?>
<?= Html::activeDropDownList($users, 'id', ArrayHelper::map($userModels, 'id', 'name')) ?>

<?= Html::listBox('list', $currentUserId, ArrayHelper::map($userModels, 'id', 'name')) ?>
<?= Html::activeListBox($users, 'id', ArrayHelper::map($userModels, 'id', 'name')) ?>

The first argument is the name of the input, the second one is the value that’s currently selected, and the third one is an array of key-value pairs, where the array key is the list value and the array value is the list label.

If you want multiple choices to be selectable, you can use a checkbox list:

<?= Html::checkboxList('roles', [16, 42], ArrayHelper::map($roleModels, 'id', 'name')) ?>
<?= Html::activeCheckboxList($user, 'role', ArrayHelper::map($roleModels, 'id', 'name')) ?>

If not, use radio list:

<?= Html::radioList('roles', [16, 42], ArrayHelper::map($roleModels, 'id', 'name')) ?>
<?= Html::activeRadioList($user, 'role', ArrayHelper::map($roleModels, 'id', 'name')) ?>

Labels and Errors

Same as inputs, there are two methods for generating form labels. Active, which takes data from the model, and non-active, which accepts data directly:

<?= Html::label('User name', 'username', ['class' => 'label username']) ?>
<?= Html::activeLabel($user, 'username', ['class' => 'label username']) ?>

In order to display form errors from a model or models as a summary, you could use:

<?= Html::errorSummary($posts, ['class' => 'errors']) ?>

To display an individual error:

<?= Html::error($post, 'title', ['class' => 'error']) ?>

Input Names and Values

There are methods to get names, ids and values for input fields based on the model. These are mainly used internally,
but could be handy sometimes:

// Post[title]
echo Html::getInputName($post, 'title');

// post-title
echo Html::getInputId($post, 'title');

// my first post
echo Html::getAttributeValue($post, 'title');

// $post->authors[0]
echo Html::getAttributeValue($post, '[0]authors[0]');

In the above, the first argument is the model, while the second one is the attribute expression. In its simplest form the expression is just an attribute name, but it can be an attribute name prefixed and/or suffixed with array indexes, which is mainly used for tabular input:

	[0]content is used in tabular data input to represent the content attribute for the first model in tabular input;

	dates[0] represents the first array element of the dates attribute;

	[0]dates[0] represents the first array element of the dates attribute for the first model in tabular input.

In order to get the attribute name without suffixes or prefixes, one can use the following:

// dates
echo Html::getAttributeName('dates[0]');

Styles and Scripts

There are two methods to generate tags wrapping embedded styles and scripts:

<?= Html::style('.danger { color: #f00; }') ?>

Gives you

<style>.danger { color: #f00; }</style>

<?= Html::script('alert("Hello!");', ['defer' => true]) ?>

Gives you

<script defer>alert("Hello!");</script>

If you want to use an external style in a CSS file:

<?= Html::cssFile('@web/css/ie5.css', ['condition' => 'IE 5']) ?>

generates

<!--[if IE 5]>
 <link href="http://example.com/css/ie5.css" />
<![endif]-->

The first argument is the URL. The second one is an array of options. In addition to the regular options, you can specify:

	condition to wrap <link in conditional comments with the specified condition. Hope you won’t need conditional
comments ever ;)

	noscript can be set to true to wrap <link in a <noscript> tag so it will be included only when there’s
either no JavaScript support in the browser or it was disabled by the user.

To link a JavaScript file:

<?= Html::jsFile('@web/js/main.js') ?>

Same as with CSS, the first argument specifies the URL of the file to be included. Options can be passed as the second argument.
In the options you can specify condition in the same way as in the options for cssFile.

Hyperlinks

There’s a method to generate hyperlinks conveniently:

<?= Html::a('Profile', ['user/view', 'id' => $id], ['class' => 'profile-link']) ?>

The first argument is the title. It’s not encoded, so if you’re using data entered by the user, you need to encode it with
Html::encode(). The second argument is what will be in the href attribute of the <a tag.
See Url::to() for details on what values it accepts.
The third argument is an array of tag attributes.

If you need to generate mailto links, you can use the following code:

<?= Html::mailto('Contact us', 'admin@example.com') ?>

Images

In order to generate an image tag, use the following:

<?= Html::img('@web/images/logo.png', ['alt' => 'My logo']) ?>

generates

Besides aliases, the first argument can accept routes, parameters and URLs, in the same way Url::to() does.

Lists

Unordered list can be generated like the following:

<?= Html::ul($posts, ['item' => function($item, $index) {
 return Html::tag(
 'li',
 $this->render('post', ['item' => $item]),
 ['class' => 'post']
);
}]) ?>

In order to get ordered list, use Html::ol() instead.

 Helpers

Helpers

Note: This section is under development.

Yii provides many classes that help simplify common coding tasks, such as string or array manipulations,
HTML code generation, and so on. These helper classes are organized under the yii\helpers namespace and
are all static classes (meaning they contain only static properties and methods and should not be instantiated).

You use a helper class by directly calling one of its static methods, like the following:

use yii\helpers\Html;

echo Html::encode('Test > test');

Note: To support customizing helper classes, Yii breaks each core helper class
into two classes: a base class (e.g. BaseArrayHelper) and a concrete class (e.g. ArrayHelper).
When you use a helper, you should only use the concrete version and never use the base class.

Core Helper Classes

The following core helper classes are provided in the Yii releases:

	ArrayHelper

	Console

	FileHelper

	FormatConverter

	Html

	HtmlPurifier

	Imagine (provided by yii2-imagine extension)

	Inflector

	Json

	Markdown

	StringHelper

	Url

	VarDumper

Customizing Helper Classes

To customize a core helper class (e.g. [[yii\helpers\ArrayHelper]]), you should create a new class extending
from the helpers corresponding base class (e.g. [[yii\helpers\BaseArrayHelper]]) and name your class the same
as the corresponding concrete class (e.g. [[yii\helpers\ArrayHelper]]), including its namespace. This class
will then be set up to replace the original implementation of the framework.

The following example shows how to customize the [[yii\helpers\ArrayHelper::merge()|merge()]] method of the
[[yii\helpers\ArrayHelper]] class:

<?php

namespace yii\helpers;

class ArrayHelper extends BaseArrayHelper
{
 public static function merge($a, $b)
 {
 // your custom implementation
 }
}

Save your class in a file named ArrayHelper.php. The file can be in any directory, for example @app/components.

Next, in your application’s entry script, add the following line of code
after including the yii.php file to tell the Yii class autoloader to load your custom
class instead of the original helper class from the framework:

Yii::$classMap['yii\helpers\ArrayHelper'] = '@app/components/ArrayHelper.php';

Note that customizing of helper classes is only useful if you want to change the behavior of an existing function
of the helpers. If you want to add additional functions to use in your application, you may be better off creating a separate
helper for that.

 Url Helper

Url Helper

Url helper provides a set of static methods for managing URLs.

Getting Common URLs

There are two methods you can use to get common URLs: home URL and base URL of the current request. In order to get
home URL, use the following:

$relativeHomeUrl = Url::home();
$absoluteHomeUrl = Url::home(true);
$httpsAbsoluteHomeUrl = Url::home('https');

If no parameter is passed, the generated URL is relative. You can either pass true to get an absolute URL for the current
schema or specify a schema explicitly (https, http).

To get the base URL of the current request use the following:

$relativeBaseUrl = Url::base();
$absoluteBaseUrl = Url::base(true);
$httpsAbsoluteBaseUrl = Url::base('https');

The only parameter of the method works exactly the same as for Url::home().

Creating URLs

In order to create a URL to a given route use the Url::toRoute() method. The method uses [[\yii\web\UrlManager]] to create
a URL:

$url = Url::toRoute(['product/view', 'id' => 42]);

You may specify the route as a string, e.g., site/index. You may also use an array if you want to specify additional
query parameters for the URL being created. The array format must be:

// generates: /index.php?r=site%2Findex¶m1=value1¶m2=value2
['site/index', 'param1' => 'value1', 'param2' => 'value2']

If you want to create a URL with an anchor, you can use the array format with a # parameter. For example,

// generates: /index.php?r=site%2Findex¶m1=value1#name
['site/index', 'param1' => 'value1', '#' => 'name']

A route may be either absolute or relative. An absolute route has a leading slash (e.g. /site/index) while a relative
route has none (e.g. site/index or index). A relative route will be converted into an absolute one by the following rules:

	If the route is an empty string, the current [[\yii\web\Controller::route|route]] will be used;

	If the route contains no slashes at all (e.g. index), it is considered to be an action ID of the current controller
and will be prepended with [[\yii\web\Controller::uniqueId]];

	If the route has no leading slash (e.g. site/index), it is considered to be a route relative to the current module
and will be prepended with the module’s [[\yii\base\Module::uniqueId|uniqueId]].

Starting from version 2.0.2, you may specify a route in terms of an alias. If this is the case,
the alias will first be converted into the actual route which will then be turned into an absolute route according
to the above rules.

Below are some examples of using this method:

// /index.php?r=site%2Findex
echo Url::toRoute('site/index');

// /index.php?r=site%2Findex&src=ref1#name
echo Url::toRoute(['site/index', 'src' => 'ref1', '#' => 'name']);

// /index.php?r=post%2Fedit&id=100 assume the alias "@postEdit" is defined as "post/edit"
echo Url::toRoute(['@postEdit', 'id' => 100]);

// http://www.example.com/index.php?r=site%2Findex
echo Url::toRoute('site/index', true);

// https://www.example.com/index.php?r=site%2Findex
echo Url::toRoute('site/index', 'https');

There’s another method Url::to() that is very similar to [[toRoute()]]. The only difference is that this method
requires a route to be specified as an array only. If a string is given, it will be treated as a URL.

The first argument could be:

	an array: [[toRoute()]] will be called to generate the URL. For example:
['site/index'], ['post/index', 'page' => 2]. Please refer to [[toRoute()]] for more details
on how to specify a route.

	a string with a leading @: it is treated as an alias, and the corresponding aliased string
will be returned.

	an empty string: the currently requested URL will be returned;

	a normal string: it will be returned as is.

When $scheme is specified (either a string or true), an absolute URL with host info (obtained from
[[\yii\web\UrlManager::hostInfo]]) will be returned. If $url is already an absolute URL, its scheme
will be replaced with the specified one.

Below are some usage examples:

// /index.php?r=site%2Findex
echo Url::to(['site/index']);

// /index.php?r=site%2Findex&src=ref1#name
echo Url::to(['site/index', 'src' => 'ref1', '#' => 'name']);

// /index.php?r=post%2Fedit&id=100 assume the alias "@postEdit" is defined as "post/edit"
echo Url::to(['@postEdit', 'id' => 100]);

// the currently requested URL
echo Url::to();

// /images/logo.gif
echo Url::to('@web/images/logo.gif');

// images/logo.gif
echo Url::to('images/logo.gif');

// http://www.example.com/images/logo.gif
echo Url::to('@web/images/logo.gif', true);

// https://www.example.com/images/logo.gif
echo Url::to('@web/images/logo.gif', 'https');

Starting from version 2.0.3, you may use [[yii\helpers\Url::current()]] to create a URL based on the currently
requested route and GET parameters. You may modify or remove some of the GET parameters or add new ones by
passing a $params parameter to the method. For example,

// assume $_GET = ['id' => 123, 'src' => 'google'], current route is "post/view"

// /index.php?r=post%2Fview&id=123&src=google
echo Url::current();

// /index.php?r=post%2Fview&id=123
echo Url::current(['src' => null]);
// /index.php?r=post%2Fview&id=100&src=google
echo Url::current(['id' => 100]);

Remember URLs

There are cases when you need to remember URL and afterwards use it during processing of the one of sequential requests.
It can be achieved in the following way:

// Remember current URL
Url::remember();

// Remember URL specified. See Url::to() for argument format.
Url::remember(['product/view', 'id' => 42]);

// Remember URL specified with a name given
Url::remember(['product/view', 'id' => 42], 'product');

In the next request we can get URL remembered in the following way:

$url = Url::previous();
$productUrl = Url::previous('product');

Checking Relative URLs

To find out if URL is relative i.e. it doesn’t have host info part, you can use the following code:

$isRelative = Url::isRelative('test/it');

 Uploading Files

Uploading Files

Uploading files in Yii is usually done with the help of [[yii\web\UploadedFile]] which encapsulates each uploaded
file as an UploadedFile object. Combined with [[yii\widgets\ActiveForm]] and models,
you can easily implement a secure file uploading mechanism.

Creating Models

Like working with plain text inputs, to upload a single file you would create a model class and use an attribute
of the model to keep the uploaded file instance. You should also declare a validation rule to validate the file upload.
For example,

namespace app\models;

use yii\base\Model;
use yii\web\UploadedFile;

class UploadForm extends Model
{
 /**
 * @var UploadedFile
 */
 public $imageFile;

 public function rules()
 {
 return [
 [['imageFile'], 'file', 'skipOnEmpty' => false, 'extensions' => 'png, jpg'],
];
 }

 public function upload()
 {
 if ($this->validate()) {
 $this->imageFile->saveAs('uploads/' . $this->imageFile->baseName . '.' . $this->imageFile->extension);
 return true;
 } else {
 return false;
 }
 }
}

In the code above, the imageFile attribute is used to keep the uploaded file instance. It is associated with
a file validation rule which uses [[yii\validators\FileValidator]] to ensure a file with extension name png or jpg
is uploaded. The upload() method will perform the validation and save the uploaded file on the server.

The file validator allows you to check file extensions, size, MIME type, etc. Please refer to
the Core Validators section for more details.

Tip: If you are uploading an image, you may consider using the image validator instead. The image validator is
implemented via [[yii\validators\ImageValidator]] which verifies if an attribute has received a valid image
that can be then either saved or processed using the Imagine Extension [https://github.com/yiisoft/yii2-imagine].

Rendering File Input

Next, create a file input in a view:

<?php
use yii\widgets\ActiveForm;
?>

<?php $form = ActiveForm::begin(['options' => ['enctype' => 'multipart/form-data']]) ?>

 <?= $form->field($model, 'imageFile')->fileInput() ?>

 <button>Submit</button>

<?php ActiveForm::end() ?>

It is important to remember that you add the enctype option to the form so that the file can be properly uploaded.
The fileInput() call will render a <input type="file"> tag which will allow users to select a file to upload.

Tip: since version 2.0.8, [[yii\widgets\ActiveField::fileInput|fileInput]] adds enctype option to the form
automatically when file input field is used.

Wiring Up

Now in a controller action, write the code to wire up the model and the view to implement file uploading:

namespace app\controllers;

use Yii;
use yii\web\Controller;
use app\models\UploadForm;
use yii\web\UploadedFile;

class SiteController extends Controller
{
 public function actionUpload()
 {
 $model = new UploadForm();

 if (Yii::$app->request->isPost) {
 $model->imageFile = UploadedFile::getInstance($model, 'imageFile');
 if ($model->upload()) {
 // file is uploaded successfully
 return;
 }
 }

 return $this->render('upload', ['model' => $model]);
 }
}

In the above code, when the form is submitted, the [[yii\web\UploadedFile::getInstance()]] method is called
to represent the uploaded file as an UploadedFile instance. We then rely on the model validation to make sure
the uploaded file is valid and save the file on the server.

Uploading Multiple Files

You can also upload multiple files at once, with some adjustments to the code listed in the previous subsections.

First you should adjust the model class by adding the maxFiles option in the file validation rule to limit
the maximum number of files allowed to upload. Setting maxFiles to 0 means there is no limit on the number of files
that can be uploaded simultaneously. The maximum number of files allowed to be uploaded simultaneously is also limited
with PHP directive max_file_uploads [http://php.net/manual/en/ini.core.php#ini.max-file-uploads],
which defaults to 20. The upload() method should also be updated to save the uploaded files one by one.

namespace app\models;

use yii\base\Model;
use yii\web\UploadedFile;

class UploadForm extends Model
{
 /**
 * @var UploadedFile[]
 */
 public $imageFiles;

 public function rules()
 {
 return [
 [['imageFiles'], 'file', 'skipOnEmpty' => false, 'extensions' => 'png, jpg', 'maxFiles' => 4],
];
 }

 public function upload()
 {
 if ($this->validate()) {
 foreach ($this->imageFiles as $file) {
 $file->saveAs('uploads/' . $file->baseName . '.' . $file->extension);
 }
 return true;
 } else {
 return false;
 }
 }
}

In the view file, you should add the multiple option to the fileInput() call so that the file upload field
can receive multiple files:

<?php
use yii\widgets\ActiveForm;
?>

<?php $form = ActiveForm::begin(['options' => ['enctype' => 'multipart/form-data']]) ?>

 <?= $form->field($model, 'imageFiles[]')->fileInput(['multiple' => true, 'accept' => 'image/*']) ?>

 <button>Submit</button>

<?php ActiveForm::end() ?>

And finally in the controller action, you should call UploadedFile::getInstances() instead of
UploadedFile::getInstance() to assign an array of UploadedFile instances to UploadForm::imageFiles.

namespace app\controllers;

use Yii;
use yii\web\Controller;
use app\models\UploadForm;
use yii\web\UploadedFile;

class SiteController extends Controller
{
 public function actionUpload()
 {
 $model = new UploadForm();

 if (Yii::$app->request->isPost) {
 $model->imageFiles = UploadedFile::getInstances($model, 'imageFiles');
 if ($model->upload()) {
 // file is uploaded successfully
 return;
 }
 }

 return $this->render('upload', ['model' => $model]);
 }
}

 Extending ActiveForm on the Client Side

Extending ActiveForm on the Client Side

The [[yii\widgets\ActiveForm]] widget comes with a set of JavaScript methods that are used for client validation.
Its implementation is very flexible and allows you to extend it in different ways.
In the following these are described.

ActiveForm events

ActiveForm triggers a series of dedicated events. Using the code like the following you can subscribe to these
events and handle them:

$('#contact-form').on('beforeSubmit', function (e) {
 if (!confirm("Everything is correct. Submit?")) {
 return false;
 }
 return true;
});

In the following we’ll review events available.

beforeValidate

beforeValidate is triggered before validating the whole form.

The signature of the event handler should be:

function (event, messages, deferreds)

where

	event: an Event object.

	messages: an associative array with keys being attribute IDs and values being error message arrays
for the corresponding attributes.

	deferreds: an array of Deferred objects. You can use deferreds.add(callback) to add a new
deferred validation.

If the handler returns a boolean false, it will stop further form validation after this event. And as
a result, afterValidate event will not be triggered.

afterValidate

afterValidate event is triggered after validating the whole form.

The signature of the event handler should be:

function (event, messages, errorAttributes)

where

	event: an Event object.

	messages: an associative array with keys being attribute IDs and values being error message arrays
for the corresponding attributes.

	errorAttributes: an array of attributes that have validation errors. Please refer to
attributeDefaults for the structure of this parameter.

beforeValidateAttribute

beforeValidateAttribute event is triggered before validating an attribute.
The signature of the event handler should be:

function (event, attribute, messages, deferreds)

where

	event: an Event object.

	attribute: the attribute to be validated. Please refer to attributeDefaults for the structure
of this parameter.

	messages: an array to which you can add validation error messages for the specified attribute.

	deferreds: an array of Deferred objects. You can use deferreds.add(callback) to add
a new deferred validation.

If the handler returns a boolean false, it will stop further validation of the specified attribute.
And as a result, afterValidateAttribute event will not be triggered.

afterValidateAttribute

afterValidateAttribute event is triggered after validating the whole form and each attribute.

The signature of the event handler should be:

function (event, attribute, messages)

where

	event: an Event object.

	attribute: the attribute being validated. Please refer to attributeDefaults for the structure
of this parameter.

	messages: an array to which you can add additional validation error messages for the specified
attribute.

beforeSubmit

beforeSubmit event is triggered before submitting the form after all validations have passed.

The signature of the event handler should be:

function (event)

where event is an Event object.

If the handler returns a boolean false, it will stop form submission.

ajaxBeforeSend

ajaxBeforeSend event is triggered before sending an AJAX request for AJAX-based validation.

The signature of the event handler should be:

function (event, jqXHR, settings)

where

	event: an Event object.

	jqXHR: a jqXHR object

	settings: the settings for the AJAX request

ajaxComplete

ajaxComplete event is triggered after completing an AJAX request for AJAX-based validation.

The signature of the event handler should be:

function (event, jqXHR, textStatus)

where

	event: an Event object.

	jqXHR: a jqXHR object

	textStatus: the status of the request (“success”, “notmodified”, “error”, “timeout”,
“abort”, or “parsererror”).

Submitting the form via AJAX

While validation can be made on client side or via AJAX request, the form submission itself is done
as a normal request by default. If you want the form to be submitted via AJAX, you can achieve this
by handling the beforeSubmit event of the form in the following way:

var $form = $('#formId');
$form.on('beforeSubmit', function() {
 var data = $form.serialize();
 $.ajax({
 url: $form.attr('action'),
 type: 'POST',
 data: data,
 success: function (data) {
 // Implement successful
 },
 error: function(jqXHR, errMsg) {
 alert(errMsg);
 }
 });
 return false; // prevent default submit
});

To learn more about the jQuery ajax() function, please refer to the jQuery documentation [https://api.jquery.com/jQuery.ajax/].

Adding fields dynamically

In modern web applications you often have the need of changing a form after it has been displayed to the user.
This can for example be the addition of new fields after click on a “plus”-icon.
To enable client validation for these fields, they have to be registered with the ActiveForm JavaScript plugin.

You have to add a field itself and then add it to validation list:

$('#contact-form').yiiActiveForm('add', {
 id: 'address',
 name: 'address',
 container: '.field-address',
 input: '#address',
 error: '.help-block',
 validate: function (attribute, value, messages, deferred, $form) {
 yii.validation.required(value, messages, {message: "Validation Message Here"});
 }
});

To remove a field from validation list so it’s not validated you can do the following:

$('#contact-form').yiiActiveForm('remove', 'address');

 Creating Forms

Creating Forms

ActiveRecord based forms: ActiveForm

The primary way of using forms in Yii is through [[yii\widgets\ActiveForm]]. This approach should be preferred when
the form is based upon a model. Additionally, there are some useful methods in [[yii\helpers\Html]] that are typically
used for adding buttons and help text to any form.

A form, that is displayed on the client-side, will in most cases have a corresponding model which is used
to validate its input on the server-side (Check the Validating Input section for more details on validation).
When creating model-based forms, the first step is to define the model itself. The model can be either based upon
an Active Record class, representing some data from the database, or a generic Model class
(extending from [[yii\base\Model]]) to capture arbitrary input, for example a login form.

Tip: If the form fields are different from database columns or there are formatting and logic that is specific to that
form only, prefer creating a separate model extended from [[yii\base\Model]].

In the following example, we show how a generic model can be used for a login form:

<?php

class LoginForm extends \yii\base\Model
{
 public $username;
 public $password;

 public function rules()
 {
 return [
 // define validation rules here
];
 }
}

In the controller, we will pass an instance of that model to the view, wherein the [[yii\widgets\ActiveForm|ActiveForm]]
widget is used to display the form:

<?php
use yii\helpers\Html;
use yii\widgets\ActiveForm;

$form = ActiveForm::begin([
 'id' => 'login-form',
 'options' => ['class' => 'form-horizontal'],
]) ?>
 <?= $form->field($model, 'username') ?>
 <?= $form->field($model, 'password')->passwordInput() ?>

 <div class="form-group">
 <div class="col-lg-offset-1 col-lg-11">
 <?= Html::submitButton('Login', ['class' => 'btn btn-primary']) ?>
 </div>
 </div>
<?php ActiveForm::end() ?>

Wrapping with begin() and end()

In the above code, [[yii\widgets\ActiveForm::begin()|ActiveForm::begin()]] not only creates a form instance, but also marks the beginning of the form.
All of the content placed between [[yii\widgets\ActiveForm::begin()|ActiveForm::begin()]] and
[[yii\widgets\ActiveForm::end()|ActiveForm::end()]] will be wrapped within the HTML <form> tag.
As with any widget, you can specify some options as to how the widget should be configured by passing an array to
the begin method. In this case, an extra CSS class and identifying ID are passed to be used in the opening <form> tag.
For all available options, please refer to the API documentation of [[yii\widgets\ActiveForm]].

ActiveField

In order to create a form element in the form, along with the element’s label, and any applicable JavaScript validation,
the [[yii\widgets\ActiveForm::field()|ActiveForm::field()]] method is called, which returns an instance of [[yii\widgets\ActiveField]].
When the result of this method is echoed directly, the result is a regular (text) input.
To customize the output, you can chain additional methods of [[yii\widgets\ActiveField|ActiveField]] to this call:

// a password input
<?= $form->field($model, 'password')->passwordInput() ?>
// adding a hint and a customized label
<?= $form->field($model, 'username')->textInput()->hint('Please enter your name')->label('Name') ?>
// creating a HTML5 email input element
<?= $form->field($model, 'email')->input('email') ?>

This will create all the <label>, <input> and other tags according to the [[yii\widgets\ActiveField::$template|template]] defined by the form field.
The name of the input field is determined automatically from the model’s [[yii\base\Model::formName()|form name]] and the attribute name.
For example, the name for the input field for the username attribute in the above example will be LoginForm[username]. This naming rule will result in an array
of all attributes for the login form to be available in $_POST['LoginForm'] on the server-side.

Tip: If you have only one model in a form and want to simplify the input names you may skip the array part by
overriding the [[yii\base\Model::formName()|formName()]] method of the model to return an empty string.
This can be useful for filter models used in the GridView to create nicer URLs.

Specifying the attribute of the model can be done in more sophisticated ways. For example when an attribute may
take an array value when uploading multiple files or selecting multiple items you may specify it by appending []
to the attribute name:

// allow multiple files to be uploaded:
echo $form->field($model, 'uploadFile[]')->fileInput(['multiple'=>'multiple']);

// allow multiple items to be checked:
echo $form->field($model, 'items[]')->checkboxList(['a' => 'Item A', 'b' => 'Item B', 'c' => 'Item C']);

Be careful when naming form elements such as submit buttons. According to the jQuery documentation [https://api.jquery.com/submit/] there
are some reserved names that can cause conflicts:

Forms and their child elements should not use input names or ids that conflict with properties of a form,
such as submit, length, or method. Name conflicts can cause confusing failures.
For a complete list of rules and to check your markup for these problems, see DOMLint [http://kangax.github.io/domlint/].

Additional HTML tags can be added to the form using plain HTML or using the methods from the [[yii\helpers\Html|Html]]-helper
class like it is done in the above example with [[yii\helpers\Html::submitButton()|Html::submitButton()]].

Tip: If you are using Twitter Bootstrap CSS in your application you may want to use
[[yii\bootstrap\ActiveForm]] instead of [[yii\widgets\ActiveForm]]. The former extends from the latter and
uses Bootstrap-specific styles when generating form input fields.

Tip: In order to style required fields with asterisks, you can use the following CSS:

div.required label.control-label:after {
 content: " *";
 color: red;
}

Creating Lists

There are 3 types of lists:

	Dropdown lists

	Radio lists

	Checkbox lists

To create a list, you have to prepare the items. This can be done manually:

$items = [
 1 => 'item 1',
 2 => 'item 2'
]

or by retrieval from the DB:

$items = Category::find()
 ->select(['label'])
 ->indexBy('id')
 ->column();

These $items have to be processed by the different list widgets.
The value of the form field (and the current active item) will be automatically set
by the current value of the $model’s attribute.

Creating a drop-down list

We can use ActiveField [[\yii\widgets\ActiveField::dropDownList()]] method to create a drop-down list:

/* @var $form yii\widgets\ActiveForm */

echo $form->field($model, 'category')->dropdownList([
 1 => 'item 1',
 2 => 'item 2'
],
 ['prompt'=>'Select Category']
);

Creating a radio list

We can use ActiveField [[\yii\widgets\ActiveField::radioList()]] method to create a radio list:

/* @var $form yii\widgets\ActiveForm */

echo $form->field($model, 'category')->radioList([
 1 => 'radio 1',
 2 => 'radio 2'
]);

Creating a checkbox List

We can use ActiveField [[\yii\widgets\ActiveField::checkboxList()]] method to create a checkbox list:

/* @var $form yii\widgets\ActiveForm */

echo $form->field($model, 'category')->checkboxList([
 1 => 'checkbox 1',
 2 => 'checkbox 2'
]);

Working with Pjax

The [[yii\widgets\Pjax|Pjax]] widget allows you to update a certain section of a
page instead of reloading the entire page. You can use it to update only the form
and replace its contents after the submission.

You can configure [[yii\widgets\Pjax::$formSelector|$formSelector]] to specify
which form submission may trigger pjax. If not set, all forms with data-pjax
attribute within the enclosed content of Pjax will trigger pjax requests.

use yii\widgets\Pjax;
use yii\widgets\ActiveForm;

Pjax::begin([
 // Pjax options
]);
 $form = ActiveForm::begin([
 'options' => ['data' => ['pjax' => true]],
 // more ActiveForm options
]);

 // ActiveForm content

 ActiveForm::end();
Pjax::end();

Tip: Be careful with the links inside the [[yii\widgets\Pjax|Pjax]] widget since
the response will also be rendered inside the widget. To prevent this, use the
data-pjax="0" HTML attribute.

Values in Submit Buttons and File Upload

There are known issues using jQuery.serializeArray() when dealing with
files [https://github.com/jquery/jquery/issues/2321] and
submit button values [https://github.com/jquery/jquery/issues/2321] which
won’t be solved and are instead deprecated in favor of the FormData class
introduced in HTML5.

That means the only official support for files and submit button values with
ajax or using the [[yii\widgets\Pjax|Pjax]] widget depends on the
browser support [https://developer.mozilla.org/en-US/docs/Web/API/FormData#Browser_compatibility]
for the FormData class.

Further Reading

The next section Validating Input handles the validation of the submitted form data on the server-side as well as ajax and client-side validation.

To read about more complex usage of forms, you may want to check out the following sections:

	Collecting Tabular Input for collecting data for multiple models of the same kind.

	Getting Data for Multiple Models for handling multiple different models in the same form.

	Uploading Files on how to use forms for uploading files.

 Getting Data for Multiple Models

Getting Data for Multiple Models

When dealing with some complex data, it is possible that you may need to use multiple different models to collect
the user input. For example, assuming the user login information is stored in the user table while the user profile
information is stored in the profile table, you may want to collect the input data about a user through a User model
and a Profile model. With the Yii model and form support, you can solve this problem in a way that is not much
different from handling a single model.

In the following, we will show how you can create a form that would allow you to collect data for both User and Profile
models.

First, the controller action for collecting the user and profile data can be written as follows,

namespace app\controllers;

use Yii;
use yii\base\Model;
use yii\web\Controller;
use yii\web\NotFoundHttpException;
use app\models\User;
use app\models\Profile;

class UserController extends Controller
{
 public function actionUpdate($id)
 {
 $user = User::findOne($id);
 if (!$user) {
 throw new NotFoundHttpException("The user was not found.");
 }

 $profile = Profile::findOne($user->profile_id);

 if (!$profile) {
 throw new NotFoundHttpException("The user has no profile.");
 }

 $user->scenario = 'update';
 $profile->scenario = 'update';

 if ($user->load(Yii::$app->request->post()) && $profile->load(Yii::$app->request->post())) {
 $isValid = $user->validate();
 $isValid = $profile->validate() && $isValid;
 if ($isValid) {
 $user->save(false);
 $profile->save(false);
 return $this->redirect(['user/view', 'id' => $id]);
 }
 }

 return $this->render('update', [
 'user' => $user,
 'profile' => $profile,
]);
 }
}

In the update action, we first load the $user and $profile models to be updated from the database. We then call
[[yii\base\Model::load()]] to populate these two models with the user input. If loading is successful, we will validate
the two models and then save them —

 please note that we use save(false) to skip over validations inside the models
as the user input data have already been validated. If loading is not successful, we will render the update view which
has the following content:

<?php
use yii\helpers\Html;
use yii\widgets\ActiveForm;

$form = ActiveForm::begin([
 'id' => 'user-update-form',
 'options' => ['class' => 'form-horizontal'],
]) ?>
 <?= $form->field($user, 'username') ?>

 ...other input fields...

 <?= $form->field($profile, 'website') ?>

 <?= Html::submitButton('Update', ['class' => 'btn btn-primary']) ?>
<?php ActiveForm::end() ?>

As you can see, in the update view you would render input fields using two models $user and $profile.

 Collecting tabular input

Collecting tabular input

Sometimes you need to handle multiple models of the same kind in a single form. For example, multiple settings, where
each setting is stored as a name-value pair and is represented by a Setting active record model.
This kind of form is also often referred to as “tabular input”.
In contrast to this, handling different models of different kind, is handled in the section
Complex Forms with Multiple Models.

The following shows how to implement tabular input with Yii.

There are three different situations to cover, which have to be handled slightly different:

	Updating a fixed set of records from the database

	Creating a dynamic set of new records

	Updating, creating and deleting of records on one page

In contrast to the single model forms explained before, we are working with an array of models now.
This array is passed to the view to display the input fields for each model in a table like style and we
will use helper methods of [[yii\base\Model]] that allow loading and validating multiple models at once:

	[[yii\base\Model::loadMultiple()|Model::loadMultiple()]] load post data into an array of models.

	[[yii\base\Model::validateMultiple()|Model::validateMultiple()]] validates an array of models.

Updating a fixed set of records

Let’s start with the controller action:

<?php

namespace app\controllers;

use Yii;
use yii\base\Model;
use yii\web\Controller;
use app\models\Setting;

class SettingsController extends Controller
{
 // ...

 public function actionUpdate()
 {
 $settings = Setting::find()->indexBy('id')->all();

 if (Model::loadMultiple($settings, Yii::$app->request->post()) && Model::validateMultiple($settings)) {
 foreach ($settings as $setting) {
 $setting->save(false);
 }
 return $this->redirect('index');
 }

 return $this->render('update', ['settings' => $settings]);
 }
}

In the code above we’re using [[yii\db\ActiveQuery::indexBy()|indexBy()]] when retrieving models from the database to populate an array indexed by models primary keys.
These will be later used to identify form fields. [[yii\base\Model::loadMultiple()|Model::loadMultiple()]] fills multiple
models with the form data coming from POST
and [[yii\base\Model::validateMultiple()|Model::validateMultiple()]] validates all models at once.
As we have validated our models before, using validateMultiple(), we’re now passing false as
a parameter to [[yii\db\ActiveRecord::save()|save()]] to not run validation twice.

Now the form that’s in update view:

<?php
use yii\helpers\Html;
use yii\widgets\ActiveForm;

$form = ActiveForm::begin();

foreach ($settings as $index => $setting) {
 echo $form->field($setting, "[$index]value")->label($setting->name);
}

ActiveForm::end();

Here for each setting we are rendering name and an input with a value. It is important to add a proper index
to input name since that is how [[yii\base\Model::loadMultiple()|Model::loadMultiple()]] determines which model to fill with which values.

Creating a dynamic set of new records

Creating new records is similar to updating, except the part, where we instantiate the models:

public function actionCreate()
{
 $count = count(Yii::$app->request->post('Setting', []));
 $settings = [new Setting()];
 for($i = 1; $i < $count; $i++) {
 $settings[] = new Setting();
 }

 // ...
}

Here we create an initial $settings array containing one model by default so that always at least one text field will be
visible in the view. Additionally we add more models for each line of input we may have received.

In the view you can use javascript to add new input lines dynamically.

Combining Update, Create and Delete on one page

Note: This section is under development.

It has no content yet.

TBD

 Validating Input

Validating Input

As a rule of thumb, you should never trust the data received from end users and should always validate it
before putting it to good use.

Given a model populated with user inputs, you can validate the inputs by calling the
[[yii\base\Model::validate()]] method. The method will return a boolean value indicating whether the validation
succeeded or not. If not, you may get the error messages from the [[yii\base\Model::errors]] property. For example,

$model = new \app\models\ContactForm();

// populate model attributes with user inputs
$model->load(\Yii::$app->request->post());
// which is equivalent to the following:
// $model->attributes = \Yii::$app->request->post('ContactForm');

if ($model->validate()) {
 // all inputs are valid
} else {
 // validation failed: $errors is an array containing error messages
 $errors = $model->errors;
}

Declaring Rules

To make validate() really work, you should declare validation rules for the attributes you plan to validate.
This should be done by overriding the [[yii\base\Model::rules()]] method. The following example shows how
the validation rules for the ContactForm model are declared:

public function rules()
{
 return [
 // the name, email, subject and body attributes are required
 [['name', 'email', 'subject', 'body'], 'required'],

 // the email attribute should be a valid email address
 ['email', 'email'],
];
}

The [[yii\base\Model::rules()|rules()]] method should return an array of rules, each of which is an array
of the following format:

[
 // required, specifies which attributes should be validated by this rule.
 // For a single attribute, you can use the attribute name directly
 // without having it in an array
 ['attribute1', 'attribute2', ...],

 // required, specifies the type of this rule.
 // It can be a class name, validator alias, or a validation method name
 'validator',

 // optional, specifies in which scenario(s) this rule should be applied
 // if not given, it means the rule applies to all scenarios
 // You may also configure the "except" option if you want to apply the rule
 // to all scenarios except the listed ones
 'on' => ['scenario1', 'scenario2', ...],

 // optional, specifies additional configurations for the validator object
 'property1' => 'value1', 'property2' => 'value2', ...
]

For each rule you must specify at least which attributes the rule applies to and what is the type of the rule.
You can specify the rule type in one of the following forms:

	the alias of a core validator, such as required, in, date, etc. Please refer to
the Core Validators for the complete list of core validators.

	the name of a validation method in the model class, or an anonymous function. Please refer to the
Inline Validators subsection for more details.

	a fully qualified validator class name. Please refer to the Standalone Validators
subsection for more details.

A rule can be used to validate one or multiple attributes, and an attribute may be validated by one or multiple rules.
A rule may be applied in certain scenarios only by specifying the on option.
If you do not specify an on option, it means the rule will be applied to all scenarios.

When the validate() method is called, it does the following steps to perform validation:

	Determine which attributes should be validated by getting the attribute list from [[yii\base\Model::scenarios()]]
using the current [[yii\base\Model::scenario|scenario]]. These attributes are called active attributes.

	Determine which validation rules should be used by getting the rule list from [[yii\base\Model::rules()]]
using the current [[yii\base\Model::scenario|scenario]]. These rules are called active rules.

	Use each active rule to validate each active attribute which is associated with the rule.
The validation rules are evaluated in the order they are listed.

According to the above validation steps, an attribute will be validated if and only if it is
an active attribute declared in scenarios() and is associated with one or multiple active rules
declared in rules().

Note: It is handy to give names to rules i.e.

public function rules()
{
 return [
 // ...
 'password' => [['password'], 'string', 'max' => 60],
];
}

You can use it in a child model:

public function rules()
{
 $rules = parent::rules();
 unset($rules['password']);
 return $rules;
}

Customizing Error Messages

Most validators have default error messages that will be added to the model being validated when its attributes
fail the validation. For example, the [[yii\validators\RequiredValidator|required]] validator will add
a message “Username cannot be blank.” to a model when the username attribute fails the rule using this validator.

You can customize the error message of a rule by specifying the message property when declaring the rule,
like the following,

public function rules()
{
 return [
 ['username', 'required', 'message' => 'Please choose a username.'],
];
}

Some validators may support additional error messages to more precisely describe different causes of
validation failures. For example, the [[yii\validators\NumberValidator|number]] validator supports
[[yii\validators\NumberValidator::tooBig|tooBig]] and [[yii\validators\NumberValidator::tooSmall|tooSmall]]
to describe the validation failure when the value being validated is too big and too small, respectively.
You may configure these error messages like configuring other properties of validators in a validation rule.

Validation Events

When [[yii\base\Model::validate()]] is called, it will call two methods that you may override to customize
the validation process:

	[[yii\base\Model::beforeValidate()]]: the default implementation will trigger a [[yii\base\Model::EVENT_BEFORE_VALIDATE]]
event. You may either override this method or respond to this event to do some preprocessing work
(e.g. normalizing data inputs) before the validation occurs. The method should return a boolean value indicating
whether the validation should proceed or not.

	[[yii\base\Model::afterValidate()]]: the default implementation will trigger a [[yii\base\Model::EVENT_AFTER_VALIDATE]]
event. You may either override this method or respond to this event to do some postprocessing work after
the validation is completed.

Conditional Validation

To validate attributes only when certain conditions apply, e.g. the validation of one attribute depends
on the value of another attribute you can use the [[yii\validators\Validator::when|when]] property
to define such conditions. For example,

 ['state', 'required', 'when' => function($model) {
 return $model->country == 'USA';
 }]

The [[yii\validators\Validator::when|when]] property takes a PHP callable with the following signature:

/**
 * @param Model $model the model being validated
 * @param string $attribute the attribute being validated
 * @return bool whether the rule should be applied
 */
function ($model, $attribute)

If you also need to support client-side conditional validation, you should configure
the [[yii\validators\Validator::whenClient|whenClient]] property which takes a string representing a JavaScript
function whose return value determines whether to apply the rule or not. For example,

 ['state', 'required', 'when' => function ($model) {
 return $model->country == 'USA';
 }, 'whenClient' => "function (attribute, value) {
 return $('#country').val() == 'USA';
 }"]

Data Filtering

User inputs often need to be filtered or preprocessed. For example, you may want to trim the spaces around the
username input. You may use validation rules to achieve this goal.

The following examples shows how to trim the spaces in the inputs and turn empty inputs into nulls by using
the trim and default core validators:

return [
 [['username', 'email'], 'trim'],
 [['username', 'email'], 'default'],
];

You may also use the more general filter validator to perform more complex
data filtering.

As you can see, these validation rules do not really validate the inputs. Instead, they will process the values
and save them back to the attributes being validated.

A complete processing of user input is shown in the following example code, which will ensure only integer
values are stored in an attribute:

['age', 'trim'],
['age', 'default', 'value' => null],
['age', 'integer', 'min' => 0],
['age', 'filter', 'filter' => 'intval', 'skipOnEmpty' => true],

The above code will perform the following operations on the input:

	Trim whitespace from the input value.

	Make sure empty input is stored as null in the database; we differentiate between a value being “not set”
and the actual value 0. If null is not allowed you can set another default value here.

	Validate that the value is an integer greater than 0 if it is not empty. Normal validators have
[[yii\validators\Validator::$skipOnEmpty|$skipOnEmpty]] set to true.

	Make sure the value is of type integer, e.g. casting a string '42' to integer 42.
Here we set [[yii\validators\FilterValidator::$skipOnEmpty|$skipOnEmpty]] to true, which is false by default
on the [[yii\validators\FilterValidator|filter]] validator.

Handling Empty Inputs

When input data are submitted from HTML forms, you often need to assign some default values to the inputs
if they are empty. You can do so by using the default validator. For example,

return [
 // set "username" and "email" as null if they are empty
 [['username', 'email'], 'default'],

 // set "level" to be 1 if it is empty
 ['level', 'default', 'value' => 1],
];

By default, an input is considered empty if its value is an empty string, an empty array or a null.
You may customize the default empty detection logic by configuring the [[yii\validators\Validator::isEmpty]] property
with a PHP callable. For example,

 ['agree', 'required', 'isEmpty' => function ($value) {
 return empty($value);
 }]

Note: Most validators do not handle empty inputs if their [[yii\validators\Validator::skipOnEmpty]] property takes
the default value true. They will simply be skipped during validation if their associated attributes receive empty
inputs. Among the core validators, only the captcha, default, filter,
required, and trim validators will handle empty inputs.

Ad Hoc Validation

Sometimes you need to do ad hoc validation for values that are not bound to any model.

If you only need to perform one type of validation (e.g. validating email addresses), you may call
the [[yii\validators\Validator::validate()|validate()]] method of the desired validator, like the following:

$email = 'test@example.com';
$validator = new yii\validators\EmailValidator();

if ($validator->validate($email, $error)) {
 echo 'Email is valid.';
} else {
 echo $error;
}

Note: Not all validators support this type of validation. An example is the unique
core validator which is designed to work with a model only.

If you need to perform multiple validations against several values, you can use [[yii\base\DynamicModel]]
which supports declaring both attributes and rules on the fly. Its usage is like the following:

public function actionSearch($name, $email)
{
 $model = DynamicModel::validateData(['name' => $name, 'email' => $email], [
 [['name', 'email'], 'string', 'max' => 128],
 ['email', 'email'],
]);

 if ($model->hasErrors()) {
 // validation fails
 } else {
 // validation succeeds
 }
}

The [[yii\base\DynamicModel::validateData()]] method creates an instance of DynamicModel, defines the attributes
using the given data (name and email in this example), and then calls [[yii\base\Model::validate()]]
with the given rules.

Alternatively, you may use the following more “classic” syntax to perform ad hoc data validation:

public function actionSearch($name, $email)
{
 $model = new DynamicModel(['name' => $name, 'email' => $email]);
 $model->addRule(['name', 'email'], 'string', ['max' => 128])
 ->addRule('email', 'email')
 ->validate();

 if ($model->hasErrors()) {
 // validation fails
 } else {
 // validation succeeds
 }
}

After validation, you can check if the validation succeeded or not by calling the
[[yii\base\DynamicModel::hasErrors()|hasErrors()]] method, and then get the validation errors from the
[[yii\base\DynamicModel::errors|errors]] property, like you do with a normal model.
You may also access the dynamic attributes defined through the model instance, e.g.,
$model->name and $model->email.

Creating Validators

Besides using the core validators included in the Yii releases, you may also
create your own validators. You may create inline validators or standalone validators.

Inline Validators

An inline validator is one defined in terms of a model method or an anonymous function. The signature of
the method/function is:

/**
 * @param string $attribute the attribute currently being validated
 * @param mixed $params the value of the "params" given in the rule
 * @param \yii\validators\InlineValidator $validator related InlineValidator instance.
 * This parameter is available since version 2.0.11.
 */
function ($attribute, $params, $validator)

If an attribute fails the validation, the method/function should call [[yii\base\Model::addError()]] to save
the error message in the model so that it can be retrieved back later to present to end users.

Below are some examples:

use yii\base\Model;

class MyForm extends Model
{
 public $country;
 public $token;

 public function rules()
 {
 return [
 // an inline validator defined as the model method validateCountry()
 ['country', 'validateCountry'],

 // an inline validator defined as an anonymous function
 ['token', function ($attribute, $params, $validator) {
 if (!ctype_alnum($this->$attribute)) {
 $this->addError($attribute, 'The token must contain letters or digits.');
 }
 }],
];
 }

 public function validateCountry($attribute, $params, $validator)
 {
 if (!in_array($this->$attribute, ['USA', 'Indonesia'])) {
 $this->addError($attribute, 'The country must be either "USA" or "Indonesia".');
 }
 }
}

Note: Since version 2.0.11 you can use [[yii\validators\InlineValidator::addError()]] for adding errors instead. That way the error
message can be formatted using [[yii\i18n\I18N::format()]] right away. Use {attribute} and {value} in the error
message to refer to an attribute label (no need to get it manually) and attribute value accordingly:

$validator->addError($this, $attribute, 'The value "{value}" is not acceptable for {attribute}.');

Note: By default, inline validators will not be applied if their associated attributes receive empty inputs
or if they have already failed some validation rules. If you want to make sure a rule is always applied,
you may configure the [[yii\validators\Validator::skipOnEmpty|skipOnEmpty]] and/or [[yii\validators\Validator::skipOnError|skipOnError]]
properties to be false in the rule declarations. For example:

[
 ['country', 'validateCountry', 'skipOnEmpty' => false, 'skipOnError' => false],
]

Standalone Validators

A standalone validator is a class extending [[yii\validators\Validator]] or its child class. You may implement
its validation logic by overriding the [[yii\validators\Validator::validateAttribute()]] method. If an attribute
fails the validation, call [[yii\base\Model::addError()]] to save the error message in the model, like you do
with inline validators.

For example, the inline validator above could be moved into new [[components/validators/CountryValidator]] class.
In this case we can use [[yii\validators\Validator::addError()]] to set customized message for the model.

namespace app\components;

use yii\validators\Validator;

class CountryValidator extends Validator
{
 public function validateAttribute($model, $attribute)
 {
 if (!in_array($model->$attribute, ['USA', 'Indonesia'])) {
 $this->addError($model, $attribute, 'The country must be either "{country1}" or "{country2}".', ['country1' => 'USA', 'country2' => 'Indonesia']);
 }
 }
}

If you want your validator to support validating a value without a model, you should also override
[[yii\validators\Validator::validate()]]. You may also override [[yii\validators\Validator::validateValue()]]
instead of validateAttribute() and validate() because by default the latter two methods are implemented
by calling validateValue().

Below is an example of how you could use the above validator class within your model.

namespace app\models;

use Yii;
use yii\base\Model;
use app\components\validators\CountryValidator;

class EntryForm extends Model
{
 public $name;
 public $email;
 public $country;

 public function rules()
 {
 return [
 [['name', 'email'], 'required'],
 ['country', CountryValidator::className()],
 ['email', 'email'],
];
 }
}

Multiple Attributes Validation

Sometimes validators involve multiple attributes. Consider the following form:

class MigrationForm extends \yii\base\Model
{
 /**
 * Minimal funds amount for one adult person
 */
 const MIN_ADULT_FUNDS = 3000;
 /**
 * Minimal funds amount for one child
 */
 const MIN_CHILD_FUNDS = 1500;

 public $personalSalary;
 public $spouseSalary;
 public $childrenCount;
 public $description;

 public function rules()
 {
 return [
 [['personalSalary', 'description'], 'required'],
 [['personalSalary', 'spouseSalary'], 'integer', 'min' => self::MIN_ADULT_FUNDS],
 ['childrenCount', 'integer', 'min' => 0, 'max' => 5],
 [['spouseSalary', 'childrenCount'], 'default', 'value' => 0],
 ['description', 'string'],
];
 }
}

Creating validator

Let’s say we need to check if the family income is enough for children. We can create inline validator
validateChildrenFunds for that which will run only when childrenCount is more than 0.

Note that we can’t use all validated attributes (['personalSalary', 'spouseSalary', 'childrenCount']) when attaching
validator. This is because the same validator will run for each attribute (3 times in total) and we only need to run it
once for the whole attribute set.

You can use any of these attributes instead (or use what you think is the most relevant):

['childrenCount', 'validateChildrenFunds', 'when' => function ($model) {
 return $model->childrenCount > 0;
}],

Implementation of validateChildrenFunds can be like this:

public function validateChildrenFunds($attribute, $params)
{
 $totalSalary = $this->personalSalary + $this->spouseSalary;
 // Double the minimal adult funds if spouse salary is specified
 $minAdultFunds = $this->spouseSalary ? self::MIN_ADULT_FUNDS * 2 : self::MIN_ADULT_FUNDS;
 $childFunds = $totalSalary - $minAdultFunds;
 if ($childFunds / $this->childrenCount < self::MIN_CHILD_FUNDS) {
 $this->addError('childrenCount', 'Your salary is not enough for children.');
 }
}

You can ignore $attribute parameter because validation is not related to just one attribute.

Adding errors

Adding error in case of multiple attributes can vary depending on desired form design:

	Select the most relevant field in your opinion and add error to it’s attribute:

$this->addError('childrenCount', 'Your salary is not enough for children.');

	Select multiple important relevant attributes or all attributes and add the same error message to them. We can store
message in separate variable before passing it to addError to keep code DRY.

$message = 'Your salary is not enough for children.';
$this->addError('personalSalary', $message);
$this->addError('wifeSalary', $message);
$this->addError('childrenCount', $message);

Or use a loop:

$attributes = ['personalSalary', 'wifeSalary', 'childrenCount'];
foreach ($attributes as $attribute) {
 $this->addError($attribute, 'Your salary is not enough for children.');
}

	Add a common error (not related to particular attribute). We can use the not existing attribute name for adding
error, for example *, because attribute existence is not checked at that point.

$this->addError('*', 'Your salary is not enough for children.');

As a result, we will not see error message near form fields. To display it, we can include the error summary in view:

<?= $form->errorSummary($model) ?>

Note: Creating validator which validates multiple attributes at once is well described in the community cookbook [https://github.com/samdark/yii2-cookbook/blob/master/book/forms-validator-multiple-attributes.md].

Client-Side Validation

Client-side validation based on JavaScript is desirable when end users provide inputs via HTML forms, because
it allows users to find out input errors faster and thus provides a better user experience. You may use or implement
a validator that supports client-side validation in addition to server-side validation.

Info: While client-side validation is desirable, it is not a must. Its main purpose is to provide users with a better
experience. Similar to input data coming from end users, you should never trust client-side validation. For this reason,
you should always perform server-side validation by calling [[yii\base\Model::validate()]], as
described in the previous subsections.

Using Client-Side Validation

Many core validators support client-side validation out-of-the-box. All you need to do
is just use [[yii\widgets\ActiveForm]] to build your HTML forms. For example, LoginForm below declares two
rules: one uses the required core validator which is supported on both
client and server-sides; the other uses the validatePassword inline validator which is only supported on the server
side.

namespace app\models;

use yii\base\Model;
use app\models\User;

class LoginForm extends Model
{
 public $username;
 public $password;

 public function rules()
 {
 return [
 // username and password are both required
 [['username', 'password'], 'required'],

 // password is validated by validatePassword()
 ['password', 'validatePassword'],
];
 }

 public function validatePassword()
 {
 $user = User::findByUsername($this->username);

 if (!$user || !$user->validatePassword($this->password)) {
 $this->addError('password', 'Incorrect username or password.');
 }
 }
}

The HTML form built by the following code contains two input fields username and password.
If you submit the form without entering anything, you will find the error messages requiring you
to enter something appear right away without any communication with the server.

<?php $form = yii\widgets\ActiveForm::begin(); ?>
 <?= $form->field($model, 'username') ?>
 <?= $form->field($model, 'password')->passwordInput() ?>
 <?= Html::submitButton('Login') ?>
<?php yii\widgets\ActiveForm::end(); ?>

Behind the scene, [[yii\widgets\ActiveForm]] will read the validation rules declared in the model
and generate appropriate JavaScript code for validators that support client-side validation. When a user
changes the value of an input field or submit the form, the client-side validation JavaScript will be triggered.

If you want to turn off client-side validation completely, you may configure the
[[yii\widgets\ActiveForm::enableClientValidation]] property to be false. You may also turn off client-side
validation of individual input fields by configuring their [[yii\widgets\ActiveField::enableClientValidation]]
property to be false. When enableClientValidation is configured at both the input field level and the form level,
the former will take precedence.

Info: Since version 2.0.11 all validators extending from [[yii\validators\Validator]] receive client-side options
from separate method - [[yii\validators\Validator::getClientOptions()]]. You can use it:

	if you want to implement your own custom client-side validation but leave the synchronization with server-side
validator options;

	to extend or customize to fit your specific needs:

public function getClientOptions($model, $attribute)
{
 $options = parent::getClientOptions($model, $attribute);
 // Modify $options here

 return $options;
}

Implementing Client-Side Validation

To create a validator that supports client-side validation, you should implement the
[[yii\validators\Validator::clientValidateAttribute()]] method which returns a piece of JavaScript code
that performs the validation on the client-side. Within the JavaScript code, you may use the following
predefined variables:

	attribute: the name of the attribute being validated.

	value: the value being validated.

	messages: an array used to hold the validation error messages for the attribute.

	deferred: an array which deferred objects can be pushed into (explained in the next subsection).

In the following example, we create a StatusValidator which validates if an input is a valid status input
against the existing status data. The validator supports both server-side and client-side validation.

namespace app\components;

use yii\validators\Validator;
use app\models\Status;

class StatusValidator extends Validator
{
 public function init()
 {
 parent::init();
 $this->message = 'Invalid status input.';
 }

 public function validateAttribute($model, $attribute)
 {
 $value = $model->$attribute;
 if (!Status::find()->where(['id' => $value])->exists()) {
 $model->addError($attribute, $this->message);
 }
 }

 public function clientValidateAttribute($model, $attribute, $view)
 {
 $statuses = json_encode(Status::find()->select('id')->asArray()->column());
 $message = json_encode($this->message, JSON_UNESCAPED_SLASHES | JSON_UNESCAPED_UNICODE);
 return <<<JS
if ($.inArray(value, $statuses) === -1) {
 messages.push($message);
}
JS;
 }
}

Tip: The above code is given mainly to demonstrate how to support client-side validation. In practice,
you may use the in core validator to achieve the same goal. You may
write the validation rule like the following:

[
 ['status', 'in', 'range' => Status::find()->select('id')->asArray()->column()],
]

Tip: If you need to work with client validation manually i.e. dynamically add fields or do some custom UI logic, refer
to Working with ActiveForm via JavaScript [https://github.com/samdark/yii2-cookbook/blob/master/book/forms-activeform-js.md]
in Yii 2.0 Cookbook.

Deferred Validation

If you need to perform asynchronous client-side validation, you can create Deferred objects [http://api.jquery.com/category/deferred-object/].
For example, to perform a custom AJAX validation, you can use the following code:

public function clientValidateAttribute($model, $attribute, $view)
{
 return <<<JS
 deferred.push($.get("/check", {value: value}).done(function(data) {
 if ('' !== data) {
 messages.push(data);
 }
 }));
JS;
}

In the above, the deferred variable is provided by Yii, which is an array of Deferred objects. The $.get()
jQuery method creates a Deferred object which is pushed to the deferred array.

You can also explicitly create a Deferred object and call its resolve() method when the asynchronous callback
is hit. The following example shows how to validate the dimensions of an uploaded image file on the client-side.

public function clientValidateAttribute($model, $attribute, $view)
{
 return <<<JS
 var def = $.Deferred();
 var img = new Image();
 img.onload = function() {
 if (this.width > 150) {
 messages.push('Image too wide!!');
 }
 def.resolve();
 }
 var reader = new FileReader();
 reader.onloadend = function() {
 img.src = reader.result;
 }
 reader.readAsDataURL(file);

 deferred.push(def);
JS;
}

Note: The resolve() method must be called after the attribute has been validated. Otherwise the main form
validation will not complete.

For simplicity, the deferred array is equipped with a shortcut method add() which automatically creates a Deferred
object and adds it to the deferred array. Using this method, you can simplify the above example as follows,

public function clientValidateAttribute($model, $attribute, $view)
{
 return <<<JS
 deferred.add(function(def) {
 var img = new Image();
 img.onload = function() {
 if (this.width > 150) {
 messages.push('Image too wide!!');
 }
 def.resolve();
 }
 var reader = new FileReader();
 reader.onloadend = function() {
 img.src = reader.result;
 }
 reader.readAsDataURL(file);
 });
JS;
}

AJAX Validation

Some validations can only be done on the server-side, because only the server has the necessary information.
For example, to validate if a username is unique or not, it is necessary to check the user table on the server-side.
You can use AJAX-based validation in this case. It will trigger an AJAX request in the background to validate the
input while keeping the same user experience as the regular client-side validation.

To enable AJAX validation for a single input field, configure the [[yii\widgets\ActiveField::enableAjaxValidation|enableAjaxValidation]]
property of that field to be true and specify a unique form id:

use yii\widgets\ActiveForm;

$form = ActiveForm::begin([
 'id' => 'registration-form',
]);

echo $form->field($model, 'username', ['enableAjaxValidation' => true]);

// ...

ActiveForm::end();

To enable AJAX validation for all inputs of the form, configure [[yii\widgets\ActiveForm::enableAjaxValidation|enableAjaxValidation]]
to be true at the form level:

$form = ActiveForm::begin([
 'id' => 'contact-form',
 'enableAjaxValidation' => true,
]);

Note: When the enableAjaxValidation property is configured at both the input field level and the form level,
the former will take precedence.

You also need to prepare the server so that it can handle the AJAX validation requests.
This can be achieved by a code snippet like the following in the controller actions:

if (Yii::$app->request->isAjax && $model->load(Yii::$app->request->post())) {
 Yii::$app->response->format = Response::FORMAT_JSON;
 return ActiveForm::validate($model);
}

The above code will check whether the current request is an AJAX. If yes, it will respond to
this request by running the validation and returning the errors in JSON format.

Info: You can also use Deferred Validation to perform AJAX validation.
However, the AJAX validation feature described here is more systematic and requires less coding effort.

When both enableClientValidation and enableAjaxValidation are set to true, AJAX validation request will be triggered
only after the successful client validation. Note that in case of validating a single field that happens if either
validateOnChange, validateOnBlur or validateOnType is set to true, AJAX request will be sent when the field in
question alone successfully passes client validation.

 Upgrading from Version 1.1

Upgrading from Version 1.1

There are many differences between versions 1.1 and 2.0 of Yii as the framework was completely rewritten for 2.0.
As a result, upgrading from version 1.1 is not as trivial as upgrading between minor versions. In this guide you’ll
find the major differences between the two versions.

If you have not used Yii 1.1 before, you can safely skip this section and turn directly to “Getting started”.

Please note that Yii 2.0 introduces more new features than are covered in this summary. It is highly recommended
that you read through the whole definitive guide to learn about them all. Chances are that
some features you previously had to develop for yourself are now part of the core code.

Installation

Yii 2.0 fully embraces Composer [https://getcomposer.org/], the de facto PHP package manager. Installation
of the core framework, as well as extensions, are handled through Composer. Please refer to
the Installing Yii section to learn how to install Yii 2.0. If you want to
create new extensions, or turn your existing 1.1 extensions into 2.0-compatible extensions, please refer to
the Creating Extensions section of the guide.

PHP Requirements

Yii 2.0 requires PHP 5.4 or above, which is a huge improvement over PHP version 5.2 that is required by Yii 1.1.
As a result, there are many differences on the language level that you should pay attention to.
Below is a summary of the major changes regarding PHP:

	Namespaces [http://php.net/manual/en/language.namespaces.php].

	Anonymous functions [http://php.net/manual/en/functions.anonymous.php].

	Short array syntax [...elements...] is used instead of array(...elements...).

	Short echo tags <?= are used in view files. This is safe to use starting from PHP 5.4.

	SPL classes and interfaces [http://php.net/manual/en/book.spl.php].

	Late Static Bindings [http://php.net/manual/en/language.oop5.late-static-bindings.php].

	Date and Time [http://php.net/manual/en/book.datetime.php].

	Traits [http://php.net/manual/en/language.oop5.traits.php].

	intl [http://php.net/manual/en/book.intl.php]. Yii 2.0 makes use of the intl PHP extension
to support internationalization features.

Namespace

The most obvious change in Yii 2.0 is the use of namespaces. Almost every core class
is namespaced, e.g., yii\web\Request. The “C” prefix is no longer used in class names.
The naming scheme now follows the directory structure. For example, yii\web\Request
indicates that the corresponding class file is web/Request.php under the Yii framework folder.

(You can use any core class without explicitly including that class file, thanks to the Yii
class loader.)

Component and Object

Yii 2.0 breaks the CComponent class in 1.1 into two classes: [[yii\base\BaseObject]] and [[yii\base\Component]].
The [[yii\base\BaseObject|BaseObject]] class is a lightweight base class that allows defining object properties
via getters and setters. The [[yii\base\Component|Component]] class extends from [[yii\base\BaseObject|BaseObject]] and supports
events and behaviors.

If your class does not need the event or behavior feature, you should consider using
[[yii\base\BaseObject|BaseObject]] as the base class. This is usually the case for classes that represent basic
data structures.

Object Configuration

The [[yii\base\BaseObject|BaseObject]] class introduces a uniform way of configuring objects. Any descendant class
of [[yii\base\BaseObject|BaseObject]] should declare its constructor (if needed) in the following way so that
it can be properly configured:

class MyClass extends \yii\base\BaseObject
{
 public function __construct($param1, $param2, $config = [])
 {
 // ... initialization before configuration is applied

 parent::__construct($config);
 }

 public function init()
 {
 parent::init();

 // ... initialization after configuration is applied
 }
}

In the above, the last parameter of the constructor must take a configuration array
that contains name-value pairs for initializing the properties at the end of the constructor.
You can override the [[yii\base\BaseObject::init()|init()]] method to do initialization work that should be done after
the configuration has been applied.

By following this convention, you will be able to create and configure new objects
using a configuration array:

$object = Yii::createObject([
 'class' => 'MyClass',
 'property1' => 'abc',
 'property2' => 'cde',
], [$param1, $param2]);

More details about configurations can be found in the Configurations section.

Events

In Yii 1, events were created by defining an on-method (e.g., onBeforeSave). In Yii 2, you can now use any event name. You trigger an event by calling
the [[yii\base\Component::trigger()|trigger()]] method:

$event = new \yii\base\Event;
$component->trigger($eventName, $event);

To attach a handler to an event, use the [[yii\base\Component::on()|on()]] method:

$component->on($eventName, $handler);
// To detach the handler, use:
// $component->off($eventName, $handler);

There are many enhancements to the event features. For more details, please refer to the Events section.

Path Aliases

Yii 2.0 expands the usage of path aliases to both file/directory paths and URLs. Yii 2.0 also now requires
an alias name to start with the @ character, to differentiate aliases from normal file/directory paths or URLs.
For example, the alias @yii refers to the Yii installation directory. Path aliases are
supported in most places in the Yii core code. For example, [[yii\caching\FileCache::cachePath]] can take
both a path alias and a normal directory path.

A path alias is also closely related to a class namespace. It is recommended that a path
alias be defined for each root namespace, thereby allowing you to use Yii class autoloader without
any further configuration. For example, because @yii refers to the Yii installation directory,
a class like yii\web\Request can be autoloaded. If you use a third party library,
such as the Zend Framework, you may define a path alias @Zend that refers to that framework’s installation
directory. Once you’ve done that, Yii will be able to autoload any class in that Zend Framework library, too.

More on path aliases can be found in the Aliases section.

Views

The most significant change about views in Yii 2 is that the special variable $this in a view no longer refers to
the current controller or widget. Instead, $this now refers to a view object, a new concept
introduced in 2.0. The view object is of type [[yii\web\View]], which represents the view part
of the MVC pattern. If you want to access the controller or widget in a view, you can use $this->context.

To render a partial view within another view, you use $this->render(), not $this->renderPartial(). The call to render also now has to be explicitly echoed, as the render() method returns the rendering
result, rather than directly displaying it. For example:

echo $this->render('_item', ['item' => $item]);

Besides using PHP as the primary template language, Yii 2.0 is also equipped with official
support for two popular template engines: Smarty and Twig. The Prado template engine is no longer supported.
To use these template engines, you need to configure the view application component by setting the
[[yii\base\View::$renderers|View::$renderers]] property. Please refer to the Template Engines
section for more details.

Models

Yii 2.0 uses [[yii\base\Model]] as the base model, similar to CModel in 1.1.
The class CFormModel has been dropped entirely. Instead, in Yii 2 you should extend [[yii\base\Model]] to create a form model class.

Yii 2.0 introduces a new method called [[yii\base\Model::scenarios()|scenarios()]] to declare
supported scenarios, and to indicate under which scenario an attribute needs to be validated, can be considered as safe or not, etc. For example:

public function scenarios()
{
 return [
 'backend' => ['email', 'role'],
 'frontend' => ['email', '!role'],
];
}

In the above, two scenarios are declared: backend and frontend. For the backend scenario, both the
email and role attributes are safe, and can be massively assigned. For the frontend scenario,
email can be massively assigned while role cannot. Both email and role should be validated using rules.

The [[yii\base\Model::rules()|rules()]] method is still used to declare the validation rules. Note that due to the introduction of [[yii\base\Model::scenarios()|scenarios()]], there is no longer an unsafe validator.

In most cases, you do not need to override [[yii\base\Model::scenarios()|scenarios()]]
if the [[yii\base\Model::rules()|rules()]] method fully specifies the scenarios that will exist, and if there is no need to declare
unsafe attributes.

To learn more details about models, please refer to the Models section.

Controllers

Yii 2.0 uses [[yii\web\Controller]] as the base controller class, which is similar to CController in Yii 1.1.
[[yii\base\Action]] is the base class for action classes.

The most obvious impact of these changes on your code is that a controller action should return the content
that you want to render instead of echoing it:

public function actionView($id)
{
 $model = \app\models\Post::findOne($id);
 if ($model) {
 return $this->render('view', ['model' => $model]);
 } else {
 throw new \yii\web\NotFoundHttpException;
 }
}

Please refer to the Controllers section for more details about controllers.

Widgets

Yii 2.0 uses [[yii\base\Widget]] as the base widget class, similar to CWidget in Yii 1.1.

To get better support for the framework in IDEs, Yii 2.0 introduces a new syntax for using widgets. The static methods
[[yii\base\Widget::begin()|begin()]], [[yii\base\Widget::end()|end()]], and [[yii\base\Widget::widget()|widget()]]
have been introduced, to be used like so:

use yii\widgets\Menu;
use yii\widgets\ActiveForm;

// Note that you have to "echo" the result to display it
echo Menu::widget(['items' => $items]);

// Passing an array to initialize the object properties
$form = ActiveForm::begin([
 'options' => ['class' => 'form-horizontal'],
 'fieldConfig' => ['inputOptions' => ['class' => 'input-xlarge']],
]);
... form input fields here ...
ActiveForm::end();

Please refer to the Widgets section for more details.

Themes

Themes work completely differently in 2.0. They are now based on a path mapping mechanism that maps a source
view file path to a themed view file path. For example, if the path map for a theme is
['/web/views' => '/web/themes/basic'], then the themed version for the view file
/web/views/site/index.php will be /web/themes/basic/site/index.php. For this reason, themes can now
be applied to any view file, even a view rendered outside of the context of a controller or a widget.

Also, there is no more CThemeManager component. Instead, theme is a configurable property of the view
application component.

Please refer to the Theming section for more details.

Console Applications

Console applications are now organized as controllers, like Web applications. Console controllers
should extend from [[yii\console\Controller]], similar to CConsoleCommand in 1.1.

To run a console command, use yii <route>, where <route> stands for a controller route
(e.g. sitemap/index). Additional anonymous arguments are passed as the parameters to the
corresponding controller action method, while named arguments are parsed according to
the declarations in [[yii\console\Controller::options()]].

Yii 2.0 supports automatic generation of command help information from comment blocks.

Please refer to the Console Commands section for more details.

I18N

Yii 2.0 removes the built-in date formatter and number formatter pieces in favor of the PECL intl PHP module [http://pecl.php.net/package/intl].

Message translation is now performed via the i18n application component.
This component manages a set of message sources, which allows you to use different message
sources based on message categories.

Please refer to the Internationalization section for more details.

Action Filters

Action filters are implemented via behaviors now. To define a new, custom filter, extend from [[yii\base\ActionFilter]]. To use a filter, attach the filter class to the controller
as a behavior. For example, to use the [[yii\filters\AccessControl]] filter, you would have the following
code in a controller:

public function behaviors()
{
 return [
 'access' => [
 'class' => 'yii\filters\AccessControl',
 'rules' => [
 ['allow' => true, 'actions' => ['admin'], 'roles' => ['@']],
],
],
];
}

Please refer to the Filtering section for more details.

Assets

Yii 2.0 introduces a new concept called asset bundle that replaces the script package concept found in Yii 1.1.

An asset bundle is a collection of asset files (e.g. JavaScript files, CSS files, image files, etc.)
within a directory. Each asset bundle is represented as a class extending [[yii\web\AssetBundle]].
By registering an asset bundle via [[yii\web\AssetBundle::register()]], you make
the assets in that bundle accessible via the Web. Unlike in Yii 1, the page registering the bundle will automatically
contain the references to the JavaScript and CSS files specified in that bundle.

Please refer to the Managing Assets section for more details.

Helpers

Yii 2.0 introduces many commonly used static helper classes, including.

	[[yii\helpers\Html]]

	[[yii\helpers\ArrayHelper]]

	[[yii\helpers\StringHelper]]

	[[yii\helpers\FileHelper]]

	[[yii\helpers\Json]]

Please refer to the Helper Overview section for more details.

Forms

Yii 2.0 introduces the field concept for building a form using [[yii\widgets\ActiveForm]]. A field
is a container consisting of a label, an input, an error message, and/or a hint text.
A field is represented as an [[yii\widgets\ActiveField|ActiveField]] object.
Using fields, you can build a form more cleanly than before:

<?php $form = yii\widgets\ActiveForm::begin(); ?>
 <?= $form->field($model, 'username') ?>
 <?= $form->field($model, 'password')->passwordInput() ?>
 <div class="form-group">
 <?= Html::submitButton('Login') ?>
 </div>
<?php yii\widgets\ActiveForm::end(); ?>

Please refer to the Creating Forms section for more details.

Query Builder

In 1.1, query building was scattered among several classes, including CDbCommand,
CDbCriteria, and CDbCommandBuilder. Yii 2.0 represents a DB query in terms of a [[yii\db\Query|Query]] object
that can be turned into a SQL statement with the help of [[yii\db\QueryBuilder|QueryBuilder]] behind the scene.
For example:

$query = new \yii\db\Query();
$query->select('id, name')
 ->from('user')
 ->limit(10);

$command = $query->createCommand();
$sql = $command->sql;
$rows = $command->queryAll();

Best of all, such query building methods can also be used when working with Active Record.

Please refer to the Query Builder section for more details.

Active Record

Yii 2.0 introduces a lot of changes to Active Record. The two most obvious ones involve
query building and relational query handling.

The CDbCriteria class in 1.1 is replaced by [[yii\db\ActiveQuery]] in Yii 2. That class extends from [[yii\db\Query]], and thus
inherits all query building methods. You call [[yii\db\ActiveRecord::find()]] to start building a query:

// To retrieve all *active* customers and order them by their ID:
$customers = Customer::find()
 ->where(['status' => $active])
 ->orderBy('id')
 ->all();

To declare a relation, simply define a getter method that returns an [[yii\db\ActiveQuery|ActiveQuery]] object.
The property name defined by the getter represents the relation name. For example, the following code declares
an orders relation (in 1.1, you would have to declare relations in a central place relations()):

class Customer extends \yii\db\ActiveRecord
{
 public function getOrders()
 {
 return $this->hasMany('Order', ['customer_id' => 'id']);
 }
}

Now you can use $customer->orders to access a customer’s orders from the related table. You can also use the following code
to perform an on-the-fly relational query with a customized query condition:

$orders = $customer->getOrders()->andWhere('status=1')->all();

When eager loading a relation, Yii 2.0 does it differently from 1.1. In particular, in 1.1 a JOIN query
would be created to select both the primary and the relational records. In Yii 2.0, two SQL statements are executed
without using JOIN: the first statement brings back the primary records and the second brings back the relational
records by filtering with the primary keys of the primary records.

Instead of returning [[yii\db\ActiveRecord|ActiveRecord]] objects, you may chain the [[yii\db\ActiveQuery::asArray()|asArray()]]
method when building a query to return a large number of records. This will cause the query result to be returned
as arrays, which can significantly reduce the needed CPU time and memory if large number of records . For example:

$customers = Customer::find()->asArray()->all();

Another change is that you can’t define attribute default values through public properties anymore.
If you need those, you should set them in the init method of your record class.

public function init()
{
 parent::init();
 $this->status = self::STATUS_NEW;
}

There were some problems with overriding the constructor of an ActiveRecord class in 1.1. These are not present in
version 2.0 anymore. Note that when adding parameters to the constructor you might have to override [[yii\db\ActiveRecord::instantiate()]].

There are many other changes and enhancements to Active Record. Please refer to
the Active Record section for more details.

Active Record Behaviors

In 2.0, we have dropped the base behavior class CActiveRecordBehavior. If you want to create an Active Record Behavior,
you will have to extend directly from yii\base\Behavior. If the behavior class needs to respond to some events
of the owner, you have to override the events() method like the following:

namespace app\components;

use yii\db\ActiveRecord;
use yii\base\Behavior;

class MyBehavior extends Behavior
{
 // ...

 public function events()
 {
 return [
 ActiveRecord::EVENT_BEFORE_VALIDATE => 'beforeValidate',
];
 }

 public function beforeValidate($event)
 {
 // ...
 }
}

User and IdentityInterface

The CWebUser class in 1.1 is now replaced by [[yii\web\User]], and there is no more
CUserIdentity class. Instead, you should implement the [[yii\web\IdentityInterface]] which
is much more straightforward to use. The advanced project template provides such an example.

Please refer to the Authentication, Authorization, and Advanced Project Template [https://www.yiiframework.com/extension/yiisoft/yii2-app-advanced/doc/guide] sections for more details.

URL Management

URL management in Yii 2 is similar to that in 1.1. A major enhancement is that URL management now supports optional
parameters. For example, if you have a rule declared as follows, then it will match
both post/popular and post/1/popular. In 1.1, you would have had to use two rules to achieve
the same goal.

[
 'pattern' => 'post/<page:\d+>/<tag>',
 'route' => 'post/index',
 'defaults' => ['page' => 1],
]

Please refer to the Url manager docs section for more details.

An important change in the naming convention for routes is that camel case names of controllers
and actions are now converted to lower case where each word is separated by a hypen, e.g. the controller
id for the CamelCaseController will be camel-case.
See the section about controller IDs and action IDs for more details.

Using Yii 1.1 and 2.x together

If you have legacy Yii 1.1 code that you want to use together with Yii 2.0, please refer to
the Using Yii 1.1 and 2.0 Together section.

 What is Yii

What is Yii

Yii is a high performance, component-based PHP framework for rapidly developing modern Web applications.
The name Yii (pronounced Yee or [ji:]) means “simple and evolutionary” in Chinese. It can also
be thought of as an acronym for Yes It Is!

What is Yii Best for?

Yii is a generic Web programming framework, meaning that it can be used for developing all kinds
of Web applications using PHP. Because of its component-based architecture and sophisticated caching
support, it is especially suitable for developing large-scale applications such as portals, forums, content
management systems (CMS), e-commerce projects, RESTful Web services, and so on.

How does Yii Compare with Other Frameworks?

If you’re already familiar with another framework, you may appreciate knowing how Yii compares:

	Like most PHP frameworks, Yii implements the MVC (Model-View-Controller) architectural pattern and promotes code
organization based on that pattern.

	Yii takes the philosophy that code should be written in a simple yet elegant way. Yii will never try to
over-design things mainly for the purpose of strictly following some design pattern.

	Yii is a full-stack framework providing many proven and ready-to-use features: query builders
and ActiveRecord for both relational and NoSQL databases; RESTful API development support; multi-tier
caching support; and more.

	Yii is extremely extensible. You can customize or replace nearly every piece of the core’s code. You can also
take advantage of Yii’s solid extension architecture to use or develop redistributable extensions.

	High performance is always a primary goal of Yii.

Yii is not a one-man show, it is backed up by a strong core developer team [http://www.yiiframework.com/team/], as well as a large community
of professionals constantly contributing to Yii’s development. The Yii developer team
keeps a close eye on the latest Web development trends and on the best practices and features
found in other frameworks and projects. The most relevant best practices and features found elsewhere are regularly incorporated into the core framework and exposed
via simple and elegant interfaces.

Yii Versions

Yii currently has two major versions available: 1.1 and 2.0. Version 1.1 is the old generation and is now in maintenance mode. Version 2.0 is a complete rewrite of Yii, adopting the latest
technologies and protocols, including Composer, PSR, namespaces, traits, and so forth. Version 2.0 represents the current
generation of the framework and will receive the main development efforts over the next few years.
This guide is mainly about version 2.0.

Requirements and Prerequisites

Yii 2.0 requires PHP 5.4.0 or above and runs best with the latest version of PHP 7. You can find more detailed
requirements for individual features by running the requirement checker included in every Yii release.

Using Yii requires basic knowledge of object-oriented programming (OOP), as Yii is a pure OOP-based framework.
Yii 2.0 also makes use of the latest features of PHP, such as namespaces [http://www.php.net/manual/en/language.namespaces.php]
and traits [http://www.php.net/manual/en/language.oop5.traits.php]. Understanding these concepts will help
you more easily pick up Yii 2.0.

 Working with Client Scripts

Working with Client Scripts

Modern web applications, additionally to static HTML pages that are
rendered and sent to the browser, contain JavaScript that is used
to modify the page in the browser by manipulating existing elements or
loading new content via AJAX.
This section describes methods provided by Yii for adding JavaScript and CSS to a website as well as dynamically adjusting these.

Registering scripts

When working with the [[yii\web\View]] object you can dynamically register frontend scripts.
There are two dedicated methods for this:

	[[yii\web\View::registerJs()|registerJs()]] for inline scripts

	[[yii\web\View::registerJsFile()|registerJsFile()]] for external scripts

Registering inline scripts

Inline scripts are useful for configuration, dynamically generated code and small snippets created by reusable frontend code contained in widgets.
The [[yii\web\View::registerJs()|registerJs()]] method for adding these can be used as follows:

$this->registerJs(
 "$('#myButton').on('click', function() { alert('Button clicked!'); });",
 View::POS_READY,
 'my-button-handler'
);

The first argument is the actual JS code we want to insert into the page.
It will be wrapped into a <script> tag. The second argument
determines at which position the script should be inserted into the page. Possible values are:

	[[yii\web\View::POS_HEAD|View::POS_HEAD]] for head section.

	[[yii\web\View::POS_BEGIN|View::POS_BEGIN]] for right after opening <body>.

	[[yii\web\View::POS_END|View::POS_END]] for right before closing </body>.

	[[yii\web\View::POS_READY|View::POS_READY]] for executing code on the document ready event [http://learn.jquery.com/using-jquery-core/document-ready/].
This will automatically register [[yii\web\JqueryAsset|jQuery]] and wrap the code into the appropriate jQuery code. This is the default position.

	[[yii\web\View::POS_LOAD|View::POS_LOAD]] for executing code on the
document load event [http://learn.jquery.com/using-jquery-core/document-ready/]. Same as the above, this will also register [[yii\web\JqueryAsset|jQuery]] automatically.

The last argument is a unique script ID that is used to identify the script code block and replace an existing one with the same ID
instead of adding a new one. If you don’t provide it, the JS code itself will be used as the ID. It is used to avoid registration of the same code muliple times.

Registering script files

The arguments for [[yii\web\View::registerJsFile()|registerJsFile()]] are similar to those for
[[yii\web\View::registerCssFile()|registerCssFile()]]. In the following example,
we register the main.js file with the dependency on the [[yii\web\JqueryAsset]]. It means that the main.js file
will be added AFTER jquery.js. Without such dependency specification, the relative order between
main.js and jquery.js would be undefined and the code would not work.

An external script can be added like the following:

$this->registerJsFile(
 '@web/js/main.js',
 ['depends' => [\yii\web\JqueryAsset::className()]]
);

This will add a tag for the /js/main.js script located under the application base URL.

It is highly recommended to use asset bundles to register external JS files rather than [[yii\web\View::registerJsFile()|registerJsFile()]] because these allow better flexibility and more granular dependency configuration. Also using asset bundles allows you to combine and compress
multiple JS files, which is desirable for high traffic websites.

Registering CSS

Similar to JavaScript, you can register CSS using
[[yii\web\View::registerCss()|registerCss()]] or
[[yii\web\View::registerCssFile()|registerCssFile()]].
The former registers a block of CSS code while the latter registers an external CSS file.

Registering inline CSS

$this->registerCss("body { background: #f00; }");

The code above will result in adding the following to the <head> section of the page:

<style>
body { background: #f00; }
</style>

If you want to specify additional properties of the style tag, pass an array of name-values to the second argument.
The last argument is a unique ID that is used to identify the style block and make sure it is only added once in case the same style is registered from different places in the code.

Registering CSS files

A CSS file can be registered using the following:

$this->registerCssFile("@web/css/themes/black-and-white.css", [
 'depends' => [\yii\bootstrap\BootstrapAsset::className()],
 'media' => 'print',
], 'css-print-theme');

The above code will add a link to the /css/themes/black-and-white.css CSS file to the <head> section of the page.

	The first argument specifies the CSS file to be registered.
The @web in this example is an alias for the applications base URL.

	The second argument specifies the HTML attributes for the resulting <link> tag. The option depends
is specially handled. It specifies which asset bundles this CSS file depends on. In this case, the dependent
asset bundle is [[yii\bootstrap\BootstrapAsset|BootstrapAsset]]. This means the CSS file will be added
after the CSS files from [[yii\bootstrap\BootstrapAsset|BootstrapAsset]].

	The last argument specifies an ID identifying this CSS file. If it is not provided, the URL of the CSS file will be
used instead.

It is highly recommended to use asset bundles to register external CSS files rather than
[[yii\web\View::registerCssFile()|registerCssFile()]]. Using asset bundles allows you to combine and compress
multiple CSS files, which is desirable for high traffic websites.
It also provides more flexibility as all asset dependencies of your application are configured in one place.

Registering asset bundles

As was mentioned earlier it’s recommended to use asset bundles instead of registering CSS and JavaScript files directly.
You can get details on how to define asset bundles in the
“Assets” section.
As for using already defined asset bundles, it’s very straightforward:

\frontend\assets\AppAsset::register($this);

In the above code, in the context of a view file, the AppAsset bundle is registered on the current view (represented by $this).
When registering asset bundles from within a widget, you would pass the
[[yii\base\Widget::$view|$view]] of the widget instead ($this->view).

Generating Dynamic Javascript

In view files often the HTML code is not written out directly but generated
by some PHP code dependent on the variables of the view.
In order for the generated HTML to be manipulated with Javascript, the JS code has to contain dynamic parts too, for example the IDs of the jQuery selectors.

To insert PHP variables into JS code, their values have to be
escaped properly. Especially when the JS code is inserted into
HTML instead of residing in a dedicated JS file.
Yii provides the [[yii\helpers\Json::htmlEncode()|htmlEncode()]] method of the [[yii\helpers\Json|Json]] helper for this purpose. Its usage will be shown in the following examples.

Registering a global JavaScript configuration

In this example we use an array to pass global configuration parameters from
the PHP part of the application to the JS frontend code.

$options = [
 'appName' => Yii::$app->name,
 'baseUrl' => Yii::$app->request->baseUrl,
 'language' => Yii::$app->language,
 // ...
];
$this->registerJs(
 "var yiiOptions = ".\yii\helpers\Json::htmlEncode($options).";",
 View::POS_HEAD,
 'yiiOptions'
);

The above code will register a <script>-tag containing the JavaScript
variable definition, e.g.:

var yiiOptions = {"appName":"My Yii Application","baseUrl":"/basic/web","language":"en"};

In your JavaScript code you can now access these like yiiOptions.baseUrl or yiiOptions.language.

Passing translated messages

You may encounter a case where your JavaScript needs to print a message reacting to some event. In an application that works with multiple languages this string has to be translated to the current application language.
One way to achieve this is to use the
message translation feature provided by Yii and passing the result to the JavaScript code.

$message = \yii\helpers\Json::htmlEncode(
 \Yii::t('app', 'Button clicked!')
);
$this->registerJs(<<<JS
 $('#myButton').on('click', function() { alert($message); });
JS
);

The above example code uses PHP
Heredoc syntax [http://php.net/manual/en/language.types.string.php#language.types.string.syntax.heredoc] for better readability. This also enables better syntax highlighting in most IDEs so it is the
preferred way of writing inline JavaScript, especially useful for code that is longer than a single line. The variable $message is created in PHP and
thanks to [[yii\helpers\Json::htmlEncode|Json::htmlEncode]] it contains the
string in valid JS syntax, which can be inserted into the JavaScript code to place the dynamic string in the function call to alert().

Note: When using Heredoc, be careful with variable naming in JS code
as variables beginning with $ may be interpreted as PHP variables which
will be replaced by their content.
The jQuery function in form of $(or $. is not interpreted
as a PHP variable and can safely be used.

The yii.js script

Note: This section has not been written yet. It should contain explanation of the functionality provided by yii.js:

	Yii JavaScript Modules

	CSRF param handling

	data-confirm handler

	data-method handler

	script filtering

	redirect handling

 Data Providers

Data Providers

In the Pagination and Sorting sections, we have described how to
allow end users to choose a particular page of data to display and sort them by some columns. Because the task
of paginating and sorting data is very common, Yii provides a set of data provider classes to encapsulate it.

A data provider is a class implementing [[yii\data\DataProviderInterface]]. It mainly supports retrieving paginated
and sorted data. It is usually used to work with data widgets so that end users can
interactively paginate and sort data.

The following data provider classes are included in the Yii releases:

	[[yii\data\ActiveDataProvider]]: uses [[yii\db\Query]] or [[yii\db\ActiveQuery]] to query data from databases
and return them in terms of arrays or Active Record instances.

	[[yii\data\SqlDataProvider]]: executes a SQL statement and returns database data as arrays.

	[[yii\data\ArrayDataProvider]]: takes a big array and returns a slice of it based on the paginating and sorting
specifications.

The usage of all these data providers share the following common pattern:

// create the data provider by configuring its pagination and sort properties
$provider = new XyzDataProvider([
 'pagination' => [...],
 'sort' => [...],
]);

// retrieves paginated and sorted data
$models = $provider->getModels();

// get the number of data items in the current page
$count = $provider->getCount();

// get the total number of data items across all pages
$totalCount = $provider->getTotalCount();

You specify the pagination and sorting behaviors of a data provider by configuring its
[[yii\data\BaseDataProvider::pagination|pagination]] and [[yii\data\BaseDataProvider::sort|sort]] properties
which correspond to the configurations for [[yii\data\Pagination]] and [[yii\data\Sort]], respectively.
You may also configure them to be false to disable pagination and/or sorting features.

Data widgets, such as [[yii\grid\GridView]], have a property named dataProvider which
can take a data provider instance and display the data it provides. For example,

echo yii\grid\GridView::widget([
 'dataProvider' => $dataProvider,
]);

These data providers mainly vary in the way how the data source is specified. In the following subsections,
we will explain the detailed usage of each of these data providers.

Active Data Provider

To use [[yii\data\ActiveDataProvider]], you should configure its [[yii\data\ActiveDataProvider::query|query]] property.
It can take either a [[yii\db\Query]] or [[yii\db\ActiveQuery]] object. If the former, the data returned will be arrays;
if the latter, the data returned can be either arrays or Active Record instances.
For example,

use yii\data\ActiveDataProvider;

$query = Post::find()->where(['status' => 1]);

$provider = new ActiveDataProvider([
 'query' => $query,
 'pagination' => [
 'pageSize' => 10,
],
 'sort' => [
 'defaultOrder' => [
 'created_at' => SORT_DESC,
 'title' => SORT_ASC,
]
],
]);

// returns an array of Post objects
$posts = $provider->getModels();

If $query in the above example is created using the following code, then the data provider will return raw arrays.

use yii\db\Query;

$query = (new Query())->from('post')->where(['status' => 1]);

Note: If a query already specifies the orderBy clause, the new ordering instructions given by end users
(through the sort configuration) will be appended to the existing orderBy clause. Any existing limit
and offset clauses will be overwritten by the pagination request from end users (through the pagination configuration).

By default, [[yii\data\ActiveDataProvider]] uses the db application component as the database connection. You may
use a different database connection by configuring the [[yii\data\ActiveDataProvider::db]] property.

SQL Data Provider

[[yii\data\SqlDataProvider]] works with a raw SQL statement which is used to fetch the needed
data. Based on the specifications of [[yii\data\SqlDataProvider::sort|sort]] and
[[yii\data\SqlDataProvider::pagination|pagination]], the provider will adjust the ORDER BY and LIMIT
clauses of the SQL statement accordingly to fetch only the requested page of data in the desired order.

To use [[yii\data\SqlDataProvider]], you should specify the [[yii\data\SqlDataProvider::sql|sql]] property as well
as the [[yii\data\SqlDataProvider::totalCount|totalCount]] property. For example,

use yii\data\SqlDataProvider;

$count = Yii::$app->db->createCommand('
 SELECT COUNT(*) FROM post WHERE status=:status
', [':status' => 1])->queryScalar();

$provider = new SqlDataProvider([
 'sql' => 'SELECT * FROM post WHERE status=:status',
 'params' => [':status' => 1],
 'totalCount' => $count,
 'pagination' => [
 'pageSize' => 10,
],
 'sort' => [
 'attributes' => [
 'title',
 'view_count',
 'created_at',
],
],
]);

// returns an array of data rows
$models = $provider->getModels();

Info: The [[yii\data\SqlDataProvider::totalCount|totalCount]] property is required only if you need to
paginate the data. This is because the SQL statement specified via [[yii\data\SqlDataProvider::sql|sql]]
will be modified by the provider to return only the currently requested page of data. The provider still
needs to know the total number of data items in order to correctly calculate the number of pages available.

Array Data Provider

[[yii\data\ArrayDataProvider]] is best used when working with a big array. The provider allows you to return
a page of the array data sorted by one or multiple columns. To use [[yii\data\ArrayDataProvider]], you should
specify the [[yii\data\ArrayDataProvider::allModels|allModels]] property as the big array.
Elements in the big array can be either associative arrays
(e.g. query results of DAO) or objects (e.g. Active Record instances).
For example,

use yii\data\ArrayDataProvider;

$data = [
 ['id' => 1, 'name' => 'name 1', ...],
 ['id' => 2, 'name' => 'name 2', ...],
 ...
 ['id' => 100, 'name' => 'name 100', ...],
];

$provider = new ArrayDataProvider([
 'allModels' => $data,
 'pagination' => [
 'pageSize' => 10,
],
 'sort' => [
 'attributes' => ['id', 'name'],
],
]);

// get the rows in the currently requested page
$rows = $provider->getModels();

Note: Compared to Active Data Provider and SQL Data Provider,
array data provider is less efficient because it requires loading all data into the memory.

Working with Data Keys

When using the data items returned by a data provider, you often need to identify each data item with a unique key.
For example, if the data items represent customer information, you may want to use the customer ID as the key
for each customer data. Data providers can return a list of such keys corresponding with the data items returned
by [[yii\data\DataProviderInterface::getModels()]]. For example,

use yii\data\ActiveDataProvider;

$query = Post::find()->where(['status' => 1]);

$provider = new ActiveDataProvider([
 'query' => $query,
]);

// returns an array of Post objects
$posts = $provider->getModels();

// returns the primary key values corresponding to $posts
$ids = $provider->getKeys();

In the above example, because you provide to [[yii\data\ActiveDataProvider]] an [[yii\db\ActiveQuery]] object,
it is intelligent enough to return primary key values as the keys. You may also explicitly specify how the key
values should be calculated by configuring [[yii\data\ActiveDataProvider::key]] with a column name or
a callable calculating key values. For example,

// use "slug" column as key values
$provider = new ActiveDataProvider([
 'query' => Post::find(),
 'key' => 'slug',
]);

// use the result of md5(id) as key values
$provider = new ActiveDataProvider([
 'query' => Post::find(),
 'key' => function ($model) {
 return md5($model->id);
 }
]);

Creating Custom Data Provider

To create your own custom data provider classes, you should implement [[yii\data\DataProviderInterface]].
An easier way is to extend from [[yii\data\BaseDataProvider]] which allows you to focus on the core data provider
logic. In particular, you mainly need to implement the following methods:

	[[yii\data\BaseDataProvider::prepareModels()|prepareModels()]]: prepares the data models that will be made
available in the current page and returns them as an array.

	[[yii\data\BaseDataProvider::prepareKeys()|prepareKeys()]]: accepts an array of currently available data models
and returns keys associated with them.

	[[yii\data\BaseDataProvider::prepareTotalCount()|prepareTotalCount]]: returns a value indicating the total number
of data models in the data provider.

Below is an example of a data provider that reads CSV data efficiently:

<?php
use yii\data\BaseDataProvider;

class CsvDataProvider extends BaseDataProvider
{
 /**
 * @var string name of the CSV file to read
 */
 public $filename;

 /**
 * @var string|callable name of the key column or a callable returning it
 */
 public $key;

 /**
 * @var SplFileObject
 */
 protected $fileObject; // SplFileObject is very convenient for seeking to particular line in a file

 /**
 * {@inheritdoc}
 */
 public function init()
 {
 parent::init();

 // open file
 $this->fileObject = new SplFileObject($this->filename);
 }

 /**
 * {@inheritdoc}
 */
 protected function prepareModels()
 {
 $models = [];
 $pagination = $this->getPagination();

 if ($pagination === false) {
 // in case there's no pagination, read all lines
 while (!$this->fileObject->eof()) {
 $models[] = $this->fileObject->fgetcsv();
 $this->fileObject->next();
 }
 } else {
 // in case there's pagination, read only a single page
 $pagination->totalCount = $this->getTotalCount();
 $this->fileObject->seek($pagination->getOffset());
 $limit = $pagination->getLimit();

 for ($count = 0; $count < $limit; ++$count) {
 $models[] = $this->fileObject->fgetcsv();
 $this->fileObject->next();
 }
 }

 return $models;
 }

 /**
 * {@inheritdoc}
 */
 protected function prepareKeys($models)
 {
 if ($this->key !== null) {
 $keys = [];

 foreach ($models as $model) {
 if (is_string($this->key)) {
 $keys[] = $model[$this->key];
 } else {
 $keys[] = call_user_func($this->key, $model);
 }
 }

 return $keys;
 }

 return array_keys($models);
 }

 /**
 * {@inheritdoc}
 */
 protected function prepareTotalCount()
 {
 $count = 0;

 while (!$this->fileObject->eof()) {
 $this->fileObject->next();
 ++$count;
 }

 return $count;
 }
}

Filtering Data Providers using Data Filters

While you can build conditions for active data provider manually as described in
Filtering Data and Separate Filter Form
sections of data widgets guide, Yii has data filters that are very useful if you need flexible filter condtions.
Data filters could be used as follows:

$filter = new ActiveDataFilter([
 'searchModel' => 'app\models\PostSearch'
]);

$filterCondition = null;

// You may load filters from any source. For example,
// if you prefer JSON in request body,
// use Yii::$app->request->getBodyParams() below:
if ($filter->load(\Yii::$app->request->get())) {
 $filterCondition = $filter->build();
 if ($filterCondition === false) {
 // Serializer would get errors out of it
 return $filter;
 }
}

$query = Post::find();
if ($filterCondition !== null) {
 $query->andWhere($filterCondition);
}

return new ActiveDataProvider([
 'query' => $query,
]);

PostSearch model serves the purpose of defining which properties and values are allowed for filtering:

use yii\base\Model;

class PostSearch extends Model
{
 public $id;
 public $title;

 public function rules()
 {
 return [
 ['id', 'integer'],
 ['title', 'string', 'min' => 2, 'max' => 200],
];
 }
}

Data filters are quite flexible. You may customize how conditions are built and which operators are allowed.
For details check API docs on [[\yii\data\DataFilter]].

 Data widgets

Data widgets

Yii provides a set of widgets that can be used to display data.
While the DetailView widget can be used to display data for a single record,
ListView and GridView can be used to display a list or table of data records
providing features like pagination, sorting and filtering.

DetailView

The [[yii\widgets\DetailView|DetailView]] widget displays the details of a single data [[yii\widgets\DetailView::$model|model]].

It is best used for displaying a model in a regular format (e.g. each model attribute is displayed as a row in a table).
The model can be either an instance or subclass of [[\yii\base\Model]] such as an active record or an associative array.

DetailView uses the [[yii\widgets\DetailView::$attributes|$attributes]] property to determine which model attributes should be displayed and how they
should be formatted. See the formatter section for available formatting options.

A typical usage of DetailView is as follows:

echo DetailView::widget([
 'model' => $model,
 'attributes' => [
 'title', // title attribute (in plain text)
 'description:html', // description attribute formatted as HTML
 [// the owner name of the model
 'label' => 'Owner',
 'value' => $model->owner->name,
 'contentOptions' => ['class' => 'bg-red'], // HTML attributes to customize value tag
 'captionOptions' => ['tooltip' => 'Tooltip'], // HTML attributes to customize label tag
],
 'created_at:datetime', // creation date formatted as datetime
],
]);

Remember that unlike [[yii\widgets\GridView|GridView]] which processes a set of models,
[[yii\widgets\DetailView|DetailView]] processes just one. So most of the time there is no need for using closure since
$model is the only one model for display and available in view as a variable.

However some cases can make using of closure useful. For example when visible is specified and you want to prevent
value calculations in case it evaluates to false:

echo DetailView::widget([
 'model' => $model,
 'attributes' => [
 [
 'attribute' => 'owner',
 'value' => function ($model) {
 return $model->owner->name;
 },
 'visible' => \Yii::$app->user->can('posts.owner.view'),
],
],
]);

ListView

The [[yii\widgets\ListView|ListView]] widget is used to display data from a data provider.
Each data model is rendered using the specified [[yii\widgets\ListView::$itemView|view file]].
Since it provides features such as pagination, sorting and filtering out of the box, it is handy both to display
information to end user and to create data managing UI.

A typical usage is as follows:

use yii\widgets\ListView;
use yii\data\ActiveDataProvider;

$dataProvider = new ActiveDataProvider([
 'query' => Post::find(),
 'pagination' => [
 'pageSize' => 20,
],
]);
echo ListView::widget([
 'dataProvider' => $dataProvider,
 'itemView' => '_post',
]);

The _post view file could contain the following:

<?php
use yii\helpers\Html;
use yii\helpers\HtmlPurifier;
?>
<div class="post">
 <h2><?= Html::encode($model->title) ?></h2>

 <?= HtmlPurifier::process($model->text) ?>
</div>

In the view file above, the current data model is available as $model. Additionally the following variables are available:

	$key: mixed, the key value associated with the data item.

	$index: integer, the zero-based index of the data item in the items array returned by the data provider.

	$widget: ListView, this widget instance.

If you need to pass additional data to each view, you can use the [[yii\widgets\ListView::$viewParams|$viewParams]] property
to pass key value pairs like the following:

echo ListView::widget([
 'dataProvider' => $dataProvider,
 'itemView' => '_post',
 'viewParams' => [
 'fullView' => true,
 'context' => 'main-page',
 // ...
],
]);

These are then also available as variables in the view.

GridView

Data grid or [[yii\grid\GridView|GridView]] is one of the most powerful Yii widgets. It is extremely useful if you need to quickly build the admin
section of the system. It takes data from a data provider and renders each row using a set of [[yii\grid\GridView::columns|columns]]
presenting data in the form of a table.

Each row of the table represents the data of a single data item, and a column usually represents an attribute of
the item (some columns may correspond to complex expressions of attributes or static text).

The minimal code needed to use GridView is as follows:

use yii\grid\GridView;
use yii\data\ActiveDataProvider;

$dataProvider = new ActiveDataProvider([
 'query' => Post::find(),
 'pagination' => [
 'pageSize' => 20,
],
]);
echo GridView::widget([
 'dataProvider' => $dataProvider,
]);

The above code first creates a data provider and then uses GridView to display every attribute in every row taken from
the data provider. The displayed table is equipped with sorting and pagination functionality out of the box.

Grid columns

The columns of the grid table are configured in terms of [[yii\grid\Column]] classes, which are
configured in the [[yii\grid\GridView::columns|columns]] property of GridView configuration.
Depending on column type and settings these are able to present data differently.
The default class is [[yii\grid\DataColumn]], which represents a model attribute and can be sorted and filtered by.

echo GridView::widget([
 'dataProvider' => $dataProvider,
 'columns' => [
 ['class' => 'yii\grid\SerialColumn'],
 // Simple columns defined by the data contained in $dataProvider.
 // Data from the model's column will be used.
 'id',
 'username',
 // More complex one.
 [
 'class' => 'yii\grid\DataColumn', // can be omitted, as it is the default
 'value' => function ($data) {
 return $data->name; // $data['name'] for array data, e.g. using SqlDataProvider.
 },
],
],
]);

Note that if the [[yii\grid\GridView::columns|columns]] part of the configuration isn’t specified,
Yii tries to show all possible columns of the data provider’s model.

Column classes

Grid columns could be customized by using different column classes:

echo GridView::widget([
 'dataProvider' => $dataProvider,
 'columns' => [
 [
 'class' => 'yii\grid\SerialColumn', // <-- here
 // you may configure additional properties here
],

In addition to column classes provided by Yii that we’ll review below, you can create your own column classes.

Each column class extends from [[yii\grid\Column]] so that there are some common options you can set while configuring
grid columns.

	[[yii\grid\Column::header|header]] allows to set content for header row.

	[[yii\grid\Column::footer|footer]] allows to set content for footer row.

	[[yii\grid\Column::visible|visible]] defines if the column should be visible.

	[[yii\grid\Column::content|content]] allows you to pass a valid PHP callback that will return data for a row. The format is the following:

function ($model, $key, $index, $column) {
 return 'a string';
}

You may specify various container HTML options by passing arrays to:

	[[yii\grid\Column::headerOptions|headerOptions]]

	[[yii\grid\Column::footerOptions|footerOptions]]

	[[yii\grid\Column::filterOptions|filterOptions]]

	[[yii\grid\Column::contentOptions|contentOptions]]

Data column

[[yii\grid\DataColumn|Data column]] is used for displaying and sorting data. It is the default column type so the specifying class could be omitted when
using it.

The main setting of the data column is its [[yii\grid\DataColumn::format|format]] property. Its values
correspond to methods in the formatter application component that is [[\yii\i18n\Formatter|Formatter]] by default:

echo GridView::widget([
 'columns' => [
 [
 'attribute' => 'name',
 'format' => 'text'
],
 [
 'attribute' => 'birthday',
 'format' => ['date', 'php:Y-m-d']
],
 'created_at:datetime', // shortcut format
 [
 'label' => 'Education',
 'attribute' => 'education',
 'filter' => ['0' => 'Elementary', '1' => 'Secondary', '2' => 'Higher'],
 'filterInputOptions' => ['prompt' => 'All educations', 'class' => 'form-control', 'id' => null]
],
],
]);

In the above, text corresponds to [[\yii\i18n\Formatter::asText()]]. The value of the column is passed as the first
argument. In the second column definition, date corresponds to [[\yii\i18n\Formatter::asDate()]]. The value of the
column is, again, passed as the first argument while ‘php:Y-m-d’ is used as the second argument value.

For a list of available formatters see the section about Data Formatting.

For configuring data columns there is also a shortcut format which is described in the
API documentation for [[yii\grid\GridView::columns|columns]].

Use [[yii\grid\DataColumn::filter|filter]] and [[yii\grid\DataColumn::filterInputOptions|filterInputOptions]] to
control HTML for the filter input.

By default, column headers are rendered by [[yii\data\Sort::link]]. It could be adjusted using [[yii\grid\Column::header]].
To change header text you should set [[yii\grid\DataColumn::$label]] like in the example above.
By default the label will be populated from data model. For more details see [[yii\grid\DataColumn::getHeaderCellLabel]].

Action column

[[yii\grid\ActionColumn|Action column]] displays action buttons such as update or delete for each row.

echo GridView::widget([
 'dataProvider' => $dataProvider,
 'columns' => [
 [
 'class' => 'yii\grid\ActionColumn',
 // you may configure additional properties here
],

Available properties you can configure are:

	[[yii\grid\ActionColumn::controller|controller]] is the ID of the controller that should handle the actions. If not set, it will use the currently active
controller.

	[[yii\grid\ActionColumn::template|template]] defines the template used for composing each cell in the action column. Tokens enclosed within curly brackets are
treated as controller action IDs (also called button names in the context of action column). They will be replaced
by the corresponding button rendering callbacks specified in [[yii\grid\ActionColumn::$buttons|buttons]]. For example, the token {view} will be
replaced by the result of the callback buttons['view']. If a callback cannot be found, the token will be replaced
with an empty string. The default tokens are {view} {update} {delete}.

	[[yii\grid\ActionColumn::buttons|buttons]] is an array of button rendering callbacks. The array keys are the button names (without curly brackets),
and the values are the corresponding button rendering callbacks. The callbacks should use the following signature:

function ($url, $model, $key) {
 // return the button HTML code
}

In the code above, $url is the URL that the column creates for the button, $model is the model object being
rendered for the current row, and $key is the key of the model in the data provider array.

	[[yii\grid\ActionColumn::urlCreator|urlCreator]] is a callback that creates a button URL using the specified model information. The signature of
the callback should be the same as that of [[yii\grid\ActionColumn::createUrl()]]. If this property is not set,
button URLs will be created using [[yii\grid\ActionColumn::createUrl()]].

	[[yii\grid\ActionColumn::visibleButtons|visibleButtons]] is an array of visibility conditions for each button.
The array keys are the button names (without curly brackets), and the values are the boolean true/false or the
anonymous function. When the button name is not specified in this array it will be shown by default.
The callbacks must use the following signature:

function ($model, $key, $index) {
 return $model->status === 'editable';
}

Or you can pass a boolean value:

[
 'update' => \Yii::$app->user->can('update')
]

Checkbox column

[[yii\grid\CheckboxColumn|Checkbox column]] displays a column of checkboxes.

To add a CheckboxColumn to the GridView, add it to the [[yii\grid\GridView::$columns|columns]] configuration as follows:

echo GridView::widget([
 'dataProvider' => $dataProvider,
 'columns' => [
 // ...
 [
 'class' => 'yii\grid\CheckboxColumn',
 // you may configure additional properties here
],
],

Users may click on the checkboxes to select rows of the grid. The selected rows may be obtained by calling the following
JavaScript code:

var keys = $('#grid').yiiGridView('getSelectedRows');
// keys is an array consisting of the keys associated with the selected rows

Serial column

[[yii\grid\SerialColumn|Serial column]] renders row numbers starting with 1 and going forward.

Usage is as simple as the following:

echo GridView::widget([
 'dataProvider' => $dataProvider,
 'columns' => [
 ['class' => 'yii\grid\SerialColumn'], // <-- here
 // ...

Sorting data

Note: This section is under development.

	https://github.com/yiisoft/yii2/issues/1576

Filtering data

For filtering data, the GridView needs a model that represents the search criteria which is
usually taken from the filter fields in the GridView table.
A common practice when using active records is to create a search Model class
that provides needed functionality (it can be generated for you by Gii). This class defines the validation
rules to show filter controls on the GridView table and to provide a search() method that will return the data
provider with an adjusted query that processes the search criteria.

To add the search capability for the Post model, we can create a PostSearch model like the following example:

<?php

namespace app\models;

use Yii;
use yii\base\Model;
use yii\data\ActiveDataProvider;

class PostSearch extends Post
{
 public function rules()
 {
 // only fields in rules() are searchable
 return [
 [['id'], 'integer'],
 [['title', 'creation_date'], 'safe'],
];
 }

 public function scenarios()
 {
 // bypass scenarios() implementation in the parent class
 return Model::scenarios();
 }

 public function search($params)
 {
 $query = Post::find();

 $dataProvider = new ActiveDataProvider([
 'query' => $query,
]);

 // load the search form data and validate
 if (!($this->load($params) && $this->validate())) {
 return $dataProvider;
 }

 // adjust the query by adding the filters
 $query->andFilterWhere(['id' => $this->id]);
 $query->andFilterWhere(['like', 'title', $this->title])
 ->andFilterWhere(['like', 'creation_date', $this->creation_date]);

 return $dataProvider;
 }
}

Tip: See Query Builder and especially Filter Conditions
to learn how to build filtering query.

You can use this function in the controller to get the dataProvider for the GridView:

$searchModel = new PostSearch();
$dataProvider = $searchModel->search(Yii::$app->request->get());

return $this->render('myview', [
 'dataProvider' => $dataProvider,
 'searchModel' => $searchModel,
]);

And in the view you then assign the $dataProvider and $searchModel to the GridView:

echo GridView::widget([
 'dataProvider' => $dataProvider,
 'filterModel' => $searchModel,
 'columns' => [
 // ...
],
]);

Separate filter form

Most of the time using GridView header filters is enough, but in case you need a separate filter form,
you can easily add it as well. You can create partial view _search.php with the following contents:

<?php

use yii\helpers\Html;
use yii\widgets\ActiveForm;

/* @var $this yii\web\View */
/* @var $model app\models\PostSearch */
/* @var $form yii\widgets\ActiveForm */
?>

<div class="post-search">
 <?php $form = ActiveForm::begin([
 'action' => ['index'],
 'method' => 'get',
]); ?>

 <?= $form->field($model, 'title') ?>

 <?= $form->field($model, 'creation_date') ?>

 <div class="form-group">
 <?= Html::submitButton('Search', ['class' => 'btn btn-primary']) ?>
 <?= Html::submitButton('Reset', ['class' => 'btn btn-default']) ?>
 </div>

 <?php ActiveForm::end(); ?>
</div>

and include it in index.php view like so:

<?= $this->render('_search', ['model' => $searchModel]) ?>

Note: if you use Gii to generate CRUD code, the separate filter form (_search.php) is generated by default,
but is commented in index.php view. Uncomment it and it’s ready to use!

Separate filter form is useful when you need to filter by fields, that are not displayed in GridView
or for special filtering conditions, like date range. For filtering by date range we can add non DB attributes
createdFrom and createdTo to the search model:

class PostSearch extends Post
{
 /**
 * @var string
 */
 public $createdFrom;

 /**
 * @var string
 */
 public $createdTo;
}

Extend query conditions in the search() method like so:

$query->andFilterWhere(['>=', 'creation_date', $this->createdFrom])
 ->andFilterWhere(['<=', 'creation_date', $this->createdTo]);

And add the representative fields to the filter form:

<?= $form->field($model, 'creationFrom') ?>

<?= $form->field($model, 'creationTo') ?>

Working with model relations

When displaying active records in a GridView you might encounter the case where you display values of related
columns such as the post author’s name instead of just his id.
You do this by defining the attribute name in [[yii\grid\GridView::$columns]] as author.name when the Post model
has a relation named author and the author model has an attribute name.
The GridView will then display the name of the author but sorting and filtering are not enabled by default.
You have to adjust the PostSearch model that has been introduced in the last section to add this functionality.

To enable sorting on a related column you have to join the related table and add the sorting rule
to the Sort component of the data provider:

$query = Post::find();
$dataProvider = new ActiveDataProvider([
 'query' => $query,
]);

// join with relation `author` that is a relation to the table `users`
// and set the table alias to be `author`
$query->joinWith(['author' => function($query) { $query->from(['author' => 'users']); }]);
// since version 2.0.7, the above line can be simplified to $query->joinWith('author AS author');
// enable sorting for the related column
$dataProvider->sort->attributes['author.name'] = [
 'asc' => ['author.name' => SORT_ASC],
 'desc' => ['author.name' => SORT_DESC],
];

// ...

Filtering also needs the joinWith call as above. You also need to define the searchable column in attributes and rules like this:

public function attributes()
{
 // add related fields to searchable attributes
 return array_merge(parent::attributes(), ['author.name']);
}

public function rules()
{
 return [
 [['id'], 'integer'],
 [['title', 'creation_date', 'author.name'], 'safe'],
];
}

In search() you then just add another filter condition with:

$query->andFilterWhere(['LIKE', 'author.name', $this->getAttribute('author.name')]);

Info: In the above we use the same string for the relation name and the table alias; however, when your alias and relation name
differ, you have to pay attention to where you use the alias and where you use the relation name.
A simple rule for this is to use the alias in every place that is used to build the database query and the
relation name in all other definitions such as attributes() and rules() etc.

For example, if you use the alias au for the author relation table, the joinWith statement looks like the following:

$query->joinWith(['author au']);

It is also possible to just call $query->joinWith(['author']); when the alias is defined in the relation definition.

The alias has to be used in the filter condition but the attribute name stays the same:

$query->andFilterWhere(['LIKE', 'au.name', $this->getAttribute('author.name')]);

The same is true for the sorting definition:

$dataProvider->sort->attributes['author.name'] = [
 'asc' => ['au.name' => SORT_ASC],
 'desc' => ['au.name' => SORT_DESC],
];

Also, when specifying the [[yii\data\Sort::defaultOrder|defaultOrder]] for sorting, you need to use the relation name
instead of the alias:

$dataProvider->sort->defaultOrder = ['author.name' => SORT_ASC];

Info: For more information on joinWith and the queries performed in the background, check the
active record docs on joining with relations.

Using SQL views for filtering, sorting and displaying data

There is also another approach that can be faster and more useful - SQL views. For example, if we need to show the gridview
with users and their profiles, we can do so in this way:

CREATE OR REPLACE VIEW vw_user_info AS
 SELECT user.*, user_profile.lastname, user_profile.firstname
 FROM user, user_profile
 WHERE user.id = user_profile.user_id

Then you need to create the ActiveRecord that will be representing this view:

namespace app\models\views\grid;

use yii\db\ActiveRecord;

class UserView extends ActiveRecord
{

 /**
 * {@inheritdoc}
 */
 public static function tableName()
 {
 return 'vw_user_info';
 }

 public static function primaryKey()
 {
 return ['id'];
 }

 /**
 * {@inheritdoc}
 */
 public function rules()
 {
 return [
 // define here your rules
];
 }

 /**
 * {@inheritdoc}
 */
 public function attributeLabels()
 {
 return [
 // define here your attribute labels
];
 }

}

After that you can use this UserView active record with search models, without additional specification of sorting and filtering attributes.
All attributes will be working out of the box. Note that this approach has several pros and cons:

	you don’t need to specify different sorting and filtering conditions. Everything works out of the box;

	it can be much faster because of the data size, count of sql queries performed (for each relation you will not need any additional query);

	since this is just a simple mapping UI on the sql view it lacks some domain logic that is in your entities, so if you have some methods like isActive,
isDeleted or others that will influence the UI, you will need to duplicate them in this class too.

Multiple GridViews on one page

You can use more than one GridView on a single page but some additional configuration is needed so that
they do not interfere with each other.
When using multiple instances of GridView you have to configure different parameter names for
the generated sort and pagination links so that each GridView has its own individual sorting and pagination.
You do so by setting the [[yii\data\Sort::sortParam|sortParam]] and [[yii\data\Pagination::pageParam|pageParam]]
of the dataProvider’s [[yii\data\BaseDataProvider::$sort|sort]] and [[yii\data\BaseDataProvider::$pagination|pagination]]
instances.

Assume we want to list the Post and User models for which we have already prepared two data providers
in $userProvider and $postProvider:

use yii\grid\GridView;

$userProvider->pagination->pageParam = 'user-page';
$userProvider->sort->sortParam = 'user-sort';

$postProvider->pagination->pageParam = 'post-page';
$postProvider->sort->sortParam = 'post-sort';

echo '<h1>Users</h1>';
echo GridView::widget([
 'dataProvider' => $userProvider,
]);

echo '<h1>Posts</h1>';
echo GridView::widget([
 'dataProvider' => $postProvider,
]);

Using GridView with Pjax

The [[yii\widgets\Pjax|Pjax]] widget allows you to update a certain section of a
page instead of reloading the entire page. You can use it to update only the
[[yii\grid\GridView|GridView]] content when using filters.

use yii\widgets\Pjax;
use yii\grid\GridView;

Pjax::begin([
 // PJax options
]);
 Gridview::widget([
 // GridView options
]);
Pjax::end();

Pjax also works for the links inside the [[yii\widgets\Pjax|Pjax]] widget and
for the links specified by [[yii\widgets\Pjax::$linkSelector|Pjax::$linkSelector]].
But this might be a problem for the links of an [[yii\grid\ActionColumn|ActionColumn]].
To prevent this, add the HTML attribute data-pjax="0" to the links when you edit
the [[yii\grid\ActionColumn::$buttons|ActionColumn::$buttons]] property.

GridView/ListView with Pjax in Gii

Since 2.0.5, the CRUD generator of Gii has an option called
$enablePjax that can be used via either web interface or command line.

yii gii/crud --controllerClass="backend\\controllers\PostController" \
 --modelClass="common\\models\\Post" \
 --enablePjax=1

Which generates a [[yii\widgets\Pjax|Pjax]] widget wrapping the
[[yii\grid\GridView|GridView]] or [[yii\widgets\ListView|ListView]] widgets.

Further reading

	Rendering Data in Yii 2 with GridView and ListView [http://www.sitepoint.com/rendering-data-in-yii-2-with-gridview-and-listview/] by Arno Slatius.

 Data Formatting

Data Formatting

To display data in a more readable format for users, you may format them using the formatter application component.
By default the formatter is implemented by [[yii\i18n\Formatter]] which provides a set of methods to format data as
date/time, numbers, currencies, and other commonly used formats. You can use the formatter like the following,

$formatter = \Yii::$app->formatter;

// output: January 1, 2014
echo $formatter->asDate('2014-01-01', 'long');

// output: 12.50%
echo $formatter->asPercent(0.125, 2);

// output: cebe@example.com
echo $formatter->asEmail('cebe@example.com');

// output: Yes
echo $formatter->asBoolean(true);
// it also handles display of null values:

// output: (not set)
echo $formatter->asDate(null);

As you can see, all these methods are named as asXyz(), where Xyz stands for a supported format. Alternatively,
you may format data using the generic method [[yii\i18n\Formatter::format()|format()]], which allows you to control
the desired format programmatically and is commonly used by widgets like [[yii\grid\GridView]] and [[yii\widgets\DetailView]].
For example,

// output: January 1, 2014
echo Yii::$app->formatter->format('2014-01-01', 'date');

// you can also use an array to specify parameters for the format method:
// `2` is the value for the $decimals parameter of the asPercent()-method.
// output: 12.50%
echo Yii::$app->formatter->format(0.125, ['percent', 2]);

Note: The formatter component is designed to format values to be displayed for the end user. If you want
to convert user input into machine readable format, or just format a date in a machine readable format,
the formatter is not the right tool for that.
To convert user input for date and number values you may use [[yii\validators\DateValidator]] and [[yii\validators\NumberValidator]]
respectively. For simple conversion between machine readable date and time formats,
the PHP date() [http://php.net/manual/en/function.date.php]-function is enough.

Configuring Formatter

You may customize the formatting rules by configuring the formatter component in the application configuration.
For example,

return [
 'components' => [
 'formatter' => [
 'dateFormat' => 'dd.MM.yyyy',
 'decimalSeparator' => ',',
 'thousandSeparator' => ' ',
 'currencyCode' => 'EUR',
],
],
];

Please refer to [[yii\i18n\Formatter]] for the properties that may be configured.

Formatting Date and Time Values

The formatter supports the following output formats that are related with date and time:

	[[yii\i18n\Formatter::asDate()|date]]: the value is formatted as a date, e.g. January 01, 2014.

	[[yii\i18n\Formatter::asTime()|time]]: the value is formatted as a time, e.g. 14:23.

	[[yii\i18n\Formatter::asDatetime()|datetime]]: the value is formatted as date and time, e.g. January 01, 2014 14:23.

	[[yii\i18n\Formatter::asTimestamp()|timestamp]]: the value is formatted as a unix timestamp [http://en.wikipedia.org/wiki/Unix_time], e.g. 1412609982.

	[[yii\i18n\Formatter::asRelativeTime()|relativeTime]]: the value is formatted as the time interval between a date
and now in human readable form e.g. 1 hour ago.

	[[yii\i18n\Formatter::asDuration()|duration]]: the value is formatted as a duration in human readable format. e.g. 1 day, 2 minutes.

The default date and time formats used for the [[yii\i18n\Formatter::asDate()|date]], [[yii\i18n\Formatter::asTime()|time]],
and [[yii\i18n\Formatter::asDatetime()|datetime]] methods can be customized globally by configuring[[yii\i18n\Formatter::dateFormat|dateFormat]], [[yii\i18n\Formatter::timeFormat|timeFormat]], and
[[yii\i18n\Formatter::datetimeFormat|datetimeFormat]].

You can specify date and time formats using the ICU syntax [http://userguide.icu-project.org/formatparse/datetime].
You can also use the PHP date() syntax [http://php.net/manual/en/function.date.php] with a prefix php: to differentiate
it from ICU syntax. For example,

// ICU format
echo Yii::$app->formatter->asDate('now', 'yyyy-MM-dd'); // 2014-10-06

// PHP date()-format
echo Yii::$app->formatter->asDate('now', 'php:Y-m-d'); // 2014-10-06

Info: Some letters of the PHP format syntax are not supported by ICU and thus the PHP intl extension and can not be used
in Yii formatter. Most of these (w, t, L, B, u, I, Z) are not really useful for formatting dates but rather
used when doing date math. S and U however may be useful. Their behavior can be achived by doing the following:

	for S, which is the English ordinal suffix for the day of the month (e.g. st, nd, rd or th.), the following replacement can be used:

$f = Yii::$app->formatter;
$d = $f->asOrdinal($f->asDate('2017-05-15', 'php:j'));
echo "On the $d day of the month."; // prints "On the 15th day of the month."

	for U, the Unix Epoch, you can use the [[yii\i18n\Formatter::asTimestamp()|timestamp]] format.

When working with applications that need to support multiple languages, you often need to specify different date
and time formats for different locales. To simplify this task, you may use format shortcuts (e.g. long, short), instead.
The formatter will turn a format shortcut into an appropriate format according to the currently active [[yii\i18n\Formatter::locale|locale]].
The following format shortcuts are supported (the examples assume en_GB is the active locale):

	short: will output 06/10/2014 for date and 15:58 for time;

	medium: will output 6 Oct 2014 and 15:58:42;

	long: will output 6 October 2014 and 15:58:42 GMT;

	full: will output Monday, 6 October 2014 and 15:58:42 GMT.

Since version 2.0.7 it is also possible to format dates in different calendar systems.
Please refer to the API documentation of the formatters [[yii\i18n\Formatter::$calendar|$calendar]]-property on how to set a different calendar.

Time Zones

When formatting date and time values, Yii will convert them to the target [[yii\i18n\Formatter::timeZone|time zone]].
The value being formatted is assumed to be in UTC, unless a time zone is explicitly given or you have configured
[[yii\i18n\Formatter::defaultTimeZone]].

In the following examples, we assume the target [[yii\i18n\Formatter::timeZone|time zone]] is set as Europe/Berlin.

// formatting a UNIX timestamp as a time
echo Yii::$app->formatter->asTime(1412599260); // 14:41:00

// formatting a datetime string (in UTC) as a time
echo Yii::$app->formatter->asTime('2014-10-06 12:41:00'); // 14:41:00

// formatting a datetime string (in CEST) as a time
echo Yii::$app->formatter->asTime('2014-10-06 14:41:00 CEST'); // 14:41:00

If the [[yii\i18n\Formatter::timeZone|time zone]] is not set explicitly on the formatter component, the
[[yii\base\Application::timeZone|time zone configured in the application]] is used, which is the same time zone
as set in the PHP configuration.

Note: As time zones are subject to rules made by the governments around the world and may change frequently, it is
likely that you do not have the latest information in the time zone database installed on your system.
You may refer to the ICU manual [http://userguide.icu-project.org/datetime/timezone#TOC-Updating-the-Time-Zone-Data]
for details on updating the time zone database. Please also read
Setting up your PHP environment for internationalization.

Formatting Numbers

The formatter supports the following output formats that are related with numbers:

	[[yii\i18n\Formatter::asInteger()|integer]]: the value is formatted as an integer e.g. 42.

	[[yii\i18n\Formatter::asDecimal()|decimal]]: the value is formatted as a decimal number considering decimal and thousand
separators e.g. 2,542.123 or 2.542,123.

	[[yii\i18n\Formatter::asPercent()|percent]]: the value is formatted as a percent number e.g. 42%.

	[[yii\i18n\Formatter::asScientific()|scientific]]: the value is formatted as a number in scientific format e.g. 4.2E4.

	[[yii\i18n\Formatter::asCurrency()|currency]]: the value is formatted as a currency value e.g. £420.00.
Note that for this function to work properly, the locale needs to include a country part e.g. en_GB or en_US because language only
would be ambiguous in this case.

	[[yii\i18n\Formatter::asSize()|size]]: the value that is a number of bytes is formatted as a human readable size e.g. 410 kibibytes.

	[[yii\i18n\Formatter::asShortSize()|shortSize]]: is the short version of [[yii\i18n\Formatter::asSize()|size]], e.g. 410 KiB.

The format for number formatting can be adjusted using the [[yii\i18n\Formatter::decimalSeparator|decimalSeparator]] and
[[yii\i18n\Formatter::thousandSeparator|thousandSeparator]], both of which take default values according to the
active [[yii\i18n\Formatter::locale|locale]].

For more advanced configuration, [[yii\i18n\Formatter::numberFormatterOptions]] and [[yii\i18n\Formatter::numberFormatterTextOptions]]
can be used to configure the NumberFormatter class [http://php.net/manual/en/class.numberformatter.php] used internally
to implement the formatter. For example, to adjust the maximum and minimum value of fraction digits, you can configure
the [[yii\i18n\Formatter::numberFormatterOptions]] property like the following:

'numberFormatterOptions' => [
 NumberFormatter::MIN_FRACTION_DIGITS => 0,
 NumberFormatter::MAX_FRACTION_DIGITS => 2,
]

Other Formats

Besides date/time and number formats, Yii also supports other commonly used formats, including

	[[yii\i18n\Formatter::asRaw()|raw]]: the value is outputted as is, this is a pseudo-formatter that has no effect except that
null values will be formatted using [[nullDisplay]].

	[[yii\i18n\Formatter::asText()|text]]: the value is HTML-encoded.
This is the default format used by the GridView DataColumn.

	[[yii\i18n\Formatter::asNtext()|ntext]]: the value is formatted as an HTML-encoded plain text with newlines converted
into line breaks.

	[[yii\i18n\Formatter::asParagraphs()|paragraphs]]: the value is formatted as HTML-encoded text paragraphs wrapped
into <p> tags.

	[[yii\i18n\Formatter::asHtml()|html]]: the value is purified using [[HtmlPurifier]] to avoid XSS attacks. You can
pass additional options such as ['html', ['Attr.AllowedFrameTargets' => ['_blank']]].

	[[yii\i18n\Formatter::asEmail()|email]]: the value is formatted as a mailto-link.

	[[yii\i18n\Formatter::asImage()|image]]: the value is formatted as an image tag.

	[[yii\i18n\Formatter::asUrl()|url]]: the value is formatted as a hyperlink.

	[[yii\i18n\Formatter::asBoolean()|boolean]]: the value is formatted as a boolean. By default true is rendered
as Yes and false as No, translated to the current application language. You can adjust this by configuring
the [[yii\i18n\Formatter::booleanFormat]] property.

Null Values

Null values are specially formatted. Instead of displaying an empty string, the formatter will convert it into a
preset string which defaults to (not set) translated into the current application language. You can configure the
[[yii\i18n\Formatter::nullDisplay|nullDisplay]] property to customize this string.

Localizing Data Format

As aforementioned, the formatter may use the currently active [[yii\i18n\Formatter::locale|locale]] to determine how
to format a value that is suitable in the target country/region. For example, the same date value may be formatted
differently for different locales:

Yii::$app->formatter->locale = 'en-US';
echo Yii::$app->formatter->asDate('2014-01-01'); // output: January 1, 2014

Yii::$app->formatter->locale = 'de-DE';
echo Yii::$app->formatter->asDate('2014-01-01'); // output: 1. Januar 2014

Yii::$app->formatter->locale = 'ru-RU';
echo Yii::$app->formatter->asDate('2014-01-01'); // output: 1 января 2014 г.

By default, the currently active [[yii\i18n\Formatter::locale|locale]] is determined by the value of
[[yii\base\Application::language]]. You may override it by setting the [[yii\i18n\Formatter::locale]] property explicitly.

Note: The Yii formatter relies on the PHP intl extension [http://php.net/manual/en/book.intl.php] to support
localized data formatting. Because different versions of the ICU library compiled with PHP may cause different
formatting results, it is recommended that you use the same ICU version for all your environments. For more details,
please refer to Setting up your PHP environment for internationalization.

If the intl extension is not installed, the data will not be localized.

Note that for date values that are before year 1901 or after 2038, they will not be localized on 32-bit systems, even
if the intl extension is installed. This is because in this case ICU is using 32-bit UNIX timestamps to date values.

 Pagination

Pagination

When there are too much data to be displayed on a single page, a common strategy is to display them in multiple
pages and on each page only display a small portion of the data. This strategy is known as pagination.

Yii uses a [[yii\data\Pagination]] object to represent the information about a pagination scheme. In particular,

	[[yii\data\Pagination::$totalCount|total count]] specifies the total number of data items. Note that this
is usually much more than the number of data items needed to display on a single page.

	[[yii\data\Pagination::$pageSize|page size]] specifies how many data items each page contains. The default
value is 20.

	[[yii\data\Pagination::$page|current page]] gives the current page number (zero-based). The default value is 0, meaning the first page.

With a fully specified [[yii\data\Pagination]] object, you can retrieve and display data partially. For example,
if you are fetching data from a database, you can specify the OFFSET and LIMIT clause of the DB query with
the corresponding values provided by the pagination. Below is an example,

use yii\data\Pagination;

// build a DB query to get all articles with status = 1
$query = Article::find()->where(['status' => 1]);

// get the total number of articles (but do not fetch the article data yet)
$count = $query->count();

// create a pagination object with the total count
$pagination = new Pagination(['totalCount' => $count]);

// limit the query using the pagination and retrieve the articles
$articles = $query->offset($pagination->offset)
 ->limit($pagination->limit)
 ->all();

Which page of articles will be returned in the above example? It depends on whether a query parameter named page
is given. By default, the pagination will attempt to set the [[yii\data\Pagination::$page|current page]] to be
the value of the page parameter. If the parameter is not provided, then it will default to 0.

To facilitate building the UI element that supports pagination, Yii provides the [[yii\widgets\LinkPager]] widget
that displays a list of page buttons upon which users can click to indicate which page of data should be displayed.
The widget takes a pagination object so that it knows what is the current page and how many page buttons should
be displayed. For example,

use yii\widgets\LinkPager;

echo LinkPager::widget([
 'pagination' => $pagination,
]);

If you want to build UI element manually, you may use [[yii\data\Pagination::createUrl()]] to create URLs that
would lead to different pages. The method requires a page parameter and will create a properly formatted URL
containing the page parameter. For example,

// specifies the route that the URL to be created should use
// If you do not specify this, the currently requested route will be used
$pagination->route = 'article/index';

// displays: /index.php?r=article%2Findex&page=100
echo $pagination->createUrl(100);

// displays: /index.php?r=article%2Findex&page=101
echo $pagination->createUrl(101);

Tip: You can customize the name of the page query parameter by configuring the
[[yii\data\Pagination::pageParam|pageParam]] property when creating the pagination object.

 Sorting

Sorting

When displaying multiple rows of data, it is often needed that the data be sorted according to some columns
specified by end users. Yii uses a [[yii\data\Sort]] object to represent the information about a sorting schema.
In particular,

	[[yii\data\Sort::$attributes|attributes]] specifies the attributes by which the data can be sorted.
An attribute can be as simple as a model attribute. It can also be a composite
one by combining multiple model attributes or DB columns. More details will be given in the following.

	[[yii\data\Sort::$attributeOrders|attributeOrders]] gives the currently requested ordering directions for
each attribute.

	[[yii\data\Sort::$orders|orders]] gives the ordering directions in terms of the low-level columns.

To use [[yii\data\Sort]], first declare which attributes can be sorted. Then retrieve the currently requested
ordering information from [[yii\data\Sort::$attributeOrders|attributeOrders]] or [[yii\data\Sort::$orders|orders]]
and use them to customize the data query. For example,

use yii\data\Sort;

$sort = new Sort([
 'attributes' => [
 'age',
 'name' => [
 'asc' => ['first_name' => SORT_ASC, 'last_name' => SORT_ASC],
 'desc' => ['first_name' => SORT_DESC, 'last_name' => SORT_DESC],
 'default' => SORT_DESC,
 'label' => 'Name',
],
],
]);

$articles = Article::find()
 ->where(['status' => 1])
 ->orderBy($sort->orders)
 ->all();

In the above example, two attributes are declared for the [[yii\data\Sort|Sort]] object: age and name.

The age attribute is a simple attribute corresponding to the age attribute of the Article Active Record class.
It is equivalent to the following declaration:

'age' => [
 'asc' => ['age' => SORT_ASC],
 'desc' => ['age' => SORT_DESC],
 'default' => SORT_ASC,
 'label' => Inflector::camel2words('age'),
]

The name attribute is a composite attribute defined by first_name and last_name of Article. It is declared
using the following array structure:

	The asc and desc elements specify how to sort by the attribute in ascending and descending directions, respectively.
Their values represent the actual columns and the directions by which the data should be sorted by. You can specify
one or multiple columns to indicate simple ordering or composite ordering.

	The default element specifies the direction by which the attribute should be sorted when initially requested.
It defaults to ascending order, meaning if it is not sorted before and you request to sort by this attribute,
the data will be sorted by this attribute in ascending order.

	The label element specifies what label should be used when calling [[yii\data\Sort::link()]] to create a sort link.
If not set, [[yii\helpers\Inflector::camel2words()]] will be called to generate a label from the attribute name.
Note that it will not be HTML-encoded.

Info: You can directly feed the value of [[yii\data\Sort::$orders|orders]] to the database query to build
its ORDER BY clause. Do not use [[yii\data\Sort::$attributeOrders|attributeOrders]] because some of the
attributes may be composite and cannot be recognized by the database query.

You can call [[yii\data\Sort::link()]] to generate a hyperlink upon which end users can click to request sorting
the data by the specified attribute. You may also call [[yii\data\Sort::createUrl()]] to create a sortable URL.
For example,

// specifies the route that the URL to be created should use
// If you do not specify this, the currently requested route will be used
$sort->route = 'article/index';

// display links leading to sort by name and age, respectively
echo $sort->link('name') . ' | ' . $sort->link('age');

// displays: /index.php?r=article%2Findex&sort=age
echo $sort->createUrl('age');

[[yii\data\Sort]] checks the sort query parameter to determine which attributes are being requested for sorting.
You may specify a default ordering via [[yii\data\Sort::defaultOrder]] when the query parameter is not present.
You may also customize the name of the query parameter by configuring the [[yii\data\Sort::sortParam|sortParam]] property.

 Theming

Theming

Theming is a way to replace a set of views with another without the need of touching
the original view rendering code. You can use theming to systematically change the look and feel of an application.

To use theming, you should configure the [[yii\base\View::theme|theme]] property of the view application component.
The property configures a [[yii\base\Theme]] object which governs how view files are being replaced. You should
mainly specify the following properties of [[yii\base\Theme]]:

	[[yii\base\Theme::basePath]]: specifies the base directory that contains the themed resources (CSS, JS, images, etc.)

	[[yii\base\Theme::baseUrl]]: specifies the base URL of the themed resources.

	[[yii\base\Theme::pathMap]]: specifies the replacement rules of view files. More details will be given in the following
subsections.

For example, if you call $this->render('about') in SiteController, you will be rendering the view file
@app/views/site/about.php. However, if you enable theming in the following application configuration,
the view file @app/themes/basic/site/about.php will be rendered, instead.

return [
 'components' => [
 'view' => [
 'theme' => [
 'basePath' => '@app/themes/basic',
 'baseUrl' => '@web/themes/basic',
 'pathMap' => [
 '@app/views' => '@app/themes/basic',
],
],
],
],
];

Info: Path aliases are supported by themes. When doing view replacement, path aliases will be turned into
the actual file paths or URLs.

You can access the [[yii\base\Theme]] object through the [[yii\base\View::theme]] property. For example,
in a view file, you can write the following code because $this refers to the view object:

$theme = $this->theme;

// returns: $theme->baseUrl . '/img/logo.gif'
$url = $theme->getUrl('img/logo.gif');

// returns: $theme->basePath . '/img/logo.gif'
$file = $theme->getPath('img/logo.gif');

The [[yii\base\Theme::pathMap]] property governs how view files should be replaced. It takes an array of
key-value pairs, where the keys are the original view paths to be replaced and the values are the corresponding
themed view paths. The replacement is based on partial match: if a view path starts with any key in
the [[yii\base\Theme::pathMap|pathMap]] array, that matching part will be replaced with the corresponding array value.
Using the above configuration example, because @app/views/site/about.php partially matches the key
@app/views, it will be replaced as @app/themes/basic/site/about.php.

Theming Modules

In order to theme modules, [[yii\base\Theme::pathMap]] can be configured like the following:

'pathMap' => [
 '@app/views' => '@app/themes/basic',
 '@app/modules' => '@app/themes/basic/modules', // <-- !!!
],

It will allow you to theme @app/modules/blog/views/comment/index.php into @app/themes/basic/modules/blog/views/comment/index.php.

Theming Widgets

In order to theme widgets, you can configure [[yii\base\Theme::pathMap]] in the following way:

'pathMap' => [
 '@app/views' => '@app/themes/basic',
 '@app/widgets' => '@app/themes/basic/widgets', // <-- !!!
],

This will allow you to theme @app/widgets/currency/views/index.php into @app/themes/basic/widgets/currency/views/index.php.

Theme Inheritance

Sometimes you may want to define a basic theme which contains a basic look and feel of the application, and then
based on the current holiday, you may want to vary the look and feel slightly. You can achieve this goal using
theme inheritance which is done by mapping a single view path to multiple targets. For example,

'pathMap' => [
 '@app/views' => [
 '@app/themes/christmas',
 '@app/themes/basic',
],
]

In this case, the view @app/views/site/index.php would be themed as either @app/themes/christmas/site/index.php
or @app/themes/basic/site/index.php, depending on which themed file exists. If both themed files exist, the first
one will take precedence. In practice, you would keep most themed view files in @app/themes/basic and customize
some of them in @app/themes/christmas.

 Authentication

Authentication

Unlike Web applications, RESTful APIs are usually stateless, which means sessions or cookies should not
be used. Therefore, each request should come with some sort of authentication credentials because
the user authentication status may not be maintained by sessions or cookies. A common practice is
to send a secret access token with each request to authenticate the user. Since an access token
can be used to uniquely identify and authenticate a user, API requests should always be sent
via HTTPS to prevent man-in-the-middle (MitM) attacks.

There are different ways to send an access token:

	HTTP Basic Auth [http://en.wikipedia.org/wiki/Basic_access_authentication]: the access token
is sent as the username. This should only be used when an access token can be safely stored
on the API consumer side. For example, the API consumer is a program running on a server.

	Query parameter: the access token is sent as a query parameter in the API URL, e.g.,
https://example.com/users?access-token=xxxxxxxx. Because most Web servers will keep query
parameters in server logs, this approach should be mainly used to serve JSONP requests which
cannot use HTTP headers to send access tokens.

	OAuth 2 [http://oauth.net/2/]: the access token is obtained by the consumer from an authorization
server and sent to the API server via HTTP Bearer Tokens [http://tools.ietf.org/html/rfc6750],
according to the OAuth2 protocol.

Yii supports all of the above authentication methods. You can also easily create new authentication methods.

To enable authentication for your APIs, do the following steps:

	Configure the user application component:

	Set the [[yii\web\User::enableSession|enableSession]] property to be false.

	Set the [[yii\web\User::loginUrl|loginUrl]] property to be null to show a HTTP 403 error instead of redirecting to the login page.

	Specify which authentication methods you plan to use by configuring the authenticator behavior
in your REST controller classes.

	Implement [[yii\web\IdentityInterface::findIdentityByAccessToken()]] in your [[yii\web\User::identityClass|user identity class]].

Step 1 is not required but is recommended for RESTful APIs which should be stateless. When [[yii\web\User::enableSession|enableSession]]
is false, the user authentication status will NOT be persisted across requests using sessions. Instead, authentication
will be performed for every request, which is accomplished by Step 2 and 3.

Tip: You may configure [[yii\web\User::enableSession|enableSession]] of the user application component
in application configurations if you are developing RESTful APIs in terms of an application. If you develop
RESTful APIs as a module, you may put the following line in the module’s init() method, like the following:

public function init()
{
 parent::init();
 \Yii::$app->user->enableSession = false;
}

For example, to use HTTP Basic Auth, you may configure the authenticator behavior as follows,

use yii\filters\auth\HttpBasicAuth;

public function behaviors()
{
 $behaviors = parent::behaviors();
 $behaviors['authenticator'] = [
 'class' => HttpBasicAuth::className(),
];
 return $behaviors;
}

If you want to support all three authentication methods explained above, you can use CompositeAuth like the following,

use yii\filters\auth\CompositeAuth;
use yii\filters\auth\HttpBasicAuth;
use yii\filters\auth\HttpBearerAuth;
use yii\filters\auth\QueryParamAuth;

public function behaviors()
{
 $behaviors = parent::behaviors();
 $behaviors['authenticator'] = [
 'class' => CompositeAuth::className(),
 'authMethods' => [
 HttpBasicAuth::className(),
 HttpBearerAuth::className(),
 QueryParamAuth::className(),
],
];
 return $behaviors;
}

Each element in authMethods should be an auth method class name or a configuration array.

Implementation of findIdentityByAccessToken() is application specific. For example, in simple scenarios
when each user can only have one access token, you may store the access token in an access_token column
in the user table. The method can then be readily implemented in the User class as follows,

use yii\db\ActiveRecord;
use yii\web\IdentityInterface;

class User extends ActiveRecord implements IdentityInterface
{
 public static function findIdentityByAccessToken($token, $type = null)
 {
 return static::findOne(['access_token' => $token]);
 }
}

After authentication is enabled as described above, for every API request, the requested controller
will try to authenticate the user in its beforeAction() step.

If authentication succeeds, the controller will perform other checks (such as rate limiting, authorization)
and then run the action. The authenticated user identity information can be retrieved via Yii::$app->user->identity.

If authentication fails, a response with HTTP status 401 will be sent back together with other appropriate headers
(such as a WWW-Authenticate header for HTTP Basic Auth).

Authorization

After a user is authenticated, you probably want to check if he or she has the permission to perform the requested
action for the requested resource. This process is called authorization which is covered in detail in
the Authorization section.

If your controllers extend from [[yii\rest\ActiveController]], you may override
the [[yii\rest\ActiveController::checkAccess()|checkAccess()]] method to perform authorization check. The method
will be called by the built-in actions provided by [[yii\rest\ActiveController]].

 Controllers

Controllers

After creating the resource classes and specifying how resource data should be formatted, the next thing
to do is to create controller actions to expose the resources to end users through RESTful APIs.

Yii provides two base controller classes to simplify your work of creating RESTful actions:
[[yii\rest\Controller]] and [[yii\rest\ActiveController]]. The difference between these two controllers
is that the latter provides a default set of actions that are specifically designed to deal with
resources represented as Active Record. So if you are using Active Record
and are comfortable with the provided built-in actions, you may consider extending your controller classes
from [[yii\rest\ActiveController]], which will allow you to create powerful RESTful APIs with minimal code.

Both [[yii\rest\Controller]] and [[yii\rest\ActiveController]] provide the following features, some of which
will be described in detail in the next few sections:

	HTTP method validation;

	Content negotiation and Data formatting;

	Authentication;

	Rate limiting.

[[yii\rest\ActiveController]] in addition provides the following features:

	A set of commonly needed actions: index, view, create, update, delete, options;

	User authorization in regard to the requested action and resource.

Creating Controller Classes

When creating a new controller class, a convention in naming the controller class is to use
the type name of the resource and use singular form. For example, to serve user information,
the controller may be named as UserController.

Creating a new action is similar to creating an action for a Web application. The only difference
is that instead of rendering the result using a view by calling the render() method, for RESTful actions
you directly return the data. The [[yii\rest\Controller::serializer|serializer]] and the
[[yii\web\Response|response object]] will handle the conversion from the original data to the requested
format. For example,

public function actionView($id)
{
 return User::findOne($id);
}

Filters

Most RESTful API features provided by [[yii\rest\Controller]] are implemented in terms of filters.
In particular, the following filters will be executed in the order they are listed:

	[[yii\filters\ContentNegotiator|contentNegotiator]]: supports content negotiation, to be explained in
the Response Formatting section;

	[[yii\filters\VerbFilter|verbFilter]]: supports HTTP method validation;

	[[yii\filters\auth\AuthMethod|authenticator]]: supports user authentication, to be explained in
the Authentication section;

	[[yii\filters\RateLimiter|rateLimiter]]: supports rate limiting, to be explained in
the Rate Limiting section.

These named filters are declared in the [[yii\rest\Controller::behaviors()|behaviors()]] method.
You may override this method to configure individual filters, disable some of them, or add your own filters.
For example, if you only want to use HTTP basic authentication, you may write the following code:

use yii\filters\auth\HttpBasicAuth;

public function behaviors()
{
 $behaviors = parent::behaviors();
 $behaviors['authenticator'] = [
 'class' => HttpBasicAuth::className(),
];
 return $behaviors;
}

CORS

Adding the Cross-Origin Resource Sharing filter to a controller is a bit more complicated
than adding other filters described above, because the CORS filter has to be applied before authentication methods
and thus needs a slightly different approach compared to other filters. Also authentication has to be disabled for the
CORS Preflight requests [https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS#Preflighted_requests]
so that a browser can safely determine whether a request can be made beforehand without the need for sending
authentication credentials. The following shows the code that is needed to add the [[yii\filters\Cors]] filter
to an existing controller that extends from [[yii\rest\ActiveController]]:

use yii\filters\auth\HttpBasicAuth;

public function behaviors()
{
 $behaviors = parent::behaviors();

 // remove authentication filter
 $auth = $behaviors['authenticator'];
 unset($behaviors['authenticator']);

 // add CORS filter
 $behaviors['corsFilter'] = [
 'class' => \yii\filters\Cors::className(),
];

 // re-add authentication filter
 $behaviors['authenticator'] = $auth;
 // avoid authentication on CORS-pre-flight requests (HTTP OPTIONS method)
 $behaviors['authenticator']['except'] = ['options'];

 return $behaviors;
}

Extending ActiveController

If your controller class extends from [[yii\rest\ActiveController]], you should set
its [[yii\rest\ActiveController::modelClass|modelClass]] property to be the name of the resource class
that you plan to serve through this controller. The class must extend from [[yii\db\ActiveRecord]].

Customizing Actions

By default, [[yii\rest\ActiveController]] provides the following actions:

	[[yii\rest\IndexAction|index]]: list resources page by page;

	[[yii\rest\ViewAction|view]]: return the details of a specified resource;

	[[yii\rest\CreateAction|create]]: create a new resource;

	[[yii\rest\UpdateAction|update]]: update an existing resource;

	[[yii\rest\DeleteAction|delete]]: delete the specified resource;

	[[yii\rest\OptionsAction|options]]: return the supported HTTP methods.

All these actions are declared through the [[yii\rest\ActiveController::actions()|actions()]] method.
You may configure these actions or disable some of them by overriding the actions() method, like shown the following,

public function actions()
{
 $actions = parent::actions();

 // disable the "delete" and "create" actions
 unset($actions['delete'], $actions['create']);

 // customize the data provider preparation with the "prepareDataProvider()" method
 $actions['index']['prepareDataProvider'] = [$this, 'prepareDataProvider'];

 return $actions;
}

public function prepareDataProvider()
{
 // prepare and return a data provider for the "index" action
}

Please refer to the class references for individual action classes to learn what configuration options are available.

Performing Access Check

When exposing resources through RESTful APIs, you often need to check if the current user has the permission
to access and manipulate the requested resource(s). With [[yii\rest\ActiveController]], this can be done
by overriding the [[yii\rest\ActiveController::checkAccess()|checkAccess()]] method like the following,

/**
 * Checks the privilege of the current user.
 *
 * This method should be overridden to check whether the current user has the privilege
 * to run the specified action against the specified data model.
 * If the user does not have access, a [[ForbiddenHttpException]] should be thrown.
 *
 * @param string $action the ID of the action to be executed
 * @param \yii\base\Model $model the model to be accessed. If `null`, it means no specific model is being accessed.
 * @param array $params additional parameters
 * @throws ForbiddenHttpException if the user does not have access
 */
public function checkAccess($action, $model = null, $params = [])
{
 // check if the user can access $action and $model
 // throw ForbiddenHttpException if access should be denied
 if ($action === 'update' || $action === 'delete') {
 if ($model->author_id !== \Yii::$app->user->id)
 throw new \yii\web\ForbiddenHttpException(sprintf('You can only %s articles that you\'ve created.', $action));
 }
}

The checkAccess() method will be called by the default actions of [[yii\rest\ActiveController]]. If you create
new actions and also want to perform access check, you should call this method explicitly in the new actions.

Tip: You may implement checkAccess() by using the Role-Based Access Control (RBAC) component.

 Error Handling

Error Handling

When handling a RESTful API request, if there is an error in the user request or if something unexpected
happens on the server, you may simply throw an exception to notify the user that something went wrong.
If you can identify the cause of the error (e.g., the requested resource does not exist), you should
consider throwing an exception along with a proper HTTP status code (e.g., [[yii\web\NotFoundHttpException]]
represents a 404 status code). Yii will send the response along with the corresponding HTTP status
code and text. Yii will also include the serialized representation of the
exception in the response body. For example:

HTTP/1.1 404 Not Found
Date: Sun, 02 Mar 2014 05:31:43 GMT
Server: Apache/2.2.26 (Unix) DAV/2 PHP/5.4.20 mod_ssl/2.2.26 OpenSSL/0.9.8y
Transfer-Encoding: chunked
Content-Type: application/json; charset=UTF-8

{
 "name": "Not Found Exception",
 "message": "The requested resource was not found.",
 "code": 0,
 "status": 404
}

The following list summarizes the HTTP status codes that are used by the Yii REST framework:

	200: OK. Everything worked as expected.

	201: A resource was successfully created in response to a POST request. The Location header
contains the URL pointing to the newly created resource.

	204: The request was handled successfully and the response contains no body content (like a DELETE request).

	304: The resource was not modified. You can use the cached version.

	400: Bad request. This could be caused by various actions by the user, such as providing invalid JSON
data in the request body, providing invalid action parameters, etc.

	401: Authentication failed.

	403: The authenticated user is not allowed to access the specified API endpoint.

	404: The requested resource does not exist.

	405: Method not allowed. Please check the Allow header for the allowed HTTP methods.

	415: Unsupported media type. The requested content type or version number is invalid.

	422: Data validation failed (in response to a POST request, for example). Please check the response body for detailed error messages.

	429: Too many requests. The request was rejected due to rate limiting.

	500: Internal server error. This could be caused by internal program errors.

Customizing Error Response

Sometimes you may want to customize the default error response format. For example, instead of relying on
using different HTTP statuses to indicate different errors, you would like to always use 200 as HTTP status
and enclose the actual HTTP status code as part of the JSON structure in the response, like shown in the following,

HTTP/1.1 200 OK
Date: Sun, 02 Mar 2014 05:31:43 GMT
Server: Apache/2.2.26 (Unix) DAV/2 PHP/5.4.20 mod_ssl/2.2.26 OpenSSL/0.9.8y
Transfer-Encoding: chunked
Content-Type: application/json; charset=UTF-8

{
 "success": false,
 "data": {
 "name": "Not Found Exception",
 "message": "The requested resource was not found.",
 "code": 0,
 "status": 404
 }
}

To achieve this goal, you can respond to the beforeSend event of the response component in the application configuration:

return [
 // ...
 'components' => [
 'response' => [
 'class' => 'yii\web\Response',
 'on beforeSend' => function ($event) {
 $response = $event->sender;
 if ($response->data !== null && Yii::$app->request->get('suppress_response_code')) {
 $response->data = [
 'success' => $response->isSuccessful,
 'data' => $response->data,
];
 $response->statusCode = 200;
 }
 },
],
],
];

The above code will reformat the response (for both successful and failed responses) as explained when
suppress_response_code is passed as a GET parameter.

 Quick Start

Quick Start

Yii provides a whole set of tools to simplify the task of implementing RESTful Web Service APIs.
In particular, Yii supports the following features about RESTful APIs:

	Quick prototyping with support for common APIs for Active Record;

	Response format negotiation (supporting JSON and XML by default);

	Customizable object serialization with support for selectable output fields;

	Proper formatting of collection data and validation errors;

	Collection pagination, filtering and sorting;

	Support for HATEOAS [http://en.wikipedia.org/wiki/HATEOAS];

	Efficient routing with proper HTTP verb check;

	Built-in support for the OPTIONS and HEAD verbs;

	Authentication and authorization;

	Data caching and HTTP caching;

	Rate limiting;

In the following, we use an example to illustrate how you can build a set of RESTful APIs with some minimal coding effort.

Assume you want to expose the user data via RESTful APIs. The user data are stored in the user DB table,
and you have already created the active record class app\models\User to access the user data.

Creating a Controller

First, create a controller class app\controllers\UserController as follows:

namespace app\controllers;

use yii\rest\ActiveController;

class UserController extends ActiveController
{
 public $modelClass = 'app\models\User';
}

The controller class extends from [[yii\rest\ActiveController]], which implements a common set of RESTful actions.
By specifying [[yii\rest\ActiveController::modelClass|modelClass]]
as app\models\User, the controller knows which model can be used for fetching and manipulating data.

Configuring URL Rules

Then, modify the configuration of the urlManager component in your application configuration:

'urlManager' => [
 'enablePrettyUrl' => true,
 'enableStrictParsing' => true,
 'showScriptName' => false,
 'rules' => [
 ['class' => 'yii\rest\UrlRule', 'controller' => 'user'],
],
]

The above configuration mainly adds a URL rule for the user controller so that the user data
can be accessed and manipulated with pretty URLs and meaningful HTTP verbs.

Note: Yii will automatically pluralize controller names for use in endpoints (see Trying it Out section below).
You can configure this using the [[yii\rest\UrlRule::$pluralize]] property.

Enabling JSON Input

To let the API accept input data in JSON format, configure the [[yii\web\Request::$parsers|parsers]] property of
the request application component to use the [[yii\web\JsonParser]] for JSON input:

'request' => [
 'parsers' => [
 'application/json' => 'yii\web\JsonParser',
]
]

Info: The above configuration is optional. Without the above configuration, the API would only recognize
application/x-www-form-urlencoded and multipart/form-data input formats.

Trying it Out

With the above minimal amount of effort, you have already finished your task of creating the RESTful APIs
for accessing the user data. The APIs you have created include:

	GET /users: list all users page by page;

	HEAD /users: show the overview information of user listing;

	POST /users: create a new user;

	GET /users/123: return the details of the user 123;

	HEAD /users/123: show the overview information of user 123;

	PATCH /users/123 and PUT /users/123: update the user 123;

	DELETE /users/123: delete the user 123;

	OPTIONS /users: show the supported verbs regarding endpoint /users;

	OPTIONS /users/123: show the supported verbs regarding endpoint /users/123.

You may access your APIs with the curl command like the following,

$ curl -i -H "Accept:application/json" "http://localhost/users"

HTTP/1.1 200 OK
...
X-Pagination-Total-Count: 1000
X-Pagination-Page-Count: 50
X-Pagination-Current-Page: 1
X-Pagination-Per-Page: 20
Link: <http://localhost/users?page=1>; rel=self,
 <http://localhost/users?page=2>; rel=next,
 <http://localhost/users?page=50>; rel=last
Transfer-Encoding: chunked
Content-Type: application/json; charset=UTF-8

[
 {
 "id": 1,
 ...
 },
 {
 "id": 2,
 ...
 },
 ...
]

Try changing the acceptable content type to be application/xml, and you will see the result
is returned in XML format:

$ curl -i -H "Accept:application/xml" "http://localhost/users"

HTTP/1.1 200 OK
...
X-Pagination-Total-Count: 1000
X-Pagination-Page-Count: 50
X-Pagination-Current-Page: 1
X-Pagination-Per-Page: 20
Link: <http://localhost/users?page=1>; rel=self,
 <http://localhost/users?page=2>; rel=next,
 <http://localhost/users?page=50>; rel=last
Transfer-Encoding: chunked
Content-Type: application/xml

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <item>
 <id>1</id>
 ...
 </item>
 <item>
 <id>2</id>
 ...
 </item>
 ...
</response>

The following command will create a new user by sending a POST request with the user data in JSON format:

$ curl -i -H "Accept:application/json" -H "Content-Type:application/json" -XPOST "http://localhost/users" -d '{"username": "example", "email": "user@example.com"}'

HTTP/1.1 201 Created
...
Location: http://localhost/users/1
Content-Length: 99
Content-Type: application/json; charset=UTF-8

{"id":1,"username":"example","email":"user@example.com","created_at":1414674789,"updated_at":1414674789}

Tip: You may also access your APIs via Web browser by entering the URL http://localhost/users.
However, you may need some browser plugins to send specific request headers.

As you can see, in the response headers, there is information about the total count, page count, etc.
There are also links that allow you to navigate to other pages of data. For example, http://localhost/users?page=2
would give you the next page of the user data.

Using the fields and expand parameters, you may also specify which fields should be included in the result.
For example, the URL http://localhost/users?fields=id,email will only return the id and email fields.

Info: You may have noticed that the result of http://localhost/users includes some sensitive fields,
such as password_hash, auth_key. You certainly do not want these to appear in your API result.
You can and should remove these fields from result as described in the Resources section.

Addionally, you can sort collections like http://localhost/users?sort=email or
http://localhost/users?sort=-email. Filtering collections like http://localhost/users?filter[id]=10 or
http://localhost/users?filter[email][like]=gmail.com could be implemented using
data filters. See Resources section for details.

Summary

Using the Yii RESTful API framework, you implement an API endpoint in terms of a controller action, and you use
a controller to organize the actions that implement the endpoints for a single type of resource.

Resources are represented as data models which extend from the [[yii\base\Model]] class.
If you are working with databases (relational or NoSQL), it is recommended you use [[yii\db\ActiveRecord|ActiveRecord]]
to represent resources.

You may use [[yii\rest\UrlRule]] to simplify the routing to your API endpoints.

While not required, it is recommended that you develop your RESTful APIs as a separate application, different from
your Web front end and back end for easier maintenance.

 Rate Limiting

Rate Limiting

To prevent abuse, you should consider adding rate limiting to your APIs. For example, you may want to limit the API usage
of each user to be at most 100 API calls within a period of 10 minutes. If too many requests are received from a user
within the stated period of the time, a response with status code 429 (meaning “Too Many Requests”) should be returned.

To enable rate limiting, the [[yii\web\User::identityClass|user identity class]] should implement [[yii\filters\RateLimitInterface]].
This interface requires implementation of three methods:

	getRateLimit(): returns the maximum number of allowed requests and the time period (e.g., [100, 600] means there can be at most 100 API calls within 600 seconds).

	loadAllowance(): returns the number of remaining requests allowed and the corresponding UNIX timestamp
when the rate limit was last checked.

	saveAllowance(): saves both the number of remaining requests allowed and the current UNIX timestamp.

You may want to use two columns in the user table to record the allowance and timestamp information. With those defined,
then loadAllowance() and saveAllowance() can be implemented to read and save the values
of the two columns corresponding to the current authenticated user. To improve performance, you may also
consider storing these pieces of information in a cache or NoSQL storage.

Implementation in the User model could look like the following:

public function getRateLimit($request, $action)
{
 return [$this->rateLimit, 1]; // $rateLimit requests per second
}

public function loadAllowance($request, $action)
{
 return [$this->allowance, $this->allowance_updated_at];
}

public function saveAllowance($request, $action, $allowance, $timestamp)
{
 $this->allowance = $allowance;
 $this->allowance_updated_at = $timestamp;
 $this->save();
}

Once the identity class implements the required interface, Yii will automatically use [[yii\filters\RateLimiter]]
configured as an action filter for [[yii\rest\Controller]] to perform rate limiting check. The rate limiter
will throw a [[yii\web\TooManyRequestsHttpException]] when the rate limit is exceeded.

You may configure the rate limiter
as follows in your REST controller classes:

public function behaviors()
{
 $behaviors = parent::behaviors();
 $behaviors['rateLimiter']['enableRateLimitHeaders'] = false;
 return $behaviors;
}

When rate limiting is enabled, by default every response will be sent with the following HTTP headers containing
the current rate limiting information:

	X-Rate-Limit-Limit, the maximum number of requests allowed with a time period

	X-Rate-Limit-Remaining, the number of remaining requests in the current time period

	X-Rate-Limit-Reset, the number of seconds to wait in order to get the maximum number of allowed requests

You may disable these headers by configuring [[yii\filters\RateLimiter::enableRateLimitHeaders]] to be false,
as shown in the above code example.

 Resources

Resources

RESTful APIs are all about accessing and manipulating resources. You may view resources as
models in the MVC paradigm.

While there is no restriction in how to represent a resource, in Yii you usually would represent resources
in terms of objects of [[yii\base\Model]] or its child classes (e.g. [[yii\db\ActiveRecord]]), for the
following reasons:

	[[yii\base\Model]] implements the [[yii\base\Arrayable]] interface, which allows you to
customize how you want to expose resource data through RESTful APIs.

	[[yii\base\Model]] supports input validation, which is useful if your RESTful APIs
need to support data input.

	[[yii\db\ActiveRecord]] provides powerful DB data access and manipulation support, which makes it
a perfect fit if your resource data is stored in databases.

In this section, we will mainly describe how a resource class extending from [[yii\base\Model]] (or its child classes)
can specify what data may be returned via RESTful APIs. If the resource class does not extend from [[yii\base\Model]],
then all its public member variables will be returned.

Fields

When including a resource in a RESTful API response, the resource needs to be serialized into a string.
Yii breaks this process into two steps. First, the resource is converted into an array by [[yii\rest\Serializer]].
Second, the array is serialized into a string in a requested format (e.g. JSON, XML) by
[[yii\web\ResponseFormatterInterface|response formatters]]. The first step is what you should mainly focus when
developing a resource class.

By overriding [[yii\base\Model::fields()|fields()]] and/or [[yii\base\Model::extraFields()|extraFields()]],
you may specify what data, called fields, in the resource can be put into its array representation.
The difference between these two methods is that the former specifies the default set of fields which should
be included in the array representation, while the latter specifies additional fields which may be included
in the array if an end user requests for them via the expand query parameter. For example,

// returns all fields as declared in fields()
http://localhost/users

// only returns "id" and "email" fields, provided they are declared in fields()
http://localhost/users?fields=id,email

// returns all fields in fields() and field "profile" if it is in extraFields()
http://localhost/users?expand=profile

// returns all fields in fields() and "author" from post if
// it is in extraFields() of post model
http://localhost/comments?expand=post.author

// only returns "id" and "email" provided they are in fields() and "profile" if it is in extraFields()
http://localhost/users?fields=id,email&expand=profile

Overriding fields()

By default, [[yii\base\Model::fields()]] returns all model attributes as fields, while
[[yii\db\ActiveRecord::fields()]] only returns the attributes which have been populated from DB.

You can override fields() to add, remove, rename or redefine fields. The return value of fields()
should be an array. The array keys are the field names, and the array values are the corresponding
field definitions which can be either property/attribute names or anonymous functions returning the
corresponding field values. In the special case when a field name is the same as its defining attribute
name, you can omit the array key. For example,

// explicitly list every field, best used when you want to make sure the changes
// in your DB table or model attributes do not cause your field changes (to keep API backward compatibility).
public function fields()
{
 return [
 // field name is the same as the attribute name
 'id',
 // field name is "email", the corresponding attribute name is "email_address"
 'email' => 'email_address',
 // field name is "name", its value is defined by a PHP callback
 'name' => function ($model) {
 return $model->first_name . ' ' . $model->last_name;
 },
];
}

// filter out some fields, best used when you want to inherit the parent implementation
// and blacklist some sensitive fields.
public function fields()
{
 $fields = parent::fields();

 // remove fields that contain sensitive information
 unset($fields['auth_key'], $fields['password_hash'], $fields['password_reset_token']);

 return $fields;
}

Warning: Because by default all attributes of a model will be included in the API result, you should
examine your data to make sure they do not contain sensitive information. If there is such information,
you should override fields() to filter them out. In the above example, we choose
to filter out auth_key, password_hash and password_reset_token.

Overriding extraFields()

By default, [[yii\base\Model::extraFields()]] returns an empty array, while [[yii\db\ActiveRecord::extraFields()]]
returns the names of the relations that have been populated from DB.

The return data format of extraFields() is the same as that of fields(). Usually, extraFields()
is mainly used to specify fields whose values are objects. For example, given the following field
declaration,

public function fields()
{
 return ['id', 'email'];
}

public function extraFields()
{
 return ['profile'];
}

the request with http://localhost/users?fields=id,email&expand=profile may return the following JSON data:

[
 {
 "id": 100,
 "email": "100@example.com",
 "profile": {
 "id": 100,
 "age": 30,
 }
 },
 ...
]

Links

HATEOAS [http://en.wikipedia.org/wiki/HATEOAS], an abbreviation for Hypermedia as the Engine of Application State,
promotes that RESTful APIs should return information that allows clients to discover actions supported for the returned
resources. The key of HATEOAS is to return a set of hyperlinks with relation information when resource data are served
by the APIs.

Your resource classes may support HATEOAS by implementing the [[yii\web\Linkable]] interface. The interface
contains a single method [[yii\web\Linkable::getLinks()|getLinks()]] which should return a list of [[yii\web\Link|links]].
Typically, you should return at least the self link representing the URL to the resource object itself. For example,

use yii\base\Model;
use yii\web\Link; // represents a link object as defined in JSON Hypermedia API Language.
use yii\web\Linkable;
use yii\helpers\Url;

class UserResource extends Model implements Linkable
{
 public $id;
 public $email;

 //...

 public function fields()
 {
 return ['id', 'email'];
 }

 public function extraFields()
 {
 return ['profile'];
 }

 public function getLinks()
 {
 return [
 Link::REL_SELF => Url::to(['user/view', 'id' => $this->id], true),
 'edit' => Url::to(['user/view', 'id' => $this->id], true),
 'profile' => Url::to(['user/profile/view', 'id' => $this->id], true),
 'index' => Url::to(['users'], true),
];
 }
}

When a UserResource object is returned in a response, it will contain a _links element representing the links related
to the user, for example,

{
 "id": 100,
 "email": "user@example.com",
 // ...
 "_links" => {
 "self": {
 "href": "https://example.com/users/100"
 },
 "edit": {
 "href": "https://example.com/users/100"
 },
 "profile": {
 "href": "https://example.com/users/profile/100"
 },
 "index": {
 "href": "https://example.com/users"
 }
 }
}

Collections

Resource objects can be grouped into collections. Each collection contains a list of resource objects
of the same type.

While collections can be represented as arrays, it is usually more desirable to represent them
as data providers. This is because data providers support sorting and pagination
of resources, which is a commonly needed feature for RESTful APIs returning collections. For example,
the following action returns a data provider about the post resources:

namespace app\controllers;

use yii\rest\Controller;
use yii\data\ActiveDataProvider;
use app\models\Post;

class PostController extends Controller
{
 public function actionIndex()
 {
 return new ActiveDataProvider([
 'query' => Post::find(),
]);
 }
}

When a data provider is being sent in a RESTful API response, [[yii\rest\Serializer]] will take out the current
page of resources and serialize them as an array of resource objects. Additionally, [[yii\rest\Serializer]]
will also include the pagination information by the following HTTP headers:

	X-Pagination-Total-Count: The total number of resources;

	X-Pagination-Page-Count: The number of pages;

	X-Pagination-Current-Page: The current page (1-based);

	X-Pagination-Per-Page: The number of resources in each page;

	Link: A set of navigational links allowing client to traverse the resources page by page.

Since collection in REST APIs is a data provider, it shares all data provider features i.e. pagination and sorting.

An example may be found in the Quick Start section.

Filtering collections

Since version 2.0.13 Yii provides a facility to filter collections. An example can be found in the
Quick Start guide. In case you’re implementing an endpoint yourself,
filtering could be done as described in
Filtering Data Providers using Data Filters
section of Data Providers guide.

 Response Formatting

Response Formatting

When handling a RESTful API request, an application usually takes the following steps that are related
with response formatting:

	Determine various factors that may affect the response format, such as media type, language, version, etc.
This process is also known as content negotiation [http://en.wikipedia.org/wiki/Content_negotiation].

	Convert resource objects into arrays, as described in the Resources section.
This is done by [[yii\rest\Serializer]].

	Convert arrays into a string in the format as determined by the content negotiation step. This is
done by [[yii\web\ResponseFormatterInterface|response formatters]] registered with
the [[yii\web\Response::formatters|formatters]] property of the
response application component.

Content Negotiation

Yii supports content negotiation via the [[yii\filters\ContentNegotiator]] filter. The RESTful API base
controller class [[yii\rest\Controller]] is equipped with this filter under the name of contentNegotiator.
The filter provides response format negotiation as well as language negotiation. For example, if a RESTful
API request contains the following header,

Accept: application/json; q=1.0, */*; q=0.1

it will get a response in JSON format, like the following:

$ curl -i -H "Accept: application/json; q=1.0, */*; q=0.1" "http://localhost/users"

HTTP/1.1 200 OK
Date: Sun, 02 Mar 2014 05:31:43 GMT
Server: Apache/2.2.26 (Unix) DAV/2 PHP/5.4.20 mod_ssl/2.2.26 OpenSSL/0.9.8y
X-Powered-By: PHP/5.4.20
X-Pagination-Total-Count: 1000
X-Pagination-Page-Count: 50
X-Pagination-Current-Page: 1
X-Pagination-Per-Page: 20
Link: <http://localhost/users?page=1>; rel=self,
 <http://localhost/users?page=2>; rel=next,
 <http://localhost/users?page=50>; rel=last
Transfer-Encoding: chunked
Content-Type: application/json; charset=UTF-8

[
 {
 "id": 1,
 ...
 },
 {
 "id": 2,
 ...
 },
 ...
]

Behind the scene, before a RESTful API controller action is executed, the [[yii\filters\ContentNegotiator]]
filter will check the Accept HTTP header in the request and set the [[yii\web\Response::format|response format]]
to be 'json'. After the action is executed and returns the resulting resource object or collection,
[[yii\rest\Serializer]] will convert the result into an array. And finally, [[yii\web\JsonResponseFormatter]]
will serialize the array into a JSON string and include it in the response body.

By default, RESTful APIs support both JSON and XML formats. To support a new format, you should configure
the [[yii\filters\ContentNegotiator::formats|formats]] property of the contentNegotiator filter like
the following in your API controller classes:

use yii\web\Response;

public function behaviors()
{
 $behaviors = parent::behaviors();
 $behaviors['contentNegotiator']['formats']['text/html'] = Response::FORMAT_HTML;
 return $behaviors;
}

The keys of the formats property are the supported MIME types, while the values are the corresponding
response format names which must be supported in [[yii\web\Response::formatters]].

Data Serializing

As we have described above, [[yii\rest\Serializer]] is the central piece responsible for converting resource
objects or collections into arrays. It recognizes objects implementing [[yii\base\Arrayable]] as
well as [[yii\data\DataProviderInterface]]. The former is mainly implemented by resource objects, while
the latter resource collections.

You may configure the serializer by setting the [[yii\rest\Controller::serializer]] property with a configuration array.
For example, sometimes you may want to help simplify the client development work by including pagination information
directly in the response body. To do so, configure the [[yii\rest\Serializer::collectionEnvelope]] property
as follows:

use yii\rest\ActiveController;

class UserController extends ActiveController
{
 public $modelClass = 'app\models\User';
 public $serializer = [
 'class' => 'yii\rest\Serializer',
 'collectionEnvelope' => 'items',
];
}

You may then get the following response for request http://localhost/users:

HTTP/1.1 200 OK
Date: Sun, 02 Mar 2014 05:31:43 GMT
Server: Apache/2.2.26 (Unix) DAV/2 PHP/5.4.20 mod_ssl/2.2.26 OpenSSL/0.9.8y
X-Powered-By: PHP/5.4.20
X-Pagination-Total-Count: 1000
X-Pagination-Page-Count: 50
X-Pagination-Current-Page: 1
X-Pagination-Per-Page: 20
Link: <http://localhost/users?page=1>; rel=self,
 <http://localhost/users?page=2>; rel=next,
 <http://localhost/users?page=50>; rel=last
Transfer-Encoding: chunked
Content-Type: application/json; charset=UTF-8

{
 "items": [
 {
 "id": 1,
 ...
 },
 {
 "id": 2,
 ...
 },
 ...
],
 "_links": {
 "self": {
 "href": "http://localhost/users?page=1"
 },
 "next": {
 "href": "http://localhost/users?page=2"
 },
 "last": {
 "href": "http://localhost/users?page=50"
 }
 },
 "_meta": {
 "totalCount": 1000,
 "pageCount": 50,
 "currentPage": 1,
 "perPage": 20
 }
}

Controlling JSON output

The JSON response is generated by the [[yii\web\JsonResponseFormatter|JsonResponseFormatter]] class which will
use the [[yii\helpers\Json|JSON helper]] internally. This formatter can be configured with different options like
for example the [[yii\web\JsonResponseFormatter::$prettyPrint|$prettyPrint]] option, which is useful on development for
better readable responses, or [[yii\web\JsonResponseFormatter::$encodeOptions|$encodeOptions]] to control the output
of the JSON encoding.

The formatter can be configured in the [[yii\web\Response::formatters|formatters]] property of the response application
component in the application configuration like the following:

'response' => [
 // ...
 'formatters' => [
 \yii\web\Response::FORMAT_JSON => [
 'class' => 'yii\web\JsonResponseFormatter',
 'prettyPrint' => YII_DEBUG, // use "pretty" output in debug mode
 'encodeOptions' => JSON_UNESCAPED_SLASHES | JSON_UNESCAPED_UNICODE,
 // ...
],
],
],

When returning data from a database using the DAO database layer all data will be represented
as strings, which is not always the expected result especially numeric values should be represented as
numbers in JSON. When using the ActiveRecord layer for retrieving data from the database, the values for numeric
columns will be converted to integers when data is fetched from the database in [[yii\db\ActiveRecord::populateRecord()]].

 Routing

Routing

With resource and controller classes ready, you can access the resources using the URL like
http://localhost/index.php?r=user/create, similar to what you can do with normal Web applications.

In practice, you usually want to enable pretty URLs and take advantage of HTTP verbs.
For example, a request POST /users would mean accessing the user/create action.
This can be done easily by configuring the urlManager application component
in the application configuration like the following:

'urlManager' => [
 'enablePrettyUrl' => true,
 'enableStrictParsing' => true,
 'showScriptName' => false,
 'rules' => [
 ['class' => 'yii\rest\UrlRule', 'controller' => 'user'],
],
]

Compared to the URL management for Web applications, the main new thing above is the use of
[[yii\rest\UrlRule]] for routing RESTful API requests. This special URL rule class will
create a whole set of child URL rules to support routing and URL creation for the specified controller(s).
For example, the above code is roughly equivalent to the following rules:

[
 'PUT,PATCH users/<id>' => 'user/update',
 'DELETE users/<id>' => 'user/delete',
 'GET,HEAD users/<id>' => 'user/view',
 'POST users' => 'user/create',
 'GET,HEAD users' => 'user/index',
 'users/<id>' => 'user/options',
 'users' => 'user/options',
]

And the following API endpoints are supported by this rule:

	GET /users: list all users page by page;

	HEAD /users: show the overview information of user listing;

	POST /users: create a new user;

	GET /users/123: return the details of the user 123;

	HEAD /users/123: show the overview information of user 123;

	PATCH /users/123 and PUT /users/123: update the user 123;

	DELETE /users/123: delete the user 123;

	OPTIONS /users: show the supported verbs regarding endpoint /users;

	OPTIONS /users/123: show the supported verbs regarding endpoint /users/123.

You may configure the only and except options to explicitly list which actions to support or which
actions should be disabled, respectively. For example,

[
 'class' => 'yii\rest\UrlRule',
 'controller' => 'user',
 'except' => ['delete', 'create', 'update'],
],

You may also configure patterns or extraPatterns to redefine existing patterns or add new patterns supported by this rule.
For example, to support a new action search by the endpoint GET /users/search, configure the extraPatterns option as follows,

[
 'class' => 'yii\rest\UrlRule',
 'controller' => 'user',
 'extraPatterns' => [
 'GET search' => 'search',
],
]

You may have noticed that the controller ID user appears in plural form as users in the endpoint URLs.
This is because [[yii\rest\UrlRule]] automatically pluralizes controller IDs when creating child URL rules.
You may disable this behavior by setting [[yii\rest\UrlRule::pluralize]] to be false.

Info: The pluralization of controller IDs is done by [[yii\helpers\Inflector::pluralize()]]. The method respects
special pluralization rules. For example, the word box will be pluralized as boxes instead of boxs.

In case when the automatic pluralization does not meet your requirement, you may also configure the
[[yii\rest\UrlRule::controller]] property to explicitly specify how to map a name used in endpoint URLs to
a controller ID. For example, the following code maps the name u to the controller ID user.

[
 'class' => 'yii\rest\UrlRule',
 'controller' => ['u' => 'user'],
]

Extra configuration for contained rules

It could be useful to specify extra configuration that is applied to each rule contained within [[yii\rest\UrlRule]].
A good example would be specifying defaults for expand parameter:

[
 'class' => 'yii\rest\UrlRule',
 'controller' => ['user'],
 'ruleConfig' => [
 'class' => 'yii\web\UrlRule',
 'defaults' => [
 'expand' => 'profile',
]
],
],

 Versioning

Versioning

A good API is versioned: changes and new features are implemented in new versions of the API instead of continually altering just one version. Unlike Web applications, with which you have full control of both the client-side and server-side
code, APIs are meant to be used by clients beyond your control. For this reason, backward
compatibility (BC) of the APIs should be maintained whenever possible. If a change that may break BC is necessary, you should introduce it in new version of the API, and bump up the version number. Existing clients can continue to use the old, working version of the API; and new or upgraded clients can get the new functionality in the new API version.

Tip: Refer to Semantic Versioning [http://semver.org/]
for more information on designing API version numbers.

One common way to implement API versioning is to embed the version number in the API URLs.
For example, http://example.com/v1/users stands for the /users endpoint of API version 1.

Another method of API versioning,
which has gained momentum recently, is to put the version number in the HTTP request headers. This is typically done through the Accept header:

// via a parameter
Accept: application/json; version=v1
// via a vendor content type
Accept: application/vnd.company.myapp-v1+json

Both methods have their pros and cons, and there are a lot of debates about each approach. Below you’ll see a practical strategy
for API versioning that is a mix of these two methods:

	Put each major version of API implementation in a separate module whose ID is the major version number (e.g. v1, v2).
Naturally, the API URLs will contain major version numbers.

	Within each major version (and thus within the corresponding module), use the Accept HTTP request header
to determine the minor version number and write conditional code to respond to the minor versions accordingly.

For each module serving a major version, the module should include the resource and controller classes
serving that specific version. To better separate code responsibility, you may keep a common set of
base resource and controller classes, and subclass them in each individual version module. Within the subclasses,
implement the concrete code such as Model::fields().

Your code may be organized like the following:

api/
 common/
 controllers/
 UserController.php
 PostController.php
 models/
 User.php
 Post.php
 modules/
 v1/
 controllers/
 UserController.php
 PostController.php
 models/
 User.php
 Post.php
 Module.php
 v2/
 controllers/
 UserController.php
 PostController.php
 models/
 User.php
 Post.php
 Module.php

Your application configuration would look like:

return [
 'modules' => [
 'v1' => [
 'class' => 'app\modules\v1\Module',
],
 'v2' => [
 'class' => 'app\modules\v2\Module',
],
],
 'components' => [
 'urlManager' => [
 'enablePrettyUrl' => true,
 'enableStrictParsing' => true,
 'showScriptName' => false,
 'rules' => [
 ['class' => 'yii\rest\UrlRule', 'controller' => ['v1/user', 'v1/post']],
 ['class' => 'yii\rest\UrlRule', 'controller' => ['v2/user', 'v2/post']],
],
],
],
];

As a result of the above code, http://example.com/v1/users will return the list of users in version 1, while
http://example.com/v2/users will return version 2 users.

Thanks to modules, the code for different major versions can be well isolated. But modules make it still possible
to reuse code across the modules via common base classes and other shared resources.

To deal with minor version numbers, you may take advantage of the content negotiation
feature provided by the [[yii\filters\ContentNegotiator|contentNegotiator]] behavior. The contentNegotiator
behavior will set the [[yii\web\Response::acceptParams]] property when it determines which
content type to support.

For example, if a request is sent with the HTTP header Accept: application/json; version=v1,
after content negotiation, [[yii\web\Response::acceptParams]] will contain the value ['version' => 'v1'].

Based on the version information in acceptParams, you may write conditional code in places
such as actions, resource classes, serializers, etc. to provide the appropriate functionality.

Since minor versions by definition require maintaining backward compatibility, hopefully there would not be many
version checks in your code. Otherwise, chances are that you may need to create a new major version.

 Bootstrapping

Bootstrapping

Bootstrapping refers to the process of preparing the environment before an application starts
to resolve and process an incoming request. Bootstrapping is done in two places:
the entry script and the application.

In the entry script, class autoloaders for different libraries are
registered. This includes the Composer autoloader through its autoload.php file and the Yii
autoloader through its Yii class file. The entry script then loads the application
configuration and creates an application instance.

In the constructor of the application, the following bootstrapping work is done:

	[[yii\base\Application::preInit()|preInit()]] is called, which configures some high priority
application properties, such as [[yii\base\Application::basePath|basePath]].

	Register the [[yii\base\Application::errorHandler|error handler]].

	Initialize application properties using the given application configuration.

	[[yii\base\Application::init()|init()]] is called which in turn calls
[[yii\base\Application::bootstrap()|bootstrap()]] to run bootstrapping components.

	Include the extension manifest file vendor/yiisoft/extensions.php.

	Create and run bootstrap components
declared by extensions.

	Create and run application components and/or
modules that are declared in the application’s
bootstrap property.

Because the bootstrapping work has to be done before handling every request, it is very important
to keep this process light and optimize it as much as possible.

Try not to register too many bootstrapping components. A bootstrapping component is needed only
if it wants to participate the whole life cycle of requesting handling. For example, if a module
needs to register additional URL parsing rules, it should be listed in the
bootstrap property so that the new URL rules can take effect
before they are used to resolve requests.

In production mode, enable a bytecode cache, such as PHP OPcache [http://php.net/manual/en/intro.opcache.php] or APC [http://php.net/manual/en/book.apc.php], to minimize the time needed for including
and parsing PHP files.

Some large applications have very complex application configurations
which are divided into many smaller configuration files. If this is the case, consider caching
the whole configuration array and loading it directly from cache before creating the application instance
in the entry script.

 Handling Errors

Handling Errors

Yii includes a built-in [[yii\web\ErrorHandler|error handler]] which makes error handling a much more pleasant
experience than before. In particular, the Yii error handler does the following to improve error handling:

	All non-fatal PHP errors (e.g. warnings, notices) are converted into catchable exceptions.

	Exceptions and fatal PHP errors are displayed with detailed call stack information and source code lines
in debug mode.

	Supports using a dedicated controller action to display errors.

	Supports different error response formats.

The [[yii\web\ErrorHandler|error handler]] is enabled by default. You may disable it by defining the constant
YII_ENABLE_ERROR_HANDLER to be false in the entry script of your application.

Using Error Handler

The [[yii\web\ErrorHandler|error handler]] is registered as an application component named errorHandler.
You may configure it in the application configuration like the following:

return [
 'components' => [
 'errorHandler' => [
 'maxSourceLines' => 20,
],
],
];

With the above configuration, the number of source code lines to be displayed in exception pages will be up to 20.

As aforementioned, the error handler turns all non-fatal PHP errors into catchable exceptions. This means you can
use the following code to deal with PHP errors:

use Yii;
use yii\base\ErrorException;

try {
 10/0;
} catch (ErrorException $e) {
 Yii::warning("Division by zero.");
}

// execution continues...

If you want to show an error page telling the user that his request is invalid or unexpected, you may simply
throw an [[yii\web\HttpException|HTTP exception]], such as [[yii\web\NotFoundHttpException]]. The error handler
will correctly set the HTTP status code of the response and use an appropriate error view to display the error
message.

use yii\web\NotFoundHttpException;

throw new NotFoundHttpException();

Customizing Error Display

The [[yii\web\ErrorHandler|error handler]] adjusts the error display according to the value of the constant YII_DEBUG.
When YII_DEBUG is true (meaning in debug mode), the error handler will display exceptions with detailed call
stack information and source code lines to help easier debugging. And when YII_DEBUG is false, only the error
message will be displayed to prevent revealing sensitive information about the application.

Info: If an exception is a descendant of [[yii\base\UserException]], no call stack will be displayed regardless
the value of YII_DEBUG. This is because such exceptions are considered to be caused by user mistakes and the
developers do not need to fix anything.

By default, the [[yii\web\ErrorHandler|error handler]] displays errors using two views:

	@yii/views/errorHandler/error.php: used when errors should be displayed WITHOUT call stack information.
When YII_DEBUG is false, this is the only error view to be displayed.

	@yii/views/errorHandler/exception.php: used when errors should be displayed WITH call stack information.

You can configure the [[yii\web\ErrorHandler::errorView|errorView]] and [[yii\web\ErrorHandler::exceptionView|exceptionView]]
properties of the error handler to use your own views to customize the error display.

Using Error Actions

A better way of customizing the error display is to use dedicated error actions.
To do so, first configure the [[yii\web\ErrorHandler::errorAction|errorAction]] property of the errorHandler
component like the following:

return [
 'components' => [
 'errorHandler' => [
 'errorAction' => 'site/error',
],
]
];

The [[yii\web\ErrorHandler::errorAction|errorAction]] property takes a route
to an action. The above configuration states that when an error needs to be displayed without call stack information,
the site/error action should be executed.

You can create the site/error action as follows,

namespace app\controllers;

use Yii;
use yii\web\Controller;

class SiteController extends Controller
{
 public function actions()
 {
 return [
 'error' => [
 'class' => 'yii\web\ErrorAction',
],
];
 }
}

The above code defines the error action using the [[yii\web\ErrorAction]] class which renders an error
using a view named error.

Besides using [[yii\web\ErrorAction]], you may also define the error action using an action method like the following,

public function actionError()
{
 $exception = Yii::$app->errorHandler->exception;
 if ($exception !== null) {
 return $this->render('error', ['exception' => $exception]);
 }
}

You should now create a view file located at views/site/error.php. In this view file, you can access
the following variables if the error action is defined as [[yii\web\ErrorAction]]:

	name: the name of the error;

	message: the error message;

	exception: the exception object through which you can retrieve more useful information, such as HTTP status code,
error code, error call stack, etc.

Info: If you are using the basic project template or the advanced project template [https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/README.md],
the error action and the error view are already defined for you.

Note: If you need to redirect in an error handler, do it the following way:

Yii::$app->getResponse()->redirect($url)->send();
return;

Customizing Error Response Format

The error handler displays errors according to the format setting of the response.
If the [[yii\web\Response::format|response format]] is html, it will use the error or exception view
to display errors, as described in the last subsection. For other response formats, the error handler will
assign the array representation of the exception to the [[yii\web\Response::data]] property which will then
be converted to different formats accordingly. For example, if the response format is json, you may see
the following response:

HTTP/1.1 404 Not Found
Date: Sun, 02 Mar 2014 05:31:43 GMT
Server: Apache/2.2.26 (Unix) DAV/2 PHP/5.4.20 mod_ssl/2.2.26 OpenSSL/0.9.8y
Transfer-Encoding: chunked
Content-Type: application/json; charset=UTF-8

{
 "name": "Not Found Exception",
 "message": "The requested resource was not found.",
 "code": 0,
 "status": 404
}

You may customize the error response format by responding to the beforeSend event of the response component
in the application configuration:

return [
 // ...
 'components' => [
 'response' => [
 'class' => 'yii\web\Response',
 'on beforeSend' => function ($event) {
 $response = $event->sender;
 if ($response->data !== null) {
 $response->data = [
 'success' => $response->isSuccessful,
 'data' => $response->data,
];
 $response->statusCode = 200;
 }
 },
],
],
];

The above code will reformat the error response like the following:

HTTP/1.1 200 OK
Date: Sun, 02 Mar 2014 05:31:43 GMT
Server: Apache/2.2.26 (Unix) DAV/2 PHP/5.4.20 mod_ssl/2.2.26 OpenSSL/0.9.8y
Transfer-Encoding: chunked
Content-Type: application/json; charset=UTF-8

{
 "success": false,
 "data": {
 "name": "Not Found Exception",
 "message": "The requested resource was not found.",
 "code": 0,
 "status": 404
 }
}

 Logging

Logging

Yii provides a powerful logging framework that is highly customizable and extensible. Using this framework, you
can easily log various types of messages, filter them, and gather them at different targets, such as files, databases,
emails.

Using the Yii logging framework involves the following steps:

	Record log messages at various places in your code;

	Configure log targets in the application configuration to filter and export log messages;

	Examine the filtered logged messages exported by different targets (e.g. the Yii debugger).

In this section, we will mainly describe the first two steps.

Log Messages

Recording log messages is as simple as calling one of the following logging methods:

	[[Yii::debug()]]: record a message to trace how a piece of code runs. This is mainly for development use.

	[[Yii::info()]]: record a message that conveys some useful information.

	[[Yii::warning()]]: record a warning message that indicates something unexpected has happened.

	[[Yii::error()]]: record a fatal error that should be investigated as soon as possible.

These logging methods record log messages at various severity levels and categories. They share
the same function signature function ($message, $category = 'application'), where $message stands for
the log message to be recorded, while $category is the category of the log message. The code in the following
example records a trace message under the default category application:

Yii::debug('start calculating average revenue');

Info: Log messages can be strings as well as complex data, such as arrays or objects. It is the responsibility
of log targets to properly deal with log messages. By default, if a log message is not a string,
it will be exported as a string by calling [[yii\helpers\VarDumper::export()]].

To better organize and filter log messages, it is recommended that you specify an appropriate category for each
log message. You may choose a hierarchical naming scheme for categories, which will make it easier for
log targets to filter messages based on their categories. A simple yet effective naming scheme
is to use the PHP magic constant __METHOD__ for the category names. This is also the approach used in the core
Yii framework code. For example,

Yii::debug('start calculating average revenue', __METHOD__);

The __METHOD__ constant evaluates as the name of the method (prefixed with the fully qualified class name) where
the constant appears. For example, it is equal to the string 'app\controllers\RevenueController::calculate' if
the above line of code is called within this method.

Info: The logging methods described above are actually shortcuts to the [[yii\log\Logger::log()|log()]] method
of the [[yii\log\Logger|logger object]] which is a singleton accessible through the expression Yii::getLogger(). When
enough messages are logged or when the application ends, the logger object will call a
[[yii\log\Dispatcher|message dispatcher]] to send recorded log messages to the registered log targets.

Log Targets

A log target is an instance of the [[yii\log\Target]] class or its child class. It filters the log messages by their
severity levels and categories and then exports them to some medium. For example, a [[yii\log\DbTarget|database target]]
exports the filtered log messages to a database table, while an [[yii\log\EmailTarget|email target]] exports
the log messages to specified email addresses.

You can register multiple log targets in an application by configuring them through the log application component
in the application configuration, like the following:

return [
 // the "log" component must be loaded during bootstrapping time
 'bootstrap' => ['log'],
 // the "log" component process messages with timestamp. Set PHP timezone to create correct timestamp
 'timeZone' => 'America/Los_Angeles',
 'components' => [
 'log' => [
 'targets' => [
 [
 'class' => 'yii\log\DbTarget',
 'levels' => ['error', 'warning'],
],
 [
 'class' => 'yii\log\EmailTarget',
 'levels' => ['error'],
 'categories' => ['yii\db*'],
 'message' => [
 'from' => ['log@example.com'],
 'to' => ['admin@example.com', 'developer@example.com'],
 'subject' => 'Database errors at example.com',
],
],
],
],
],
];

Note: The log component must be loaded during bootstrapping time so that
it can dispatch log messages to targets promptly. That is why it is listed in the bootstrap array as shown above.

In the above code, two log targets are registered in the [[yii\log\Dispatcher::targets]] property:

	the first target selects error and warning messages and saves them in a database table;

	the second target selects error messages under the categories whose names start with yii\db\, and sends
them in an email to both admin@example.com and developer@example.com.

Yii comes with the following built-in log targets. Please refer to the API documentation about these classes to
learn how to configure and use them.

	[[yii\log\DbTarget]]: stores log messages in a database table.

	[[yii\log\EmailTarget]]: sends log messages to pre-specified email addresses.

	[[yii\log\FileTarget]]: saves log messages in files.

	[[yii\log\SyslogTarget]]: saves log messages to syslog by calling the PHP function syslog().

In the following, we will describe the features common to all log targets.

Message Filtering

For each log target, you can configure its [[yii\log\Target::levels|levels]] and
[[yii\log\Target::categories|categories]] properties to specify which severity levels and categories of the messages the target should process.

The [[yii\log\Target::levels|levels]] property takes an array consisting of one or several of the following values:

	error: corresponding to messages logged by [[Yii::error()]].

	warning: corresponding to messages logged by [[Yii::warning()]].

	info: corresponding to messages logged by [[Yii::info()]].

	trace: corresponding to messages logged by [[Yii::debug()]].

	profile: corresponding to messages logged by [[Yii::beginProfile()]] and [[Yii::endProfile()]], which will
be explained in more details in the Profiling subsection.

If you do not specify the [[yii\log\Target::levels|levels]] property, it means the target will process messages
of any severity level.

The [[yii\log\Target::categories|categories]] property takes an array consisting of message category names or patterns.
A target will only process messages whose category can be found or match one of the patterns in this array.
A category pattern is a category name prefix with an asterisk * at its end. A category name matches a category pattern
if it starts with the same prefix of the pattern. For example, yii\db\Command::execute and yii\db\Command::query
are used as category names for the log messages recorded in the [[yii\db\Command]] class. They both match
the pattern yii\db*.

If you do not specify the [[yii\log\Target::categories|categories]] property, it means the target will process
messages of any category.

Besides whitelisting the categories by the [[yii\log\Target::categories|categories]] property, you may also
blacklist certain categories by the [[yii\log\Target::except|except]] property. If the category of a message
is found or matches one of the patterns in this property, it will NOT be processed by the target.

The following target configuration specifies that the target should only process error and warning messages
under the categories whose names match either yii\db* or yii\web\HttpException:*, but not yii\web\HttpException:404.

[
 'class' => 'yii\log\FileTarget',
 'levels' => ['error', 'warning'],
 'categories' => [
 'yii\db*',
 'yii\web\HttpException:*',
],
 'except' => [
 'yii\web\HttpException:404',
],
]

Info: When an HTTP exception is caught by the error handler, an error message
will be logged with the category name in the format of yii\web\HttpException:ErrorCode. For example,
the [[yii\web\NotFoundHttpException]] will cause an error message of category yii\web\HttpException:404.

Message Formatting

Log targets export the filtered log messages in a certain format. For example, if you install
a log target of the class [[yii\log\FileTarget]], you may find a log message similar to the following in the
runtime/log/app.log file:

2014-10-04 18:10:15 [::1][][-][trace][yii\base\Module::getModule] Loading module: debug

By default, log messages will be formatted as follows by the [[yii\log\Target::formatMessage()]]:

Timestamp [IP address][User ID][Session ID][Severity Level][Category] Message Text

You may customize this format by configuring the [[yii\log\Target::prefix]] property which takes a PHP callable
returning a customized message prefix. For example, the following code configures a log target to prefix each
log message with the current user ID (IP address and Session ID are removed for privacy reasons).

[
 'class' => 'yii\log\FileTarget',
 'prefix' => function ($message) {
 $user = Yii::$app->has('user', true) ? Yii::$app->get('user') : null;
 $userID = $user ? $user->getId(false) : '-';
 return "[$userID]";
 }
]

Besides message prefixes, log targets also append some context information to each batch of log messages.
By default, the values of these global PHP variables are included: $_GET, $_POST, $_FILES, $_COOKIE,
$_SESSION and $_SERVER. You may adjust this behavior by configuring the [[yii\log\Target::logVars]] property
with the names of the global variables that you want to include by the log target. For example, the following
log target configuration specifies that only the value of the $_SERVER variable will be appended to the log messages.

[
 'class' => 'yii\log\FileTarget',
 'logVars' => ['_SERVER'],
]

You may configure logVars to be an empty array to totally disable the inclusion of context information.
Or if you want to implement your own way of providing context information, you may override the
[[yii\log\Target::getContextMessage()]] method.

Message Trace Level

During development, it is often desirable to see where each log message is coming from. This can be achieved by
configuring the [[yii\log\Dispatcher::traceLevel|traceLevel]] property of the log component like the following:

return [
 'bootstrap' => ['log'],
 'components' => [
 'log' => [
 'traceLevel' => YII_DEBUG ? 3 : 0,
 'targets' => [...],
],
],
];

The above application configuration sets [[yii\log\Dispatcher::traceLevel|traceLevel]] to be 3 if YII_DEBUG is on
and 0 if YII_DEBUG is off. This means, if YII_DEBUG is on, each log message will be appended with at most 3
levels of the call stack at which the log message is recorded; and if YII_DEBUG is off, no call stack information
will be included.

Info: Getting call stack information is not trivial. Therefore, you should only use this feature during development
or when debugging an application.

Message Flushing and Exporting

As aforementioned, log messages are maintained in an array by the [[yii\log\Logger|logger object]]. To limit the
memory consumption by this array, the logger will flush the recorded messages to the log targets
each time the array accumulates a certain number of log messages. You can customize this number by configuring
the [[yii\log\Dispatcher::flushInterval|flushInterval]] property of the log component:

return [
 'bootstrap' => ['log'],
 'components' => [
 'log' => [
 'flushInterval' => 100, // default is 1000
 'targets' => [...],
],
],
];

Info: Message flushing also occurs when the application ends, which ensures log targets can receive complete log messages.

When the [[yii\log\Logger|logger object]] flushes log messages to log targets, they do not get exported
immediately. Instead, the message exporting only occurs when a log target accumulates certain number of the filtered
messages. You can customize this number by configuring the [[yii\log\Target::exportInterval|exportInterval]]
property of individual log targets, like the following,

[
 'class' => 'yii\log\FileTarget',
 'exportInterval' => 100, // default is 1000
]

Because of the flushing and exporting level setting, by default when you call Yii::debug() or any other logging
method, you will NOT see the log message immediately in the log targets. This could be a problem for some long-running
console applications. To make each log message appear immediately in the log targets, you should set both
[[yii\log\Dispatcher::flushInterval|flushInterval]] and [[yii\log\Target::exportInterval|exportInterval]] to be 1,
as shown below:

return [
 'bootstrap' => ['log'],
 'components' => [
 'log' => [
 'flushInterval' => 1,
 'targets' => [
 [
 'class' => 'yii\log\FileTarget',
 'exportInterval' => 1,
],
],
],
],
];

Note: Frequent message flushing and exporting will degrade the performance of your application.

Toggling Log Targets

You can enable or disable a log target by configuring its [[yii\log\Target::enabled|enabled]] property.
You may do so via the log target configuration or by the following PHP statement in your code:

Yii::$app->log->targets['file']->enabled = false;

The above code requires you to name a target as file, as shown below by using string keys in the
targets array:

return [
 'bootstrap' => ['log'],
 'components' => [
 'log' => [
 'targets' => [
 'file' => [
 'class' => 'yii\log\FileTarget',
],
 'db' => [
 'class' => 'yii\log\DbTarget',
],
],
],
],
];

Since version 2.0.13, you may configure [[yii\log\Target::enabled|enabled]] with a callable to
define a dynamic condition for whether the log target should be enabled or not.
See the documentation of [[yii\log\Target::setEnabled()]] for an example.

Creating New Targets

Creating a new log target class is very simple. You mainly need to implement the [[yii\log\Target::export()]] method
sending the content of the [[yii\log\Target::messages]] array to a designated medium. You may call the
[[yii\log\Target::formatMessage()]] method to format each message. For more details, you may refer to any of the
log target classes included in the Yii release.

Tip: Instead of creating your own loggers you may try any PSR-3 compatible logger such
as Monolog [https://github.com/Seldaek/monolog] by using
PSR log target extension [https://github.com/samdark/yii2-psr-log-target].

Performance Profiling

Performance profiling is a special type of message logging that is used to measure the time taken by certain
code blocks and find out what are the performance bottlenecks. For example, the [[yii\db\Command]] class uses
performance profiling to find out the time taken by each DB query.

To use performance profiling, first identify the code blocks that need to be profiled. Then enclose each
code block like the following:

\Yii::beginProfile('myBenchmark');

...code block being profiled...

\Yii::endProfile('myBenchmark');

where myBenchmark stands for a unique token identifying a code block. Later when you examine the profiling
result, you will use this token to locate the time spent by the corresponding code block.

It is important to make sure that the pairs of beginProfile and endProfile are properly nested.
For example,

\Yii::beginProfile('block1');

 // some code to be profiled

 \Yii::beginProfile('block2');
 // some other code to be profiled
 \Yii::endProfile('block2');

\Yii::endProfile('block1');

If you miss \Yii::endProfile('block1') or switch the order of \Yii::endProfile('block1') and
\Yii::endProfile('block2'), the performance profiling will not work.

For each code block being profiled, a log message with the severity level profile is recorded. You can configure
a log target to collect such messages and export them. The Yii debugger has
a built-in performance profiling panel showing the profiling results.

 Overview

Overview

Each time when a Yii application handles a request, it undergoes a similar workflow.

	A user makes a request to the entry script web/index.php.

	The entry script loads the application configuration and creates
an application instance to handle the request.

	The application resolves the requested route with the help of
the request application component.

	The application creates a controller instance to handle the request.

	The controller creates an action instance and performs the filters for the action.

	If any filter fails, the action is cancelled.

	If all filters pass, the action is executed.

	The action loads a data model, possibly from a database.

	The action renders a view, providing it with the data model.

	The rendered result is returned to the response application component.

	The response component sends the rendered result to the user’s browser.

The following diagram shows how an application handles a request.

[image: Request Lifecycle]

In this section, we will describe in detail how some of these steps work.

 Requests

Requests

Requests made to an application are represented in terms of [[yii\web\Request]] objects which provide information
such as request parameters, HTTP headers, cookies, etc. For a given request, you can get access to the corresponding
request object via the request application component which is an instance
of [[yii\web\Request]], by default. In this section, we will describe how you can make use of this component in your applications.

Request Parameters

To get request parameters, you can call [[yii\web\Request::get()|get()]] and [[yii\web\Request::post()|post()]] methods
of the request component. They return the values of $_GET and $_POST, respectively. For example,

$request = Yii::$app->request;

$get = $request->get();
// equivalent to: $get = $_GET;

$id = $request->get('id');
// equivalent to: $id = isset($_GET['id']) ? $_GET['id'] : null;

$id = $request->get('id', 1);
// equivalent to: $id = isset($_GET['id']) ? $_GET['id'] : 1;

$post = $request->post();
// equivalent to: $post = $_POST;

$name = $request->post('name');
// equivalent to: $name = isset($_POST['name']) ? $_POST['name'] : null;

$name = $request->post('name', '');
// equivalent to: $name = isset($_POST['name']) ? $_POST['name'] : '';

Info: Instead of directly accessing $_GET and $_POST to retrieve the request parameters, it is recommended
that you get them via the request component as shown above. This will make writing tests easier because
you can create a mock request component with faked request data.

When implementing RESTful APIs, you often need to retrieve parameters that are submitted
via PUT, PATCH or other request methods. You can get these parameters by calling
the [[yii\web\Request::getBodyParam()]] methods. For example,

$request = Yii::$app->request;

// returns all parameters
$params = $request->bodyParams;

// returns the parameter "id"
$param = $request->getBodyParam('id');

Info: Unlike GET parameters, parameters submitted via POST, PUT, PATCH etc. are sent in the request body.
The request component will parse these parameters when you access them through the methods described above.
You can customize the way how these parameters are parsed by configuring the [[yii\web\Request::parsers]] property.

Request Methods

You can get the HTTP method used by the current request via the expression Yii::$app->request->method.
A whole set of boolean properties is also provided for you to check if the current method is of certain type.
For example,

$request = Yii::$app->request;

if ($request->isAjax) { /* the request is an AJAX request */ }
if ($request->isGet) { /* the request method is GET */ }
if ($request->isPost) { /* the request method is POST */ }
if ($request->isPut) { /* the request method is PUT */ }

Request URLs

The request component provides many ways of inspecting the currently requested URL.

Assuming the URL being requested is http://example.com/admin/index.php/product?id=100, you can get various
parts of this URL as summarized in the following:

	[[yii\web\Request::url|url]]: returns /admin/index.php/product?id=100, which is the URL without the host info part.

	[[yii\web\Request::absoluteUrl|absoluteUrl]]: returns http://example.com/admin/index.php/product?id=100,
which is the whole URL including the host info part.

	[[yii\web\Request::hostInfo|hostInfo]]: returns http://example.com, which is the host info part of the URL.

	[[yii\web\Request::pathInfo|pathInfo]]: returns /product, which is the part after the entry script and
before the question mark (query string).

	[[yii\web\Request::queryString|queryString]]: returns id=100, which is the part after the question mark.

	[[yii\web\Request::baseUrl|baseUrl]]: returns /admin, which is the part after the host info and before
the entry script name.

	[[yii\web\Request::scriptUrl|scriptUrl]]: returns /admin/index.php, which is the URL without path info and query string.

	[[yii\web\Request::serverName|serverName]]: returns example.com, which is the host name in the URL.

	[[yii\web\Request::serverPort|serverPort]]: returns 80, which is the port used by the Web server.

HTTP Headers

You can get the HTTP header information through the [[yii\web\HeaderCollection|header collection]] returned
by the [[yii\web\Request::headers]] property. For example,

// $headers is an object of yii\web\HeaderCollection
$headers = Yii::$app->request->headers;

// returns the Accept header value
$accept = $headers->get('Accept');

if ($headers->has('User-Agent')) { /* there is User-Agent header */ }

The request component also provides support for quickly accessing some commonly used headers, including:

	[[yii\web\Request::userAgent|userAgent]]: returns the value of the User-Agent header.

	[[yii\web\Request::contentType|contentType]]: returns the value of the Content-Type header which indicates
the MIME type of the data in the request body.

	[[yii\web\Request::acceptableContentTypes|acceptableContentTypes]]: returns the content MIME types acceptable by users.
The returned types are ordered by their quality score. Types with the highest scores will be returned first.

	[[yii\web\Request::acceptableLanguages|acceptableLanguages]]: returns the languages acceptable by users.
The returned languages are ordered by their preference level. The first element represents the most preferred language.

If your application supports multiple languages and you want to display pages in the language that is the most preferred
by the end user, you may use the language negotiation method [[yii\web\Request::getPreferredLanguage()]].
This method takes a list of languages supported by your application, compares them with [[yii\web\Request::acceptableLanguages|acceptableLanguages]],
and returns the most appropriate language.

Tip: You may also use the [[yii\filters\ContentNegotiator|ContentNegotiator]] filter to dynamically determine
what content type and language should be used in the response. The filter implements the content negotiation
on top of the properties and methods described above.

Client Information

You can get the host name and IP address
of the client machine through [[yii\web\Request::userHost|userHost]]
and [[yii\web\Request::userIP|userIP]], respectively. For example,

$userHost = Yii::$app->request->userHost;
$userIP = Yii::$app->request->userIP;

Trusted proxies and headers

In the previous section you have seen how to get user information like host and IP address.
This will work out of the box in a normal setup where a single webserver is used to serve the website.
If your Yii application however runs behind a reverse proxy, you need to add additional configuration
to retrieve this information as the direct client is now the proxy and the user IP address is passed to
the Yii application by a header set by the proxy.

You should not blindly trust headers provided by proxies unless you explicitly trust the proxy.
Since 2.0.13 Yii supports configuring trusted proxies via the
[[yii\web\Request::trustedHosts|trustedHosts]],
[[yii\web\Request::secureHeaders|secureHeaders]],
[[yii\web\Request::ipHeaders|ipHeaders]] and
[[yii\web\Request::secureProtocolHeaders|secureProtocolHeaders]]
properties of the request component.

The following is a request config for an application that runs behind an array of reverse proxies,
which are located in the 10.0.2.0/24 IP network:

'request' => [
 // ...
 'trustedHosts' => [
 '10.0.2.0/24',
],
],

The IP is sent by the proxy in the X-Forwarded-For header by default, and the protocol (http or https) is sent in X-Forwarded-Proto.

In case your proxies are using different headers you can use the request configuration to adjust these, e.g.:

'request' => [
 // ...
 'trustedHosts' => [
 '10.0.2.0/24' => [
 'X-ProxyUser-Ip',
 'Front-End-Https',
],
],
 'secureHeaders' => [
 'X-Forwarded-For',
 'X-Forwarded-Host',
 'X-Forwarded-Proto',
 'X-Proxy-User-Ip',
 'Front-End-Https',
],
 'ipHeaders' => [
 'X-Proxy-User-Ip',
],
 'secureProtocolHeaders' => [
 'Front-End-Https' => ['on']
],
],

With the above configuration, all headers listed in secureHeaders are filtered from the request,
except the X-ProxyUser-Ip and Front-End-Https headers in case the request is made by the proxy.
In that case the former is used to retrieve the user IP as configured in ipHeaders and the latter
will be used to determine the result of [[yii\web\Request::getIsSecureConnection()]].

 Responses

Responses

When an application finishes handling a request, it generates a [[yii\web\Response|response]] object
and sends it to the end user. The response object contains information such as the HTTP status code, HTTP headers and body.
The ultimate goal of Web application development is essentially to build such response objects upon various requests.

In most cases you should mainly deal with the response application component
which is an instance of [[yii\web\Response]], by default. However, Yii also allows you to create your own response
objects and send them to end users as we will explain in the following.

In this section, we will describe how to compose and send responses to end users.

Status Code

One of the first things you would do when building a response is to state whether the request is successfully handled.
This is done by setting the [[yii\web\Response::statusCode]] property which can take one of the valid
HTTP status codes [https://tools.ietf.org/html/rfc2616#section-10]. For example, to indicate the request
is successfully handled, you may set the status code to be 200, like the following:

Yii::$app->response->statusCode = 200;

However, in most cases you do not need to explicitly set the status code. This is because the default value
of [[yii\web\Response::statusCode]] is 200. And if you want to indicate the request is unsuccessful, you may
throw an appropriate HTTP exception like the following:

throw new \yii\web\NotFoundHttpException;

When the error handler catches an exception, it will extract the status code
from the exception and assign it to the response. For the [[yii\web\NotFoundHttpException]] above, it is
associated with the HTTP status 404. The following HTTP exceptions are predefined in Yii:

	[[yii\web\BadRequestHttpException]]: status code 400.

	[[yii\web\ConflictHttpException]]: status code 409.

	[[yii\web\ForbiddenHttpException]]: status code 403.

	[[yii\web\GoneHttpException]]: status code 410.

	[[yii\web\MethodNotAllowedHttpException]]: status code 405.

	[[yii\web\NotAcceptableHttpException]]: status code 406.

	[[yii\web\NotFoundHttpException]]: status code 404.

	[[yii\web\ServerErrorHttpException]]: status code 500.

	[[yii\web\TooManyRequestsHttpException]]: status code 429.

	[[yii\web\UnauthorizedHttpException]]: status code 401.

	[[yii\web\UnsupportedMediaTypeHttpException]]: status code 415.

If the exception that you want to throw is not among the above list, you may create one by extending
from [[yii\web\HttpException]], or directly throw it with a status code, for example,

throw new \yii\web\HttpException(402);

HTTP Headers

You can send HTTP headers by manipulating the [[yii\web\Response::headers|header collection]] in the response component.
For example,

$headers = Yii::$app->response->headers;

// add a Pragma header. Existing Pragma headers will NOT be overwritten.
$headers->add('Pragma', 'no-cache');

// set a Pragma header. Any existing Pragma headers will be discarded.
$headers->set('Pragma', 'no-cache');

// remove Pragma header(s) and return the removed Pragma header values in an array
$values = $headers->remove('Pragma');

Info: Header names are case insensitive. And the newly registered headers are not sent to the user until
the [[yii\web\Response::send()]] method is called.

Response Body

Most responses should have a body which gives the content that you want to show to end users.

If you already have a formatted body string, you may assign it to the [[yii\web\Response::content]] property
of the response. For example,

Yii::$app->response->content = 'hello world!';

If your data needs to be formatted before sending it to end users, you should set both of the
[[yii\web\Response::format|format]] and [[yii\web\Response::data|data]] properties. The [[yii\web\Response::format|format]]
property specifies in which format the [[yii\web\Response::data|data]] should be formatted. For example,

$response = Yii::$app->response;
$response->format = \yii\web\Response::FORMAT_JSON;
$response->data = ['message' => 'hello world'];

Yii supports the following formats out of the box, each implemented by a [[yii\web\ResponseFormatterInterface|formatter]] class.
You can customize these formatters or add new ones by configuring the [[yii\web\Response::formatters]] property.

	[[yii\web\Response::FORMAT_HTML|HTML]]: implemented by [[yii\web\HtmlResponseFormatter]].

	[[yii\web\Response::FORMAT_XML|XML]]: implemented by [[yii\web\XmlResponseFormatter]].

	[[yii\web\Response::FORMAT_JSON|JSON]]: implemented by [[yii\web\JsonResponseFormatter]].

	[[yii\web\Response::FORMAT_JSONP|JSONP]]: implemented by [[yii\web\JsonResponseFormatter]].

	[[yii\web\Response::FORMAT_RAW|RAW]]: use this format if you want to send the response directly without applying any formatting.

While the response body can be set explicitly as shown above, in most cases you may set it implicitly by the return value
of action methods. A common use case is like the following:

public function actionIndex()
{
 return $this->render('index');
}

The index action above returns the rendering result of the index view. The return value will be taken
by the response component, formatted and then sent to end users.

Because by default the response format is [[yii\web\Response::FORMAT_HTML|HTML]], you should only return a string
in an action method. If you want to use a different response format, you should set it first before returning the data.
For example,

public function actionInfo()
{
 \Yii::$app->response->format = \yii\web\Response::FORMAT_JSON;
 return [
 'message' => 'hello world',
 'code' => 100,
];
}

As aforementioned, besides using the default response application component, you can also create your own
response objects and send them to end users. You can do so by returning such object in an action method, like the following,

public function actionInfo()
{
 return \Yii::createObject([
 'class' => 'yii\web\Response',
 'format' => \yii\web\Response::FORMAT_JSON,
 'data' => [
 'message' => 'hello world',
 'code' => 100,
],
]);
}

Note: If you are creating your own response objects, you will not be able to take advantage of the configurations
that you set for the response component in the application configuration. You can, however, use
dependency injection to apply a common configuration to your new response objects.

Browser Redirection

Browser redirection relies on sending a Location HTTP header. Because this feature is commonly used, Yii provides
some special support for it.

You can redirect the user browser to a URL by calling the [[yii\web\Response::redirect()]] method. The method
sets the appropriate Location header with the given URL and returns the response object itself. In an action method,
you can call its shortcut version [[yii\web\Controller::redirect()]]. For example,

public function actionOld()
{
 return $this->redirect('http://example.com/new', 301);
}

In the above code, the action method returns the result of the redirect() method. As explained before, the response
object returned by an action method will be used as the response sending to end users.

In places other than an action method, you should call [[yii\web\Response::redirect()]] directly followed by
a chained call to the [[yii\web\Response::send()]] method to ensure no extra content will be appended to the response.

\Yii::$app->response->redirect('http://example.com/new', 301)->send();

Info: By default, the [[yii\web\Response::redirect()]] method sets the response status code to be 302 which instructs
the browser that the resource being requested is temporarily located in a different URI. You can pass in a status
code 301 to tell the browser that the resource has been permanently relocated.

When the current request is an AJAX request, sending a Location header will not automatically cause the browser
to redirect. To solve this problem, the [[yii\web\Response::redirect()]] method sets an X-Redirect header with
the redirection URL as its value. On the client-side, you may write JavaScript code to read this header value and
redirect the browser accordingly.

Info: Yii comes with a yii.js JavaScript file which provides a set of commonly used JavaScript utilities,
including browser redirection based on the X-Redirect header. Therefore, if you are using this JavaScript file
(by registering the [[yii\web\YiiAsset]] asset bundle), you do not need to write anything to support AJAX redirection.
More information about yii.js can be found in the Client Scripts Section.

Sending Files

Like browser redirection, file sending is another feature that relies on specific HTTP headers. Yii provides
a set of methods to support various file sending needs. They all have built-in support for the HTTP range header.

	[[yii\web\Response::sendFile()]]: sends an existing file to a client.

	[[yii\web\Response::sendContentAsFile()]]: sends a text string as a file to a client.

	[[yii\web\Response::sendStreamAsFile()]]: sends an existing file stream as a file to a client.

These methods have the same method signature with the response object as the return value. If the file
to be sent is very big, you should consider using [[yii\web\Response::sendStreamAsFile()]] because it is more
memory efficient. The following example shows how to send a file in a controller action:

public function actionDownload()
{
 return \Yii::$app->response->sendFile('path/to/file.txt');
}

If you are calling the file sending method in places other than an action method, you should also call
the [[yii\web\Response::send()]] method afterwards to ensure no extra content will be appended to the response.

\Yii::$app->response->sendFile('path/to/file.txt')->send();

Some Web servers have a special file sending support called X-Sendfile. The idea is to redirect the
request for a file to the Web server which will directly serve the file. As a result, the Web application
can terminate earlier while the Web server is sending the file. To use this feature, you may call
the [[yii\web\Response::xSendFile()]]. The following list summarizes how to enable the X-Sendfile feature
for some popular Web servers:

	Apache: X-Sendfile [http://tn123.org/mod_xsendfile]

	Lighttpd v1.4: X-LIGHTTPD-send-file [http://redmine.lighttpd.net/projects/lighttpd/wiki/X-LIGHTTPD-send-file]

	Lighttpd v1.5: X-Sendfile [http://redmine.lighttpd.net/projects/lighttpd/wiki/X-LIGHTTPD-send-file]

	Nginx: X-Accel-Redirect [http://wiki.nginx.org/XSendfile]

	Cherokee: X-Sendfile and X-Accel-Redirect [http://www.cherokee-project.com/doc/other_goodies.html#x-sendfile]

Sending Response

The content in a response is not sent to the user until the [[yii\web\Response::send()]] method is called.
By default, this method will be called automatically at the end of [[yii\base\Application::run()]]. You can, however,
explicitly call this method to force sending out the response immediately.

The [[yii\web\Response::send()]] method takes the following steps to send out a response:

	Trigger the [[yii\web\Response::EVENT_BEFORE_SEND]] event.

	Call [[yii\web\Response::prepare()]] to format [[yii\web\Response::data|response data]] into
[[yii\web\Response::content|response content]].

	Trigger the [[yii\web\Response::EVENT_AFTER_PREPARE]] event.

	Call [[yii\web\Response::sendHeaders()]] to send out the registered HTTP headers.

	Call [[yii\web\Response::sendContent()]] to send out the response body content.

	Trigger the [[yii\web\Response::EVENT_AFTER_SEND]] event.

After the [[yii\web\Response::send()]] method is called once, any further call to this method will be ignored.
This means once the response is sent out, you will not be able to append more content to it.

As you can see, the [[yii\web\Response::send()]] method triggers several useful events. By responding to
these events, it is possible to adjust or decorate the response.

 Routing and URL Creation

Routing and URL Creation

When a Yii application starts processing a requested URL, the first step it takes is to parse the URL
into a route. The route is then used to instantiate the corresponding
controller action to handle the request. This whole process is called routing.

The reverse process of routing is called URL creation, which creates a URL from a given route
and the associated query parameters. When the created URL is later requested, the routing process can resolve it
back into the original route and query parameters.

The central piece responsible for routing and URL creation is the [[yii\web\UrlManager|URL manager]],
which is registered as the urlManager application component. The [[yii\web\UrlManager|URL manager]]
provides the [[yii\web\UrlManager::parseRequest()|parseRequest()]] method to parse an incoming request into
a route and the associated query parameters and the [[yii\web\UrlManager::createUrl()|createUrl()]] method to
create a URL from a given route and its associated query parameters.

By configuring the urlManager component in the application configuration, you can let your application
recognize arbitrary URL formats without modifying your existing application code. For example, you can
use the following code to create a URL for the post/view action:

use yii\helpers\Url;

// Url::to() calls UrlManager::createUrl() to create a URL
$url = Url::to(['post/view', 'id' => 100]);

Depending on the urlManager configuration, the created URL may look like one of the following (or other format).
And if the created URL is requested later, it will still be parsed back into the original route and query parameter value.

/index.php?r=post%2Fview&id=100
/index.php/post/100
/posts/100

URL Formats

The [[yii\web\UrlManager|URL manager]] supports two URL formats:

	the default URL format;

	the pretty URL format.

The default URL format uses a [[yii\web\UrlManager::$routeParam|query parameter]] named r to represent the route and normal query parameters
to represent the query parameters associated with the route. For example, the URL /index.php?r=post/view&id=100 represents
the route post/view and the id query parameter 100. The default URL format does not require any configuration of
the [[yii\web\UrlManager|URL manager]] and works in any Web server setup.

The pretty URL format uses the extra path following the entry script name to represent the route and the associated
query parameters. For example, the extra path in the URL /index.php/post/100 is /post/100 which may represent
the route post/view and the id query parameter 100 with a proper [[yii\web\UrlManager::rules|URL rule]]. To use
the pretty URL format, you will need to design a set of [[yii\web\UrlManager::rules|URL rules]] according to the actual
requirement about how the URLs should look like.

You may switch between the two URL formats by toggling the [[yii\web\UrlManager::enablePrettyUrl|enablePrettyUrl]]
property of the [[yii\web\UrlManager|URL manager]] without changing any other application code.

Routing

Routing involves two steps:

	the incoming request is parsed into a route and the associated query parameters;

	a controller action corresponding to the parsed route
is created to handle the request.

When using the default URL format, parsing a request into a route is as simple as getting the value of a GET
query parameter named r.

When using the pretty URL format, the [[yii\web\UrlManager|URL manager]] will examine the registered
[[yii\web\UrlManager::rules|URL rules]] to find matching one that can resolve the request into a route.
If such a rule cannot be found, a [[yii\web\NotFoundHttpException]] exception will be thrown.

Once the request is parsed into a route, it is time to create the controller action identified by the route.
The route is broken down into multiple parts by the slashes in it. For example, site/index will be
broken into site and index. Each part is an ID which may refer to a module, a controller or an action.
Starting from the first part in the route, the application takes the following steps to create modules (if any),
controller and action:

	Set the application as the current module.

	Check if the [[yii\base\Module::controllerMap|controller map]] of the current module contains the current ID.
If so, a controller object will be created according to the controller configuration found in the map,
and Step 5 will be taken to handle the rest part of the route.

	Check if the ID refers to a module listed in the [[yii\base\Module::modules|modules]] property of
the current module. If so, a module is created according to the configuration found in the module list,
and Step 2 will be taken to handle the next part of the route under the context of the newly created module.

	Treat the ID as a controller ID and create a controller object. Do the next step with the rest part of
the route.

	The controller looks for the current ID in its [[yii\base\Controller::actions()|action map]]. If found,
it creates an action according to the configuration found in the map. Otherwise, the controller will
attempt to create an inline action which is defined by an action method corresponding to the current action ID.

Among the above steps, if any error occurs, a [[yii\web\NotFoundHttpException]] will be thrown, indicating
the failure of the routing process.

Default Route

When a request is parsed into an empty route, the so-called default route will be used, instead. By default,
the default route is site/index, which refers to the index action of the site controller. You may
customize it by configuring the [[yii\web\Application::defaultRoute|defaultRoute]] property of the application
in the application configuration like the following:

[
 // ...
 'defaultRoute' => 'main/index',
];

Similar to the default route of the application, there is also a default route for modules, so for example if there
is a user module and the request is parsed into the route user the module’s [[yii\base\Module::defaultRoute|defaultRoute]]
is used to determine the controller. By default the controller name is default. If no action is specified in [[yii\base\Module::defaultRoute|defaultRoute]],
the [[yii\base\Controller::defaultAction|defaultAction]] property of the controller is used to determine the action.
In this example, the full route would be user/default/index.

catchAll Route

Sometimes, you may want to put your Web application in maintenance mode temporarily and display the same
informational page for all requests. There are many ways to accomplish this goal. But one of the simplest
ways is to configure the [[yii\web\Application::catchAll]] property like the following in the application configuration:

[
 // ...
 'catchAll' => ['site/offline'],
];

With the above configuration, the site/offline action will be used to handle all incoming requests.

The catchAll property should take an array whose first element specifies a route, and
the rest of the elements (name-value pairs) specify the parameters to be bound to the action.

Info: The debug toolbar [https://github.com/yiisoft/yii2-debug/blob/master/docs/guide/README.md] in development environment
will not work when this property is enabled.

Creating URLs

Yii provides a helper method [[yii\helpers\Url::to()]] to create various kinds of URLs from given routes and
their associated query parameters. For example,

use yii\helpers\Url;

// creates a URL to a route: /index.php?r=post%2Findex
echo Url::to(['post/index']);

// creates a URL to a route with parameters: /index.php?r=post%2Fview&id=100
echo Url::to(['post/view', 'id' => 100]);

// creates an anchored URL: /index.php?r=post%2Fview&id=100#content
echo Url::to(['post/view', 'id' => 100, '#' => 'content']);

// creates an absolute URL: http://www.example.com/index.php?r=post%2Findex
echo Url::to(['post/index'], true);

// creates an absolute URL using the https scheme: https://www.example.com/index.php?r=post%2Findex
echo Url::to(['post/index'], 'https');

Note that in the above example, we assume the default URL format is being used. If the pretty URL format is enabled,
the created URLs will be different, according to the [[yii\web\UrlManager::rules|URL rules]] in use.

The route passed to the [[yii\helpers\Url::to()]] method is context sensitive. It can be either a relative route
or an absolute route which will be normalized according to the following rules:

	If the route is an empty string, the currently requested [[yii\web\Controller::route|route]] will be used;

	If the route contains no slashes at all, it is considered to be an action ID of the current controller
and will be prepended with the [[\yii\web\Controller::uniqueId|uniqueId]] value of the current controller;

	If the route has no leading slash, it is considered to be a route relative to the current module and
will be prepended with the [[\yii\base\Module::uniqueId|uniqueId]] value of the current module.

Starting from version 2.0.2, you may specify a route in terms of an alias. If this is the case,
the alias will first be converted into the actual route which will then be turned into an absolute route according
to the above rules.

For example, assume the current module is admin and the current controller is post,

use yii\helpers\Url;

// currently requested route: /index.php?r=admin%2Fpost%2Findex
echo Url::to(['']);

// a relative route with action ID only: /index.php?r=admin%2Fpost%2Findex
echo Url::to(['index']);

// a relative route: /index.php?r=admin%2Fpost%2Findex
echo Url::to(['post/index']);

// an absolute route: /index.php?r=post%2Findex
echo Url::to(['/post/index']);

// using an alias "@posts", which is defined as "/post/index": /index.php?r=post%2Findex
echo Url::to(['@posts']);

The [[yii\helpers\Url::to()]] method is implemented by calling the [[yii\web\UrlManager::createUrl()|createUrl()]]
and [[yii\web\UrlManager::createAbsoluteUrl()|createAbsoluteUrl()]] methods of the [[yii\web\UrlManager|URL manager]].
In the next few subsections, we will explain how to configure the [[yii\web\UrlManager|URL manager]] to customize
the format of the created URLs.

The [[yii\helpers\Url::to()]] method also supports creating URLs that are not related with particular routes.
Instead of passing an array as its first parameter, you should pass a string in this case. For example,

use yii\helpers\Url;

// currently requested URL: /index.php?r=admin%2Fpost%2Findex
echo Url::to();

// an aliased URL: http://example.com
Yii::setAlias('@example', 'http://example.com/');
echo Url::to('@example');

// an absolute URL: http://example.com/images/logo.gif
echo Url::to('/images/logo.gif', true);

Besides the to() method, the [[yii\helpers\Url]] helper class also provides several other convenient URL creation
methods. For example,

use yii\helpers\Url;

// home page URL: /index.php?r=site%2Findex
echo Url::home();

// the base URL, useful if the application is deployed in a sub-folder of the Web root
echo Url::base();

// the canonical URL of the currently requested URL
// see https://en.wikipedia.org/wiki/Canonical_link_element
echo Url::canonical();

// remember the currently requested URL and retrieve it back in later requests
Url::remember();
echo Url::previous();

Using Pretty URLs

To use pretty URLs, configure the urlManager component in the application configuration like the following:

[
 'components' => [
 'urlManager' => [
 'enablePrettyUrl' => true,
 'showScriptName' => false,
 'enableStrictParsing' => false,
 'rules' => [
 // ...
],
],
],
]

The [[yii\web\UrlManager::enablePrettyUrl|enablePrettyUrl]] property is mandatory as it toggles the pretty URL format.
The rest of the properties are optional. However, their configuration shown above is most commonly used.

	[[yii\web\UrlManager::showScriptName|showScriptName]]: this property determines whether the entry script
should be included in the created URLs. For example, instead of creating a URL /index.php/post/100,
by setting this property to be false, a URL /post/100 will be generated.

	[[yii\web\UrlManager::enableStrictParsing|enableStrictParsing]]: this property determines whether to enable
strict request parsing. If strict parsing is enabled, the incoming requested URL must match at least one of
the [[yii\web\UrlManager::rules|rules]] in order to be treated as a valid request, otherwise a [[yii\web\NotFoundHttpException]]
will be thrown. If strict parsing is disabled, when none of the [[yii\web\UrlManager::rules|rules]] matches
the requested URL, the path info part of the URL will be treated as the requested route.

	[[yii\web\UrlManager::rules|rules]]: this property contains a list of rules specifying how to parse and create
URLs. It is the main property that you should work with in order to create URLs whose format satisfies your
particular application requirement.

Note: In order to hide the entry script name in the created URLs, besides setting
[[yii\web\UrlManager::showScriptName|showScriptName]] to be false, you may also need to configure your Web server
so that it can correctly identify which PHP script should be executed when a requested URL does not explicitly
specify one. If you are using Apache or nginx Web server, you may refer to the recommended configuration as described in the
Installation section.

URL Rules

A URL rule is a class implementing the [[yii\web\UrlRuleInterface]], usually [[yii\web\UrlRule]]. Each URL rule consists of a pattern used
for matching the path info part of URLs, a route, and a few query parameters. A URL rule can be used to parse a request
if its pattern matches the requested URL. A URL rule can be used to create a URL if its route and query parameter
names match those that are given.

When the pretty URL format is enabled, the [[yii\web\UrlManager|URL manager]] uses the URL rules declared in its
[[yii\web\UrlManager::rules|rules]] property to parse incoming requests and create URLs. In particular,
to parse an incoming request, the [[yii\web\UrlManager|URL manager]] examines the rules in the order they are
declared and looks for the first rule that matches the requested URL. The matching rule is then used to
parse the URL into a route and its associated parameters. Similarly, to create a URL, the [[yii\web\UrlManager|URL manager]]
looks for the first rule that matches the given route and parameters and uses that to create a URL.

You can configure [[yii\web\UrlManager::rules]] as an array with keys being the [[yii\web\UrlRule::$pattern|patterns]] and values the corresponding
[[yii\web\UrlRule::$route|routes]]. Each pattern-route pair constructs a URL rule. For example, the following [[yii\web\UrlManager::rules|rules]]
configuration declares two URL rules. The first rule matches a URL posts and maps it into the route post/index.
The second rule matches a URL matching the regular expression post/(\d+) and maps it into the route post/view and
defines a query parameter named id.

'rules' => [
 'posts' => 'post/index',
 'post/<id:\d+>' => 'post/view',
]

Info: The pattern in a rule is used to match the path info part of a URL. For example, the path info of
/index.php/post/100?source=ad is post/100 (the leading and ending slashes are ignored) which matches
the pattern post/(\d+).

Besides declaring URL rules as pattern-route pairs, you may also declare them as configuration arrays. Each configuration
array is used to configure a single URL rule object. This is often needed when you want to configure other
properties of a URL rule. For example,

'rules' => [
 // ...other url rules...
 [
 'pattern' => 'posts',
 'route' => 'post/index',
 'suffix' => '.json',
],
]

By default if you do not specify the class option for a rule configuration, it will take the default
class [[yii\web\UrlRule]], which is the default value defined in
[[yii\web\UrlManager::$ruleConfig]].

Named Parameters

A URL rule can be associated with named query parameters which are specified in the pattern in the format
of <ParamName:RegExp>, where ParamName specifies the parameter name and RegExp is an optional regular
expression used to match parameter values. If RegExp is not specified, it means the parameter value should be
a string without any slash.

Note: You can only use regular expressions inside of parameters. The rest of a pattern is considered plain text.

When a rule is used to parse a URL, it will fill the associated parameters with values matching the corresponding
parts of the URL, and these parameters will be made available in $_GET later by the request application component.
When the rule is used to create a URL, it will take the values of the provided parameters and insert them at the
places where the parameters are declared.

Let’s use some examples to illustrate how named parameters work. Assume we have declared the following three URL rules:

'rules' => [
 'posts/<year:\d{4}>/<category>' => 'post/index',
 'posts' => 'post/index',
 'post/<id:\d+>' => 'post/view',
]

When the rules are used to parse URLs:

	/index.php/posts is parsed into the route post/index using the second rule;

	/index.php/posts/2014/php is parsed into the route post/index, the year parameter whose value is 2014
and the category parameter whose value is php using the first rule;

	/index.php/post/100 is parsed into the route post/view and the id parameter whose value is 100 using
the third rule;

	/index.php/posts/php will cause a [[yii\web\NotFoundHttpException]] when [[yii\web\UrlManager::enableStrictParsing]]
is true, because it matches none of the patterns. If [[yii\web\UrlManager::enableStrictParsing]] is false (the
default value), the path info part posts/php will be returned as the route. This will either execute the corresponding action if it exists or throw a [[yii\web\NotFoundHttpException]] otherwise.

And when the rules are used to create URLs:

	Url::to(['post/index']) creates /index.php/posts using the second rule;

	Url::to(['post/index', 'year' => 2014, 'category' => 'php']) creates /index.php/posts/2014/php using the first rule;

	Url::to(['post/view', 'id' => 100]) creates /index.php/post/100 using the third rule;

	Url::to(['post/view', 'id' => 100, 'source' => 'ad']) creates /index.php/post/100?source=ad using the third rule.
Because the source parameter is not specified in the rule, it is appended as a query parameter in the created URL.

	Url::to(['post/index', 'category' => 'php']) creates /index.php/post/index?category=php using none of the rules.
Note that since none of the rules applies, the URL is created by simply appending the route as the path info
and all parameters as the query string part.

Parameterizing Routes

You can embed parameter names in the route of a URL rule. This allows a URL rule to be used for matching multiple
routes. For example, the following rules embed controller and action parameters in the routes.

'rules' => [
 '<controller:(post|comment)>/create' => '<controller>/create',
 '<controller:(post|comment)>/<id:\d+>/<action:(update|delete)>' => '<controller>/<action>',
 '<controller:(post|comment)>/<id:\d+>' => '<controller>/view',
 '<controller:(post|comment)>s' => '<controller>/index',
]

To parse a URL /index.php/comment/100/update, the second rule will apply, which sets the controller parameter to
be comment and action parameter to be update. The route <controller>/<action> is thus resolved as comment/update.

Similarly, to create a URL for the route comment/index, the last rule will apply, which creates a URL /index.php/comments.

Info: By parameterizing routes, it is possible to greatly reduce the number of URL rules, which can significantly
improve the performance of [[yii\web\UrlManager|URL manager]].

Default Parameter Values

By default, all parameters declared in a rule are required. If a requested URL does not contain a particular parameter,
or if a URL is being created without a particular parameter, the rule will not apply. To make some of the parameters
optional, you can configure the [[yii\web\UrlRule::defaults|defaults]] property of a rule. Parameters listed in this
property are optional and will take the specified values when they are not provided.

In the following rule declaration, the page and tag parameters are both optional and will take the value of 1 and
empty string, respectively, when they are not provided.

'rules' => [
 // ...other rules...
 [
 'pattern' => 'posts/<page:\d+>/<tag>',
 'route' => 'post/index',
 'defaults' => ['page' => 1, 'tag' => ''],
],
]

The above rule can be used to parse or create any of the following URLs:

	/index.php/posts: page is 1, tag is ‘’.

	/index.php/posts/2: page is 2, tag is ‘’.

	/index.php/posts/2/news: page is 2, tag is 'news'.

	/index.php/posts/news: page is 1, tag is 'news'.

Without using optional parameters, you would have to create 4 rules to achieve the same result.

Note: If [[yii\web\UrlRule::$pattern|pattern]] contains only optional parameters and slashes, first parameter could be omitted
only if all other parameters are omitted.

Rules with Server Names

It is possible to include Web server names in the patterns of URL rules. This is mainly useful when your application
should behave differently for different Web server names. For example, the following rules will parse the URL
http://admin.example.com/login into the route admin/user/login and http://www.example.com/login into site/login.

'rules' => [
 'http://admin.example.com/login' => 'admin/user/login',
 'http://www.example.com/login' => 'site/login',
]

You can also embed parameters in the server names to extract dynamic information from them. For example, the following rule
will parse the URL http://en.example.com/posts into the route post/index and the parameter language=en.

'rules' => [
 'http://<language:\w+>.example.com/posts' => 'post/index',
]

Since version 2.0.11, you may also use protocol relative patterns that work for both, http and https.
The syntax is the same as above but skipping the http: part, e.g.: '//www.example.com/login' => 'site/login'.

Note: Rules with server names should not include the subfolder of the entry script in their patterns. For example, if the applications entry script is at http://www.example.com/sandbox/blog/index.php, then you should use the pattern
http://www.example.com/posts instead of http://www.example.com/sandbox/blog/posts. This will allow your application
to be deployed under any directory without the need to change your url rules. Yii will automatically detect the base url of the application.

URL Suffixes

You may want to add suffixes to the URLs for various purposes. For example, you may add .html to the URLs so that they
look like URLs for static HTML pages; you may also add .json to the URLs to indicate the expected content type
of the response. You can achieve this goal by configuring the [[yii\web\UrlManager::suffix]] property like
the following in the application configuration:

[
 // ...
 'components' => [
 'urlManager' => [
 'enablePrettyUrl' => true,
 // ...
 'suffix' => '.html',
 'rules' => [
 // ...
],
],
],
]

The above configuration will allow the [[yii\web\UrlManager|URL manager]] to recognize requested URLs and also create
URLs with .html as their suffix.

Tip: You may set / as the URL suffix so that the URLs all end with a slash.

Note: When you configure a URL suffix, if a requested URL does not have the suffix, it will be considered as
an unrecognized URL. This is a recommended practice for SEO (search engine optimization) to avoid duplicate content on different URLs.

Sometimes you may want to use different suffixes for different URLs. This can be achieved by configuring the
[[yii\web\UrlRule::suffix|suffix]] property of individual URL rules. When a URL rule has this property set, it will
override the suffix setting at the [[yii\web\UrlManager|URL manager]] level. For example, the following configuration
contains a customized URL rule which uses .json as its suffix instead of the global .html suffix.

[
 'components' => [
 'urlManager' => [
 'enablePrettyUrl' => true,
 // ...
 'suffix' => '.html',
 'rules' => [
 // ...
 [
 'pattern' => 'posts',
 'route' => 'post/index',
 'suffix' => '.json',
],
],
],
],
]

HTTP Methods

When implementing RESTful APIs, it is commonly needed that the same URL be parsed into different routes according to
the HTTP methods being used. This can be easily achieved by prefixing the supported HTTP methods to the patterns of
the rules. If a rule supports multiple HTTP methods, separate the method names with commas. For example, the following
rules have the same pattern post/<id:\d+> with different HTTP method support. A request for PUT post/100 will
be parsed into post/update, while a request for GET post/100 will be parsed into post/view.

'rules' => [
 'PUT,POST post/<id:\d+>' => 'post/update',
 'DELETE post/<id:\d+>' => 'post/delete',
 'post/<id:\d+>' => 'post/view',
]

Note: If a URL rule contains HTTP method(s) in its pattern, the rule will only be used for parsing purpose unless GET is among the specified verbs.
It will be skipped when the [[yii\web\UrlManager|URL manager]] is called to create URLs.

Tip: To simplify the routing of RESTful APIs, Yii provides a special URL rule class [[yii\rest\UrlRule]]
which is very efficient and supports some fancy features such as automatic pluralization of controller IDs.
For more details, please refer to the Routing section in the RESTful APIs chapter.

Adding Rules Dynamically

URL rules can be dynamically added to the [[yii\web\UrlManager|URL manager]]. This is often needed by redistributable
modules which want to manage their own URL rules. In order for the dynamically added rules
to take effect during the routing process, you should add them during the bootstrapping
stage of the application. For modules, this means they should implement [[yii\base\BootstrapInterface]] and add the rules in the
[[yii\base\BootstrapInterface::bootstrap()|bootstrap()]] method like the following:

public function bootstrap($app)
{
 $app->getUrlManager()->addRules([
 // rule declarations here
], false);
}

Note that you should also list these modules in [[yii\web\Application::bootstrap]] so that they can participate the
bootstrapping process.

Creating Rule Classes

Despite the fact that the default [[yii\web\UrlRule]] class is flexible enough for the majority of projects, there
are situations when you have to create your own rule classes. For example, in a car dealer Web site, you may want
to support the URL format like /Manufacturer/Model, where both Manufacturer and Model must match some data
stored in a database table. The default rule class will not work here because it relies on statically declared patterns.

We can create the following URL rule class to solve this problem.

<?php

namespace app\components;

use yii\web\UrlRuleInterface;
use yii\base\BaseObject;

class CarUrlRule extends BaseObject implements UrlRuleInterface
{
 public function createUrl($manager, $route, $params)
 {
 if ($route === 'car/index') {
 if (isset($params['manufacturer'], $params['model'])) {
 return $params['manufacturer'] . '/' . $params['model'];
 } elseif (isset($params['manufacturer'])) {
 return $params['manufacturer'];
 }
 }
 return false; // this rule does not apply
 }

 public function parseRequest($manager, $request)
 {
 $pathInfo = $request->getPathInfo();
 if (preg_match('%^(\w+)(/(\w+))?$%', $pathInfo, $matches)) {
 // check $matches[1] and $matches[3] to see
 // if they match a manufacturer and a model in the database.
 // If so, set $params['manufacturer'] and/or $params['model']
 // and return ['car/index', $params]
 }
 return false; // this rule does not apply
 }
}

And use the new rule class in the [[yii\web\UrlManager::rules]] configuration:

'rules' => [
 // ...other rules...
 [
 'class' => 'app\components\CarUrlRule',
 // ...configure other properties...
],
]

URL normalization

Since version 2.0.10 [[yii\web\UrlManager|UrlManager]] can be configured to use [[yii\web\UrlNormalizer|UrlNormalizer]] for dealing
with variations of the same URL, for example with and without a trailing slash. Because technically http://example.com/path
and http://example.com/path/ are different URLs, serving the same content for both of them can degrade SEO ranking.
By default normalizer collapses consecutive slashes, adds or removes trailing slashes depending on whether the
suffix has a trailing slash or not, and redirects to the normalized version of the URL using permanent redirection [https://en.wikipedia.org/wiki/HTTP_301].
The normalizer can be configured globally for the URL manager or individually for each rule - by default each rule will use the normalizer
from URL manager. You can set [[yii\web\UrlRule::$normalizer|UrlRule::$normalizer]] to false to disable normalization
for particular URL rule.

The following shows an example configuration for the [[yii\web\UrlNormalizer|UrlNormalizer]]:

'urlManager' => [
 'enablePrettyUrl' => true,
 'showScriptName' => false,
 'enableStrictParsing' => true,
 'suffix' => '.html',
 'normalizer' => [
 'class' => 'yii\web\UrlNormalizer',
 // use temporary redirection instead of permanent for debugging
 'action' => UrlNormalizer::ACTION_REDIRECT_TEMPORARY,
],
 'rules' => [
 // ...other rules...
 [
 'pattern' => 'posts',
 'route' => 'post/index',
 'suffix' => '/',
 'normalizer' => false, // disable normalizer for this rule
],
 [
 'pattern' => 'tags',
 'route' => 'tag/index',
 'normalizer' => [
 // do not collapse consecutive slashes for this rule
 'collapseSlashes' => false,
],
],
],
]

Note: by default [[yii\web\UrlManager::$normalizer|UrlManager::$normalizer]] is disabled. You need to explicitly
configure it in order to enable URL normalization.

Performance Considerations

When developing a complex Web application, it is important to optimize URL rules so that it takes less time to parse
requests and create URLs.

By using parameterized routes, you may reduce the number of URL rules, which can significantly improve performance.

When parsing or creating URLs, [[yii\web\UrlManager|URL manager]] examines URL rules in the order they are declared.
Therefore, you may consider adjusting the order of the URL rules so that more specific and/or more commonly used rules are placed before less used ones.

If some URL rules share the same prefix in their patterns or routes, you may consider using [[yii\web\GroupUrlRule]]
so that they can be more efficiently examined by [[yii\web\UrlManager|URL manager]] as a group. This is often the case
when your application is composed by modules, each having its own set of URL rules with module ID as their common prefixes.

 Sessions and Cookies

Sessions and Cookies

Sessions and cookies allow data to be persisted across multiple user requests. In plain PHP you may access them
through the global variables $_SESSION and $_COOKIE, respectively. Yii encapsulates sessions and cookies as objects
and thus allows you to access them in an object-oriented fashion with additional useful enhancements.

Sessions

Like requests and responses, you can get access to sessions via
the session application component which is an instance of [[yii\web\Session]],
by default.

Opening and Closing Sessions

To open and close a session, you can do the following:

$session = Yii::$app->session;

// check if a session is already open
if ($session->isActive) ...

// open a session
$session->open();

// close a session
$session->close();

// destroys all data registered to a session.
$session->destroy();

You can call [[yii\web\Session::open()|open()]] and [[yii\web\Session::close()|close()]] multiple times
without causing errors; internally the methods will first check if the session is already open.

Accessing Session Data

To access the data stored in session, you can do the following:

$session = Yii::$app->session;

// get a session variable. The following usages are equivalent:
$language = $session->get('language');
$language = $session['language'];
$language = isset($_SESSION['language']) ? $_SESSION['language'] : null;

// set a session variable. The following usages are equivalent:
$session->set('language', 'en-US');
$session['language'] = 'en-US';
$_SESSION['language'] = 'en-US';

// remove a session variable. The following usages are equivalent:
$session->remove('language');
unset($session['language']);
unset($_SESSION['language']);

// check if a session variable exists. The following usages are equivalent:
if ($session->has('language')) ...
if (isset($session['language'])) ...
if (isset($_SESSION['language'])) ...

// traverse all session variables. The following usages are equivalent:
foreach ($session as $name => $value) ...
foreach ($_SESSION as $name => $value) ...

Info: When you access session data through the session component, a session will be automatically opened
if it has not been done so before. This is different from accessing session data through $_SESSION, which requires
an explicit call of session_start().

When working with session data that are arrays, the session component has a limitation which prevents you from
directly modifying an array element. For example,

$session = Yii::$app->session;

// the following code will NOT work
$session['captcha']['number'] = 5;
$session['captcha']['lifetime'] = 3600;

// the following code works:
$session['captcha'] = [
 'number' => 5,
 'lifetime' => 3600,
];

// the following code also works:
echo $session['captcha']['lifetime'];

You can use one of the following workarounds to solve this problem:

$session = Yii::$app->session;

// directly use $_SESSION (make sure Yii::$app->session->open() has been called)
$_SESSION['captcha']['number'] = 5;
$_SESSION['captcha']['lifetime'] = 3600;

// get the whole array first, modify it and then save it back
$captcha = $session['captcha'];
$captcha['number'] = 5;
$captcha['lifetime'] = 3600;
$session['captcha'] = $captcha;

// use ArrayObject instead of array
$session['captcha'] = new \ArrayObject;
...
$session['captcha']['number'] = 5;
$session['captcha']['lifetime'] = 3600;

// store array data by keys with a common prefix
$session['captcha.number'] = 5;
$session['captcha.lifetime'] = 3600;

For better performance and code readability, we recommend the last workaround. That is, instead of storing
an array as a single session variable, you store each array element as a session variable which shares the same
key prefix with other array elements.

Custom Session Storage

The default [[yii\web\Session]] class stores session data as files on the server. Yii also provides the following
session classes implementing different session storage:

	[[yii\web\DbSession]]: stores session data in a database table.

	[[yii\web\CacheSession]]: stores session data in a cache with the help of a configured cache component.

	[[yii\redis\Session]]: stores session data using redis [http://redis.io/] as the storage medium.

	[[yii\mongodb\Session]]: stores session data in a MongoDB [http://www.mongodb.org/].

All these session classes support the same set of API methods. As a result, you can switch to a different
session storage class without the need to modify your application code that uses sessions.

Note: If you want to access session data via $_SESSION while using custom session storage, you must make
sure that the session has already been started by [[yii\web\Session::open()]]. This is because custom session storage
handlers are registered within this method.

Note: If you use a custom session storage you may need to configure the session garbage collector explicitly.
Some installations of PHP (e.g. Debian) use a garbage collector probability of 0 and clean session files
offline in a cronjob. This process does not apply to your custom storage so you need to configure
[[yii\web\Session::$GCProbability]] to use a non-zero value.

To learn how to configure and use these component classes, please refer to their API documentation. Below is
an example showing how to configure [[yii\web\DbSession]] in the application configuration to use a database table
for session storage:

return [
 'components' => [
 'session' => [
 'class' => 'yii\web\DbSession',
 // 'db' => 'mydb', // the application component ID of the DB connection. Defaults to 'db'.
 // 'sessionTable' => 'my_session', // session table name. Defaults to 'session'.
],
],
];

You also need to create the following database table to store session data:

CREATE TABLE session
(
 id CHAR(40) NOT NULL PRIMARY KEY,
 expire INTEGER,
 data BLOB
)

where ‘BLOB’ refers to the BLOB-type of your preferred DBMS. Below are the BLOB types that can be used for some popular DBMS:

	MySQL: LONGBLOB

	PostgreSQL: BYTEA

	MSSQL: BLOB

Note: According to the php.ini setting of session.hash_function, you may need to adjust
the length of the id column. For example, if session.hash_function=sha256, you should use a
length 64 instead of 40.

Alternatively, this can be accomplished with the following migration:

<?php

use yii\db\Migration;

class m170529_050554_create_table_session extends Migration
{
 public function up()
 {
 $this->createTable('{{%session}}', [
 'id' => $this->char(64)->notNull(),
 'expire' => $this->integer(),
 'data' => $this->binary()
]);
 $this->addPrimaryKey('pk-id', '{{%session}}', 'id');
 }

 public function down()
 {
 $this->dropTable('{{%session}}');
 }
}

Flash Data

Flash data is a special kind of session data which, once set in one request, will only be available during
the next request and will be automatically deleted afterwards. Flash data is most commonly used to implement
messages that should only be displayed to end users once, such as a confirmation message displayed after
a user successfully submits a form.

You can set and access flash data through the session application component. For example,

$session = Yii::$app->session;

// Request #1
// set a flash message named as "postDeleted"
$session->setFlash('postDeleted', 'You have successfully deleted your post.');

// Request #2
// display the flash message named "postDeleted"
echo $session->getFlash('postDeleted');

// Request #3
// $result will be false since the flash message was automatically deleted
$result = $session->hasFlash('postDeleted');

Like regular session data, you can store arbitrary data as flash data.

When you call [[yii\web\Session::setFlash()]], it will overwrite any existing flash data that has the same name.
To append new flash data to an existing message of the same name, you may call [[yii\web\Session::addFlash()]] instead.
For example:

$session = Yii::$app->session;

// Request #1
// add a few flash messages under the name of "alerts"
$session->addFlash('alerts', 'You have successfully deleted your post.');
$session->addFlash('alerts', 'You have successfully added a new friend.');
$session->addFlash('alerts', 'You are promoted.');

// Request #2
// $alerts is an array of the flash messages under the name of "alerts"
$alerts = $session->getFlash('alerts');

Note: Try not to use [[yii\web\Session::setFlash()]] together with [[yii\web\Session::addFlash()]] for flash data
of the same name. This is because the latter method will automatically turn the flash data into an array so that it
can append new flash data of the same name. As a result, when you call [[yii\web\Session::getFlash()]], you may
find sometimes you are getting an array while sometimes you are getting a string, depending on the order of
the invocation of these two methods.

Tip: For displaying Flash messages you can use [[yii\bootstrap\Alert|bootstrap Alert]] widget in the following way:

echo Alert::widget([
 'options' => ['class' => 'alert-info'],
 'body' => Yii::$app->session->getFlash('postDeleted'),
]);

Cookies

Yii represents each cookie as an object of [[yii\web\Cookie]]. Both [[yii\web\Request]] and [[yii\web\Response]]
maintain a collection of cookies via the property named cookies. The cookie collection in the former represents
the cookies submitted in a request, while the cookie collection in the latter represents the cookies that are to
be sent to the user.

The part of the application dealing with request and response directly is controller. Therefore, cookies should be
read and sent in controller.

Reading Cookies

You can get the cookies in the current request using the following code:

// get the cookie collection (yii\web\CookieCollection) from the "request" component
$cookies = Yii::$app->request->cookies;

// get the "language" cookie value. If the cookie does not exist, return "en" as the default value.
$language = $cookies->getValue('language', 'en');

// an alternative way of getting the "language" cookie value
if (($cookie = $cookies->get('language')) !== null) {
 $language = $cookie->value;
}

// you may also use $cookies like an array
if (isset($cookies['language'])) {
 $language = $cookies['language']->value;
}

// check if there is a "language" cookie
if ($cookies->has('language')) ...
if (isset($cookies['language'])) ...

Sending Cookies

You can send cookies to end users using the following code:

// get the cookie collection (yii\web\CookieCollection) from the "response" component
$cookies = Yii::$app->response->cookies;

// add a new cookie to the response to be sent
$cookies->add(new \yii\web\Cookie([
 'name' => 'language',
 'value' => 'zh-CN',
]));

// remove a cookie
$cookies->remove('language');
// equivalent to the following
unset($cookies['language']);

Besides the [[yii\web\Cookie::name|name]], [[yii\web\Cookie::value|value]] properties shown in the above
examples, the [[yii\web\Cookie]] class also defines other properties to fully represent all available cookie
information, such as [[yii\web\Cookie::domain|domain]], [[yii\web\Cookie::expire|expire]]. You may configure these
properties as needed to prepare a cookie and then add it to the response’s cookie collection.

Note: For better security, the default value of [[yii\web\Cookie::httpOnly]] is set to true. This helps mitigate
the risk of a client-side script accessing the protected cookie (if the browser supports it). You may read
the httpOnly wiki article [https://www.owasp.org/index.php/HttpOnly] for more details.

Cookie Validation

When you are reading and sending cookies through the request and response components as shown in the last
two subsections, you enjoy the added security of cookie validation which protects cookies from being modified
on the client-side. This is achieved by signing each cookie with a hash string, which allows the application to
tell if a cookie has been modified on the client-side. If so, the cookie will NOT be accessible through the
[[yii\web\Request::cookies|cookie collection]] of the request component.

Note: Cookie validation only protects cookie values from being modified. If a cookie fails the validation,
you may still access it through $_COOKIE. This is because third-party libraries may manipulate cookies
in their own way, which does not involve cookie validation.

Cookie validation is enabled by default. You can disable it by setting the [[yii\web\Request::enableCookieValidation]]
property to be false, although we strongly recommend you do not do so.

Note: Cookies that are directly read/sent via $_COOKIE and setcookie() will NOT be validated.

When using cookie validation, you must specify a [[yii\web\Request::cookieValidationKey]] that will be used to generate
the aforementioned hash strings. You can do so by configuring the request component in the application configuration:

return [
 'components' => [
 'request' => [
 'cookieValidationKey' => 'fill in a secret key here',
],
],
];

Info: [[yii\web\Request::cookieValidationKey|cookieValidationKey]] is critical to your application’s security.
It should only be known to people you trust. Do not store it in the version control system.

 Authentication

Authentication

Authentication is the process of verifying the identity of a user. It usually uses an identifier
(e.g. a username or an email address) and a secret token (e.g. a password or an access token) to judge
if the user is the one whom he claims as. Authentication is the basis of the login feature.

Yii provides an authentication framework which wires up various components to support login. To use this framework,
you mainly need to do the following work:

	Configure the [[yii\web\User|user]] application component;

	Create a class that implements the [[yii\web\IdentityInterface]] interface.

Configuring [[yii\web\User]]

The [[yii\web\User|user]] application component manages the user authentication status. It requires you to
specify an [[yii\web\User::identityClass|identity class]] which contains the actual authentication logic.
In the following application configuration, the [[yii\web\User::identityClass|identity class]] for
[[yii\web\User|user]] is configured to be app\models\User whose implementation is explained in
the next subsection:

return [
 'components' => [
 'user' => [
 'identityClass' => 'app\models\User',
],
],
];

Implementing [[yii\web\IdentityInterface]]

The [[yii\web\User::identityClass|identity class]] must implement the [[yii\web\IdentityInterface]] which contains
the following methods:

	[[yii\web\IdentityInterface::findIdentity()|findIdentity()]]: it looks for an instance of the identity
class using the specified user ID. This method is used when you need to maintain the login status via session.

	[[yii\web\IdentityInterface::findIdentityByAccessToken()|findIdentityByAccessToken()]]: it looks for
an instance of the identity class using the specified access token. This method is used when you need
to authenticate a user by a single secret token (e.g. in a stateless RESTful application).

	[[yii\web\IdentityInterface::getId()|getId()]]: it returns the ID of the user represented by this identity instance.

	[[yii\web\IdentityInterface::getAuthKey()|getAuthKey()]]: it returns a key used to verify cookie-based login.
The key is stored in the login cookie and will be later compared with the server-side version to make
sure the login cookie is valid.

	[[yii\web\IdentityInterface::validateAuthKey()|validateAuthKey()]]: it implements the logic for verifying
the cookie-based login key.

If a particular method is not needed, you may implement it with an empty body. For example, if your application
is a pure stateless RESTful application, you would only need to implement [[yii\web\IdentityInterface::findIdentityByAccessToken()|findIdentityByAccessToken()]]
and [[yii\web\IdentityInterface::getId()|getId()]] while leaving all other methods with an empty body.

In the following example, an [[yii\web\User::identityClass|identity class]] is implemented as
an Active Record class associated with the user database table.

<?php

use yii\db\ActiveRecord;
use yii\web\IdentityInterface;

class User extends ActiveRecord implements IdentityInterface
{
 public static function tableName()
 {
 return 'user';
 }

 /**
 * Finds an identity by the given ID.
 *
 * @param string|int $id the ID to be looked for
 * @return IdentityInterface|null the identity object that matches the given ID.
 */
 public static function findIdentity($id)
 {
 return static::findOne($id);
 }

 /**
 * Finds an identity by the given token.
 *
 * @param string $token the token to be looked for
 * @return IdentityInterface|null the identity object that matches the given token.
 */
 public static function findIdentityByAccessToken($token, $type = null)
 {
 return static::findOne(['access_token' => $token]);
 }

 /**
 * @return int|string current user ID
 */
 public function getId()
 {
 return $this->id;
 }

 /**
 * @return string current user auth key
 */
 public function getAuthKey()
 {
 return $this->auth_key;
 }

 /**
 * @param string $authKey
 * @return bool if auth key is valid for current user
 */
 public function validateAuthKey($authKey)
 {
 return $this->getAuthKey() === $authKey;
 }
}

As explained previously, you only need to implement getAuthKey() and validateAuthKey() if your application
uses cookie-based login feature. In this case, you may use the following code to generate an auth key for each
user and store it in the user table:

class User extends ActiveRecord implements IdentityInterface
{

 public function beforeSave($insert)
 {
 if (parent::beforeSave($insert)) {
 if ($this->isNewRecord) {
 $this->auth_key = \Yii::$app->security->generateRandomString();
 }
 return true;
 }
 return false;
 }
}

Note: Do not confuse the User identity class with [[yii\web\User]]. The former is the class implementing
the authentication logic. It is often implemented as an Active Record class associated
with some persistent storage for storing the user credential information. The latter is an application component
class responsible for managing the user authentication state.

Using [[yii\web\User]]

You mainly use [[yii\web\User]] in terms of the user application component.

You can detect the identity of the current user using the expression Yii::$app->user->identity. It returns
an instance of the [[yii\web\User::identityClass|identity class]] representing the currently logged-in user,
or null if the current user is not authenticated (meaning a guest). The following code shows how to retrieve
other authentication-related information from [[yii\web\User]]:

// the current user identity. `null` if the user is not authenticated.
$identity = Yii::$app->user->identity;

// the ID of the current user. `null` if the user not authenticated.
$id = Yii::$app->user->id;

// whether the current user is a guest (not authenticated)
$isGuest = Yii::$app->user->isGuest;

To login a user, you may use the following code:

// find a user identity with the specified username.
// note that you may want to check the password if needed
$identity = User::findOne(['username' => $username]);

// logs in the user
Yii::$app->user->login($identity);

The [[yii\web\User::login()]] method sets the identity of the current user to the [[yii\web\User]]. If session is
[[yii\web\User::enableSession|enabled]], it will keep the identity in the session so that the user
authentication status is maintained throughout the whole session. If cookie-based login (i.e. “remember me” login)
is [[yii\web\User::enableAutoLogin|enabled]], it will also save the identity in a cookie so that
the user authentication status can be recovered from the cookie as long as the cookie remains valid.

In order to enable cookie-based login, you need to configure [[yii\web\User::enableAutoLogin]] to be
true in the application configuration. You also need to provide a duration time parameter when calling
the [[yii\web\User::login()]] method.

To logout a user, simply call

Yii::$app->user->logout();

Note that logging out a user is only meaningful when session is enabled. The method will clean up
the user authentication status from both memory and session. And by default, it will also destroy all
user session data. If you want to keep the session data, you should call Yii::$app->user->logout(false), instead.

Authentication Events

The [[yii\web\User]] class raises a few events during the login and logout processes.

	[[yii\web\User::EVENT_BEFORE_LOGIN|EVENT_BEFORE_LOGIN]]: raised at the beginning of [[yii\web\User::login()]].
If the event handler sets the [[yii\web\UserEvent::isValid|isValid]] property of the event object to be false,
the login process will be cancelled.

	[[yii\web\User::EVENT_AFTER_LOGIN|EVENT_AFTER_LOGIN]]: raised after a successful login.

	[[yii\web\User::EVENT_BEFORE_LOGOUT|EVENT_BEFORE_LOGOUT]]: raised at the beginning of [[yii\web\User::logout()]].
If the event handler sets the [[yii\web\UserEvent::isValid|isValid]] property of the event object to be false,
the logout process will be cancelled.

	[[yii\web\User::EVENT_AFTER_LOGOUT|EVENT_AFTER_LOGOUT]]: raised after a successful logout.

You may respond to these events to implement features such as login audit, online user statistics. For example,
in the handler for [[yii\web\User::EVENT_AFTER_LOGIN|EVENT_AFTER_LOGIN]], you may record the login time and IP
address in the user table.

 Authorization

Authorization

Authorization is the process of verifying that a user has enough permission to do something. Yii provides two authorization
methods: Access Control Filter (ACF) and Role-Based Access Control (RBAC).

Access Control Filter

Access Control Filter (ACF) is a simple authorization method implemented as [[yii\filters\AccessControl]] which
is best used by applications that only need some simple access control. As its name indicates, ACF is
an action filter that can be used in a controller or a module. While a user is requesting
to execute an action, ACF will check a list of [[yii\filters\AccessControl::rules|access rules]]
to determine if the user is allowed to access the requested action.

The code below shows how to use ACF in the site controller:

use yii\web\Controller;
use yii\filters\AccessControl;

class SiteController extends Controller
{
 public function behaviors()
 {
 return [
 'access' => [
 'class' => AccessControl::className(),
 'only' => ['login', 'logout', 'signup'],
 'rules' => [
 [
 'allow' => true,
 'actions' => ['login', 'signup'],
 'roles' => ['?'],
],
 [
 'allow' => true,
 'actions' => ['logout'],
 'roles' => ['@'],
],
],
],
];
 }
 // ...
}

In the code above ACF is attached to the site controller as a behavior. This is the typical way of using an action
filter. The only option specifies that the ACF should only be applied to the login, logout and signup actions.
All other actions in the site controller are not subject to the access control. The rules option lists
the [[yii\filters\AccessRule|access rules]], which reads as follows:

	Allow all guest (not yet authenticated) users to access the login and signup actions. The roles option
contains a question mark ? which is a special token representing “guest users”.

	Allow authenticated users to access the logout action. The @ character is another special token representing
“authenticated users”.

ACF performs the authorization check by examining the access rules one by one from top to bottom until it finds
a rule that matches the current execution context. The allow value of the matching rule will then be used to
judge if the user is authorized or not. If none of the rules matches, it means the user is NOT authorized,
and ACF will stop further action execution.

When ACF determines a user is not authorized to access the current action, it takes the following measure by default:

	If the user is a guest, it will call [[yii\web\User::loginRequired()]] to redirect the user browser to the login page.

	If the user is already authenticated, it will throw a [[yii\web\ForbiddenHttpException]].

You may customize this behavior by configuring the [[yii\filters\AccessControl::denyCallback]] property like the following:

[
 'class' => AccessControl::className(),
 ...
 'denyCallback' => function ($rule, $action) {
 throw new \Exception('You are not allowed to access this page');
 }
]

[[yii\filters\AccessRule|Access rules]] support many options. Below is a summary of the supported options.
You may also extend [[yii\filters\AccessRule]] to create your own customized access rule classes.

	[[yii\filters\AccessRule::allow|allow]]: specifies whether this is an “allow” or “deny” rule.

	[[yii\filters\AccessRule::actions|actions]]: specifies which actions this rule matches. This should
be an array of action IDs. The comparison is case-sensitive. If this option is empty or not set,
it means the rule applies to all actions.

	[[yii\filters\AccessRule::controllers|controllers]]: specifies which controllers this rule
matches. This should be an array of controller IDs. Each controller ID is prefixed with the module ID (if any).
The comparison is case-sensitive. If this option is empty or not set, it means the rule applies to all controllers.

	[[yii\filters\AccessRule::roles|roles]]: specifies which user roles that this rule matches.
Two special roles are recognized, and they are checked via [[yii\web\User::isGuest]]:

	?: matches a guest user (not authenticated yet)

	@: matches an authenticated user

Using other role names will trigger the invocation of [[yii\web\User::can()]], which requires enabling RBAC
(to be described in the next subsection). If this option is empty or not set, it means this rule applies to all roles.

	[[yii\filters\AccessRule::roleParams|roleParams]]: specifies the parameters that will be passed to [[yii\web\User::can()]].
See the section below describing RBAC rules to see how it can be used. If this option is empty or not set, then no parameters will be passed.

	[[yii\filters\AccessRule::ips|ips]]: specifies which [[yii\web\Request::userIP|client IP addresses]] this rule matches.
An IP address can contain the wildcard * at the end so that it matches IP addresses with the same prefix.
For example, ‘192.168.*’ matches all IP addresses in the segment ‘192.168.’. If this option is empty or not set,
it means this rule applies to all IP addresses.

	[[yii\filters\AccessRule::verbs|verbs]]: specifies which request method (e.g. GET, POST) this rule matches.
The comparison is case-insensitive.

	[[yii\filters\AccessRule::matchCallback|matchCallback]]: specifies a PHP callable that should be called to determine
if this rule should be applied.

	[[yii\filters\AccessRule::denyCallback|denyCallback]]: specifies a PHP callable that should be called when this rule
will deny the access.

Below is an example showing how to make use of the matchCallback option, which allows you to write arbitrary access
check logic:

use yii\filters\AccessControl;

class SiteController extends Controller
{
 public function behaviors()
 {
 return [
 'access' => [
 'class' => AccessControl::className(),
 'only' => ['special-callback'],
 'rules' => [
 [
 'actions' => ['special-callback'],
 'allow' => true,
 'matchCallback' => function ($rule, $action) {
 return date('d-m') === '31-10';
 }
],
],
],
];
 }

 // Match callback called! This page can be accessed only each October 31st
 public function actionSpecialCallback()
 {
 return $this->render('happy-halloween');
 }
}

Role Based Access Control (RBAC)

Role-Based Access Control (RBAC) provides a simple yet powerful centralized access control. Please refer to
the Wikipedia [http://en.wikipedia.org/wiki/Role-based_access_control] for details about comparing RBAC
with other more traditional access control schemes.

Yii implements a General Hierarchical RBAC, following the NIST RBAC model [http://csrc.nist.gov/rbac/sandhu-ferraiolo-kuhn-00.pdf].
It provides the RBAC functionality through the [[yii\rbac\ManagerInterface|authManager]] application component.

Using RBAC involves two parts of work. The first part is to build up the RBAC authorization data, and the second
part is to use the authorization data to perform access check in places where it is needed.

To facilitate our description next, we will first introduce some basic RBAC concepts.

Basic Concepts

A role represents a collection of permissions (e.g. creating posts, updating posts). A role may be assigned
to one or multiple users. To check if a user has a specified permission, we may check if the user is assigned
with a role that contains that permission.

Associated with each role or permission, there may be a rule. A rule represents a piece of code that will be
executed during access check to determine if the corresponding role or permission applies to the current user.
For example, the “update post” permission may have a rule that checks if the current user is the post creator.
During access checking, if the user is NOT the post creator, he/she will be considered not having the “update post” permission.

Both roles and permissions can be organized in a hierarchy. In particular, a role may consist of other roles or permissions;
and a permission may consist of other permissions. Yii implements a partial order hierarchy which includes the
more special tree hierarchy. While a role can contain a permission, it is not true vice versa.

Configuring RBAC

Before we set off to define authorization data and perform access checking, we need to configure the
[[yii\base\Application::authManager|authManager]] application component. Yii provides two types of authorization managers:
[[yii\rbac\PhpManager]] and [[yii\rbac\DbManager]]. The former uses a PHP script file to store authorization
data, while the latter stores authorization data in a database. You may consider using the former if your application
does not require very dynamic role and permission management.

Using PhpManager

The following code shows how to configure the authManager in the application configuration using the [[yii\rbac\PhpManager]] class:

return [
 // ...
 'components' => [
 'authManager' => [
 'class' => 'yii\rbac\PhpManager',
],
 // ...
],
];

The authManager can now be accessed via \Yii::$app->authManager.

By default, [[yii\rbac\PhpManager]] stores RBAC data in files under @app/rbac directory. Make sure the directory
and all the files in it are writable by the Web server process if permissions hierarchy needs to be changed online.

Using DbManager

The following code shows how to configure the authManager in the application configuration using the [[yii\rbac\DbManager]] class:

return [
 // ...
 'components' => [
 'authManager' => [
 'class' => 'yii\rbac\DbManager',
 // uncomment if you want to cache RBAC items hierarchy
 // 'cache' => 'cache',
],
 // ...
],
];

Note: If you are using yii2-basic-app template, there is a config/console.php configuration file where the
authManager needs to be declared additionally to config/web.php.
In case of yii2-advanced-app the authManager should be declared only once in common/config/main.php.

DbManager uses four database tables to store its data:

	[[yii\rbac\DbManager::$itemTable|itemTable]]: the table for storing authorization items. Defaults to “auth_item”.

	[[yii\rbac\DbManager::$itemChildTable|itemChildTable]]: the table for storing authorization item hierarchy. Defaults to “auth_item_child”.

	[[yii\rbac\DbManager::$assignmentTable|assignmentTable]]: the table for storing authorization item assignments. Defaults to “auth_assignment”.

	[[yii\rbac\DbManager::$ruleTable|ruleTable]]: the table for storing rules. Defaults to “auth_rule”.

Before you can go on you need to create those tables in the database. To do this, you can use the migration stored in @yii/rbac/migrations:

yii migrate --migrationPath=@yii/rbac/migrations

Read more about working with migrations from different namespaces in
Separated Migrations section.

The authManager can now be accessed via \Yii::$app->authManager.

Building Authorization Data

Building authorization data is all about the following tasks:

	defining roles and permissions;

	establishing relations among roles and permissions;

	defining rules;

	associating rules with roles and permissions;

	assigning roles to users.

Depending on authorization flexibility requirements the tasks above could be done in different ways.
If your permissions hierarchy is meant to be changed by developers only, you can use either migrations
or a console command. Migration pro is that it could be executed along with other migrations. Console
command pro is that you have a good overview of the hierarchy in the code rather than it being scattered
among multiple migrations.

Either way in the end you’ll get the following RBAC hierarchy:

[image: Simple RBAC hierarchy]

In case you need permissions hierarchy to be formed dynamically you need a UI or a console command. API used to
build the hierarchy itself won’t be different.

Using migrations

You can use migrations
to initialize and modify hierarchy via APIs offered by authManager.

Create new migration using ./yii migrate/create init_rbac then impement creating a hierarchy:

<?php
use yii\db\Migration;

class m170124_084304_init_rbac extends Migration
{
 public function up()
 {
 $auth = Yii::$app->authManager;

 // add "createPost" permission
 $createPost = $auth->createPermission('createPost');
 $createPost->description = 'Create a post';
 $auth->add($createPost);

 // add "updatePost" permission
 $updatePost = $auth->createPermission('updatePost');
 $updatePost->description = 'Update post';
 $auth->add($updatePost);

 // add "author" role and give this role the "createPost" permission
 $author = $auth->createRole('author');
 $auth->add($author);
 $auth->addChild($author, $createPost);

 // add "admin" role and give this role the "updatePost" permission
 // as well as the permissions of the "author" role
 $admin = $auth->createRole('admin');
 $auth->add($admin);
 $auth->addChild($admin, $updatePost);
 $auth->addChild($admin, $author);

 // Assign roles to users. 1 and 2 are IDs returned by IdentityInterface::getId()
 // usually implemented in your User model.
 $auth->assign($author, 2);
 $auth->assign($admin, 1);
 }

 public function down()
 {
 $auth = Yii::$app->authManager;

 $auth->removeAll();
 }
}

If you don’t want to hardcode which users have certain roles, don’t put ->assign() calls in migrations. Instead,
create either UI or console command to manage assignments.

Migration could be applied by using yii migrate.

Using console command

If your permissions hierarchy doesn’t change at all and you have a fixed number of users you can create a
-console command that will initialize authorization data once via
APIs offered by authManager:

<?php
namespace app\commands;

use Yii;
use yii\console\Controller;

class RbacController extends Controller
{
 public function actionInit()
 {
 $auth = Yii::$app->authManager;
 $auth->removeAll();

 // add "createPost" permission
 $createPost = $auth->createPermission('createPost');
 $createPost->description = 'Create a post';
 $auth->add($createPost);

 // add "updatePost" permission
 $updatePost = $auth->createPermission('updatePost');
 $updatePost->description = 'Update post';
 $auth->add($updatePost);

 // add "author" role and give this role the "createPost" permission
 $author = $auth->createRole('author');
 $auth->add($author);
 $auth->addChild($author, $createPost);

 // add "admin" role and give this role the "updatePost" permission
 // as well as the permissions of the "author" role
 $admin = $auth->createRole('admin');
 $auth->add($admin);
 $auth->addChild($admin, $updatePost);
 $auth->addChild($admin, $author);

 // Assign roles to users. 1 and 2 are IDs returned by IdentityInterface::getId()
 // usually implemented in your User model.
 $auth->assign($author, 2);
 $auth->assign($admin, 1);
 }
}

Note: If you are using advanced template, you need to put your RbacController inside console/controllers directory
and change namespace to console\controllers.

The command above could be executed from console the following way:

yii rbac/init

If you don’t want to hardcode what users have certain roles, don’t put ->assign() calls into the command. Instead,
create either UI or console command to manage assignments.

Assigning roles to users

Author can create post, admin can update post and do everything author can.

If your application allows user signup you need to assign roles to these new users once. For example, in order for all
signed up users to become authors in your advanced project template you need to modify frontend\models\SignupForm::signup()
as follows:

public function signup()
{
 if ($this->validate()) {
 $user = new User();
 $user->username = $this->username;
 $user->email = $this->email;
 $user->setPassword($this->password);
 $user->generateAuthKey();
 $user->save(false);

 // the following three lines were added:
 $auth = \Yii::$app->authManager;
 $authorRole = $auth->getRole('author');
 $auth->assign($authorRole, $user->getId());

 return $user;
 }

 return null;
}

For applications that require complex access control with dynamically updated authorization data, special user interfaces
(i.e. admin panel) may need to be developed using APIs offered by authManager.

Using Rules

As aforementioned, rules add additional constraint to roles and permissions. A rule is a class extending
from [[yii\rbac\Rule]]. It must implement the [[yii\rbac\Rule::execute()|execute()]] method. In the hierarchy we’ve
created previously author cannot edit his own post. Let’s fix it. First we need a rule to verify that the user is the post author:

namespace app\rbac;

use yii\rbac\Rule;
use app\models\Post;

/**
 * Checks if authorID matches user passed via params
 */
class AuthorRule extends Rule
{
 public $name = 'isAuthor';

 /**
 * @param string|int $user the user ID.
 * @param Item $item the role or permission that this rule is associated with
 * @param array $params parameters passed to ManagerInterface::checkAccess().
 * @return bool a value indicating whether the rule permits the role or permission it is associated with.
 */
 public function execute($user, $item, $params)
 {
 return isset($params['post']) ? $params['post']->createdBy == $user : false;
 }
}

The rule above checks if the post is created by $user. We’ll create a special permission updateOwnPost in the
command we’ve used previously:

$auth = Yii::$app->authManager;

// add the rule
$rule = new \app\rbac\AuthorRule;
$auth->add($rule);

// add the "updateOwnPost" permission and associate the rule with it.
$updateOwnPost = $auth->createPermission('updateOwnPost');
$updateOwnPost->description = 'Update own post';
$updateOwnPost->ruleName = $rule->name;
$auth->add($updateOwnPost);

// "updateOwnPost" will be used from "updatePost"
$auth->addChild($updateOwnPost, $updatePost);

// allow "author" to update their own posts
$auth->addChild($author, $updateOwnPost);

Now we have got the following hierarchy:

[image: RBAC hierarchy with a rule]

Access Check

With the authorization data ready, access check is as simple as a call to the [[yii\rbac\ManagerInterface::checkAccess()]]
method. Because most access check is about the current user, for convenience Yii provides a shortcut method
[[yii\web\User::can()]], which can be used like the following:

if (\Yii::$app->user->can('createPost')) {
 // create post
}

If the current user is Jane with ID=1 we are starting at createPost and trying to get to Jane:

[image: Access check]

In order to check if a user can update a post, we need to pass an extra parameter that is required by AuthorRule described before:

if (\Yii::$app->user->can('updatePost', ['post' => $post])) {
 // update post
}

Here is what happens if the current user is John:

[image: Access check]

We are starting with the updatePost and going through updateOwnPost. In order to pass the access check, AuthorRule
should return true from its execute() method. The method receives its $params from the can() method call so the value is
['post' => $post]. If everything is fine, we will get to author which is assigned to John.

In case of Jane it is a bit simpler since she is an admin:

[image: Access check]

Inside your controller there are a few ways to implement authorization. If you want granular permissions that
separate access to adding and deleting, then you need to check access for each action. You can either use the
above condition in each action method, or use [[yii\filters\AccessControl]]:

public function behaviors()
{
 return [
 'access' => [
 'class' => AccessControl::className(),
 'rules' => [
 [
 'allow' => true,
 'actions' => ['index'],
 'roles' => ['managePost'],
],
 [
 'allow' => true,
 'actions' => ['view'],
 'roles' => ['viewPost'],
],
 [
 'allow' => true,
 'actions' => ['create'],
 'roles' => ['createPost'],
],
 [
 'allow' => true,
 'actions' => ['update'],
 'roles' => ['updatePost'],
],
 [
 'allow' => true,
 'actions' => ['delete'],
 'roles' => ['deletePost'],
],
],
],
];
}

If all the CRUD operations are managed together then it’s a good idea to use a single permission, like managePost, and
check it in [[yii\web\Controller::beforeAction()]].

In the above example, no parameters are passed with the roles specified for accessing an action, but in case of the
updatePost permission, we need to pass a post parameter for it to work properly.
You can pass parameters to [[yii\web\User::can()]] by specifying [[yii\filters\AccessRule::roleParams|roleParams]] on
the access rule:

[
 'allow' => true,
 'actions' => ['update'],
 'roles' => ['updatePost'],
 'roleParams' => function() {
 return ['post' => Post::findOne(['id' => Yii::$app->request->get('id')])];
 },
],

In the above example, [[yii\filters\AccessRule::roleParams|roleParams]] is a Closure that will be evaluated when
the access rule is checked, so the model will only be loaded when needed.
If the creation of role parameters is a simple operation, you may just specify an array, like so:

[
 'allow' => true,
 'actions' => ['update'],
 'roles' => ['updatePost'],
 'roleParams' => ['postId' => Yii::$app->request->get('id')],
],

Using Default Roles

A default role is a role that is implicitly assigned to all users. The call to [[yii\rbac\ManagerInterface::assign()]]
is not needed, and the authorization data does not contain its assignment information.

A default role is usually associated with a rule which determines if the role applies to the user being checked.

Default roles are often used in applications which already have some sort of role assignment. For example, an application
may have a “group” column in its user table to represent which privilege group each user belongs to.
If each privilege group can be mapped to an RBAC role, you can use the default role feature to automatically
assign each user to an RBAC role. Let’s use an example to show how this can be done.

Assume in the user table, you have a group column which uses 1 to represent the administrator group and 2 the author group.
You plan to have two RBAC roles admin and author to represent the permissions for these two groups, respectively.
You can set up the RBAC data as follows, first create a class:

namespace app\rbac;

use Yii;
use yii\rbac\Rule;

/**
 * Checks if user group matches
 */
class UserGroupRule extends Rule
{
 public $name = 'userGroup';

 public function execute($user, $item, $params)
 {
 if (!Yii::$app->user->isGuest) {
 $group = Yii::$app->user->identity->group;
 if ($item->name === 'admin') {
 return $group == 1;
 } elseif ($item->name === 'author') {
 return $group == 1 || $group == 2;
 }
 }
 return false;
 }
}

Then create your own command/migration as explained in the previous section:

$auth = Yii::$app->authManager;

$rule = new \app\rbac\UserGroupRule;
$auth->add($rule);

$author = $auth->createRole('author');
$author->ruleName = $rule->name;
$auth->add($author);
// ... add permissions as children of $author ...

$admin = $auth->createRole('admin');
$admin->ruleName = $rule->name;
$auth->add($admin);
$auth->addChild($admin, $author);
// ... add permissions as children of $admin ...

Note that in the above, because “author” is added as a child of “admin”, when you implement the execute() method
of the rule class, you need to respect this hierarchy as well. That is why when the role name is “author”,
the execute() method will return true if the user group is either 1 or 2 (meaning the user is in either “admin”
group or “author” group).

Next, configure authManager by listing the two roles in [[yii\rbac\BaseManager::$defaultRoles]]:

return [
 // ...
 'components' => [
 'authManager' => [
 'class' => 'yii\rbac\PhpManager',
 'defaultRoles' => ['admin', 'author'],
],
 // ...
],
];

Now if you perform an access check, both of the admin and author roles will be checked by evaluating
the rules associated with them. If the rule returns true, it means the role applies to the current user.
Based on the above rule implementation, this means if the group value of a user is 1, the admin role
would apply to the user; and if the group value is 2, the author role would apply.

 Security best practices

Security best practices

Below we’ll review common security principles and describe how to avoid threats when developing applications using Yii.
Most of these priciples are not unique to Yii alone but apply to website or software development in general,
so you will also find links for further reading on the general ideas behind these.

Basic principles

There are two main principles when it comes to security no matter which application is being developed:

	Filter input.

	Escape output.

Filter input

Filter input means that input should never be considered safe and you should always check if the value you’ve got is
actually among allowed ones. For example, if we know that sorting could be done by three fields title, created_at and status
and the field could be supplied via user input, it’s better to check the value we’ve got right where we’re receiving it.
In terms of basic PHP that would look like the following:

$sortBy = $_GET['sort'];
if (!in_array($sortBy, ['title', 'created_at', 'status'])) {
 throw new Exception('Invalid sort value.');
}

In Yii, most probably you’ll use form validation to do alike checks.

Further reading on the topic:

	https://www.owasp.org/index.php/Data_Validation

	https://www.owasp.org/index.php/Input_Validation_Cheat_Sheet

Escape output

Escape output means that depending on context where we’re using data it should be escaped i.e. in context of HTML you
should escape <, > and alike special characters. In context of JavaScript or SQL it will be different set of characters.
Since it’s error-prone to escape everything manually Yii provides various tools to perform escaping for different
contexts.

Further reading on the topic:

	https://www.owasp.org/index.php/Command_Injection

	https://www.owasp.org/index.php/Code_Injection

	https://www.owasp.org/index.php/Cross-site_Scripting_%28XSS%29

Avoiding SQL injections

SQL injection happens when query text is formed by concatenating unescaped strings such as the following:

$username = $_GET['username'];
$sql = "SELECT * FROM user WHERE username = '$username'";

Instead of supplying correct username attacker could give your applications something like '; DROP TABLE user; --.
Resulting SQL will be the following:

SELECT * FROM user WHERE username = ''; DROP TABLE user; --'

This is valid query that will search for users with empty username and then will drop user table most probably
resulting in broken website and data loss (you’ve set up regular backups, right?).

In Yii most of database querying happens via Active Record which properly uses PDO prepared
statements internally. In case of prepared statements it’s not possible to manipulate query as was demonstrated above.

Still, sometimes you need raw queries or query builder. In this case you should use
safe ways of passing data. If data is used for column values it’s preferred to use prepared statements:

// query builder
$userIDs = (new Query())
 ->select('id')
 ->from('user')
 ->where('status=:status', [':status' => $status])
 ->all();

// DAO
$userIDs = $connection
 ->createCommand('SELECT id FROM user where status=:status')
 ->bindValues([':status' => $status])
 ->queryColumn();

If data is used to specify column names or table names the best thing to do is to allow only predefined set of values:

function actionList($orderBy = null)
{
 if (!in_array($orderBy, ['name', 'status'])) {
 throw new BadRequestHttpException('Only name and status are allowed to order by.')
 }

 // ...
}

In case it’s not possible, table and column names should be escaped. Yii has special syntax for such escaping
which allows doing it the same way for all databases it supports:

$sql = "SELECT COUNT([[$column]]) FROM {{table}}";
$rowCount = $connection->createCommand($sql)->queryScalar();

You can get details about the syntax in Quoting Table and Column Names.

Further reading on the topic:

	https://www.owasp.org/index.php/SQL_Injection

Avoiding XSS

XSS or cross-site scripting happens when output isn’t escaped properly when outputting HTML to the browser. For example,
if user can enter his name and instead of Alexander he enters <script>alert('Hello!');</script>, every page that
outputs user name without escaping it will execute JavaScript alert('Hello!'); resulting in alert box popping up
in a browser. Depending on website instead of innocent alert such script could send messages using your name or even
perform bank transactions.

Avoiding XSS is quite easy in Yii. There are generally two cases:

	You want data to be outputted as plain text.

	You want data to be outputted as HTML.

If all you need is plain text then escaping is as easy as the following:

<?= \yii\helpers\Html::encode($username) ?>

If it should be HTML we could get some help from HtmlPurifier:

<?= \yii\helpers\HtmlPurifier::process($description) ?>

Note that HtmlPurifier processing is quite heavy so consider adding caching.

Further reading on the topic:

	https://www.owasp.org/index.php/Cross-site_Scripting_%28XSS%29

Avoiding CSRF

CSRF is an abbreviation for cross-site request forgery. The idea is that many applications assume that requests coming
from a user browser are made by the user themselves. This assumption could be false.

For example, the website an.example.com has a /logout URL that, when accessed using a simple GET request, logs the user out. As long
as it’s requested by the user themselves everything is OK, but one day bad guys are somehow posting
 on a forum the user visits frequently. The browser doesn’t make any difference between
requesting an image or requesting a page so when the user opens a page with such a manipulated tag,
the browser will send the GET request to that URL and the user will be logged out from an.example.com.

That’s the basic idea of how a CSRF attack works. One can say that logging out a user is not a serious thing,
however this was just an example, there are much more things one could do using this approach, for example triggering payments
or changing data. Imagine that some website has an URL
http://an.example.com/purse/transfer?to=anotherUser&amount=2000. Accessing it using GET request, causes transfer of $2000
from authorized user account to user anotherUser. We know, that the browser will always send GET request to load an image,
so we can modify code to accept only POST requests on that URL. Unfortunately, this will not save us, because an attacker
can put some JavaScript code instead of tag, which allows to send POST requests to that URL as well.

For this reason, Yii applies additional mechanisms to protect against CSRF attacks.

In order to avoid CSRF you should always:

	Follow HTTP specification i.e. GET should not change application state.
See RFC2616 [https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html] for more details.

	Keep Yii CSRF protection enabled.

Sometimes you need to disable CSRF validation per controller and/or action. It could be achieved by setting its property:

namespace app\controllers;

use yii\web\Controller;

class SiteController extends Controller
{
 public $enableCsrfValidation = false;

 public function actionIndex()
 {
 // CSRF validation will not be applied to this and other actions
 }

}

To disable CSRF validation per custom actions you can do:

namespace app\controllers;

use yii\web\Controller;

class SiteController extends Controller
{
 public function beforeAction($action)
 {
 // ...set `$this->enableCsrfValidation` here based on some conditions...
 // call parent method that will check CSRF if such property is `true`.
 return parent::beforeAction($action);
 }
}

Disabling CSRF validation in standalone actions must be done in init()
method. Do not place this code into beforeRun() method because it won’t have effect.

<?php

namespace app\components;

use yii\base\Action;

class ContactAction extends Action
{
 public function init()
 {
 parent::init();
 $this->controller->enableCsrfValidation = false;
 }

 public function run()
 {
 $model = new ContactForm();
 $request = Yii::$app->request;
 if ($request->referrer === 'yiipowered.com'
 && $model->load($request->post())
 && $model->validate()
) {
 $model->sendEmail();
 }
 }
}

Warning: Disabling CSRF will allow any site to send POST requests to your site. It is important to implement extra validation such as checking an IP address or a secret token in this case.

Further reading on the topic:

	https://www.owasp.org/index.php/CSRF

Avoiding file exposure

By default server webroot is meant to be pointed to web directory where index.php is. In case of shared hosting
environments it could be impossible to achieve so we’ll end up with all the code, configs and logs in server webroot.

If it’s the case don’t forget to deny access to everything except web. If it can’t be done consider hosting your
application elsewhere.

Avoiding debug info and tools in production

In debug mode Yii shows quite verbose errors which are certainly helpful for development. The thing is that these
verbose errors are handy for attacker as well since these could reveal database structure, configuration values and
parts of your code. Never run production applications with YII_DEBUG set to true in your index.php.

You should never enable Gii or the Debug toolbar in production. It could be used to get information about database structure, code and to
simply rewrite code with what’s generated by Gii.

Debug toolbar should be avoided at production unless really necessary. It exposes all the application and config
details possible. If you absolutely need it check twice that access is properly restricted to your IP only.

Further reading on the topic:

	https://www.owasp.org/index.php/Exception_Handling

	https://www.owasp.org/index.php/Top_10_2007-Information_Leakage

Using secure connection over TLS

Yii provides features that rely on cookies and/or PHP sessions. These can be vulnerable in case your connection is
compromised. The risk is reduced if the app uses secure connection via TLS (often referred to as SSL [https://en.wikipedia.org/wiki/Transport_Layer_Security]).

Please refer to your webserver documentation for instructions on how to configure it. You may also check example configs
provided by the H5BP project:

	Nginx [https://github.com/h5bp/server-configs-nginx]

	Apache [https://github.com/h5bp/server-configs-apache].

	IIS [https://github.com/h5bp/server-configs-iis].

	Lighttpd [https://github.com/h5bp/server-configs-lighttpd].

Secure Server configuration

The purpose of this section is to highlight risks that need to be considered when creating a
server configuration for serving a Yii based website. Besides the points covered here there may
be other security related configuration options to be considered, so do not consider this section to
be complete.

Avoiding Host-header attacks

Classes like [[yii\web\UrlManager]] and [[yii\helpers\Url]] may use the [[yii\web\Request::getHostInfo()|currently requested host name]]
for generating links.
If the webserver is configured to serve the same site independent of the value of the Host header, this information may not be reliable
and may be faked by the user sending the HTTP request [https://www.acunetix.com/vulnerabilities/web/host-header-attack].
In such situations you should either fix your webserver configuration to serve the site only for specified host names
or explicitly set or filter the value by setting the [[yii\web\Request::setHostInfo()|hostInfo]] property of the request application component.

For more information about the server configuration, please refer to the documentation of your webserver:

	Apache 2: http://httpd.apache.org/docs/trunk/vhosts/examples.html#defaultallports

	Nginx: https://www.nginx.com/resources/wiki/start/topics/examples/server_blocks/

If you don’t have access to the server configuration, you can setup [[yii\filters\HostControl]] filter at
application level in order to protect against such kind of attack:

// Web Application configuration file
return [
 'as hostControl' => [
 'class' => 'yii\filters\HostControl',
 'allowedHosts' => [
 'example.com',
 '*.example.com',
],
 'fallbackHostInfo' => 'https://example.com',
],
 // ...
];

Note: you should always prefer web server configuration for ‘host header attack’ protection instead of the filter usage.
[[yii\filters\HostControl]] should be used only if server configuration setup is unavailable.

 Cryptography

Cryptography

In this section we’ll review the following security aspects:

	Generating random data

	Encryption and Decryption

	Confirming Data Integrity

Generating Pseudorandom Data

Pseudorandom data is useful in many situations. For example when resetting a password via email you need to generate a
token, save it to the database, and send it via email to end user which in turn will allow them to prove ownership of
that account. It is very important that this token be unique and hard to guess, else there is a possibility that attacker
can predict the token’s value and reset the user’s password.

Yii security helper makes generating pseudorandom data simple:

$key = Yii::$app->getSecurity()->generateRandomString();

Encryption and Decryption

Yii provides convenient helper functions that allow you to encrypt/decrypt data using a secret key. The data is passed through the encryption function so that only the person which has the secret key will be able to decrypt it.
For example, we need to store some information in our database but we need to make sure only the user who has the secret key can view it (even if the application database is compromised):

// $data and $secretKey are obtained from the form
$encryptedData = Yii::$app->getSecurity()->encryptByPassword($data, $secretKey);
// store $encryptedData to database

Subsequently when user wants to read the data:

// $secretKey is obtained from user input, $encryptedData is from the database
$data = Yii::$app->getSecurity()->decryptByPassword($encryptedData, $secretKey);

It’s also possible to use key instead of password via [[\yii\base\Security::encryptByKey()]] and
[[\yii\base\Security::decryptByKey()]].

Confirming Data Integrity

There are situations in which you need to verify that your data hasn’t been tampered with by a third party or even corrupted in some way. Yii provides an easy way to confirm data integrity in the form of two helper functions.

Prefix the data with a hash generated from the secret key and data

// $secretKey our application or user secret, $genuineData obtained from a reliable source
$data = Yii::$app->getSecurity()->hashData($genuineData, $secretKey);

Checks if the data integrity has been compromised

// $secretKey our application or user secret, $data obtained from an unreliable source
$data = Yii::$app->getSecurity()->validateData($data, $secretKey);

 Security

Security

Good security is vital to the health and success of any application. Unfortunately, many developers cut corners when it
comes to security, either due to a lack of understanding or because implementation is too much of a hurdle. To make your
Yii powered application as secure as possible, Yii has included several excellent and easy to use security features.

	Authentication

	Authorization

	Working with Passwords

	Cryptography

	Views security

	Auth Clients [https://github.com/yiisoft/yii2-authclient/blob/master/docs/guide/README.md]

	Best Practices

	Trusted proxies and headers

 Working with Passwords

Working with Passwords

Most developers know that passwords cannot be stored in plain text, but many developers believe it’s still safe to hash
passwords using md5 or sha1. There was a time when using the aforementioned hashing algorithms was sufficient,
but modern hardware makes it possible to reverse such hashes and even stronger ones very quickly using brute force attacks.

In order to provide increased security for user passwords, even in the worst case scenario (your application is breached),
you need to use a hashing algorithm that is resilient against brute force attacks. The best current choice is bcrypt.
In PHP, you can create a bcrypt hash using the crypt function [http://php.net/manual/en/function.crypt.php]. Yii provides
two helper functions which make using crypt to securely generate and verify hashes easier.

When a user provides a password for the first time (e.g., upon registration), the password needs to be hashed:

$hash = Yii::$app->getSecurity()->generatePasswordHash($password);

The hash can then be associated with the corresponding model attribute, so it can be stored in the database for later use.

When a user attempts to log in, the submitted password must be verified against the previously hashed and stored password:

if (Yii::$app->getSecurity()->validatePassword($password, $hash)) {
 // all good, logging user in
} else {
 // wrong password
}

 Working with Databases

Working with Databases

This section will describe how to create a new page that displays country data fetched from
a database table named country. To achieve this goal, you will configure a database connection,
create an Active Record class, define an action,
and create a view.

Through this tutorial, you will learn how to:

	configure a DB connection,

	define an Active Record class,

	query data using the Active Record class,

	display data in a view in a paginated fashion.

Note that in order to finish this section, you should have basic knowledge and experience using databases.
In particular, you should know how to create a database, and how to execute SQL statements using a DB client tool.

Preparing the Database

To begin, create a database named yii2basic, from which you will fetch data in your application.
You may create an SQLite, MySQL, PostgreSQL, MSSQL or Oracle database, as Yii has built-in support for many database applications. For simplicity, MySQL will be assumed in the following description.

Info: While MariaDB used to be a drop-in replacement for MySQL this is no longer fully true. In case you wish to use advanced features like JSON support in MariaDB, please check the MariaDB extension listed below.

Next, create a table named country in the database, and insert some sample data. You may run the following SQL statements to do so:

CREATE TABLE `country` (
 `code` CHAR(2) NOT NULL PRIMARY KEY,
 `name` CHAR(52) NOT NULL,
 `population` INT(11) NOT NULL DEFAULT '0'
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

INSERT INTO `country` VALUES ('AU','Australia',24016400);
INSERT INTO `country` VALUES ('BR','Brazil',205722000);
INSERT INTO `country` VALUES ('CA','Canada',35985751);
INSERT INTO `country` VALUES ('CN','China',1375210000);
INSERT INTO `country` VALUES ('DE','Germany',81459000);
INSERT INTO `country` VALUES ('FR','France',64513242);
INSERT INTO `country` VALUES ('GB','United Kingdom',65097000);
INSERT INTO `country` VALUES ('IN','India',1285400000);
INSERT INTO `country` VALUES ('RU','Russia',146519759);
INSERT INTO `country` VALUES ('US','United States',322976000);

At this point, you have a database named yii2basic, and within it a country table with three columns, containing ten rows of data.

Configuring a DB Connection

Before proceeding, make sure you have installed both the PDO [http://www.php.net/manual/en/book.pdo.php] PHP extension and
the PDO driver for the database you are using (e.g. pdo_mysql for MySQL). This is a basic requirement
if your application uses a relational database.

With those installed, open the file config/db.php and change the parameters to be correct for your database. By default,
the file contains the following:

<?php

return [
 'class' => 'yii\db\Connection',
 'dsn' => 'mysql:host=localhost;dbname=yii2basic',
 'username' => 'root',
 'password' => '',
 'charset' => 'utf8',
];

The config/db.php file is a typical file-based configuration tool. This particular configuration file specifies the parameters
needed to create and initialize a [[yii\db\Connection]] instance through which you can make SQL queries
against the underlying database.

The DB connection configured above can be accessed in the application code via the expression Yii::$app->db.

Info: The config/db.php file will be included by the main application configuration config/web.php,
which specifies how the application instance should be initialized.
For more information, please refer to the Configurations section.

If you need to work with databases support for which isn’t bundled with Yii, check the following extensions:

	Informix [https://github.com/edgardmessias/yii2-informix]

	IBM DB2 [https://github.com/edgardmessias/yii2-ibm-db2]

	Firebird [https://github.com/edgardmessias/yii2-firebird]

	MariaDB [https://github.com/sam-it/yii2-mariadb]

Creating an Active Record

To represent and fetch the data in the country table, create an Active Record-derived
class named Country, and save it in the file models/Country.php.

<?php

namespace app\models;

use yii\db\ActiveRecord;

class Country extends ActiveRecord
{
}

The Country class extends from [[yii\db\ActiveRecord]]. You do not need to write any code inside of it! With just the above code,
Yii will guess the associated table name from the class name.

Info: If no direct match can be made from the class name to the table name, you can
override the [[yii\db\ActiveRecord::tableName()]] method to explicitly specify the associated table name.

Using the Country class, you can easily manipulate data in the country table, as shown in these snippets:

use app\models\Country;

// get all rows from the country table and order them by "name"
$countries = Country::find()->orderBy('name')->all();

// get the row whose primary key is "US"
$country = Country::findOne('US');

// displays "United States"
echo $country->name;

// modifies the country name to be "U.S.A." and save it to database
$country->name = 'U.S.A.';
$country->save();

Info: Active Record is a powerful way to access and manipulate database data in an object-oriented fashion.
You may find more detailed information in the Active Record section. Alternatively, you may also interact with a database using a lower-level data accessing method called Database Access Objects.

Creating an Action

To expose the country data to end users, you need to create a new action. Instead of placing the new action in the site
controller, like you did in the previous sections, it makes more sense to create a new controller specifically
for all actions related to the country data. Name this new controller CountryController, and create
an index action in it, as shown in the following.

<?php

namespace app\controllers;

use yii\web\Controller;
use yii\data\Pagination;
use app\models\Country;

class CountryController extends Controller
{
 public function actionIndex()
 {
 $query = Country::find();

 $pagination = new Pagination([
 'defaultPageSize' => 5,
 'totalCount' => $query->count(),
]);

 $countries = $query->orderBy('name')
 ->offset($pagination->offset)
 ->limit($pagination->limit)
 ->all();

 return $this->render('index', [
 'countries' => $countries,
 'pagination' => $pagination,
]);
 }
}

Save the above code in the file controllers/CountryController.php.

The index action calls Country::find(). This Active Record method builds a DB query that can be used to retrieve all of the data from the country table.
To limit the number of countries returned in each request, the query is paginated with the help of a
[[yii\data\Pagination]] object. The Pagination object serves two purposes:

	Sets the offset and limit clauses for the SQL statement represented by the query so that it only
returns a single page of data at a time (at most 5 rows in a page).

	It’s used in the view to display a pager consisting of a list of page buttons, as will be explained in
the next subsection.

At the end of the code, the index action renders a view named index, and passes the country data as well as the pagination
information to it.

Creating a View

Under the views directory, first create a sub-directory named country. This folder will be used to hold all the
views rendered by the country controller. Within the views/country directory, create a file named index.php
containing the following:

<?php
use yii\helpers\Html;
use yii\widgets\LinkPager;
?>
<h1>Countries</h1>

<?php foreach ($countries as $country): ?>

 <?= Html::encode("{$country->code} ({$country->name})") ?>:
 <?= $country->population ?>

<?php endforeach; ?>

<?= LinkPager::widget(['pagination' => $pagination]) ?>

The view has two sections relative to displaying the country data. In the first part, the provided country data is traversed and rendered as an unordered HTML list.
In the second part, a [[yii\widgets\LinkPager]] widget is rendered using the pagination information passed from the action.
The LinkPager widget displays a list of page buttons. Clicking on any of them will refresh the country data
in the corresponding page.

Trying it Out

To see how all of the above code works, use your browser to access the following URL:

http://hostname/index.php?r=country%2Findex

[image: Country List]

At first, you will see a page showing five countries. Below the countries, you will see a pager with four buttons.
If you click on the button “2”, you will see the page display another five countries in the database: the second page of records.
Observe more carefully and you will find that the URL in the browser also changes to

http://hostname/index.php?r=country%2Findex&page=2

Behind the scenes, [[yii\data\Pagination|Pagination]] is providing all of the necessary functionality to paginate a data set:

	Initially, [[yii\data\Pagination|Pagination]] represents the first page, which reflects the country SELECT query
with the clause LIMIT 5 OFFSET 0. As a result, the first five countries will be fetched and displayed.

	The [[yii\widgets\LinkPager|LinkPager]] widget renders the page buttons using the URLs
created by [[yii\data\Pagination::createUrl()|Pagination]]. The URLs will contain the query parameter page, which
represents the different page numbers.

	If you click the page button “2”, a new request for the route country/index will be triggered and handled.
[[yii\data\Pagination|Pagination]] reads the page query parameter from the URL and sets the current page number to 2.
The new country query will thus have the clause LIMIT 5 OFFSET 5 and return the next five countries
for display.

Summary

In this section, you learned how to work with a database. You also learned how to fetch and display
data in pages with the help of [[yii\data\Pagination]] and [[yii\widgets\LinkPager]].

In the next section, you will learn how to use the powerful code generation tool, called Gii [https://www.yiiframework.com/extension/yiisoft/yii2-gii/doc/guide],
to help you rapidly implement some commonly required features, such as the Create-Read-Update-Delete (CRUD)
operations for working with the data in a database table. As a matter of fact, the code you have just written can all
be automatically generated in Yii using the Gii tool.

 Working with Forms

Working with Forms

This section describes how to create a new page with a form for getting data from users.
The page will display a form with a name input field and an email input field.
After getting those two pieces of information from the user, the page will echo the entered values back for confirmation.

To achieve this goal, besides creating an action and
two views, you will also create a model.

Through this tutorial, you will learn how to:

	create a model to represent the data entered by a user through a form,

	declare rules to validate the data entered,

	build an HTML form in a view.

Creating a Model

The data to be requested from the user will be represented by an EntryForm model class as shown below and
saved in the file models/EntryForm.php. Please refer to the Class Autoloading
section for more details about the class file naming convention.

<?php

namespace app\models;

use Yii;
use yii\base\Model;

class EntryForm extends Model
{
 public $name;
 public $email;

 public function rules()
 {
 return [
 [['name', 'email'], 'required'],
 ['email', 'email'],
];
 }
}

The class extends from [[yii\base\Model]], a base class provided by Yii, commonly used to
represent form data.

Info: [[yii\base\Model]] is used as a parent for model classes not associated with database tables.
[[yii\db\ActiveRecord]] is normally the parent for model classes that do correspond to database tables.

The EntryForm class contains two public members, name and email, which are used to store
the data entered by the user. It also contains a method named rules(), which returns a set
of rules for validating the data. The validation rules declared above state that

	both the name and email values are required

	the email data must be a syntactically valid email address

If you have an EntryForm object populated with the data entered by a user, you may call
its [[yii\base\Model::validate()|validate()]] method to trigger the data validation routines. A data validation
failure will set the [[yii\base\Model::hasErrors|hasErrors]] property to true, and you may learn what validation
errors occurred through [[yii\base\Model::getErrors|errors]].

<?php
$model = new EntryForm();
$model->name = 'Qiang';
$model->email = 'bad';
if ($model->validate()) {
 // Good!
} else {
 // Failure!
 // Use $model->getErrors()
}

Creating an Action

Next, you’ll need to create an entry action in the site controller that will use the new model. The process
of creating and using actions was explained in the Saying Hello section.

<?php

namespace app\controllers;

use Yii;
use yii\web\Controller;
use app\models\EntryForm;

class SiteController extends Controller
{
 // ...existing code...

 public function actionEntry()
 {
 $model = new EntryForm();

 if ($model->load(Yii::$app->request->post()) && $model->validate()) {
 // valid data received in $model

 // do something meaningful here about $model ...

 return $this->render('entry-confirm', ['model' => $model]);
 } else {
 // either the page is initially displayed or there is some validation error
 return $this->render('entry', ['model' => $model]);
 }
 }
}

The action first creates an EntryForm object. It then tries to populate the model
with the data from $_POST, provided in Yii by [[yii\web\Request::post()]].
If the model is successfully populated (i.e., if the user has submitted the HTML form), the action will call
[[yii\base\Model::validate()|validate()]] to make sure the values entered are valid.

Info: The expression Yii::$app represents the application instance,
which is a globally accessible singleton. It is also a service locator that
provides components such as request, response, db, etc. to support specific functionality.
In the above code, the request component of the application instance is used to access the $_POST data.

If everything is fine, the action will render a view named entry-confirm to confirm the successful submission
of the data to the user. If no data is submitted or the data contains errors, the entry view will
be rendered, wherein the HTML form will be shown, along with any validation error messages.

Note: In this very simple example we just render the confirmation page upon valid data submission. In practice,
you should consider using [[yii\web\Controller::refresh()|refresh()]] or [[yii\web\Controller::redirect()|redirect()]]
to avoid form resubmission problems [http://en.wikipedia.org/wiki/Post/Redirect/Get].

Creating Views

Finally, create two view files named entry-confirm and entry. These will be rendered by the entry action,
as just described.

The entry-confirm view simply displays the name and email data. It should be stored in the file views/site/entry-confirm.php.

<?php
use yii\helpers\Html;
?>
<p>You have entered the following information:</p>

 <label>Name</label>: <?= Html::encode($model->name) ?>
 <label>Email</label>: <?= Html::encode($model->email) ?>

The entry view displays an HTML form. It should be stored in the file views/site/entry.php.

<?php
use yii\helpers\Html;
use yii\widgets\ActiveForm;
?>
<?php $form = ActiveForm::begin(); ?>

 <?= $form->field($model, 'name') ?>

 <?= $form->field($model, 'email') ?>

 <div class="form-group">
 <?= Html::submitButton('Submit', ['class' => 'btn btn-primary']) ?>
 </div>

<?php ActiveForm::end(); ?>

The view uses a powerful widget called [[yii\widgets\ActiveForm|ActiveForm]] to
build the HTML form. The begin() and end() methods of the widget render the opening and closing
form tags, respectively. Between the two method calls, input fields are created by the
[[yii\widgets\ActiveForm::field()|field()]] method. The first input field is for the “name” data,
and the second for the “email” data. After the input fields, the [[yii\helpers\Html::submitButton()]] method
is called to generate a submit button.

Trying it Out

To see how it works, use your browser to access the following URL:

http://hostname/index.php?r=site%2Fentry

You will see a page displaying a form with two input fields. In front of each input field, a label indicates what data is to be entered. If you click the submit button without
entering anything, or if you do not provide a valid email address, you will see an error message displayed next to each problematic input field.

[image: Form with Validation Errors]

After entering a valid name and email address and clicking the submit button, you will see a new page
displaying the data that you just entered.

[image: Confirmation of Data Entry]

Magic Explained

You may wonder how the HTML form works behind the scene, because it seems almost magical that it can
display a label for each input field and show error messages if you do not enter the data correctly
without reloading the page.

Yes, the data validation is initially done on the client-side using JavaScript, and secondarily performed on the server-side via PHP.
[[yii\widgets\ActiveForm]] is smart enough to extract the validation rules that you have declared in EntryForm,
turn them into executable JavaScript code, and use the JavaScript to perform data validation. In case you have disabled
JavaScript on your browser, the validation will still be performed on the server-side, as shown in
the actionEntry() method. This ensures data validity in all circumstances.

Warning: Client-side validation is a convenience that provides for a better user experience. Server-side validation
is always required, whether or not client-side validation is in place.

The labels for input fields are generated by the field() method, using the property names from the model.
For example, the label Name will be generated for the name property.

You may customize a label within a view using
the following code:

<?= $form->field($model, 'name')->label('Your Name') ?>
<?= $form->field($model, 'email')->label('Your Email') ?>

Info: Yii provides many such widgets to help you quickly build complex and dynamic views.
As you will learn later, writing a new widget is also extremely easy. You may want to turn much of your
view code into reusable widgets to simplify view development in future.

Summary

In this section of the guide, you have touched every part in the MVC architectural pattern. You have learned how
to create a model class to represent the user data and validate said data.

You have also learned how to get data from users and how to display data back in the browser. This is a task that
could take you a lot of time when developing an application, but Yii provides powerful widgets
to make this task very easy.

In the next section, you will learn how to work with databases, which are needed in nearly every application.

 Generating Code with Gii

Generating Code with Gii

This section will describe how to use Gii [https://www.yiiframework.com/extension/yiisoft/yii2-gii/doc/guide] to automatically generate code
that implements some common Web site features. Using Gii to auto-generate code is simply a matter of entering the right information per the instructions shown on the Gii Web pages.

Through this tutorial, you will learn how to:

	enable Gii in your application,

	use Gii to generate an Active Record class,

	use Gii to generate the code implementing the CRUD operations for a DB table,

	customize the code generated by Gii.

Starting Gii

Gii [https://www.yiiframework.com/extension/yiisoft/yii2-gii/doc/guide] is provided in Yii as a module. You can enable Gii
by configuring it in the [[yii\base\Application::modules|modules]] property of the application. Depending upon how you created your application, you may find the following code is already provided in the config/web.php configuration file:

$config = [...];

if (YII_ENV_DEV) {
 $config['bootstrap'][] = 'gii';
 $config['modules']['gii'] = [
 'class' => 'yii\gii\Module',
];
}

The above configuration states that when in development environment,
the application should include a module named gii, which is of class [[yii\gii\Module]].

If you check the entry script web/index.php of your application, you will
find the following line, which essentially makes YII_ENV_DEV to be true.

defined('YII_ENV') or define('YII_ENV', 'dev');

Thanks to that line, your application is in development mode, and will have already enabled Gii, per the above configuration. You can now access Gii via the following URL:

http://hostname/index.php?r=gii

Note: If you are accessing Gii from a machine other than localhost, the access will be denied by default
for security purpose. You can configure Gii to add the allowed IP addresses as follows,

'gii' => [
 'class' => 'yii\gii\Module',
 'allowedIPs' => ['127.0.0.1', '::1', '192.168.0.*', '192.168.178.20'] // adjust this to your needs
],

[image: Gii]

Generating an Active Record Class

To use Gii to generate an Active Record class, select the “Model Generator” (by clicking the link on the Gii index page). Then fill out the form as follows:

	Table Name: country

	Model Class: Country

[image: Model Generator]

Next, click on the “Preview” button. You will see models/Country.php is listed in the resulting class file to be created. You may click on the name of the class file to preview its content.

When using Gii, if you have already created the same file and would be overwriting it, click
the diff button next to the file name to see the differences between the code to be generated
and the existing version.

[image: Model Generator Preview]

When overwriting an existing file, check the box next to “overwrite” and then click the “Generate” button. If creating a new file, you can just click “Generate”.

Next, you will see
a confirmation page indicating the code has been successfully generated. If you had an existing file, you’ll also see a message indicating that it was overwritten with the newly generated code.

Generating CRUD Code

CRUD stands for Create, Read, Update, and Delete, representing the four common tasks taken with data on most Web sites. To create CRUD functionality using Gii, select the “CRUD Generator” (by clicking the link on the Gii index page). For the “country” example, fill out the resulting form as follows:

	Model Class: app\models\Country

	Search Model Class: app\models\CountrySearch

	Controller Class: app\controllers\CountryController

[image: CRUD Generator]

Next, click on the “Preview” button. You will see a list of files to be generated, as shown below.

[image: CRUD Generator Preview]

If you previously created the controllers/CountryController.php and
views/country/index.php files (in the databases section of the guide), check the “overwrite” box to replace them. (The previous versions did not have full CRUD support.)

Trying it Out

To see how it works, use your browser to access the following URL:

http://hostname/index.php?r=country%2Findex

You will see a data grid showing the countries from the database table. You may sort the grid,
or filter it by entering filter conditions in the column headers.

For each country displayed in the grid, you may choose to view its details, update it, or delete it.
You may also click on the “Create Country” button on top of the grid to be provided with a form for creating a new country.

[image: Data Grid of Countries]

[image: Updating a Country]

The following is the list of the files generated by Gii, in case you want to investigate how these features are implemented,
or to customize them:

	Controller: controllers/CountryController.php

	Models: models/Country.php and models/CountrySearch.php

	Views: views/country/*.php

Info: Gii is designed to be a highly customizable and extensible code generation tool. Using it wisely
can greatly accelerate your application development speed. For more details, please refer to
the Gii [https://www.yiiframework.com/extension/yiisoft/yii2-gii/doc/guide] section.

Summary

In this section, you have learned how to use Gii to generate the code that implements complete
CRUD functionality for content stored in a database table.

 Saying Hello

Saying Hello

This section describes how to create a new “Hello” page in your application.
To achieve this goal, you will create an action and
a view:

	The application will dispatch the page request to the action

	and the action will in turn render the view that shows the word “Hello” to the end user.

Through this tutorial, you will learn three things:

	how to create an action to respond to requests,

	how to create a view to compose the response’s content, and

	how an application dispatches requests to actions.

Creating an Action

For the “Hello” task, you will create a say action that reads
a message parameter from the request and displays that message back to the user. If the request
does not provide a message parameter, the action will display the default “Hello” message.

Info: Actions are the objects that end users can directly refer to for
execution. Actions are grouped by controllers. The execution result of
an action is the response that an end user will receive.

Actions must be declared in controllers. For simplicity, you may
declare the say action in the existing SiteController. This controller is defined
in the class file controllers/SiteController.php. Here is the start of the new action:

<?php

namespace app\controllers;

use yii\web\Controller;

class SiteController extends Controller
{
 // ...existing code...

 public function actionSay($message = 'Hello')
 {
 return $this->render('say', ['message' => $message]);
 }
}

In the above code, the say action is defined as a method named actionSay in the SiteController class.
Yii uses the prefix action to differentiate action methods from non-action methods in a controller class.
The name after the action prefix maps to the action’s ID.

When it comes to naming your actions, you should understand how Yii treats action IDs. Action IDs are always
referenced in lower case. If an action ID requires multiple words, they will be concatenated by dashes
(e.g., create-comment). Action method names are mapped to action IDs by removing any dashes from the IDs,
capitalizing the first letter in each word, and prefixing the resulting string with action. For example,
the action ID create-comment corresponds to the action method name actionCreateComment.

The action method in our example takes a parameter $message, whose value defaults to "Hello" (in exactly
the same way you set a default value for any function or method argument in PHP). When the application
receives a request and determines that the say action is responsible for handling said request, the application will
populate this parameter with the same named parameter found in the request. In other words, if the request includes
a message parameter with a value of "Goodbye", the $message variable within the action will be assigned that value.

Within the action method, [[yii\web\Controller::render()|render()]] is called to render
a view file named say. The message parameter is also passed to the view
so that it can be used there. The rendering result is returned by the action method. That result will be received
by the application and displayed to the end user in the browser (as part of a complete HTML page).

Creating a View

Views are scripts you write to generate a response’s content.
For the “Hello” task, you will create a say view that prints the message parameter received from the action method:

<?php
use yii\helpers\Html;
?>
<?= Html::encode($message) ?>

The say view should be saved in the file views/site/say.php. When the method [[yii\web\Controller::render()|render()]]
is called in an action, it will look for a PHP file named as views/ControllerID/ViewName.php.

Note that in the above code, the message parameter is [[yii\helpers\Html::encode()|HTML-encoded]]
before being printed. This is necessary as the parameter comes from an end user, making it vulnerable to
cross-site scripting (XSS) attacks [http://en.wikipedia.org/wiki/Cross-site_scripting] by embedding
malicious JavaScript code in the parameter.

Naturally, you may put more content in the say view. The content can consist of HTML tags, plain text, and even PHP statements.
In fact, the say view is just a PHP script that is executed by the [[yii\web\Controller::render()|render()]] method.
The content printed by the view script will be returned to the application as the response’s result. The application will in turn output this result to the end user.

Trying it Out

After creating the action and the view, you may access the new page by accessing the following URL:

http://hostname/index.php?r=site%2Fsay&message=Hello+World

[image: Hello World]

This URL will result in a page displaying “Hello World”. The page shares the same header and footer as the other application pages.

If you omit the message parameter in the URL, you would see the page display just “Hello”. This is because message is passed as a parameter to the actionSay() method, and when it is omitted,
the default value of "Hello" will be used instead.

Info: The new page shares the same header and footer as other pages because the [[yii\web\Controller::render()|render()]]
method will automatically embed the result of the say view in a so-called layout which in this
case is located at views/layouts/main.php.

The r parameter in the above URL requires more explanation. It stands for route, an application wide unique ID
that refers to an action. The route’s format is ControllerID/ActionID. When the application receives
a request, it will check this parameter, using the ControllerID part to determine which controller
class should be instantiated to handle the request. Then, the controller will use the ActionID part
to determine which action should be instantiated to do the real work. In this example case, the route site/say
will be resolved to the SiteController controller class and the say action. As a result,
the SiteController::actionSay() method will be called to handle the request.

Info: Like actions, controllers also have IDs that uniquely identify them in an application.
Controller IDs use the same naming rules as action IDs. Controller class names are derived from
controller IDs by removing dashes from the IDs, capitalizing the first letter in each word,
and suffixing the resulting string with the word Controller. For example, the controller ID post-comment corresponds
to the controller class name PostCommentController.

Summary

In this section, you have touched the controller and view parts of the MVC architectural pattern.
You created an action as part of a controller to handle a specific request. And you also created a view
to compose the response’s content. In this simple example, no model was involved as the only data used was the message parameter.

You have also learned about routes in Yii, which act as the bridge between user requests and controller actions.

In the next section, you will learn how to create a model, and add a new page containing an HTML form.

 Installing Yii

Installing Yii

You can install Yii in two ways, using the Composer [https://getcomposer.org/] package manager or by downloading an archive file.
The former is the preferred way, as it allows you to install new extensions or update Yii by simply running a single command.

Standard installations of Yii result in both the framework and a project template being downloaded and installed.
A project template is a working Yii project implementing some basic features, such as login, contact form, etc.
Its code is organized in a recommended way. Therefore, it can serve as a good starting point for your projects.

In this and the next few sections, we will describe how to install Yii with the so-called Basic Project Template and
how to implement new features on top of this template. Yii also provides another template called
the Advanced Project Template [https://www.yiiframework.com/extension/yiisoft/yii2-app-advanced/doc/guide] which is better used in a team development environment
to develop applications with multiple tiers.

Info: The Basic Project Template is suitable for developing 90 percent of Web applications. It differs
from the Advanced Project Template mainly in how their code is organized. If you are new to Yii, we strongly
recommend you stick to the Basic Project Template for its simplicity yet sufficient functionalities.

Installing via Composer

Installing Composer

If you do not already have Composer installed, you may do so by following the instructions at
getcomposer.org [https://getcomposer.org/download/]. On Linux and Mac OS X, you’ll run the following commands:

curl -sS https://getcomposer.org/installer | php
sudo mv composer.phar /usr/local/bin/composer

On Windows, you’ll download and run Composer-Setup.exe [https://getcomposer.org/Composer-Setup.exe].

Please refer to the Troubleshooting section of the Composer Documentation [https://getcomposer.org/doc/articles/troubleshooting.md]
if you encounter any problems.
If you are new to Composer, we also recommend to read at least the Basic usage section [https://getcomposer.org/doc/01-basic-usage.md]
of the Composer documentation.

In this guide all composer commands assume you have installed composer globally [https://getcomposer.org/doc/00-intro.md#globally]
so that it is available as the composer command. If you are using the composer.phar in the local directory instead,
you have to adjust the example commands accordingly.

If you had Composer already installed before, make sure you use an up to date version. You can update Composer
by running composer self-update.

Note: During the installation of Yii, Composer will need to request a lot of information from the Github API.
The number of requests depends on the number of dependencies your application has and may be bigger than the
Github API rate limit. If you hit this limit, Composer may ask for your Github login credentials to obtain
a Github API access token. On fast connections you may hit this limit earlier than Composer can handle so we
recommend to configure the access token before installing Yii.
Please refer to the Composer documentation about Github API tokens [https://getcomposer.org/doc/articles/troubleshooting.md#api-rate-limit-and-oauth-tokens]
for instructions on how to do this.

Installing Yii

With Composer installed, you can install Yii application template by running the following command
under a Web-accessible folder:

composer create-project --prefer-dist yiisoft/yii2-app-basic basic

This will install the latest stable version of Yii application template in a directory named basic.
You can choose a different directory name if you want.

Info: If the composer create-project command fails you may also refer to the
Troubleshooting section of the Composer Documentation [https://getcomposer.org/doc/articles/troubleshooting.md]
for common errors. When you have fixed the error, you can resume the aborted installation
by running composer update inside of the basic directory.

Tip: If you want to install the latest development version of Yii, you may use the following command instead,
which adds a stability option [https://getcomposer.org/doc/04-schema.md#minimum-stability]:

composer create-project --prefer-dist --stability=dev yiisoft/yii2-app-basic basic

Note that the development version of Yii should not be used for production as it may break your running code.

Installing from an Archive File

Installing Yii from an archive file involves three steps:

	Download the archive file from yiiframework.com [http://www.yiiframework.com/download/].

	Unpack the downloaded file to a Web-accessible folder.

	Modify the config/web.php file by entering a secret key for the cookieValidationKey configuration item
(this is done automatically if you are installing Yii using Composer):

// !!! insert a secret key in the following (if it is empty) - this is required by cookie validation
'cookieValidationKey' => 'enter your secret key here',

Other Installation Options

The above installation instructions show how to install Yii, which also creates a basic Web application that works out of the box.
This approach is a good starting point for most projects, either small or big. It is especially suitable if you just
start learning Yii.

But there are other installation options available:

	If you only want to install the core framework and would like to build an entire application from scratch,
you may follow the instructions as explained in Building Application from Scratch.

	If you want to start with a more sophisticated application, better suited to team development environments,
you may consider installing the Advanced Project Template [https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/README.md].

Installing Assets

Yii relies on Bower [http://bower.io/] and/or NPM [https://www.npmjs.org/] packages for the asset (CSS and JavaScript) libraries installation.
It uses Composer to obtain these libraries, allowing PHP and CSS/JavaScript package versions to resolve at the same time.
This can be achieved either by usage of asset-packagist.org [https://asset-packagist.org] or composer asset plugin [https://github.com/francoispluchino/composer-asset-plugin/].
Please refer to Assets documentation for more details.

You may want to either manage your assets via native Bower/NPM client, use CDN or avoid assets installation entirely.
In order to prevent assets installation via Composer, add the following lines to your ‘composer.json’:

"replace": {
 "bower-asset/jquery": ">=1.11.0",
 "bower-asset/inputmask": ">=3.2.0",
 "bower-asset/punycode": ">=1.3.0",
 "bower-asset/yii2-pjax": ">=2.0.0"
},

Note: in case of bypassing asset installation via Composer, you are responsible for the assets installation and resolving
version collisions. Be prepared for possible inconsistencies among asset files from different extensions.

Verifying the Installation

After installation is done, either configure your web server (see next section) or use the
built-in PHP web server [https://secure.php.net/manual/en/features.commandline.webserver.php] by running the following
console command while in the project web directory:

php yii serve

Note: By default the HTTP-server will listen to port 8080. However if that port is already in use or you wish to
serve multiple applications this way, you might want to specify what port to use. Just add the –port argument:

php yii serve --port=8888

You can use your browser to access the installed Yii application with the following URL:

http://localhost:8080/

[image: Successful Installation of Yii]

You should see the above “Congratulations!” page in your browser. If not, please check if your PHP installation satisfies
Yii’s requirements. You can check if the minimum requirements are met using one of the following approaches:

	Copy /requirements.php to /web/requirements.php and then use a browser to access it via http://localhost/requirements.php

	Run the following commands:

cd basic
php requirements.php

You should configure your PHP installation so that it meets the minimum requirements of Yii. Most importantly, you
should have PHP 5.4 or above. Ideally latest PHP 7. You should also install the PDO PHP Extension [http://www.php.net/manual/en/pdo.installation.php]
and a corresponding database driver (such as pdo_mysql for MySQL databases), if your application needs a database.

Configuring Web Servers

Info: You may skip this subsection for now if you are just test driving Yii with no intention
of deploying it to a production server.

The application installed according to the above instructions should work out of box with either
an Apache HTTP server [http://httpd.apache.org/] or an Nginx HTTP server [http://nginx.org/], on
Windows, Mac OS X, or Linux running PHP 5.4 or higher. Yii 2.0 is also compatible with facebook’s
HHVM [http://hhvm.com/]. However, there are some edge cases where HHVM behaves different than native
PHP, so you have to take some extra care when using HHVM.

On a production server, you may want to configure your Web server so that the application can be accessed
via the URL http://www.example.com/index.php instead of http://www.example.com/basic/web/index.php. Such configuration
requires pointing the document root of your Web server to the basic/web folder. You may also
want to hide index.php from the URL, as described in the Routing and URL Creation section.
In this subsection, you’ll learn how to configure your Apache or Nginx server to achieve these goals.

Info: By setting basic/web as the document root, you also prevent end users from accessing
your private application code and sensitive data files that are stored in the sibling directories
of basic/web. Denying access to those other folders is a security improvement.

Info: If your application will run in a shared hosting environment where you do not have permission
to modify its Web server configuration, you may still adjust the structure of your application for better security. Please refer to
the Shared Hosting Environment section for more details.

Info: If you are running your Yii application behind a reverse proxy, you might need to configure
Trusted proxies and headers in the request component.

Recommended Apache Configuration

Use the following configuration in Apache’s httpd.conf file or within a virtual host configuration. Note that you
should replace path/to/basic/web with the actual path for basic/web.

Set document root to be "basic/web"
DocumentRoot "path/to/basic/web"

<Directory "path/to/basic/web">
 # use mod_rewrite for pretty URL support
 RewriteEngine on

 # if $showScriptName is false in UrlManager, do not allow accessing URLs with script name
 RewriteRule ^index.php/ - [L,R=404]

 # If a directory or a file exists, use the request directly
 RewriteCond %{REQUEST_FILENAME} !-f
 RewriteCond %{REQUEST_FILENAME} !-d

 # Otherwise forward the request to index.php
 RewriteRule . index.php

 # ...other settings...
</Directory>

Recommended Nginx Configuration

To use Nginx [http://wiki.nginx.org/], you should install PHP as an FPM SAPI [http://php.net/install.fpm].
You may use the following Nginx configuration, replacing path/to/basic/web with the actual path for
basic/web and mysite.test with the actual hostname to serve.

server {
 charset utf-8;
 client_max_body_size 128M;

 listen 80; ## listen for ipv4
 #listen [::]:80 default_server ipv6only=on; ## listen for ipv6

 server_name mysite.test;
 root /path/to/basic/web;
 index index.php;

 access_log /path/to/basic/log/access.log;
 error_log /path/to/basic/log/error.log;

 location / {
 # Redirect everything that isn't a real file to index.php
 try_files $uri $uri/ /index.php$is_args$args;
 }

 # uncomment to avoid processing of calls to non-existing static files by Yii
 #location ~ \.(js|css|png|jpg|gif|swf|ico|pdf|mov|fla|zip|rar)$ {
 # try_files $uri =404;
 #}
 #error_page 404 /404.html;

 # deny accessing php files for the /assets directory
 location ~ ^/assets/.*\.php$ {
 deny all;
 }

 location ~ \.php$ {
 include fastcgi_params;
 fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name;
 fastcgi_pass 127.0.0.1:9000;
 #fastcgi_pass unix:/var/run/php5-fpm.sock;
 try_files $uri =404;
 }

 location ~* /\. {
 deny all;
 }
}

When using this configuration, you should also set cgi.fix_pathinfo=0 in the php.ini file
in order to avoid many unnecessary system stat() calls.

Also note that when running an HTTPS server, you need to add fastcgi_param HTTPS on; so that Yii
can properly detect if a connection is secure.

 Looking Ahead

Looking Ahead

If you’ve read through the entire “Getting Started” chapter, you have now created a complete Yii application. In the process, you have learned how to implement some commonly
needed features, such as getting data from users via an HTML form, fetching data from a database, and
displaying data in a paginated fashion. You have also learned how to use Gii [https://www.yiiframework.com/extension/yiisoft/yii2-gii/doc/guide] to generate
code automatically. Using Gii for code generation turns the bulk of your Web development process into a task as simple as just filling out some forms.

This section will summarize the Yii resources available to help you be more productive when using the framework.

	Documentation

	The Definitive Guide [http://www.yiiframework.com/doc-2.0/guide-README.html]:
As the name indicates, the guide precisely defines how Yii should work and provides general guidance
about using Yii. It is the single most important Yii tutorial, and one that you should read
before writing any Yii code.

	The Class Reference [http://www.yiiframework.com/doc-2.0/index.html]:
This specifies the usage of every class provided by Yii. It should be mainly used when you are writing
code and want to understand the usage of a particular class, method, property. Usage of the class reference is best only after a contextual understanding of the entire framework.

	The Wiki Articles [http://www.yiiframework.com/wiki/?tag=yii2]:
The wiki articles are written by Yii users based on their own experiences. Most of them are written
like cookbook recipes, and show how to solve particular problems using Yii. While the quality of these
articles may not be as good as the Definitive Guide, they are useful in that they cover broader topics
and can often provide ready-to-use solutions.

	Books [http://www.yiiframework.com/doc/]

	Extensions [http://www.yiiframework.com/extensions/]:
Yii boasts a library of thousands of user-contributed extensions that can be easily plugged into your applications, thereby making your application development even faster and easier.

	Community

	Forum: http://www.yiiframework.com/forum/

	IRC chat: The #yii channel on the freenode network (irc://irc.freenode.net/yii)

	Slack chanel: https://yii.slack.com

	Gitter chat: https://gitter.im/yiisoft/yii2

	GitHub: https://github.com/yiisoft/yii2

	Facebook: https://www.facebook.com/groups/yiitalk/

	Twitter: https://twitter.com/yiiframework

	LinkedIn: https://www.linkedin.com/groups/yii-framework-1483367

	Stackoverflow: http://stackoverflow.com/questions/tagged/yii2

 What do you need to know

What do you need to know

The Yii learning curve is not as steep as other PHP frameworks but still there are some things you should learn before starting with Yii.

PHP

Yii is a PHP framework so make sure you read and understand language reference [http://php.net/manual/en/langref.php].
When developing with Yii you will be writing code in an object oriented fashion, so make sure you are familiar with Classes and Objects [https://secure.php.net/manual/en/language.oop5.basic.php] as well as namespaces [https://secure.php.net/manual/en/language.namespaces.php].

Object oriented programming

Basic understanding of object oriented programming is required. If you’re not familiar with it, check one of the many
tutorials available such as the one from tuts+ [https://code.tutsplus.com/tutorials/object-oriented-php-for-beginners--net-12762].

Note that the more complicated your application is the more advanced OOP concepts you should learn in order to successfully
manage that complexity.

Command line and composer

Yii extensively uses de-facto standard PHP package manager, Composer [https://getcomposer.org/] so make sure you read
and understand its guide [https://getcomposer.org/doc/01-basic-usage.md]. If you are not familiar with using command line it is time to start trying. Once you
learn the basics you’ll never want to work without it.

 Running Applications

Running Applications

After installing Yii, you have a working Yii application that can be accessed via
the URL http://hostname/basic/web/index.php or http://hostname/index.php, depending
upon your configuration. This section will introduce the application’s built-in functionality,
how the code is organized, and how the application handles requests in general.

Info: For simplicity, throughout this “Getting Started” tutorial, it’s assumed that you have set basic/web
as the document root of your Web server, and configured the URL for accessing
your application to be http://hostname/index.php or something similar.
For your needs, please adjust the URLs in our descriptions accordingly.

Note that unlike framework itself, after project template is installed it’s all yours. You’re free to add or delete
code and overall modify it as you need.

Functionality

The basic application installed contains four pages:

	the homepage, displayed when you access the URL http://hostname/index.php,

	the “About” page,

	the “Contact” page, which displays a contact form that allows end users to contact you via email,

	and the “Login” page, which displays a login form that can be used to authenticate end users. Try logging in
with “admin/admin”, and you will find the “Login” main menu item will change to “Logout”.

These pages share a common header and footer. The header contains a main menu bar to allow navigation
among different pages.

You should also see a toolbar at the bottom of the browser window.
This is a useful debugger tool [https://github.com/yiisoft/yii2-debug/blob/master/docs/guide/README.md] provided by Yii to record and display a lot of debugging information, such as log messages, response statuses, the database queries run, and so on.

Additionally to the web application, there is a console script called yii, which is located in the applications base directory.
This script can be used to run background and maintenance tasks for the application, which are described
in the Console Application Section.

Application Structure

The most important directories and files in your application are (assuming the application’s root directory is basic):

basic/ application base path
 composer.json used by Composer, describes package information
 config/ contains application and other configurations
 console.php the console application configuration
 web.php the Web application configuration
 commands/ contains console command classes
 controllers/ contains controller classes
 models/ contains model classes
 runtime/ contains files generated by Yii during runtime, such as logs and cache files
 vendor/ contains the installed Composer packages, including the Yii framework itself
 views/ contains view files
 web/ application Web root, contains Web accessible files
 assets/ contains published asset files (javascript and css) by Yii
 index.php the entry (or bootstrap) script for the application
 yii the Yii console command execution script

In general, the files in the application can be divided into two types: those under basic/web and those
under other directories. The former can be directly accessed via HTTP (i.e., in a browser), while the latter can not and should not be.

Yii implements the model-view-controller (MVC) [http://wikipedia.org/wiki/Model-view-controller] architectural pattern,
which is reflected in the above directory organization. The models directory contains all model classes,
the views directory contains all view scripts, and the controllers directory contains
all controller classes.

The following diagram shows the static structure of an application.

[image: Static Structure of Application]

Each application has an entry script web/index.php which is the only Web accessible PHP script in the application.
The entry script takes an incoming request and creates an application instance to handle it.
The application resolves the request with the help of its components,
and dispatches the request to the MVC elements. Widgets are used in the views
to help build complex and dynamic user interface elements.

Request Lifecycle

The following diagram shows how an application handles a request.

[image: Request Lifecycle]

	A user makes a request to the entry script web/index.php.

	The entry script loads the application configuration and creates
an application instance to handle the request.

	The application resolves the requested route with the help of
the request application component.

	The application creates a controller instance to handle the request.

	The controller creates an action instance and performs the filters for the action.

	If any filter fails, the action is cancelled.

	If all filters pass, the action is executed.

	The action loads some data models, possibly from a database.

	The action renders a view, providing it with the data models.

	The rendered result is returned to the response application component.

	The response component sends the rendered result to the user’s browser.

 Application Components

Application Components

Applications are service locators. They host a set of the so-called
application components that provide different services for processing requests. For example,
the urlManager component is responsible for routing Web requests to appropriate controllers;
the db component provides DB-related services; and so on.

Each application component has an ID that uniquely identifies itself among other application components
in the same application. You can access an application component through the expression:

\Yii::$app->componentID

For example, you can use \Yii::$app->db to get the [[yii\db\Connection|DB connection]],
and \Yii::$app->cache to get the [[yii\caching\Cache|primary cache]] registered with the application.

An application component is created the first time it is accessed through the above expression. Any
further accesses will return the same component instance.

Application components can be any objects. You can register them by configuring
the [[yii\base\Application::components]] property in application configurations.
For example,

[
 'components' => [
 // register "cache" component using a class name
 'cache' => 'yii\caching\ApcCache',

 // register "db" component using a configuration array
 'db' => [
 'class' => 'yii\db\Connection',
 'dsn' => 'mysql:host=localhost;dbname=demo',
 'username' => 'root',
 'password' => '',
],

 // register "search" component using an anonymous function
 'search' => function () {
 return new app\components\SolrService;
 },
],
]

Info: While you can register as many application components as you want, you should do this judiciously.
Application components are like global variables. Using too many application components can potentially
make your code harder to test and maintain. In many cases, you can simply create a local component
and use it when needed.

Bootstrapping Components

As mentioned above, an application component will only be instantiated when it is being accessed the first time.
If it is not accessed at all during a request, it will not be instantiated. Sometimes, however, you may want
to instantiate an application component for every request, even if it is not explicitly accessed.
To do so, you may list its ID in the [[yii\base\Application::bootstrap|bootstrap]] property of the application.

You can also use Closures to bootstrap customized components. Returning an instantiated component is not
required. A Closure can also be used simply for running code after [[yii\base\Application]] instantiation.

For example, the following application configuration makes sure the log component is always loaded:

[
 'bootstrap' => [
 'log',
 function($app){
 return new ComponentX();
 },
 function($app){
 // some code
 return;
 }
],
 'components' => [
 'log' => [
 // configuration for "log" component
],
],
]

Core Application Components

Yii defines a set of core application components with fixed IDs and default configurations. For example,
the [[yii\web\Application::request|request]] component is used to collect information about
a user request and resolve it into a route; the [[yii\base\Application::db|db]]
component represents a database connection through which you can perform database queries.
It is with help of these core application components that Yii applications are able to handle user requests.

Below is the list of the predefined core application components. You may configure and customize them
like you do with normal application components. When you are configuring a core application component,
if you do not specify its class, the default one will be used.

	[[yii\web\AssetManager|assetManager]]: manages asset bundles and asset publishing.
Please refer to the Assets section for more details.

	[[yii\db\Connection|db]]: represents a database connection through which you can perform DB queries.
Note that when you configure this component, you must specify the component class as well as other required
component properties, such as [[yii\db\Connection::dsn]].
Please refer to the Database Access Objects section for more details.

	[[yii\base\Application::errorHandler|errorHandler]]: handles PHP errors and exceptions.
Please refer to the Handling Errors section for more details.

	[[yii\i18n\Formatter|formatter]]: formats data when they are displayed to end users. For example, a number
may be displayed with thousand separator, a date may be formatted in long format.
Please refer to the Data Formatting section for more details.

	[[yii\i18n\I18N|i18n]]: supports message translation and formatting.
Please refer to the Internationalization section for more details.

	[[yii\log\Dispatcher|log]]: manages log targets.
Please refer to the Logging section for more details.

	[[yii\swiftmailer\Mailer|mailer]]: supports mail composing and sending.
Please refer to the Mailing section for more details.

	[[yii\base\Application::response|response]]: represents the response being sent to end users.
Please refer to the Responses section for more details.

	[[yii\base\Application::request|request]]: represents the request received from end users.
Please refer to the Requests section for more details.

	[[yii\web\Session|session]]: represents the session information. This component is only available
in [[yii\web\Application|Web applications]].
Please refer to the Sessions and Cookies section for more details.

	[[yii\web\UrlManager|urlManager]]: supports URL parsing and creation.
Please refer to the Routing and URL Creation section for more details.

	[[yii\web\User|user]]: represents the user authentication information. This component is only available
in [[yii\web\Application|Web applications]].
Please refer to the Authentication section for more details.

	[[yii\web\View|view]]: supports view rendering.
Please refer to the Views section for more details.

 Applications

Applications

Applications are objects that govern the overall structure and lifecycle of Yii application systems.
Each Yii application system contains a single application object which is created in
the entry script and is globally accessible through the expression \Yii::$app.

Info: Depending on the context, when we say “an application”, it can mean either an application
object or an application system.

There are two types of applications: [[yii\web\Application|Web applications]] and
[[yii\console\Application|console applications]]. As the names indicate, the former mainly handles
Web requests, while the latter handles console command requests.

Application Configurations

When an entry script creates an application, it will load
a configuration and apply it to the application, as follows:

require __DIR__ . '/../vendor/autoload.php';
require __DIR__ . '/../vendor/yiisoft/yii2/Yii.php';

// load application configuration
$config = require __DIR__ . '/../config/web.php';

// instantiate and configure the application
(new yii\web\Application($config))->run();

Like normal configurations, application configurations specify how
to initialize properties of application objects. Because application configurations are often
very complex, they usually are kept in configuration files,
like the web.php file in the above example.

Application Properties

There are many important application properties that you should configure in application configurations.
These properties typically describe the environment that applications are running in.
For example, applications need to know how to load controllers,
where to store temporary files, etc. In the following, we will summarize these properties.

Required Properties

In any application, you should at least configure two properties: [[yii\base\Application::id|id]]
and [[yii\base\Application::basePath|basePath]].

[[yii\base\Application::id|id]]

The [[yii\base\Application::id|id]] property specifies a unique ID that differentiates an application
from others. It is mainly used programmatically. Although not a requirement, for best interoperability
it is recommended that you use only alphanumeric characters when specifying an application ID.

[[yii\base\Application::basePath|basePath]]

The [[yii\base\Application::basePath|basePath]] property specifies the root directory of an application.
It is the directory that contains all protected source code of an application system. Under this directory,
you normally will see sub-directories such as models, views, and controllers, which contain source code
corresponding to the MVC pattern.

You may configure the [[yii\base\Application::basePath|basePath]] property using a directory path
or a path alias. In both forms, the corresponding directory must exist, or an exception
will be thrown. The path will be normalized by calling the realpath() function.

The [[yii\base\Application::basePath|basePath]] property is often used to derive other important
paths (e.g. the runtime path). For this reason, a path alias named @app is predefined to represent this
path. Derived paths may then be formed using this alias (e.g. @app/runtime to refer to the runtime directory).

Important Properties

The properties described in this subsection often need to be configured because they differ across
different applications.

[[yii\base\Application::aliases|aliases]]

This property allows you to define a set of aliases in terms of an array.
The array keys are alias names, and the array values are the corresponding path definitions.
For example:

[
 'aliases' => [
 '@name1' => 'path/to/path1',
 '@name2' => 'path/to/path2',
],
]

This property is provided so that you can define aliases in terms of application configurations instead of
by calling the [[Yii::setAlias()]] method.

[[yii\base\Application::bootstrap|bootstrap]]

This is a very useful property. It allows you to specify an array of components that should
be run during the application [[yii\base\Application::bootstrap()|bootstrapping process]].
For example, if you want a module to customize the URL rules,
you may list its ID as an element in this property.

Each component listed in this property may be specified in one of the following formats:

	an application component ID as specified via components,

	a module ID as specified via modules,

	a class name,

	a configuration array,

	an anonymous function that creates and returns a component.

For example:

[
 'bootstrap' => [
 // an application component ID or module ID
 'demo',

 // a class name
 'app\components\Profiler',

 // a configuration array
 [
 'class' => 'app\components\Profiler',
 'level' => 3,
],

 // an anonymous function
 function () {
 return new app\components\Profiler();
 }
],
]

Info: If a module ID is the same as an application component ID, the application component will be used during
the bootstrapping process. If you want to use the module instead, you may specify it using an anonymous function
like the following:

[
 function () {
 return Yii::$app->getModule('user');
 },
]

During the bootstrapping process, each component will be instantiated. If the component class
implements [[yii\base\BootstrapInterface]], its [[yii\base\BootstrapInterface::bootstrap()|bootstrap()]] method
will also be called.

Another practical example is in the application configuration for the Basic Project Template,
where the debug and gii modules are configured as bootstrapping components when the application is running
in the development environment:

if (YII_ENV_DEV) {
 // configuration adjustments for 'dev' environment
 $config['bootstrap'][] = 'debug';
 $config['modules']['debug'] = 'yii\debug\Module';

 $config['bootstrap'][] = 'gii';
 $config['modules']['gii'] = 'yii\gii\Module';
}

Note: Putting too many components in bootstrap will degrade the performance of your application because
for each request, the same set of components need to be run. So use bootstrapping components judiciously.

[[yii\web\Application::catchAll|catchAll]]

This property is supported by [[yii\web\Application|Web applications]] only. It specifies
a controller action which should handle all user requests. This is mainly
used when the application is in maintenance mode and needs to handle all incoming requests via a single action.

The configuration is an array whose first element specifies the route of the action.
The rest of the array elements (key-value pairs) specify the parameters to be bound to the action. For example:

[
 'catchAll' => [
 'offline/notice',
 'param1' => 'value1',
 'param2' => 'value2',
],
]

Info: Debug panel on development environment will not work when this property is enabled.

[[yii\base\Application::components|components]]

This is the single most important property. It allows you to register a list of named components
called application components that you can use in other places. For example:

[
 'components' => [
 'cache' => [
 'class' => 'yii\caching\FileCache',
],
 'user' => [
 'identityClass' => 'app\models\User',
 'enableAutoLogin' => true,
],
],
]

Each application component is specified as a key-value pair in the array. The key represents the component ID,
while the value represents the component class name or configuration.

You can register any component with an application, and the component can later be accessed globally
using the expression \Yii::$app->componentID.

Please read the Application Components section for details.

[[yii\base\Application::controllerMap|controllerMap]]

This property allows you to map a controller ID to an arbitrary controller class. By default, Yii maps
controller IDs to controller classes based on a convention (e.g. the ID post would be mapped
to app\controllers\PostController). By configuring this property, you can break the convention for
specific controllers. In the following example, account will be mapped to
app\controllers\UserController, while article will be mapped to app\controllers\PostController.

[
 'controllerMap' => [
 'account' => 'app\controllers\UserController',
 'article' => [
 'class' => 'app\controllers\PostController',
 'enableCsrfValidation' => false,
],
],
]

The array keys of this property represent the controller IDs, while the array values represent the corresponding
controller class names or configurations.

[[yii\base\Application::controllerNamespace|controllerNamespace]]

This property specifies the default namespace under which controller classes should be located. It defaults to
app\controllers. If a controller ID is post, by convention the corresponding controller class name (without
namespace) would be PostController, and the fully qualified class name would be app\controllers\PostController.

Controller classes may also be located under sub-directories of the directory corresponding to this namespace.
For example, given a controller ID admin/post, the corresponding fully qualified controller class would
be app\controllers\admin\PostController.

It is important that the fully qualified controller classes should be autoloadable
and the actual namespace of your controller classes match the value of this property. Otherwise,
you will receive a “Page Not Found” error when accessing the application.

In case you want to break the convention as described above, you may configure the controllerMap
property.

[[yii\base\Application::language|language]]

This property specifies the language in which the application should display content to end users.
The default value of this property is en, meaning English. You should configure this property
if your application needs to support multiple languages.

The value of this property determines various internationalization aspects,
including message translation, date formatting, number formatting, etc. For example, the [[yii\jui\DatePicker]] widget
will use this property value by default to determine in which language the calendar should be displayed and how
the date should be formatted.

It is recommended that you specify a language in terms of an IETF language tag [http://en.wikipedia.org/wiki/IETF_language_tag].
For example, en stands for English, while en-US stands for English (United States).

More details about this property can be found in the Internationalization section.

[[yii\base\Application::modules|modules]]

This property specifies the modules that the application contains.

The property takes an array of module classes or configurations with the array keys
being the module IDs. For example:

[
 'modules' => [
 // a "booking" module specified with the module class
 'booking' => 'app\modules\booking\BookingModule',

 // a "comment" module specified with a configuration array
 'comment' => [
 'class' => 'app\modules\comment\CommentModule',
 'db' => 'db',
],
],
]

Please refer to the Modules section for more details.

[[yii\base\Application::name|name]]

This property specifies the application name that may be displayed to end users. Unlike the
[[yii\base\Application::id|id]] property, which should take a unique value, the value of this property is mainly for
display purposes; it does not need to be unique.

You do not always need to configure this property if none of your code is using it.

[[yii\base\Application::params|params]]

This property specifies an array of globally accessible application parameters. Instead of using hardcoded
numbers and strings everywhere in your code, it is a good practice to define them as application parameters
in a single place and use the parameters in places where needed. For example, you may define the thumbnail
image size as a parameter like the following:

[
 'params' => [
 'thumbnail.size' => [128, 128],
],
]

Then in your code where you need to use the size value, you can simply use code like the following:

$size = \Yii::$app->params['thumbnail.size'];
$width = \Yii::$app->params['thumbnail.size'][0];

Later if you decide to change the thumbnail size, you only need to modify it in the application configuration;
you don’t need to touch any dependent code.

[[yii\base\Application::sourceLanguage|sourceLanguage]]

This property specifies the language that the application code is written in. The default value is 'en-US',
meaning English (United States). You should configure this property if the text content in your code is not in English.

Like the language property, you should configure this property in terms of
an IETF language tag [http://en.wikipedia.org/wiki/IETF_language_tag]. For example, en stands for English,
while en-US stands for English (United States).

More details about this property can be found in the Internationalization section.

[[yii\base\Application::timeZone|timeZone]]

This property is provided as an alternative way of setting the default time zone of the PHP runtime.
By configuring this property, you are essentially calling the PHP function
date_default_timezone_set() [http://php.net/manual/en/function.date-default-timezone-set.php]. For example:

[
 'timeZone' => 'America/Los_Angeles',
]

For more details on the implications of setting the time zone, please check the section on date formatting.

[[yii\base\Application::version|version]]

This property specifies the version of the application. It defaults to '1.0'. You do not need to configure
this property if none of your code is using it.

Useful Properties

The properties described in this subsection are not commonly configured because their default values
derive from common conventions. However, you may still configure them in case you want to break the conventions.

[[yii\base\Application::charset|charset]]

This property specifies the charset that the application uses. The default value is 'UTF-8', which should
be kept as-is for most applications unless you are working with a legacy system that uses a lot of non-Unicode data.

[[yii\base\Application::defaultRoute|defaultRoute]]

This property specifies the route that an application should use when a request
does not specify one. The route may consist of a child module ID, a controller ID, and/or an action ID.
For example, help, post/create, or admin/post/create. If an action ID is not given, this property will take
the default value specified in [[yii\base\Controller::defaultAction]].

For [[yii\web\Application|Web applications]], the default value of this property is 'site', which means
the SiteController controller and its default action should be used. As a result, if you access
the application without specifying a route, it will show the result of app\controllers\SiteController::actionIndex().

For [[yii\console\Application|console applications]], the default value is 'help', which means the core command
[[yii\console\controllers\HelpController::actionIndex()]] should be used. As a result, if you run the command yii
without providing any arguments, it will display the help information.

[[yii\base\Application::extensions|extensions]]

This property specifies the list of extensions that are installed and used by the application.
By default, it will take the array returned by the file @vendor/yiisoft/extensions.php. The extensions.php file
is generated and maintained automatically when you use Composer [https://getcomposer.org] to install extensions.
So in most cases, you do not need to configure this property.

In the special case when you want to maintain extensions manually, you may configure this property as follows:

[
 'extensions' => [
 [
 'name' => 'extension name',
 'version' => 'version number',
 'bootstrap' => 'BootstrapClassName', // optional, may also be a configuration array
 'alias' => [// optional
 '@alias1' => 'to/path1',
 '@alias2' => 'to/path2',
],
],

 // ... more extensions like the above ...

],
]

As you can see, the property takes an array of extension specifications. Each extension is specified with an array
consisting of name and version elements. If an extension needs to run during the bootstrap
process, a bootstrap element may be specified with a bootstrapping class name or a configuration
array. An extension may also define a few aliases.

[[yii\base\Application::layout|layout]]

This property specifies the name of the default layout that should be used when rendering a view.
The default value is 'main', meaning the layout file main.php under the layout path should be used.
If both of the layout path and the view path are taking the default values,
the default layout file can be represented as the path alias @app/views/layouts/main.php.

You may configure this property to be false if you want to disable layout by default, although this is very rare.

[[yii\base\Application::layoutPath|layoutPath]]

This property specifies the path where layout files should be looked for. The default value is
the layouts sub-directory under the view path. If the view path is taking
its default value, the default layout path can be represented as the path alias @app/views/layouts.

You may configure it as a directory or a path alias.

[[yii\base\Application::runtimePath|runtimePath]]

This property specifies the path where temporary files, such as log files and cache files, can be generated.
The default value is the directory represented by the alias @app/runtime.

You may configure it as a directory or a path alias. Note that the runtime path must
be writable by the process running the application. And the path should be protected from being accessed
by end users, because the temporary files under it may contain sensitive information.

To simplify access to this path, Yii has predefined a path alias named @runtime for it.

[[yii\base\Application::viewPath|viewPath]]

This property specifies the root directory where view files are located. The default value is the directory
represented by the alias @app/views. You may configure it as a directory or a path alias.

[[yii\base\Application::vendorPath|vendorPath]]

This property specifies the vendor directory managed by Composer [https://getcomposer.org]. It contains
all third party libraries used by your application, including the Yii framework. The default value is
the directory represented by the alias @app/vendor.

You may configure this property as a directory or a path alias. When you modify
this property, make sure you also adjust the Composer configuration accordingly.

To simplify access to this path, Yii has predefined a path alias named @vendor for it.

[[yii\console\Application::enableCoreCommands|enableCoreCommands]]

This property is supported by [[yii\console\Application|console applications]] only. It specifies
whether the core commands included in the Yii release should be enabled. The default value is true.

Application Events

An application triggers several events during the lifecycle of handling a request. You may attach event
handlers to these events in application configurations as follows:

[
 'on beforeRequest' => function ($event) {
 // ...
 },
]

The use of the on eventName syntax is described in the Configurations
section.

Alternatively, you may attach event handlers during the bootstrapping process
after the application instance is created. For example:

\Yii::$app->on(\yii\base\Application::EVENT_BEFORE_REQUEST, function ($event) {
 // ...
});

[[yii\base\Application::EVENT_BEFORE_REQUEST|EVENT_BEFORE_REQUEST]]

This event is triggered before an application handles a request. The actual event name is beforeRequest.

When this event is triggered, the application instance has been configured and initialized. So it is a good place
to insert your custom code via the event mechanism to intercept the request handling process. For example,
in the event handler, you may dynamically set the [[yii\base\Application::language]] property based on some parameters.

[[yii\base\Application::EVENT_AFTER_REQUEST|EVENT_AFTER_REQUEST]]

This event is triggered after an application finishes handling a request but before sending the response.
The actual event name is afterRequest.

When this event is triggered, the request handling is completed and you may take this chance to do some postprocessing
of the request or customize the response.

Note that the [[yii\web\Response|response]] component also triggers some events while it is sending out
response content to end users. Those events are triggered after this event.

[[yii\base\Application::EVENT_BEFORE_ACTION|EVENT_BEFORE_ACTION]]

This event is triggered before running every controller action.
The actual event name is beforeAction.

The event parameter is an instance of [[yii\base\ActionEvent]]. An event handler may set
the [[yii\base\ActionEvent::isValid]] property to be false to stop running the action.
For example:

[
 'on beforeAction' => function ($event) {
 if (some condition) {
 $event->isValid = false;
 } else {
 }
 },
]

Note that the same beforeAction event is also triggered by modules
and controllers. Application objects are the first ones
triggering this event, followed by modules (if any), and finally controllers. If an event handler
sets [[yii\base\ActionEvent::isValid]] to be false, all of the subsequent events will NOT be triggered.

[[yii\base\Application::EVENT_AFTER_ACTION|EVENT_AFTER_ACTION]]

This event is triggered after running every controller action.
The actual event name is afterAction.

The event parameter is an instance of [[yii\base\ActionEvent]]. Through
the [[yii\base\ActionEvent::result]] property, an event handler may access or modify the action result.
For example:

[
 'on afterAction' => function ($event) {
 if (some condition) {
 // modify $event->result
 } else {
 }
 },
]

Note that the same afterAction event is also triggered by modules
and controllers. These objects trigger this event in the reverse order
as for that of beforeAction. That is, controllers are the first objects triggering this event,
followed by modules (if any), and finally applications.

Application Lifecycle

[image: Application Lifecycle]

When an entry script is being executed to handle a request,
an application will undergo the following lifecycle:

	The entry script loads the application configuration as an array.

	The entry script creates a new instance of the application:

	[[yii\base\Application::preInit()|preInit()]] is called, which configures some high priority
application properties, such as [[yii\base\Application::basePath|basePath]].

	Register the [[yii\base\Application::errorHandler|error handler]].

	Configure application properties.

	[[yii\base\Application::init()|init()]] is called which further calls
[[yii\base\Application::bootstrap()|bootstrap()]] to run bootstrapping components.

	The entry script calls [[yii\base\Application::run()]] to run the application:

	Trigger the [[yii\base\Application::EVENT_BEFORE_REQUEST|EVENT_BEFORE_REQUEST]] event.

	Handle the request: resolve the request into a route and the associated parameters;
create the module, controller, and action objects as specified by the route; and run the action.

	Trigger the [[yii\base\Application::EVENT_AFTER_REQUEST|EVENT_AFTER_REQUEST]] event.

	Send response to the end user.

	The entry script receives the exit status from the application and completes the request processing.

 Assets

Assets

An asset in Yii is a file that may be referenced in a Web page. It can be a CSS file, a JavaScript file, an image
or video file, etc. Assets are located in Web-accessible directories and are directly served by Web servers.

It is often preferable to manage assets programmatically. For example, when you use the [[yii\jui\DatePicker]] widget
in a page, it will automatically include the required CSS and JavaScript files, instead of asking you to manually
find these files and include them. And when you upgrade the widget to a new version, it will automatically use
the new version of the asset files. In this tutorial, we will describe the powerful asset management capability
provided in Yii.

Asset Bundles

Yii manages assets in the unit of asset bundle. An asset bundle is simply a collection of assets located
in a directory. When you register an asset bundle in a view, it will include the CSS and
JavaScript files in the bundle in the rendered Web page.

Defining Asset Bundles

Asset bundles are specified as PHP classes extending from [[yii\web\AssetBundle]]. The name of a bundle is simply
its corresponding fully qualified PHP class name (without the leading backslash). An asset bundle class should
be autoloadable. It usually specifies where the assets are located, what CSS and
JavaScript files the bundle contains, and how the bundle depends on other bundles.

The following code defines the main asset bundle used by the basic project template:

<?php

namespace app\assets;

use yii\web\AssetBundle;

class AppAsset extends AssetBundle
{
 public $basePath = '@webroot';
 public $baseUrl = '@web';
 public $css = [
 'css/site.css',
 ['css/print.css', 'media' => 'print'],
];
 public $js = [
];
 public $depends = [
 'yii\web\YiiAsset',
 'yii\bootstrap\BootstrapAsset',
];
}

The above AppAsset class specifies that the asset files are located under the @webroot directory which
corresponds to the URL @web; the bundle contains a single CSS file css/site.css and no JavaScript file;
the bundle depends on two other bundles: [[yii\web\YiiAsset]] and [[yii\bootstrap\BootstrapAsset]]. More detailed
explanation about the properties of [[yii\web\AssetBundle]] can be found in the following:

	[[yii\web\AssetBundle::sourcePath|sourcePath]]: specifies the root directory that contains the asset files in
this bundle. This property should be set if the root directory is not Web accessible. Otherwise, you should
set the [[yii\web\AssetBundle::basePath|basePath]] property and [[yii\web\AssetBundle::baseUrl|baseUrl]], instead.
Path aliases can be used here.

	[[yii\web\AssetBundle::basePath|basePath]]: specifies a Web-accessible directory that contains the asset files in
this bundle. When you specify the [[yii\web\AssetBundle::sourcePath|sourcePath]] property,
the asset manager will publish the assets in this bundle to a Web-accessible directory
and overwrite this property accordingly. You should set this property if your asset files are already in
a Web-accessible directory and do not need asset publishing. Path aliases can be used here.

	[[yii\web\AssetBundle::baseUrl|baseUrl]]: specifies the URL corresponding to the directory
[[yii\web\AssetBundle::basePath|basePath]]. Like [[yii\web\AssetBundle::basePath|basePath]],
if you specify the [[yii\web\AssetBundle::sourcePath|sourcePath]] property, the asset manager
will publish the assets and overwrite this property accordingly. Path aliases can be used here.

	[[yii\web\AssetBundle::css|css]]: an array listing the CSS files contained in this bundle. Note that only forward slash “/”
should be used as directory separators. Each file can be specified on its own as a string or in an array together with
attribute tags and their values.

	[[yii\web\AssetBundle::js|js]]: an array listing the JavaScript files contained in this bundle. The format of this array
is the same as that of [[yii\web\AssetBundle::css|css]]. Each JavaScript file can be specified in one of the following two
formats:

	a relative path representing a local JavaScript file (e.g. js/main.js). The actual path of the file
can be determined by prepending [[yii\web\AssetManager::basePath]] to the relative path, and the actual URL
of the file can be determined by prepending [[yii\web\AssetManager::baseUrl]] to the relative path.

	an absolute URL representing an external JavaScript file. For example,
http://ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js or
//ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js.

	[[yii\web\AssetBundle::depends|depends]]: an array listing the names of the asset bundles that this bundle depends on
(to be explained shortly).

	[[yii\web\AssetBundle::jsOptions|jsOptions]]: specifies the options that will be passed to the
[[yii\web\View::registerJsFile()]] method when it is called to register every JavaScript file in this bundle.

	[[yii\web\AssetBundle::cssOptions|cssOptions]]: specifies the options that will be passed to the
[[yii\web\View::registerCssFile()]] method when it is called to register every CSS file in this bundle.

	[[yii\web\AssetBundle::publishOptions|publishOptions]]: specifies the options that will be passed to the
[[yii\web\AssetManager::publish()]] method when it is called to publish source asset files to a Web directory.
This is only used if you specify the [[yii\web\AssetBundle::sourcePath|sourcePath]] property.

Asset Locations

Assets, based on their location, can be classified as:

	source assets: the asset files are located together with PHP source code which cannot be directly accessed via Web.
In order to use source assets in a page, they should be copied to a Web directory and turned into the so-called
published assets. This process is called asset publishing which will be described in detail shortly.

	published assets: the asset files are located in a Web directory and can thus be directly accessed via Web.

	external assets: the asset files are located on a Web server that is different from the one hosting your Web
application.

When defining an asset bundle class, if you specify the [[yii\web\AssetBundle::sourcePath|sourcePath]] property,
it means any assets listed using relative paths will be considered as source assets. If you do not specify this property,
it means those assets are published assets (you should therefore specify [[yii\web\AssetBundle::basePath|basePath]] and
[[yii\web\AssetBundle::baseUrl|baseUrl]] to let Yii know where they are located).

It is recommended that you place assets belonging to an application in a Web directory to avoid the unnecessary asset
publishing process. This is why AppAsset in the prior example specifies [[yii\web\AssetBundle::basePath|basePath]]
instead of [[yii\web\AssetBundle::sourcePath|sourcePath]].

For extensions, because their assets are located together with their source code
in directories that are not Web accessible, you have to specify the [[yii\web\AssetBundle::sourcePath|sourcePath]]
property when defining asset bundle classes for them.

Note: Do not use @webroot/assets as the [[yii\web\AssetBundle::sourcePath|source path]].
This directory is used by default by the [[yii\web\AssetManager|asset manager]] to save the asset files
published from their source location. Any content in this directory is considered temporarily and may be subject
to removal.

Asset Dependencies

When you include multiple CSS or JavaScript files in a Web page, they have to follow a certain order to avoid
overriding issues. For example, if you are using a jQuery UI widget in a Web page, you have to make sure
the jQuery JavaScript file is included before the jQuery UI JavaScript file. We call such ordering the dependencies
among assets.

Asset dependencies are mainly specified through the [[yii\web\AssetBundle::depends]] property.
In the AppAsset example, the asset bundle depends on two other asset bundles: [[yii\web\YiiAsset]] and
[[yii\bootstrap\BootstrapAsset]], which means the CSS and JavaScript files in AppAsset will be included after
those files in the two dependent bundles.

Asset dependencies are transitive. This means if bundle A depends on B which depends on C, A will depend on C, too.

Asset Options

You can specify the [[yii\web\AssetBundle::cssOptions|cssOptions]] and [[yii\web\AssetBundle::jsOptions|jsOptions]]
properties to customize the way that CSS and JavaScript files are included in a page. The values of these properties
will be passed to the [[yii\web\View::registerCssFile()]] and [[yii\web\View::registerJsFile()]] methods, respectively, when
they are called by the view to include CSS and JavaScript files.

Note: The options you set in a bundle class apply to every CSS/JavaScript file in the bundle. If you want to
use different options for different files, you should use the format mentioned [[yii\web\AssetBundle::css|above]] or create
separate asset bundles, and use one set of options in each bundle.

For example, to conditionally include a CSS file for browsers that are IE9 or below, you can use the following option:

public $cssOptions = ['condition' => 'lte IE9'];

This will cause a CSS file in the bundle to be included using the following HTML tags:

<!--[if lte IE9]>
<link rel="stylesheet" href="path/to/foo.css">
<![endif]-->

To wrap the generated CSS link tags within <noscript>, you can configure cssOptions as follows,

public $cssOptions = ['noscript' => true];

To include a JavaScript file in the head section of a page (by default, JavaScript files are included at the end
of the body section), use the following option:

public $jsOptions = ['position' => \yii\web\View::POS_HEAD];

By default, when an asset bundle is being published, all contents in the directory specified by [[yii\web\AssetBundle::sourcePath]]
will be published. You can customize this behavior by configuring the [[yii\web\AssetBundle::publishOptions|publishOptions]]
property. For example, to publish only one or a few subdirectories of [[yii\web\AssetBundle::sourcePath]],
you can do the following in the asset bundle class:

<?php
namespace app\assets;

use yii\web\AssetBundle;

class FontAwesomeAsset extends AssetBundle
{
 public $sourcePath = '@bower/font-awesome';
 public $css = [
 'css/font-awesome.min.css',
];
 public $publishOptions = [
 'only' => [
 'fonts/*',
 'css/*',
]
];
}

The above example defines an asset bundle for the “fontawesome” package [http://fontawesome.io/]. By specifying
the only publishing option, only the fonts and css subdirectories will be published.

Bower and NPM Assets installation

Most JavaScript/CSS packages are managed by Bower [http://bower.io/] and/or NPM [https://www.npmjs.org/] package
managers. In PHP world we have Composer, that manages PHP dependencies, but it is possible to load
both Bower and NPM packages using composer.json just as PHP packages.

To achieve this, we should configure our composer a bit. There are two options to do that:

Using asset-packagist repository

This way will satisfy requirements of the majority of projects, that need NPM or Bower packages.

Note: Since 2.0.13 both Basic and Advanced application templates are pre-configured to use asset-packagist
by default, so you can skip this section.

In the composer.json of your project, add the following lines:

"repositories": [
 {
 "type": "composer",
 "url": "https://asset-packagist.org"
 }
]

Adjust @npm and @bower aliases in you application configuration:

$config = [
 ...
 'aliases' => [
 '@bower' => '@vendor/bower-asset',
 '@npm' => '@vendor/npm-asset',
],
 ...
];

Visit asset-packagist.org [https://asset-packagist.org] to know, how it works.

Using fxp/composer-asset-plugin

Compared to asset-packagist, composer-asset-plugin does not require any changes to application config. Instead, it
requires global installation of a special Composer plugin by running the following command:

composer global require "fxp/composer-asset-plugin:^1.4.1"

This command installs composer asset plugin [https://github.com/francoispluchino/composer-asset-plugin/] globally
which allows managing Bower and NPM package dependencies through Composer. After the plugin installation,
every single project on your computer will support Bower and NPM packages through composer.json.

Add the following lines to composer.json of your project to adjust directories where the installed packages
will be placed, if you want to publish them using Yii:

"config": {
 "asset-installer-paths": {
 "npm-asset-library": "vendor/npm",
 "bower-asset-library": "vendor/bower"
 }
}

Note: fxp/composer-asset-plugin significantly slows down the composer update command in comparison
to asset-packagist.

After configuring Composer to support Bower and NPM:

	Modify the composer.json file of your application or extension and list the package in the require entry.
You should use bower-asset/PackageName (for Bower packages) or npm-asset/PackageName (for NPM packages)
to refer to the library.

	Run composer update

	Create an asset bundle class and list the JavaScript/CSS files that you plan to use in your application or extension.
You should specify the [[yii\web\AssetBundle::sourcePath|sourcePath]] property as @bower/PackageName or @npm/PackageName.
This is because Composer will install the Bower or NPM package in the directory corresponding to this alias.

Note: Some packages may put all their distributed files in a subdirectory. If this is the case, you should specify
the subdirectory as the value of [[yii\web\AssetBundle::sourcePath|sourcePath]]. For example, [[yii\web\JqueryAsset]]
uses @bower/jquery/dist instead of @bower/jquery.

Using Asset Bundles

To use an asset bundle, register it with a view by calling the [[yii\web\AssetBundle::register()]]
method. For example, in a view template you can register an asset bundle like the following:

use app\assets\AppAsset;
AppAsset::register($this); // $this represents the view object

Info: The [[yii\web\AssetBundle::register()]] method returns an asset bundle object containing the information
about the published assets, such as [[yii\web\AssetBundle::basePath|basePath]] or [[yii\web\AssetBundle::baseUrl|baseUrl]].

If you are registering an asset bundle in other places, you should provide the needed view object. For example,
to register an asset bundle in a widget class, you can get the view object by $this->view.

When an asset bundle is registered with a view, behind the scenes Yii will register all its dependent asset bundles.
And if an asset bundle is located in a directory inaccessible through the Web, it will be published to a Web directory.
Later, when the view renders a page, it will generate <link> and <script> tags for the CSS and JavaScript files
listed in the registered bundles. The order of these tags is determined by the dependencies among
the registered bundles and the order of the assets listed in the [[yii\web\AssetBundle::css]] and [[yii\web\AssetBundle::js]]
properties.

Dynamic Asset Bundles

Being a regular PHP class asset bundle can bear some extra logic related to it and may adjust its internal parameters dynamically.
For example: you may use some sophisticated JavaScript library, which provides some internationalization packed in separated
source files: each per each supported language. Thus you will need to add particular ‘.js’ file to your page in order to
make library translation work. This can be achieved overriding [[yii\web\AssetBundle::init()]] method:

namespace app\assets;

use yii\web\AssetBundle;
use Yii;

class SophisticatedAssetBundle extends AssetBundle
{
 public $sourcePath = '/path/to/sophisticated/src';
 public $js = [
 'sophisticated.js' // file, which is always used
];

 public function init()
 {
 parent::init();
 $this->js[] = 'i18n/' . Yii::$app->language . '.js'; // dynamic file added
 }
}

Particular asset bundle can also be adjusted via its instance returned by [[yii\web\AssetBundle::register()]].
For example:

use app\assets\SophisticatedAssetBundle;
use Yii;

$bundle = SophisticatedAssetBundle::register(Yii::$app->view);
$bundle->js[] = 'i18n/' . Yii::$app->language . '.js'; // dynamic file added

Note: although dynamic adjustment of the asset bundles is supported, it is a bad practice, which may lead to
unexpected side effects, and should be avoided if possible.

Customizing Asset Bundles

Yii manages asset bundles through an application component named assetManager which is implemented by [[yii\web\AssetManager]].
By configuring the [[yii\web\AssetManager::bundles]] property, it is possible to customize the behavior of an asset bundle.
For example, the default [[yii\web\JqueryAsset]] asset bundle uses the jquery.js file from the installed
jquery Bower package. To improve the availability and performance, you may want to use a version hosted by Google.
This can be achieved by configuring assetManager in the application configuration like the following:

return [
 // ...
 'components' => [
 'assetManager' => [
 'bundles' => [
 'yii\web\JqueryAsset' => [
 'sourcePath' => null, // do not publish the bundle
 'js' => [
 '//ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js',
]
],
],
],
],
];

You can configure multiple asset bundles similarly through [[yii\web\AssetManager::bundles]]. The array keys
should be the class names (without the leading backslash) of the asset bundles, and the array values should
be the corresponding configuration arrays.

Tip: You can conditionally choose which assets to use in an asset bundle. The following example shows how
to use jquery.js in the development environment and jquery.min.js otherwise:

'yii\web\JqueryAsset' => [
 'js' => [
 YII_ENV_DEV ? 'jquery.js' : 'jquery.min.js'
]
],

You can disable one or multiple asset bundles by associating false with the names of the asset bundles
that you want to disable. When you register a disabled asset bundle with a view, none of its dependent bundles
will be registered, and the view also will not include any of the assets in the bundle in the page it renders.
For example, to disable [[yii\web\JqueryAsset]], you can use the following configuration:

return [
 // ...
 'components' => [
 'assetManager' => [
 'bundles' => [
 'yii\web\JqueryAsset' => false,
],
],
],
];

You can also disable all asset bundles by setting [[yii\web\AssetManager::bundles]] as false.

Keep in mind that customization made via [[yii\web\AssetManager::bundles]] is applied at the creation of the asset bundle, e.g.
at object constructor stage. Thus any adjustments made to the bundle object after that will override the mapping setup at [[yii\web\AssetManager::bundles]] level.
In particular: adjustments made inside [[yii\web\AssetBundle::init()]]
method or over the registered bundle object will take precedence over AssetManager configuration.
Here are the examples, where mapping set via [[yii\web\AssetManager::bundles]] makes no effect:

// Program source code:

namespace app\assets;

use yii\web\AssetBundle;
use Yii;

class LanguageAssetBundle extends AssetBundle
{
 // ...

 public function init()
 {
 parent::init();
 $this->baseUrl = '@web/i18n/' . Yii::$app->language; // can NOT be handled by `AssetManager`!
 }
}
// ...

$bundle = \app\assets\LargeFileAssetBundle::register(Yii::$app->view);
$bundle->baseUrl = YII_DEBUG ? '@web/large-files': '@web/large-files/minified'; // can NOT be handled by `AssetManager`!

// Application config :

return [
 // ...
 'components' => [
 'assetManager' => [
 'bundles' => [
 'app\assets\LanguageAssetBundle' => [
 'baseUrl' => 'http://some.cdn.com/files/i18n/en' // makes NO effect!
],
 'app\assets\LargeFileAssetBundle' => [
 'baseUrl' => 'http://some.cdn.com/files/large-files' // makes NO effect!
],
],
],
],
];

Asset Mapping

Sometimes you may want to “fix” incorrect/incompatible asset file paths used in multiple asset bundles. For example,
bundle A uses jquery.min.js version 1.11.1, and bundle B uses jquery.js version 2.1.1. While you can
fix the problem by customizing each bundle, an easier way is to use the asset map feature to map incorrect assets
to the desired ones. To do so, configure the [[yii\web\AssetManager::assetMap]] property like the following:

return [
 // ...
 'components' => [
 'assetManager' => [
 'assetMap' => [
 'jquery.js' => '//ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js',
],
],
],
];

The keys of [[yii\web\AssetManager::assetMap|assetMap]] are the asset names that you want to fix, and the values
are the desired asset paths. When you register an asset bundle with a view, each relative asset file in its
[[yii\web\AssetBundle::css|css]] and [[yii\web\AssetBundle::js|js]] arrays will be examined against this map.
If any of the keys are found to be the last part of an asset file (which is prefixed with [[yii\web\AssetBundle::sourcePath]]
if available), the corresponding value will replace the asset and be registered with the view.
For example, the asset file my/path/to/jquery.js matches the key jquery.js.

Note: Only assets specified using relative paths are subject to asset mapping. The target asset paths
should be either absolute URLs or paths relative to [[yii\web\AssetManager::basePath]].

Asset Publishing

As aforementioned, if an asset bundle is located in a directory that is not Web accessible, its assets will be copied
to a Web directory when the bundle is being registered with a view. This process is called asset publishing, and is done
automatically by the [[yii\web\AssetManager|asset manager]].

By default, assets are published to the directory @webroot/assets which corresponds to the URL @web/assets.
You may customize this location by configuring the [[yii\web\AssetManager::basePath|basePath]] and
[[yii\web\AssetManager::baseUrl|baseUrl]] properties.

Instead of publishing assets by file copying, you may consider using symbolic links, if your OS and Web server allow.
This feature can be enabled by setting [[yii\web\AssetManager::linkAssets|linkAssets]] to be true.

return [
 // ...
 'components' => [
 'assetManager' => [
 'linkAssets' => true,
],
],
];

With the above configuration, the asset manager will create a symbolic link to the source path of an asset bundle
when it is being published. This is faster than file copying and can also ensure that the published assets are
always up-to-date.

Cache Busting

For Web application running in production mode, it is a common practice to enable HTTP caching for assets and other
static resources. A drawback of this practice is that whenever you modify an asset and deploy it to production, a user
client may still use the old version due to the HTTP caching. To overcome this drawback, you may use the cache busting
feature, which was introduced in version 2.0.3, by configuring [[yii\web\AssetManager]] like the following:

return [
 // ...
 'components' => [
 'assetManager' => [
 'appendTimestamp' => true,
],
],
];

By doing so, the URL of every published asset will be appended with its last modification timestamp. For example,
the URL to yii.js may look like /assets/5515a87c/yii.js?v=1423448645", where the parameter v represents the
last modification timestamp of the yii.js file. Now if you modify an asset, its URL will be changed, too, which causes
the client to fetch the latest version of the asset.

Commonly Used Asset Bundles

The core Yii code has defined many asset bundles. Among them, the following bundles are commonly used and may
be referenced in your application or extension code.

	[[yii\web\YiiAsset]]: It mainly includes the yii.js file which implements a mechanism of organizing JavaScript code
in modules. It also provides special support for data-method and data-confirm attributes and other useful features.
More information about yii.js can be found in the Client Scripts Section.

	[[yii\web\JqueryAsset]]: It includes the jquery.js file from the jQuery Bower package.

	[[yii\bootstrap\BootstrapAsset]]: It includes the CSS file from the Twitter Bootstrap framework.

	[[yii\bootstrap\BootstrapPluginAsset]]: It includes the JavaScript file from the Twitter Bootstrap framework for
supporting Bootstrap JavaScript plugins.

	[[yii\jui\JuiAsset]]: It includes the CSS and JavaScript files from the jQuery UI library.

If your code depends on jQuery, jQuery UI or Bootstrap, you should use these predefined asset bundles rather than
creating your own versions. If the default setting of these bundles do not satisfy your needs, you may customize them
as described in the Customizing Asset Bundle subsection.

Asset Conversion

Instead of directly writing CSS and/or JavaScript code, developers often write them in some extended syntax and
use special tools to convert it into CSS/JavaScript. For example, for CSS code you may use LESS [http://lesscss.org/]
or SCSS [http://sass-lang.com/]; and for JavaScript you may use TypeScript [http://www.typescriptlang.org/].

You can list the asset files in extended syntax in the [[yii\web\AssetBundle::css|css]] and [[yii\web\AssetBundle::js|js]] properties of an asset bundle. For example,

class AppAsset extends AssetBundle
{
 public $basePath = '@webroot';
 public $baseUrl = '@web';
 public $css = [
 'css/site.less',
];
 public $js = [
 'js/site.ts',
];
 public $depends = [
 'yii\web\YiiAsset',
 'yii\bootstrap\BootstrapAsset',
];
}

When you register such an asset bundle with a view, the [[yii\web\AssetManager|asset manager]] will automatically
run the pre-processor tools to convert assets in recognized extended syntax into CSS/JavaScript. When the view
finally renders a page, it will include the CSS/JavaScript files in the page, instead of the original assets
in extended syntax.

Yii uses the file name extensions to identify which extended syntax an asset is in. By default it recognizes
the following syntax and file name extensions:

	LESS [http://lesscss.org/]: .less

	SCSS [http://sass-lang.com/]: .scss

	Stylus [http://learnboost.github.io/stylus/]: .styl

	CoffeeScript [http://coffeescript.org/]: .coffee

	TypeScript [http://www.typescriptlang.org/]: .ts

Yii relies on the installed pre-processor tools to convert assets. For example, to use LESS [http://lesscss.org/]
you should install the lessc pre-processor command.

You can customize the pre-processor commands and the supported extended syntax by configuring
[[yii\web\AssetManager::converter]] like the following:

return [
 'components' => [
 'assetManager' => [
 'converter' => [
 'class' => 'yii\web\AssetConverter',
 'commands' => [
 'less' => ['css', 'lessc {from} {to} --no-color'],
 'ts' => ['js', 'tsc --out {to} {from}'],
],
],
],
],
];

In the above, we specify the supported extended syntax via the [[yii\web\AssetConverter::commands]] property.
The array keys are the file extension names (without leading dot), and the array values are the resulting
asset file extension names and the commands for performing the asset conversion. The tokens {from} and {to}
in the commands will be replaced with the source asset file paths and the target asset file paths.

Info: There are other ways of working with assets in extended syntax, besides the one described above.
For example, you can use build tools such as grunt [http://gruntjs.com/] to monitor and automatically
convert assets in extended syntax. In this case, you should list the resulting CSS/JavaScript files in
asset bundles rather than the original files.

Combining and Compressing Assets

A Web page can include many CSS and/or JavaScript files. To reduce the number of HTTP requests and the overall
download size of these files, a common practice is to combine and compress multiple CSS/JavaScript files into
one or very few files, and then include these compressed files instead of the original ones in the Web pages.

Info: Combining and compressing assets are usually needed when an application is in production mode.
In development mode, using the original CSS/JavaScript files is often more convenient for debugging purposes.

In the following, we introduce an approach to combine and compress asset files without the need to modify
your existing application code.

	Find all the asset bundles in your application that you plan to combine and compress.

	Divide these bundles into one or a few groups. Note that each bundle can only belong to a single group.

	Combine/compress the CSS files in each group into a single file. Do this similarly for the JavaScript files.

	Define a new asset bundle for each group:

	Set the [[yii\web\AssetBundle::css|css]] and [[yii\web\AssetBundle::js|js]] properties to be
the combined CSS and JavaScript files, respectively.

	Customize the asset bundles in each group by setting their [[yii\web\AssetBundle::css|css]] and
[[yii\web\AssetBundle::js|js]] properties to be empty, and setting their [[yii\web\AssetBundle::depends|depends]]
property to be the new asset bundle created for the group.

Using this approach, when you register an asset bundle in a view, it causes the automatic registration of
the new asset bundle for the group that the original bundle belongs to. And as a result, the combined/compressed
asset files are included in the page, instead of the original ones.

An Example

Let’s use an example to further explain the above approach.

Assume your application has two pages, X and Y. Page X uses asset bundles A, B and C, while Page Y uses asset bundles B, C and D.

You have two ways to divide these asset bundles. One is to use a single group to include all asset bundles, the
other is to put A in Group X, D in Group Y, and (B, C) in Group S. Which one is better? It depends. The first way
has the advantage that both pages share the same combined CSS and JavaScript files, which makes HTTP caching
more effective. On the other hand, because the single group contains all bundles, the size of the combined CSS and
JavaScript files will be bigger and thus increase the initial file transmission time. For simplicity in this example,
we will use the first way, i.e., use a single group to contain all bundles.

Info: Dividing asset bundles into groups is not trivial task. It usually requires analysis about the real world
traffic data of various assets on different pages. At the beginning, you may start with a single group for simplicity.

Use existing tools (e.g. Closure Compiler [https://developers.google.com/closure/compiler/],
YUI Compressor [https://github.com/yui/yuicompressor/]) to combine and compress CSS and JavaScript files in
all the bundles. Note that the files should be combined in the order that satisfies the dependencies among the bundles.
For example, if Bundle A depends on B which depends on both C and D, then you should list the asset files starting
from C and D, followed by B and finally A.

After combining and compressing, we get one CSS file and one JavaScript file. Assume they are named as
all-xyz.css and all-xyz.js, where xyz stands for a timestamp or a hash that is used to make the file name unique
to avoid HTTP caching problems.

We are at the last step now. Configure the [[yii\web\AssetManager|asset manager]] as follows in the application
configuration:

return [
 'components' => [
 'assetManager' => [
 'bundles' => [
 'all' => [
 'class' => 'yii\web\AssetBundle',
 'basePath' => '@webroot/assets',
 'baseUrl' => '@web/assets',
 'css' => ['all-xyz.css'],
 'js' => ['all-xyz.js'],
],
 'A' => ['css' => [], 'js' => [], 'depends' => ['all']],
 'B' => ['css' => [], 'js' => [], 'depends' => ['all']],
 'C' => ['css' => [], 'js' => [], 'depends' => ['all']],
 'D' => ['css' => [], 'js' => [], 'depends' => ['all']],
],
],
],
];

As explained in the Customizing Asset Bundles subsection, the above configuration
changes the default behavior of each bundle. In particular, Bundle A, B, C and D no longer have any asset files.
They now all depend on the all bundle which contains the combined all-xyz.css and all-xyz.js files.
Consequently, for Page X, instead of including the original source files from Bundle A, B and C, only these
two combined files will be included; the same thing happens to Page Y.

There is one final trick to make the above approach work more smoothly. Instead of directly modifying the
application configuration file, you may put the bundle customization array in a separate file and conditionally
include this file in the application configuration. For example,

return [
 'components' => [
 'assetManager' => [
 'bundles' => require __DIR__ . '/' . (YII_ENV_PROD ? 'assets-prod.php' : 'assets-dev.php'),
],
],
];

That is, the asset bundle configuration array is saved in assets-prod.php for production mode, and
assets-dev.php for non-production mode.

Note: this asset combining mechanism is based on the ability of [[yii\web\AssetManager::bundles]] to override the properties
of the registered asset bundles. However, as it already has been said above, this ability does not cover asset bundle
adjustments, which are performed at [[yii\web\AssetBundle::init()]] method or after bundle is registered. You should
avoid usage of such dynamic bundles during the asset combining.

Using the asset Command

Yii provides a console command named asset to automate the approach that we just described.

To use this command, you should first create a configuration file to describe what asset bundles should
be combined and how they should be grouped. You can use the asset/template sub-command to generate
a template first and then modify it to fit for your needs.

yii asset/template assets.php

The command generates a file named assets.php in the current directory. The content of this file looks like the following:

<?php
/**
 * Configuration file for the "yii asset" console command.
 * Note that in the console environment, some path aliases like '@webroot' and '@web' may not exist.
 * Please define these missing path aliases.
 */
return [
 // Adjust command/callback for JavaScript files compressing:
 'jsCompressor' => 'java -jar compiler.jar --js {from} --js_output_file {to}',
 // Adjust command/callback for CSS files compressing:
 'cssCompressor' => 'java -jar yuicompressor.jar --type css {from} -o {to}',
 // Whether to delete asset source after compression:
 'deleteSource' => false,
 // The list of asset bundles to compress:
 'bundles' => [
 // 'yii\web\YiiAsset',
 // 'yii\web\JqueryAsset',
],
 // Asset bundle for compression output:
 'targets' => [
 'all' => [
 'class' => 'yii\web\AssetBundle',
 'basePath' => '@webroot/assets',
 'baseUrl' => '@web/assets',
 'js' => 'js/all-{hash}.js',
 'css' => 'css/all-{hash}.css',
],
],
 // Asset manager configuration:
 'assetManager' => [
],
];

You should modify this file and specify which bundles you plan to combine in the bundles option. In the targets
option you should specify how the bundles should be divided into groups. You can specify one or multiple groups,
as aforementioned.

Note: Because the alias @webroot and @web are not available in the console application, you should
explicitly define them in the configuration.

JavaScript files are combined, compressed and written to js/all-{hash}.js where {hash} is replaced with the hash of
the resulting file.

The jsCompressor and cssCompressor options specify the console commands or PHP callbacks for performing
JavaScript and CSS combining/compressing. By default, Yii uses Closure Compiler [https://developers.google.com/closure/compiler/]
for combining JavaScript files and YUI Compressor [https://github.com/yui/yuicompressor/] for combining CSS files.
You should install those tools manually or adjust these options to use your favorite tools.

With the configuration file, you can run the asset command to combine and compress the asset files
and then generate a new asset bundle configuration file assets-prod.php:

yii asset assets.php config/assets-prod.php

The generated configuration file can be included in the application configuration, like described in
the last subsection.

Note: in case you customize asset bundles for your application via [[yii\web\AssetManager::bundles]] or
[[yii\web\AssetManager::assetMap]] and want this customization to be applied for the compression source files,
you should include these options to the assetManager section inside asset command configuration file.

Note: while specifying the compression source, you should avoid the use of asset bundles whose parameters may be
adjusted dynamically (e.g. at init() method or after registration), since they may work incorrectly after compression.

Info: Using the asset command is not the only option to automate the asset combining and compressing process.
You can use the excellent task runner tool grunt [http://gruntjs.com/] to achieve the same goal.

Grouping Asset Bundles

In the last subsection, we have explained how to combine all asset bundles into a single one in order to minimize
the HTTP requests for asset files referenced in an application. This is not always desirable in practice. For example,
imagine your application has a “front end” as well as a “back end”, each of which uses a different set of JavaScript
and CSS files. In this case, combining all asset bundles from both ends into a single one does not make sense,
because the asset bundles for the “front end” are not used by the “back end” and it would be a waste of network
bandwidth to send the “back end” assets when a “front end” page is requested.

To solve the above problem, you can divide asset bundles into groups and combine asset bundles for each group.
The following configuration shows how you can group asset bundles:

return [
 ...
 // Specify output bundles with groups:
 'targets' => [
 'allShared' => [
 'js' => 'js/all-shared-{hash}.js',
 'css' => 'css/all-shared-{hash}.css',
 'depends' => [
 // Include all assets shared between 'backend' and 'frontend'
 'yii\web\YiiAsset',
 'app\assets\SharedAsset',
],
],
 'allBackEnd' => [
 'js' => 'js/all-{hash}.js',
 'css' => 'css/all-{hash}.css',
 'depends' => [
 // Include only 'backend' assets:
 'app\assets\AdminAsset'
],
],
 'allFrontEnd' => [
 'js' => 'js/all-{hash}.js',
 'css' => 'css/all-{hash}.css',
 'depends' => [], // Include all remaining assets
],
],
 ...
];

As you can see, the asset bundles are divided into three groups: allShared, allBackEnd and allFrontEnd.
They each depends on an appropriate set of asset bundles. For example, allBackEnd depends on app\assets\AdminAsset.
When running asset command with this configuration, it will combine asset bundles according to the above specification.

Info: You may leave the depends configuration empty for one of the target bundle. By doing so, that particular
asset bundle will depend on all of the remaining asset bundles that other target bundles do not depend on.

 Controllers

Controllers

Controllers are part of the MVC [http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller] architecture.
They are objects of classes extending from [[yii\base\Controller]] and are responsible for processing requests and
generating responses. In particular, after taking over the control from applications,
controllers will analyze incoming request data, pass them to models, inject model results
into views, and finally generate outgoing responses.

Actions

Controllers are composed of actions which are the most basic units that end users can address and request for
execution. A controller can have one or multiple actions.

The following example shows a post controller with two actions: view and create:

namespace app\controllers;

use Yii;
use app\models\Post;
use yii\web\Controller;
use yii\web\NotFoundHttpException;

class PostController extends Controller
{
 public function actionView($id)
 {
 $model = Post::findOne($id);
 if ($model === null) {
 throw new NotFoundHttpException;
 }

 return $this->render('view', [
 'model' => $model,
]);
 }

 public function actionCreate()
 {
 $model = new Post;

 if ($model->load(Yii::$app->request->post()) && $model->save()) {
 return $this->redirect(['view', 'id' => $model->id]);
 } else {
 return $this->render('create', [
 'model' => $model,
]);
 }
 }
}

In the view action (defined by the actionView() method), the code first loads the model
according to the requested model ID; If the model is loaded successfully, it will display it using
a view named view. Otherwise, it will throw an exception.

In the create action (defined by the actionCreate() method), the code is similar. It first tries to populate
a new instance of the model using the request data and save the model. If both succeed it
will redirect the browser to the view action with the ID of the newly created model. Otherwise it will display
the create view through which users can provide the needed input.

Routes

End users address actions through the so-called routes. A route is a string that consists of the following parts:

	a module ID: this exists only if the controller belongs to a non-application module;

	a controller ID: a string that uniquely identifies the controller among all controllers within the same application
(or the same module if the controller belongs to a module);

	an action ID: a string that uniquely identifies the action among all actions within the same controller.

Routes take the following format:

ControllerID/ActionID

or the following format if the controller belongs to a module:

ModuleID/ControllerID/ActionID

So if a user requests with the URL http://hostname/index.php?r=site/index, the index action in the site controller
will be executed. For more details on how routes are resolved into actions, please refer to
the Routing and URL Creation section.

Creating Controllers

In [[yii\web\Application|Web applications]], controllers should extend from [[yii\web\Controller]] or its
child classes. Similarly in [[yii\console\Application|console applications]], controllers should extend from
[[yii\console\Controller]] or its child classes. The following code defines a site controller:

namespace app\controllers;

use yii\web\Controller;

class SiteController extends Controller
{
}

Controller IDs

Usually, a controller is designed to handle the requests regarding a particular type of resource.
For this reason, controller IDs are often nouns referring to the types of the resources that they are handling.
For example, you may use article as the ID of a controller that handles article data.

By default, controller IDs should contain these characters only: English letters in lower case, digits,
underscores, hyphens, and forward slashes. For example, article and post-comment are both valid controller IDs,
while article?, PostComment, admin\post are not.

A controller ID may also contain a subdirectory prefix. For example, admin/article stands for an article controller
in the admin subdirectory under the [[yii\base\Application::controllerNamespace|controller namespace]].
Valid characters for subdirectory prefixes include: English letters in lower and upper cases, digits, underscores, and
forward slashes, where forward slashes are used as separators for multi-level subdirectories (e.g. panels/admin).

Controller Class Naming

Controller class names can be derived from controller IDs according to the following procedure:

	Turn the first letter in each word separated by hyphens into upper case. Note that if the controller ID
contains slashes, this rule only applies to the part after the last slash in the ID.

	Remove hyphens and replace any forward slashes with backward slashes.

	Append the suffix Controller.

	Prepend the [[yii\base\Application::controllerNamespace|controller namespace]].

The following are some examples, assuming the [[yii\base\Application::controllerNamespace|controller namespace]]
takes the default value app\controllers:

	article becomes app\controllers\ArticleController;

	post-comment becomes app\controllers\PostCommentController;

	admin/post-comment becomes app\controllers\admin\PostCommentController;

	adminPanels/post-comment becomes app\controllers\adminPanels\PostCommentController.

Controller classes must be autoloadable. For this reason, in the above examples,
the article controller class should be saved in the file whose alias
is @app/controllers/ArticleController.php; while the admin/post-comment controller should be
in @app/controllers/admin/PostCommentController.php.

Info: The last example admin/post-comment shows how you can put a controller under a sub-directory
of the [[yii\base\Application::controllerNamespace|controller namespace]]. This is useful when you want
to organize your controllers into several categories and you do not want to use modules.

Controller Map

You can configure the [[yii\base\Application::controllerMap|controller map]] to overcome the constraints
of the controller IDs and class names described above. This is mainly useful when you are using
third-party controllers and you do not have control over their class names.

You may configure the [[yii\base\Application::controllerMap|controller map]] in the
application configuration. For example:

[
 'controllerMap' => [
 // declares "account" controller using a class name
 'account' => 'app\controllers\UserController',

 // declares "article" controller using a configuration array
 'article' => [
 'class' => 'app\controllers\PostController',
 'enableCsrfValidation' => false,
],
],
]

Default Controller

Each application has a default controller specified via the [[yii\base\Application::defaultRoute]] property.
When a request does not specify a route, the route specified by this property will be used.
For [[yii\web\Application|Web applications]], its value is 'site', while for [[yii\console\Application|console applications]],
it is help. Therefore, if a URL is http://hostname/index.php, then the site controller will handle the request.

You may change the default controller with the following application configuration:

[
 'defaultRoute' => 'main',
]

Creating Actions

Creating actions can be as simple as defining the so-called action methods in a controller class. An action method is
a public method whose name starts with the word action. The return value of an action method represents
the response data to be sent to end users. The following code defines two actions, index and hello-world:

namespace app\controllers;

use yii\web\Controller;

class SiteController extends Controller
{
 public function actionIndex()
 {
 return $this->render('index');
 }

 public function actionHelloWorld()
 {
 return 'Hello World';
 }
}

Action IDs

An action is often designed to perform a particular manipulation of a resource. For this reason,
action IDs are usually verbs, such as view, update, etc.

By default, action IDs should contain these characters only: English letters in lower case, digits,
underscores, and hyphens (you can use hyphens to separate words). For example,
view, update2, and comment-post are all valid action IDs, while view? and Update are not.

You can create actions in two ways: inline actions and standalone actions. An inline action is
defined as a method in the controller class, while a standalone action is a class extending
[[yii\base\Action]] or its child classes. Inline actions take less effort to create and are often preferred
if you have no intention to reuse these actions. Standalone actions, on the other hand, are mainly
created to be used in different controllers or be redistributed as extensions.

Inline Actions

Inline actions refer to the actions that are defined in terms of action methods as we just described.

The names of the action methods are derived from action IDs according to the following procedure:

	Turn the first letter in each word of the action ID into upper case.

	Remove hyphens.

	Prepend the prefix action.

For example, index becomes actionIndex, and hello-world becomes actionHelloWorld.

Note: The names of the action methods are case-sensitive. If you have a method named ActionIndex,
it will not be considered as an action method, and as a result, the request for the index action
will result in an exception. Also note that action methods must be public. A private or protected
method does NOT define an inline action.

Inline actions are the most commonly defined actions because they take little effort to create. However,
if you plan to reuse the same action in different places, or if you want to redistribute an action,
you should consider defining it as a standalone action.

Standalone Actions

Standalone actions are defined in terms of action classes extending [[yii\base\Action]] or its child classes.
For example, in the Yii releases, there are [[yii\web\ViewAction]] and [[yii\web\ErrorAction]], both of which
are standalone actions.

To use a standalone action, you should declare it in the action map by overriding the
[[yii\base\Controller::actions()]] method in your controller classes like the following:

public function actions()
{
 return [
 // declares "error" action using a class name
 'error' => 'yii\web\ErrorAction',

 // declares "view" action using a configuration array
 'view' => [
 'class' => 'yii\web\ViewAction',
 'viewPrefix' => '',
],
];
}

As you can see, the actions() method should return an array whose keys are action IDs and values the corresponding
action class names or configurations. Unlike inline actions, action IDs for standalone
actions can contain arbitrary characters, as long as they are declared in the actions() method.

To create a standalone action class, you should extend [[yii\base\Action]] or a child class, and implement
a public method named run(). The role of the run() method is similar to that of an action method. For example,

<?php
namespace app\components;

use yii\base\Action;

class HelloWorldAction extends Action
{
 public function run()
 {
 return "Hello World";
 }
}

Action Results

The return value of an action method or of the run() method of a standalone action is significant. It stands
for the result of the corresponding action.

The return value can be a response object which will be sent to the end user as the response.

	For [[yii\web\Application|Web applications]], the return value can also be some arbitrary data which will
be assigned to [[yii\web\Response::data]] and be further converted into a string representing the response body.

	For [[yii\console\Application|console applications]], the return value can also be an integer representing
the [[yii\console\Response::exitStatus|exit status]] of the command execution.

In the examples shown above, the action results are all strings which will be treated as the response body
to be sent to end users. The following example shows how an action can redirect the user browser to a new URL
by returning a response object (because the [[yii\web\Controller::redirect()|redirect()]] method returns
a response object):

public function actionForward()
{
 // redirect the user browser to http://example.com
 return $this->redirect('http://example.com');
}

Action Parameters

The action methods for inline actions and the run() methods for standalone actions can take parameters,
called action parameters. Their values are obtained from requests. For [[yii\web\Application|Web applications]],
the value of each action parameter is retrieved from $_GET using the parameter name as the key;
for [[yii\console\Application|console applications]], they correspond to the command line arguments.

In the following example, the view action (an inline action) has declared two parameters: $id and $version.

namespace app\controllers;

use yii\web\Controller;

class PostController extends Controller
{
 public function actionView($id, $version = null)
 {
 // ...
 }
}

The action parameters will be populated as follows for different requests:

	http://hostname/index.php?r=post/view&id=123: the $id parameter will be filled with the value
'123', while $version is still null because there is no version query parameter.

	http://hostname/index.php?r=post/view&id=123&version=2: the $id and $version parameters will
be filled with '123' and '2', respectively.

	http://hostname/index.php?r=post/view: a [[yii\web\BadRequestHttpException]] exception will be thrown
because the required $id parameter is not provided in the request.

	http://hostname/index.php?r=post/view&id[]=123: a [[yii\web\BadRequestHttpException]] exception will be thrown
because $id parameter is receiving an unexpected array value ['123'].

If you want an action parameter to accept array values, you should type-hint it with array, like the following:

public function actionView(array $id, $version = null)
{
 // ...
}

Now if the request is http://hostname/index.php?r=post/view&id[]=123, the $id parameter will take the value
of ['123']. If the request is http://hostname/index.php?r=post/view&id=123, the $id parameter will still
receive the same array value because the scalar value '123' will be automatically turned into an array.

The above examples mainly show how action parameters work for Web applications. For console applications,
please refer to the Console Commands section for more details.

Default Action

Each controller has a default action specified via the [[yii\base\Controller::defaultAction]] property.
When a route contains the controller ID only, it implies that the default action of
the specified controller is requested.

By default, the default action is set as index. If you want to change the default value, simply override
this property in the controller class, like the following:

namespace app\controllers;

use yii\web\Controller;

class SiteController extends Controller
{
 public $defaultAction = 'home';

 public function actionHome()
 {
 return $this->render('home');
 }
}

Controller Lifecycle

When processing a request, an application will create a controller
based on the requested route. The controller will then undergo the following lifecycle
to fulfill the request:

	The [[yii\base\Controller::init()]] method is called after the controller is created and configured.

	The controller creates an action object based on the requested action ID:

	If the action ID is not specified, the [[yii\base\Controller::defaultAction|default action ID]] will be used.

	If the action ID is found in the [[yii\base\Controller::actions()|action map]], a standalone action
will be created;

	If the action ID is found to match an action method, an inline action will be created;

	Otherwise an [[yii\base\InvalidRouteException]] exception will be thrown.

	The controller sequentially calls the beforeAction() method of the application, the module (if the controller
belongs to a module), and the controller.

	If one of the calls returns false, the rest of the uncalled beforeAction() methods will be skipped and the
action execution will be cancelled.

	By default, each beforeAction() method call will trigger a beforeAction event to which you can attach a handler.

	The controller runs the action.

	The action parameters will be analyzed and populated from the request data.

	The controller sequentially calls the afterAction() method of the controller, the module (if the controller
belongs to a module), and the application.

	By default, each afterAction() method call will trigger an afterAction event to which you can attach a handler.

	The application will take the action result and assign it to the response.

Best Practices

In a well-designed application, controllers are often very thin, with each action containing only a few lines of code.
If your controller is rather complicated, it usually indicates that you should refactor it and move some code
to other classes.

Here are some specific best practices. Controllers

	may access the request data;

	may call methods of models and other service components with request data;

	may use views to compose responses;

	should NOT process the request data - this should be done in the model layer;

	should avoid embedding HTML or other presentational code - this is better done in views.

 Entry Scripts

Entry Scripts

Entry scripts are the first step in the application bootstrapping process. An application (either
Web application or console application) has a single entry script. End users make requests to
entry scripts which instantiate application instances and forward the requests to them.

Entry scripts for Web applications must be stored under Web accessible directories so that they
can be accessed by end users. They are often named as index.php, but can also use any other names,
provided Web servers can locate them.

Entry scripts for console applications are usually stored under the base path
of applications and are named as yii (with the .php suffix). They should be made executable
so that users can run console applications through the command ./yii <route> [arguments] [options].

Entry scripts mainly do the following work:

	Define global constants;

	Register Composer autoloader [https://getcomposer.org/doc/01-basic-usage.md#autoloading];

	Include the [[Yii]] class file;

	Load application configuration;

	Create and configure an application instance;

	Call [[yii\base\Application::run()]] to process the incoming request.

Web Applications

The following is the code in the entry script for the Basic Web Project Template.

<?php

defined('YII_DEBUG') or define('YII_DEBUG', true);
defined('YII_ENV') or define('YII_ENV', 'dev');

// register Composer autoloader
require __DIR__ . '/../vendor/autoload.php';

// include Yii class file
require __DIR__ . '/../vendor/yiisoft/yii2/Yii.php';

// load application configuration
$config = require __DIR__ . '/../config/web.php';

// create, configure and run application
(new yii\web\Application($config))->run();

Console Applications

Similarly, the following is the code for the entry script of a console application:

#!/usr/bin/env php
<?php
/**
 * Yii console bootstrap file.
 *
 * @link http://www.yiiframework.com/
 * @copyright Copyright (c) 2008 Yii Software LLC
 * @license http://www.yiiframework.com/license/
 */

defined('YII_DEBUG') or define('YII_DEBUG', true);
defined('YII_ENV') or define('YII_ENV', 'dev');

// register Composer autoloader
require __DIR__ . '/vendor/autoload.php';

// include Yii class file
require __DIR__ . '/vendor/yiisoft/yii2/Yii.php';

// load application configuration
$config = require __DIR__ . '/config/console.php';

$application = new yii\console\Application($config);
$exitCode = $application->run();
exit($exitCode);

Defining Constants

Entry scripts are the best place for defining global constants. Yii supports the following three constants:

	YII_DEBUG: specifies whether the application is running in debug mode. When in debug mode, an application
will keep more log information, and will reveal detailed error call stacks if exceptions are thrown. For this
reason, debug mode should be used mainly during development. The default value of YII_DEBUG is false.

	YII_ENV: specifies which environment the application is running in. This will be described in
more detail in the Configurations section.
The default value of YII_ENV is 'prod', meaning the application is running in production environment.

	YII_ENABLE_ERROR_HANDLER: specifies whether to enable the error handler provided by Yii. The default
value of this constant is true.

When defining a constant, we often use the code like the following:

defined('YII_DEBUG') or define('YII_DEBUG', true);

which is equivalent to the following code:

if (!defined('YII_DEBUG')) {
 define('YII_DEBUG', true);
}

Clearly the former is more succinct and easier to understand.

Constant definitions should be done at the very beginning of an entry script so that they can take effect
when other PHP files are being included.

 Extensions

Extensions

Extensions are redistributable software packages specifically designed to be used in Yii applications and provide
ready-to-use features. For example, the yiisoft/yii2-debug [https://github.com/yiisoft/yii2-debug] extension adds a handy debug toolbar
at the bottom of every page in your application to help you more easily grasp how the pages are generated. You can
use extensions to accelerate your development process. You can also package your code as extensions to share with
other people your great work.

Info: We use the term “extension” to refer to Yii-specific software packages. For general purpose software packages
that can be used without Yii, we will refer to them using the term “package” or “library”.

Using Extensions

To use an extension, you need to install it first. Most extensions are distributed as Composer [https://getcomposer.org/]
packages which can be installed by taking the following two simple steps:

	modify the composer.json file of your application and specify which extensions (Composer packages) you want to install.

	run composer install to install the specified extensions.

Note that you may need to install Composer [https://getcomposer.org/] if you do not have it.

By default, Composer installs packages registered on Packagist [https://packagist.org/] - the biggest repository
for open source Composer packages. You can look for extensions on Packagist. You may also
create your own repository [https://getcomposer.org/doc/05-repositories.md#repository] and configure Composer
to use it. This is useful if you are developing private extensions that you want to share within your projects only.

Extensions installed by Composer are stored in the BasePath/vendor directory, where BasePath refers to the
application’s base path. Because Composer is a dependency manager, when
it installs a package, it will also install all its dependent packages.

For example, to install the yiisoft/yii2-imagine extension, modify your composer.json like the following:

{
 // ...

 "require": {
 // ... other dependencies

 "yiisoft/yii2-imagine": "*"
 }
}

After the installation, you should see the directory yiisoft/yii2-imagine under BasePath/vendor. You should
also see another directory imagine/imagine which contains the installed dependent package.

Info: The yiisoft/yii2-imagine is a core extension developed and maintained by the Yii developer team. All
core extensions are hosted on Packagist [https://packagist.org/] and named like yiisoft/yii2-xyz, where xyz
varies for different extensions.

Now you can use the installed extensions like they are part of your application. The following example shows
how you can use the yii\imagine\Image class provided by the yiisoft/yii2-imagine extension:

use Yii;
use yii\imagine\Image;

// generate a thumbnail image
Image::thumbnail('@webroot/img/test-image.jpg', 120, 120)
 ->save(Yii::getAlias('@runtime/thumb-test-image.jpg'), ['quality' => 50]);

Info: Extension classes are autoloaded by the Yii class autoloader.

Installing Extensions Manually

In some rare occasions, you may want to install some or all extensions manually, rather than relying on Composer.
To do so, you should:

	download the extension archive files and unpack them in the vendor directory.

	install the class autoloaders provided by the extensions, if any.

	download and install all dependent extensions as instructed.

If an extension does not have a class autoloader but follows the PSR-4 standard [http://www.php-fig.org/psr/psr-4/],
you may use the class autoloader provided by Yii to autoload the extension classes. All you need to do is just to
declare a root alias for the extension root directory. For example,
assuming you have installed an extension in the directory vendor/mycompany/myext, and the extension classes
are under the myext namespace, then you can include the following code in your application configuration:

[
 'aliases' => [
 '@myext' => '@vendor/mycompany/myext',
],
]

Creating Extensions

You may consider creating an extension when you feel the need to share with other people your great code.
An extension can contain any code you like, such as a helper class, a widget, a module, etc.

It is recommended that you create an extension in terms of a Composer package [https://getcomposer.org/] so that
it can be more easily installed and used by other users, as described in the last subsection.

Below are the basic steps you may follow to create an extension as a Composer package.

	Create a project for your extension and host it on a VCS repository, such as github.com [https://github.com].
The development and maintenance work for the extension should be done on this repository.

	Under the root directory of the project, create a file named composer.json as required by Composer. Please
refer to the next subsection for more details.

	Register your extension with a Composer repository, such as Packagist [https://packagist.org/], so that
other users can find and install your extension using Composer.

composer.json

Each Composer package must have a composer.json file in its root directory. The file contains the metadata about
the package. You may find complete specification about this file in the Composer Manual [https://getcomposer.org/doc/01-basic-usage.md#composer-json-project-setup].
The following example shows the composer.json file for the yiisoft/yii2-imagine extension:

{
 // package name
 "name": "yiisoft/yii2-imagine",

 // package type
 "type": "yii2-extension",

 "description": "The Imagine integration for the Yii framework",
 "keywords": ["yii2", "imagine", "image", "helper"],
 "license": "BSD-3-Clause",
 "support": {
 "issues": "https://github.com/yiisoft/yii2/issues?labels=ext%3Aimagine",
 "forum": "http://www.yiiframework.com/forum/",
 "wiki": "http://www.yiiframework.com/wiki/",
 "irc": "irc://irc.freenode.net/yii",
 "source": "https://github.com/yiisoft/yii2"
 },
 "authors": [
 {
 "name": "Antonio Ramirez",
 "email": "amigo.cobos@gmail.com"
 }
],

 // package dependencies
 "require": {
 "yiisoft/yii2": "~2.0.0",
 "imagine/imagine": "v0.5.0"
 },

 // class autoloading specs
 "autoload": {
 "psr-4": {
 "yii\\imagine\\": ""
 }
 }
}

Package Name

Each Composer package should have a package name which uniquely identifies the package among all others.
The format of package names is vendorName/projectName. For example, in the package name yiisoft/yii2-imagine,
the vendor name and the project name are yiisoft and yii2-imagine, respectively.

Do NOT use yiisoft as your vendor name as it is reserved for use by the Yii core code.

We recommend you prefix yii2- to the project name for packages representing Yii 2 extensions, for example,
myname/yii2-mywidget. This will allow users to more easily tell whether a package is a Yii 2 extension.

Package Type

It is important that you specify the package type of your extension as yii2-extension so that the package can
be recognized as a Yii extension when being installed.

When a user runs composer install to install an extension, the file vendor/yiisoft/extensions.php
will be automatically updated to include the information about the new extension. From this file, Yii applications
can know which extensions are installed (the information can be accessed via [[yii\base\Application::extensions]]).

Dependencies

Your extension depends on Yii (of course). So you should list it (yiisoft/yii2) in the require entry in composer.json.
If your extension also depends on other extensions or third-party libraries, you should list them as well.
Make sure you also list appropriate version constraints (e.g. 1.*, @stable) for each dependent package. Use stable
dependencies when your extension is released in a stable version.

Most JavaScript/CSS packages are managed using Bower [http://bower.io/] and/or NPM [https://www.npmjs.org/],
instead of Composer. Yii uses the Composer asset plugin [https://github.com/francoispluchino/composer-asset-plugin]
to enable managing these kinds of packages through Composer. If your extension depends on a Bower package, you can
simply list the dependency in composer.json like the following:

{
 // package dependencies
 "require": {
 "bower-asset/jquery": ">=1.11.*"
 }
}

The above code states that the extension depends on the jquery Bower package. In general, you can use
bower-asset/PackageName to refer to a Bower package in composer.json, and use npm-asset/PackageName
to refer to a NPM package. When Composer installs a Bower or NPM package, by default the package content will be
installed under the @vendor/bower/PackageName and @vendor/npm/Packages directories, respectively.
These two directories can also be referred to using the shorter aliases @bower/PackageName and @npm/PackageName.

For more details about asset management, please refer to the Assets section.

Class Autoloading

In order for your classes to be autoloaded by the Yii class autoloader or the Composer class autoloader,
you should specify the autoload entry in the composer.json file, like shown below:

{
 //

 "autoload": {
 "psr-4": {
 "yii\\imagine\\": ""
 }
 }
}

You may list one or multiple root namespaces and their corresponding file paths.

When the extension is installed in an application, Yii will create for each listed root namespace
an alias that refers to the directory corresponding to the namespace.
For example, the above autoload declaration will correspond to an alias named @yii/imagine.

Recommended Practices

Because extensions are meant to be used by other people, you often need to make an extra effort during development. Below
we introduce some common and recommended practices in creating high quality extensions.

Namespaces

To avoid name collisions and make the classes in your extension autoloadable, you should use namespaces and
name the classes in your extension by following the PSR-4 standard [http://www.php-fig.org/psr/psr-4/] or
PSR-0 standard [http://www.php-fig.org/psr/psr-0/].

Your class namespaces should start with vendorName\extensionName, where extensionName is similar to the project name
in the package name except that it should not contain the yii2- prefix. For example, for the yiisoft/yii2-imagine
extension, we use yii\imagine as the namespace for its classes.

Do not use yii, yii2 or yiisoft as your vendor name. These names are reserved for use by the Yii core code.

Bootstrapping Classes

Sometimes, you may want your extension to execute some code during the bootstrapping process
stage of an application. For example, your extension may want to respond to the application’s beginRequest event
to adjust some environment settings. While you can instruct users of the extension to explicitly attach your event
handler in the extension to the beginRequest event, a better way is to do this automatically.

To achieve this goal, you can create a so-called bootstrapping class by implementing [[yii\base\BootstrapInterface]].
For example,

namespace myname\mywidget;

use yii\base\BootstrapInterface;
use yii\base\Application;

class MyBootstrapClass implements BootstrapInterface
{
 public function bootstrap($app)
 {
 $app->on(Application::EVENT_BEFORE_REQUEST, function () {
 // do something here
 });
 }
}

You then list this class in the composer.json file of your extension like follows,

{
 // ...

 "extra": {
 "bootstrap": "myname\\mywidget\\MyBootstrapClass"
 }
}

When the extension is installed in an application, Yii will automatically instantiate the bootstrapping class
and call its [[yii\base\BootstrapInterface::bootstrap()|bootstrap()]] method during the bootstrapping process for
every request.

Working with Databases

Your extension may need to access databases. Do not assume that the applications that use your extension will always
use Yii::$db as the DB connection. Instead, you should declare a db property for the classes that require DB access.
The property will allow users of your extension to customize which DB connection they would like your extension to use.
As an example, you may refer to the [[yii\caching\DbCache]] class and see how it declares and uses the db property.

If your extension needs to create specific DB tables or make changes to DB schema, you should

	provide migrations to manipulate DB schema, rather than using plain SQL files;

	try to make the migrations applicable to different DBMS;

	avoid using Active Record in the migrations.

Using Assets

If your extension is a widget or a module, chances are that it may require some assets to work.
For example, a module may display some pages which contain images, JavaScript, and CSS. Because the files of an
extension are all under the same directory which is not Web accessible when installed in an application, you have
two choices to make the asset files directly accessible via Web:

	ask users of the extension to manually copy the asset files to a specific Web-accessible folder;

	declare an asset bundle and rely on the asset publishing mechanism to automatically
copy the files listed in the asset bundle to a Web-accessible folder.

We recommend you use the second approach so that your extension can be more easily used by other people.
Please refer to the Assets section for more details about how to work with assets in general.

Internationalization and Localization

Your extension may be used by applications supporting different languages! Therefore, if your extension displays
content to end users, you should try to internationalize and localize it. In particular,

	If the extension displays messages intended for end users, the messages should be wrapped into Yii::t()
so that they can be translated. Messages meant for developers (such as internal exception messages) do not need
to be translated.

	If the extension displays numbers, dates, etc., they should be formatted using [[yii\i18n\Formatter]] with
appropriate formatting rules.

For more details, please refer to the Internationalization section.

Testing

You want your extension to run flawlessly without bringing problems to other people. To reach this goal, you should
test your extension before releasing it to public.

It is recommended that you create various test cases to cover your extension code rather than relying on manual tests.
Each time before you release a new version of your extension, you may simply run these test cases to make sure
everything is in good shape. Yii provides testing support, which can help you to more easily write unit tests,
acceptance tests and functionality tests. For more details, please refer to the Testing section.

Versioning

You should give each release of your extension a version number (e.g. 1.0.1). We recommend you follow the
semantic versioning [http://semver.org] practice when determining what version numbers should be used.

Releasing

To let other people know about your extension, you need to release it to the public.

If it is the first time you are releasing an extension, you should register it on a Composer repository, such as
Packagist [https://packagist.org/]. After that, all you need to do is simply create a release tag (e.g. v1.0.1)
on the VCS repository of your extension and notify the Composer repository about the new release. People will
then be able to find the new release, and install or update the extension through the Composer repository.

In the releases of your extension, in addition to code files, you should also consider including the following to
help other people learn about and use your extension:

	A readme file in the package root directory: it describes what your extension does and how to install and use it.
We recommend you write it in Markdown [http://daringfireball.net/projects/markdown/] format and name the file
as readme.md.

	A changelog file in the package root directory: it lists what changes are made in each release. The file
may be written in Markdown format and named as changelog.md.

	An upgrade file in the package root directory: it gives the instructions on how to upgrade from older releases
of the extension. The file may be written in Markdown format and named as upgrade.md.

	Tutorials, demos, screenshots, etc.: these are needed if your extension provides many features that cannot be
fully covered in the readme file.

	API documentation: your code should be well documented to allow other people to more easily read and understand it.
You may refer to the BaseObject class file [https://github.com/yiisoft/yii2/blob/master/framework/base/BaseObject.php]
to learn how to document your code.

Info: Your code comments can be written in Markdown format. The yiisoft/yii2-apidoc extension provides a tool
for you to generate pretty API documentation based on your code comments.

Info: While not a requirement, we suggest your extension adhere to certain coding styles. You may refer to
the core framework code style [https://github.com/yiisoft/yii2/wiki/Core-framework-code-style].

Core Extensions

Yii provides the following core extensions (or “Official Extensions” [https://www.yiiframework.com/extensions/official]) that are developed and maintained by the Yii developer team. They are all
registered on Packagist [https://packagist.org/] and can be easily installed as described in the
Using Extensions subsection.

	yiisoft/yii2-apidoc [https://www.yiiframework.com/extension/yiisoft/yii2-apidoc]:
provides an extensible and high-performance API documentation generator. It is also used to generate the core
framework API documentation.

	yiisoft/yii2-authclient [https://www.yiiframework.com/extension/yiisoft/yii2-authclient]:
provides a set of commonly used auth clients, such as Facebook OAuth2 client, GitHub OAuth2 client.

	yiisoft/yii2-bootstrap [https://www.yiiframework.com/extension/yiisoft/yii2-bootstrap]:
provides a set of widgets that encapsulate the Bootstrap [http://getbootstrap.com/] components and plugins.

	yiisoft/yii2-codeception [https://github.com/yiisoft/yii2-codeception] (deprecated):
provides testing support based on Codeception [http://codeception.com/].

	yiisoft/yii2-debug [https://www.yiiframework.com/extension/yiisoft/yii2-debug]:
provides debugging support for Yii applications. When this extension is used, a debugger toolbar will appear
at the bottom of every page. The extension also provides a set of standalone pages to display more detailed
debug information.

	yiisoft/yii2-elasticsearch [https://www.yiiframework.com/extension/yiisoft/yii2-elasticsearch]:
provides the support for using Elasticsearch [http://www.elasticsearch.org/]. It includes basic querying/search
support and also implements the Active Record pattern that allows you to store active records
in Elasticsearch.

	yiisoft/yii2-faker [https://www.yiiframework.com/extension/yiisoft/yii2-faker]:
provides the support for using Faker [https://www.yiiframework.com/extension/fzaninotto/Faker] to generate fake data for you.

	yiisoft/yii2-gii [https://www.yiiframework.com/extension/yiisoft/yii2-gii]:
provides a Web-based code generator that is highly extensible and can be used to quickly generate models,
forms, modules, CRUD, etc.

	yiisoft/yii2-httpclient [https://www.yiiframework.com/extension/yiisoft/yii2-httpclient]:
provides an HTTP client.

	yiisoft/yii2-imagine [https://www.yiiframework.com/extension/yiisoft/yii2-imagine]:
provides commonly used image manipulation functions based on Imagine [http://imagine.readthedocs.org/].

	yiisoft/yii2-jui [https://www.yiiframework.com/extension/yiisoft/yii2-jui]:
provides a set of widgets that encapsulate the JQuery UI [http://jqueryui.com/] interactions and widgets.

	yiisoft/yii2-mongodb [https://www.yiiframework.com/extension/yiisoft/yii2-mongodb]:
provides the support for using MongoDB [http://www.mongodb.org/]. It includes features such as basic query,
Active Record, migrations, caching, code generation, etc.

	yiisoft/yii2-queue [https://www.yiiframework.com/extension/yiisoft/yii2-queue]:
provides the supports for running tasks asynchronously via queues.
It supports queues based on DB, Redis, RabbitMQ, AMQP, Beanstalk and Gearman.

	yiisoft/yii2-redis [https://www.yiiframework.com/extension/yiisoft/yii2-redis]:
provides the support for using redis [http://redis.io/]. It includes features such as basic query,
Active Record, caching, etc.

	yiisoft/yii2-shell [https://www.yiiframework.com/extension/yiisoft/yii2-shell]:
provides an interactive shell based on psysh [http://psysh.org/].

	yiisoft/yii2-smarty [https://www.yiiframework.com/extension/yiisoft/yii2-smarty]:
provides a template engine based on Smarty [http://www.smarty.net/].

	yiisoft/yii2-sphinx [https://www.yiiframework.com/extension/yiisoft/yii2-sphinx]:
provides the support for using Sphinx [http://sphinxsearch.com]. It includes features such as basic query,
Active Record, code generation, etc.

	yiisoft/yii2-swiftmailer [https://www.yiiframework.com/extension/yiisoft/yii2-swiftmailer]:
provides email sending features based on swiftmailer [http://swiftmailer.org/].

	yiisoft/yii2-twig [https://www.yiiframework.com/extension/yiisoft/yii2-twig]:
provides a template engine based on Twig [http://twig.sensiolabs.org/].

The following official extensions are for Yii 2.1 and above.
You don’t need to install them for Yii 2.0, since they are included in the core framework.

	yiisoft/yii2-captcha [https://www.yiiframework.com/extension/yiisoft/yii2-captcha]:
provides an CAPTCHA.

	yiisoft/yii2-jquery [https://www.yiiframework.com/extension/yiisoft/yii2-jquery]:
provides a support for jQuery [https://jquery.com/].

	yiisoft/yii2-maskedinput [https://www.yiiframework.com/extension/yiisoft/yii2-maskedinput]:
provides a masked input widget based on jQuery Input Mask plugin [http://robinherbots.github.io/Inputmask/].

	yiisoft/yii2-mssql [https://www.yiiframework.com/extension/yiisoft/yii2-mssql]:
provides the support for using MSSQL [https://www.microsoft.com/sql-server/].

	yiisoft/yii2-oracle [https://www.yiiframework.com/extension/yiisoft/yii2-oracle]:
provides the support for using Oracle [https://www.oracle.com/].

	yiisoft/yii2-rest [https://www.yiiframework.com/extension/yiisoft/yii2-rest]:
provides a support for the REST API.

 Filters

Filters

Filters are objects that run before and/or after controller actions. For example,
an access control filter may run before actions to ensure that they are allowed to be accessed by particular end users;
a content compression filter may run after actions to compress the response content before sending them out to end users.

A filter may consist of a pre-filter (filtering logic applied before actions) and/or a post-filter (logic applied
after actions).

Using Filters

Filters are essentially a special kind of behaviors. Therefore, using filters is the same
as using behaviors. You can declare filters in a controller class
by overriding its [[yii\base\Controller::behaviors()|behaviors()]] method like the following:

public function behaviors()
{
 return [
 [
 'class' => 'yii\filters\HttpCache',
 'only' => ['index', 'view'],
 'lastModified' => function ($action, $params) {
 $q = new \yii\db\Query();
 return $q->from('user')->max('updated_at');
 },
],
];
}

By default, filters declared in a controller class will be applied to all actions in that controller. You can,
however, explicitly specify which actions the filter should be applied to by configuring the
[[yii\base\ActionFilter::only|only]] property. In the above example, the HttpCache filter only applies to the
index and view actions. You can also configure the [[yii\base\ActionFilter::except|except]] property to blacklist
some actions from being filtered.

Besides controllers, you can also declare filters in a module or application.
When you do so, the filters will be applied to all controller actions belonging to that module or application,
unless you configure the filters’ [[yii\base\ActionFilter::only|only]] and [[yii\base\ActionFilter::except|except]]
properties like described above.

Note: When declaring filters in modules or applications, you should use routes
instead of action IDs in the [[yii\base\ActionFilter::only|only]] and [[yii\base\ActionFilter::except|except]] properties.
This is because action IDs alone cannot fully specify actions within the scope of a module or application.

When multiple filters are configured for a single action, they are applied according to the rules described below:

	Pre-filtering

	Apply filters declared in the application in the order they are listed in behaviors().

	Apply filters declared in the module in the order they are listed in behaviors().

	Apply filters declared in the controller in the order they are listed in behaviors().

	If any of the filters cancel the action execution, the filters (both pre-filters and post-filters) after it will
not be applied.

	Running the action if it passes the pre-filtering.

	Post-filtering

	Apply filters declared in the controller in the reverse order they are listed in behaviors().

	Apply filters declared in the module in the reverse order they are listed in behaviors().

	Apply filters declared in the application in the reverse order they are listed in behaviors().

Creating Filters

To create a new action filter, extend from [[yii\base\ActionFilter]] and override the
[[yii\base\ActionFilter::beforeAction()|beforeAction()]] and/or [[yii\base\ActionFilter::afterAction()|afterAction()]]
methods. The former will be executed before an action runs while the latter after an action runs.
The return value of [[yii\base\ActionFilter::beforeAction()|beforeAction()]] determines whether an action should
be executed or not. If it is false, the filters after this one will be skipped and the action will not be executed.

The following example shows a filter that logs the action execution time:

namespace app\components;

use Yii;
use yii\base\ActionFilter;

class ActionTimeFilter extends ActionFilter
{
 private $_startTime;

 public function beforeAction($action)
 {
 $this->_startTime = microtime(true);
 return parent::beforeAction($action);
 }

 public function afterAction($action, $result)
 {
 $time = microtime(true) - $this->_startTime;
 Yii::debug("Action '{$action->uniqueId}' spent $time second.");
 return parent::afterAction($action, $result);
 }
}

Core Filters

Yii provides a set of commonly used filters, found primarily under the yii\filters namespace. In the following,
we will briefly introduce these filters.

[[yii\filters\AccessControl|AccessControl]]

AccessControl provides simple access control based on a set of [[yii\filters\AccessControl::rules|rules]].
In particular, before an action is executed, AccessControl will examine the listed rules and find the first one
that matches the current context variables (such as user IP address, user login status, etc.) The matching
rule will dictate whether to allow or deny the execution of the requested action. If no rule matches, the access
will be denied.

The following example shows how to allow authenticated users to access the create and update actions
while denying all other users from accessing these two actions.

use yii\filters\AccessControl;

public function behaviors()
{
 return [
 'access' => [
 'class' => AccessControl::className(),
 'only' => ['create', 'update'],
 'rules' => [
 // allow authenticated users
 [
 'allow' => true,
 'roles' => ['@'],
],
 // everything else is denied by default
],
],
];
}

For more details about access control in general, please refer to the Authorization section.

Authentication Method Filters

Authentication method filters are used to authenticate a user using various methods, such as
HTTP Basic Auth [http://en.wikipedia.org/wiki/Basic_access_authentication], OAuth 2 [http://oauth.net/2/].
These filter classes are all under the yii\filters\auth namespace.

The following example shows how you can use [[yii\filters\auth\HttpBasicAuth]] to authenticate a user using
an access token based on HTTP Basic Auth method. Note that in order for this to work, your
[[yii\web\User::identityClass|user identity class]] must implement the [[yii\web\IdentityInterface::findIdentityByAccessToken()|findIdentityByAccessToken()]]
method.

use yii\filters\auth\HttpBasicAuth;

public function behaviors()
{
 return [
 'basicAuth' => [
 'class' => HttpBasicAuth::className(),
],
];
}

Authentication method filters are commonly used in implementing RESTful APIs. For more details, please refer to the
RESTful Authentication section.

[[yii\filters\ContentNegotiator|ContentNegotiator]]

ContentNegotiator supports response format negotiation and application language negotiation. It will try to
determine the response format and/or language by examining GET parameters and Accept HTTP header.

In the following example, ContentNegotiator is configured to support JSON and XML response formats, and
English (United States) and German languages.

use yii\filters\ContentNegotiator;
use yii\web\Response;

public function behaviors()
{
 return [
 [
 'class' => ContentNegotiator::className(),
 'formats' => [
 'application/json' => Response::FORMAT_JSON,
 'application/xml' => Response::FORMAT_XML,
],
 'languages' => [
 'en-US',
 'de',
],
],
];
}

Response formats and languages often need to be determined much earlier during
the application lifecycle. For this reason, ContentNegotiator
is designed in a way such that it can also be used as a bootstrapping component
besides being used as a filter. For example, you may configure it in the application configuration
like the following:

use yii\filters\ContentNegotiator;
use yii\web\Response;

[
 'bootstrap' => [
 [
 'class' => ContentNegotiator::className(),
 'formats' => [
 'application/json' => Response::FORMAT_JSON,
 'application/xml' => Response::FORMAT_XML,
],
 'languages' => [
 'en-US',
 'de',
],
],
],
];

Info: In case the preferred content type and language cannot be determined from a request, the first format and
language listed in [[formats]] and [[languages]] will be used.

[[yii\filters\HttpCache|HttpCache]]

HttpCache implements client-side caching by utilizing the Last-Modified and Etag HTTP headers.
For example,

use yii\filters\HttpCache;

public function behaviors()
{
 return [
 [
 'class' => HttpCache::className(),
 'only' => ['index'],
 'lastModified' => function ($action, $params) {
 $q = new \yii\db\Query();
 return $q->from('user')->max('updated_at');
 },
],
];
}

Please refer to the HTTP Caching section for more details about using HttpCache.

[[yii\filters\PageCache|PageCache]]

PageCache implements server-side caching of whole pages. In the following example, PageCache is applied
to the index action to cache the whole page for maximum 60 seconds or until the count of entries in the post
table changes. It also stores different versions of the page depending on the chosen application language.

use yii\filters\PageCache;
use yii\caching\DbDependency;

public function behaviors()
{
 return [
 'pageCache' => [
 'class' => PageCache::className(),
 'only' => ['index'],
 'duration' => 60,
 'dependency' => [
 'class' => DbDependency::className(),
 'sql' => 'SELECT COUNT(*) FROM post',
],
 'variations' => [
 \Yii::$app->language,
]
],
];
}

Please refer to the Page Caching section for more details about using PageCache.

[[yii\filters\RateLimiter|RateLimiter]]

RateLimiter implements a rate limiting algorithm based on the leaky bucket algorithm [http://en.wikipedia.org/wiki/Leaky_bucket].
It is primarily used in implementing RESTful APIs. Please refer to the Rate Limiting section
for details about using this filter.

[[yii\filters\VerbFilter|VerbFilter]]

VerbFilter checks if the HTTP request methods are allowed by the requested actions. If not allowed, it will
throw an HTTP 405 exception. In the following example, VerbFilter is declared to specify a typical set of allowed
request methods for CRUD actions.

use yii\filters\VerbFilter;

public function behaviors()
{
 return [
 'verbs' => [
 'class' => VerbFilter::className(),
 'actions' => [
 'index' => ['get'],
 'view' => ['get'],
 'create' => ['get', 'post'],
 'update' => ['get', 'put', 'post'],
 'delete' => ['post', 'delete'],
],
],
];
}

[[yii\filters\Cors|Cors]]

Cross-origin resource sharing CORS [https://developer.mozilla.org/en-US/docs/HTTP/Access_control_CORS] is a mechanism that allows many resources (e.g. fonts, JavaScript, etc.)
on a Web page to be requested from another domain outside the domain the resource originated from.
In particular, JavaScript’s AJAX calls can use the XMLHttpRequest mechanism. Such “cross-domain” requests would
otherwise be forbidden by Web browsers, per the same origin security policy.
CORS defines a way in which the browser and the server can interact to determine whether or not to allow the cross-origin request.

The [[yii\filters\Cors|Cors filter]] should be defined before Authentication / Authorization filters to make sure the CORS headers
will always be sent.

use yii\filters\Cors;
use yii\helpers\ArrayHelper;

public function behaviors()
{
 return ArrayHelper::merge([
 [
 'class' => Cors::className(),
],
], parent::behaviors());
}

Also check the section on REST Controllers if you want to add the CORS filter to an
[[yii\rest\ActiveController]] class in your API.

The Cors filtering could be tuned using the [[yii\filters\Cors::$cors|$cors]] property.

	cors['Origin']: array used to define allowed origins. Can be ['*'] (everyone) or ['http://www.myserver.net', 'http://www.myotherserver.com']. Default to ['*'].

	cors['Access-Control-Request-Method']: array of allowed verbs like ['GET', 'OPTIONS', 'HEAD']. Default to ['GET', 'POST', 'PUT', 'PATCH', 'DELETE', 'HEAD', 'OPTIONS'].

	cors['Access-Control-Request-Headers']: array of allowed headers. Can be ['*'] all headers or specific ones ['X-Request-With']. Default to ['*'].

	cors['Access-Control-Allow-Credentials']: define if current request can be made using credentials. Can be true, false or null (not set). Default to null.

	cors['Access-Control-Max-Age']: define lifetime of pre-flight request. Default to 86400.

For example, allowing CORS for origin : http://www.myserver.net with method GET, HEAD and OPTIONS :

use yii\filters\Cors;
use yii\helpers\ArrayHelper;

public function behaviors()
{
 return ArrayHelper::merge([
 [
 'class' => Cors::className(),
 'cors' => [
 'Origin' => ['http://www.myserver.net'],
 'Access-Control-Request-Method' => ['GET', 'HEAD', 'OPTIONS'],
],
],
], parent::behaviors());
}

You may tune the CORS headers by overriding default parameters on a per action basis.
For example adding the Access-Control-Allow-Credentials for the login action could be done like this :

use yii\filters\Cors;
use yii\helpers\ArrayHelper;

public function behaviors()
{
 return ArrayHelper::merge([
 [
 'class' => Cors::className(),
 'cors' => [
 'Origin' => ['http://www.myserver.net'],
 'Access-Control-Request-Method' => ['GET', 'HEAD', 'OPTIONS'],
],
 'actions' => [
 'login' => [
 'Access-Control-Allow-Credentials' => true,
]
]
],
], parent::behaviors());
}

 Models

Models

Models are part of the MVC [http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller] architecture.
They are objects representing business data, rules and logic.

You can create model classes by extending [[yii\base\Model]] or its child classes. The base class
[[yii\base\Model]] supports many useful features:

	Attributes: represent the business data and can be accessed like normal object properties
or array elements;

	Attribute labels: specify the display labels for attributes;

	Massive assignment: supports populating multiple attributes in a single step;

	Validation rules: ensures input data based on the declared validation rules;

	Data Exporting: allows model data to be exported in terms of arrays with customizable formats.

The Model class is also the base class for more advanced models, such as Active Record.
Please refer to the relevant documentation for more details about these advanced models.

Info: You are not required to base your model classes on [[yii\base\Model]]. However, because there are many Yii
components built to support [[yii\base\Model]], it is usually the preferable base class for a model.

Attributes

Models represent business data in terms of attributes. Each attribute is like a publicly accessible property
of a model. The method [[yii\base\Model::attributes()]] specifies what attributes a model class has.

You can access an attribute like accessing a normal object property:

$model = new \app\models\ContactForm;

// "name" is an attribute of ContactForm
$model->name = 'example';
echo $model->name;

You can also access attributes like accessing array elements, thanks to the support for
ArrayAccess [http://php.net/manual/en/class.arrayaccess.php] and Traversable [http://php.net/manual/en/class.traversable.php]
by [[yii\base\Model]]:

$model = new \app\models\ContactForm;

// accessing attributes like array elements
$model['name'] = 'example';
echo $model['name'];

// Model is traversable using foreach.
foreach ($model as $name => $value) {
 echo "$name: $value\n";
}

Defining Attributes

By default, if your model class extends directly from [[yii\base\Model]], all its non-static public member
variables are attributes. For example, the ContactForm model class below has four attributes: name, email,
subject and body. The ContactForm model is used to represent the input data received from an HTML form.

namespace app\models;

use yii\base\Model;

class ContactForm extends Model
{
 public $name;
 public $email;
 public $subject;
 public $body;
}

You may override [[yii\base\Model::attributes()]] to define attributes in a different way. The method should
return the names of the attributes in a model. For example, [[yii\db\ActiveRecord]] does so by returning
the column names of the associated database table as its attribute names. Note that you may also need to
override the magic methods such as __get(), __set() so that the attributes can be accessed like
normal object properties.

Attribute Labels

When displaying values or getting input for attributes, you often need to display some labels associated
with attributes. For example, given an attribute named firstName, you may want to display a label First Name
which is more user-friendly when displayed to end users in places such as form inputs and error messages.

You can get the label of an attribute by calling [[yii\base\Model::getAttributeLabel()]]. For example,

$model = new \app\models\ContactForm;

// displays "Name"
echo $model->getAttributeLabel('name');

By default, attribute labels are automatically generated from attribute names. The generation is done by
the method [[yii\base\Model::generateAttributeLabel()]]. It will turn camel-case variable names into
multiple words with the first letter in each word in upper case. For example, username becomes Username,
and firstName becomes First Name.

If you do not want to use automatically generated labels, you may override [[yii\base\Model::attributeLabels()]]
to explicitly declare attribute labels. For example,

namespace app\models;

use yii\base\Model;

class ContactForm extends Model
{
 public $name;
 public $email;
 public $subject;
 public $body;

 public function attributeLabels()
 {
 return [
 'name' => 'Your name',
 'email' => 'Your email address',
 'subject' => 'Subject',
 'body' => 'Content',
];
 }
}

For applications supporting multiple languages, you may want to translate attribute labels. This can be done
in the [[yii\base\Model::attributeLabels()|attributeLabels()]] method as well, like the following:

public function attributeLabels()
{
 return [
 'name' => \Yii::t('app', 'Your name'),
 'email' => \Yii::t('app', 'Your email address'),
 'subject' => \Yii::t('app', 'Subject'),
 'body' => \Yii::t('app', 'Content'),
];
}

You may even conditionally define attribute labels. For example, based on the scenario the model
is being used in, you may return different labels for the same attribute.

Info: Strictly speaking, attribute labels are part of views. But declaring labels
in models is often very convenient and can result in very clean and reusable code.

Scenarios

A model may be used in different scenarios. For example, a User model may be used to collect user login inputs,
but it may also be used for the user registration purpose. In different scenarios, a model may use different
business rules and logic. For example, the email attribute may be required during user registration,
but not so during user login.

A model uses the [[yii\base\Model::scenario]] property to keep track of the scenario it is being used in.
By default, a model supports only a single scenario named default. The following code shows two ways of
setting the scenario of a model:

// scenario is set as a property
$model = new User;
$model->scenario = User::SCENARIO_LOGIN;

// scenario is set through configuration
$model = new User(['scenario' => User::SCENARIO_LOGIN]);

By default, the scenarios supported by a model are determined by the validation rules declared
in the model. However, you can customize this behavior by overriding the [[yii\base\Model::scenarios()]] method,
like the following:

namespace app\models;

use yii\db\ActiveRecord;

class User extends ActiveRecord
{
 const SCENARIO_LOGIN = 'login';
 const SCENARIO_REGISTER = 'register';

 public function scenarios()
 {
 return [
 self::SCENARIO_LOGIN => ['username', 'password'],
 self::SCENARIO_REGISTER => ['username', 'email', 'password'],
];
 }
}

Info: In the above and following examples, the model classes are extending from [[yii\db\ActiveRecord]]
because the usage of multiple scenarios usually happens to Active Record classes.

The scenarios() method returns an array whose keys are the scenario names and values the corresponding
active attributes. An active attribute can be massively assigned and is subject
to validation. In the above example, the username and password attributes are active
in the login scenario; while in the register scenario, email is also active besides username and password.

The default implementation of scenarios() will return all scenarios found in the validation rule declaration
method [[yii\base\Model::rules()]]. When overriding scenarios(), if you want to introduce new scenarios
in addition to the default ones, you may write code like the following:

namespace app\models;

use yii\db\ActiveRecord;

class User extends ActiveRecord
{
 const SCENARIO_LOGIN = 'login';
 const SCENARIO_REGISTER = 'register';

 public function scenarios()
 {
 $scenarios = parent::scenarios();
 $scenarios[self::SCENARIO_LOGIN] = ['username', 'password'];
 $scenarios[self::SCENARIO_REGISTER] = ['username', 'email', 'password'];
 return $scenarios;
 }
}

The scenario feature is primarily used by validation and massive attribute assignment.
You can, however, use it for other purposes. For example, you may declare attribute labels
differently based on the current scenario.

Validation Rules

When the data for a model is received from end users, it should be validated to make sure it satisfies
certain rules (called validation rules, also known as business rules). For example, given a ContactForm model,
you may want to make sure all attributes are not empty and the email attribute contains a valid email address.
If the values for some attributes do not satisfy the corresponding business rules, appropriate error messages
should be displayed to help the user to fix the errors.

You may call [[yii\base\Model::validate()]] to validate the received data. The method will use
the validation rules declared in [[yii\base\Model::rules()]] to validate every relevant attribute. If no error
is found, it will return true. Otherwise, it will keep the errors in the [[yii\base\Model::errors]] property
and return false. For example,

$model = new \app\models\ContactForm;

// populate model attributes with user inputs
$model->attributes = \Yii::$app->request->post('ContactForm');

if ($model->validate()) {
 // all inputs are valid
} else {
 // validation failed: $errors is an array containing error messages
 $errors = $model->errors;
}

To declare validation rules associated with a model, override the [[yii\base\Model::rules()]] method by returning
the rules that the model attributes should satisfy. The following example shows the validation rules declared
for the ContactForm model:

public function rules()
{
 return [
 // the name, email, subject and body attributes are required
 [['name', 'email', 'subject', 'body'], 'required'],

 // the email attribute should be a valid email address
 ['email', 'email'],
];
}

A rule can be used to validate one or multiple attributes, and an attribute may be validated by one or multiple rules.
Please refer to the Validating Input section for more details on how to declare
validation rules.

Sometimes, you may want a rule to be applied only in certain scenarios. To do so, you can
specify the on property of a rule, like the following:

public function rules()
{
 return [
 // username, email and password are all required in "register" scenario
 [['username', 'email', 'password'], 'required', 'on' => self::SCENARIO_REGISTER],

 // username and password are required in "login" scenario
 [['username', 'password'], 'required', 'on' => self::SCENARIO_LOGIN],
];
}

If you do not specify the on property, the rule would be applied in all scenarios. A rule is called
an active rule if it can be applied in the current [[yii\base\Model::scenario|scenario]].

An attribute will be validated if and only if it is an active attribute declared in scenarios() and
is associated with one or multiple active rules declared in rules().

Massive Assignment

Massive assignment is a convenient way of populating a model with user inputs using a single line of code.
It populates the attributes of a model by assigning the input data directly to the [[yii\base\Model::$attributes]]
property. The following two pieces of code are equivalent, both trying to assign the form data submitted by end users
to the attributes of the ContactForm model. Clearly, the former, which uses massive assignment, is much cleaner
and less error prone than the latter:

$model = new \app\models\ContactForm;
$model->attributes = \Yii::$app->request->post('ContactForm');

$model = new \app\models\ContactForm;
$data = \Yii::$app->request->post('ContactForm', []);
$model->name = isset($data['name']) ? $data['name'] : null;
$model->email = isset($data['email']) ? $data['email'] : null;
$model->subject = isset($data['subject']) ? $data['subject'] : null;
$model->body = isset($data['body']) ? $data['body'] : null;

Safe Attributes

Massive assignment only applies to the so-called safe attributes which are the attributes listed in
[[yii\base\Model::scenarios()]] for the current [[yii\base\Model::scenario|scenario]] of a model.
For example, if the User model has the following scenario declaration, then when the current scenario
is login, only the username and password can be massively assigned. Any other attributes will
be kept untouched.

public function scenarios()
{
 return [
 self::SCENARIO_LOGIN => ['username', 'password'],
 self::SCENARIO_REGISTER => ['username', 'email', 'password'],
];
}

Info: The reason that massive assignment only applies to safe attributes is because you want to
control which attributes can be modified by end user data. For example, if the User model
has a permission attribute which determines the permission assigned to the user, you would
like this attribute to be modifiable by administrators through a backend interface only.

Because the default implementation of [[yii\base\Model::scenarios()]] will return all scenarios and attributes
found in [[yii\base\Model::rules()]], if you do not override this method, it means an attribute is safe as long
as it appears in one of the active validation rules.

For this reason, a special validator aliased safe is provided so that you can declare an attribute
to be safe without actually validating it. For example, the following rules declare that both title
and description are safe attributes.

public function rules()
{
 return [
 [['title', 'description'], 'safe'],
];
}

Unsafe Attributes

As described above, the [[yii\base\Model::scenarios()]] method serves for two purposes: determining which attributes
should be validated, and determining which attributes are safe. In some rare cases, you may want to validate
an attribute but do not want to mark it safe. You can do so by prefixing an exclamation mark ! to the attribute
name when declaring it in scenarios(), like the secret attribute in the following:

public function scenarios()
{
 return [
 self::SCENARIO_LOGIN => ['username', 'password', '!secret'],
];
}

When the model is in the login scenario, all three attributes will be validated. However, only the username
and password attributes can be massively assigned. To assign an input value to the secret attribute, you
have to do it explicitly as follows,

$model->secret = $secret;

The same can be done in rules() method:

public function rules()
{
 return [
 [['username', 'password', '!secret'], 'required', 'on' => 'login']
];
}

In this case attributes username, password and secret are required, but secret must be assigned explicitly.

Data Exporting

Models often need to be exported in different formats. For example, you may want to convert a collection of
models into JSON or Excel format. The exporting process can be broken down into two independent steps:

	models are converted into arrays;

	the arrays are converted into target formats.

You may just focus on the first step, because the second step can be achieved by generic
data formatters, such as [[yii\web\JsonResponseFormatter]].

The simplest way of converting a model into an array is to use the [[yii\base\Model::$attributes]] property.
For example,

$post = \app\models\Post::findOne(100);
$array = $post->attributes;

By default, the [[yii\base\Model::$attributes]] property will return the values of all attributes
declared in [[yii\base\Model::attributes()]].

A more flexible and powerful way of converting a model into an array is to use the [[yii\base\Model::toArray()]]
method. Its default behavior is the same as that of [[yii\base\Model::$attributes]]. However, it allows you
to choose which data items, called fields, to be put in the resulting array and how they should be formatted.
In fact, it is the default way of exporting models in RESTful Web service development, as described in
the Response Formatting.

Fields

A field is simply a named element in the array that is obtained by calling the [[yii\base\Model::toArray()]] method
of a model.

By default, field names are equivalent to attribute names. However, you can change this behavior by overriding
the [[yii\base\Model::fields()|fields()]] and/or [[yii\base\Model::extraFields()|extraFields()]] methods. Both methods
should return a list of field definitions. The fields defined by fields() are default fields, meaning that
toArray() will return these fields by default. The extraFields() method defines additionally available fields
which can also be returned by toArray() as long as you specify them via the $expand parameter. For example,
the following code will return all fields defined in fields() and the prettyName and fullAddress fields
if they are defined in extraFields().

$array = $model->toArray([], ['prettyName', 'fullAddress']);

You can override fields() to add, remove, rename or redefine fields. The return value of fields()
should be an array. The array keys are the field names, and the array values are the corresponding
field definitions which can be either property/attribute names or anonymous functions returning the
corresponding field values. In the special case when a field name is the same as its defining attribute
name, you can omit the array key. For example,

// explicitly list every field, best used when you want to make sure the changes
// in your DB table or model attributes do not cause your field changes (to keep API backward compatibility).
public function fields()
{
 return [
 // field name is the same as the attribute name
 'id',

 // field name is "email", the corresponding attribute name is "email_address"
 'email' => 'email_address',

 // field name is "name", its value is defined by a PHP callback
 'name' => function () {
 return $this->first_name . ' ' . $this->last_name;
 },
];
}

// filter out some fields, best used when you want to inherit the parent implementation
// and blacklist some sensitive fields.
public function fields()
{
 $fields = parent::fields();

 // remove fields that contain sensitive information
 unset($fields['auth_key'], $fields['password_hash'], $fields['password_reset_token']);

 return $fields;
}

Warning: Because by default all attributes of a model will be included in the exported array, you should
examine your data to make sure they do not contain sensitive information. If there is such information,
you should override fields() to filter them out. In the above example, we choose
to filter out auth_key, password_hash and password_reset_token.

Best Practices

Models are the central places to represent business data, rules and logic. They often need to be reused
in different places. In a well-designed application, models are usually much fatter than
controllers.

In summary, models

	may contain attributes to represent business data;

	may contain validation rules to ensure the data validity and integrity;

	may contain methods implementing business logic;

	should NOT directly access request, session, or any other environmental data. These data should be injected
by controllers into models;

	should avoid embedding HTML or other presentational code - this is better done in views;

	avoid having too many scenarios in a single model.

You may usually consider the last recommendation above when you are developing large complex systems.
In these systems, models could be very fat because they are used in many places and may thus contain many sets
of rules and business logic. This often ends up in a nightmare in maintaining the model code
because a single touch of the code could affect several different places. To make the model code more maintainable,
you may take the following strategy:

	Define a set of base model classes that are shared by different applications or
modules. These model classes should contain minimal sets of rules and logic that
are common among all their usages.

	In each application or module that uses a model,
define a concrete model class by extending from the corresponding base model class. The concrete model classes
should contain rules and logic that are specific for that application or module.

For example, in the Advanced Project Template [https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/README.md], you may define a base model
class common\models\Post. Then for the front end application, you define and use a concrete model class
frontend\models\Post which extends from common\models\Post. And similarly for the back end application,
you define backend\models\Post. With this strategy, you will be sure that the code in frontend\models\Post
is only specific to the front end application, and if you make any change to it, you do not need to worry if
the change may break the back end application.

 Modules

Modules

Modules are self-contained software units that consist of models, views,
controllers, and other supporting components. End users can access the controllers
of a module when it is installed in application. For these reasons, modules are
often viewed as mini-applications. Modules differ from applications in that
modules cannot be deployed alone and must reside within applications.

Creating Modules

A module is organized as a directory which is called the [[yii\base\Module::basePath|base path]] of the module.
Within the directory, there are sub-directories, such as controllers, models, views, which hold controllers,
models, views, and other code, just like in an application. The following example shows the content within a module:

forum/
 Module.php the module class file
 controllers/ containing controller class files
 DefaultController.php the default controller class file
 models/ containing model class files
 views/ containing controller view and layout files
 layouts/ containing layout view files
 default/ containing view files for DefaultController
 index.php the index view file

Module Classes

Each module should have a unique module class which extends from [[yii\base\Module]]. The class should be located
directly under the module’s [[yii\base\Module::basePath|base path]] and should be autoloadable.
When a module is being accessed, a single instance of the corresponding module class will be created.
Like application instances, module instances are used to share data and components
for code within modules.

The following is an example how a module class may look like:

namespace app\modules\forum;

class Module extends \yii\base\Module
{
 public function init()
 {
 parent::init();

 $this->params['foo'] = 'bar';
 // ... other initialization code ...
 }
}

If the init() method contains a lot of code initializing the module’s properties, you may also save them in terms
of a configuration and load it with the following code in init():

public function init()
{
 parent::init();
 // initialize the module with the configuration loaded from config.php
 \Yii::configure($this, require __DIR__ . '/config.php');
}

where the configuration file config.php may contain the following content, similar to that in an
application configuration.

<?php
return [
 'components' => [
 // list of component configurations
],
 'params' => [
 // list of parameters
],
];

Controllers in Modules

When creating controllers in a module, a convention is to put the controller classes under the controllers
sub-namespace of the namespace of the module class. This also means the controller class files should be
put in the controllers directory within the module’s [[yii\base\Module::basePath|base path]].
For example, to create a post controller in the forum module shown in the last subsection, you should
declare the controller class like the following:

namespace app\modules\forum\controllers;

use yii\web\Controller;

class PostController extends Controller
{
 // ...
}

You may customize the namespace of controller classes by configuring the [[yii\base\Module::controllerNamespace]]
property. In case some of the controllers are outside of this namespace, you may make them accessible
by configuring the [[yii\base\Module::controllerMap]] property, similar to what you do in an application.

Views in Modules

Views in a module should be put in the views directory within the module’s [[yii\base\Module::basePath|base path]].
For views rendered by a controller in the module, they should be put under the directory views/ControllerID,
where ControllerID refers to the controller ID. For example, if
the controller class is PostController, the directory would be views/post within the module’s
[[yii\base\Module::basePath|base path]].

A module can specify a layout that is applied to the views rendered by the module’s
controllers. The layout should be put in the views/layouts directory by default, and you should configure
the [[yii\base\Module::layout]] property to point to the layout name. If you do not configure the layout property,
the application’s layout will be used instead.

Console commands in Modules

Your module may also declare commands, that will be available through the Console mode.

In order for the command line utility to see your commands, you will need to change the [[yii\base\Module::controllerNamespace]]
property, when Yii is executed in the console mode, and point it to your commands namespace.

One way to achieve that is to test the instance type of the Yii application in the module’s init() method:

public function init()
{
 parent::init();
 if (Yii::$app instanceof \yii\console\Application) {
 $this->controllerNamespace = 'app\modules\forum\commands';
 }
}

Your commands will then be available from the command line using the following route:

yii <module_id>/<command>/<sub_command>

Using Modules

To use a module in an application, simply configure the application by listing the module in
the [[yii\base\Application::modules|modules]] property of the application. The following code in the
application configuration uses the forum module:

[
 'modules' => [
 'forum' => [
 'class' => 'app\modules\forum\Module',
 // ... other configurations for the module ...
],
],
]

The [[yii\base\Application::modules|modules]] property takes an array of module configurations. Each array key
represents a module ID which uniquely identifies the module among all modules in the application, and the corresponding
array value is a configuration for creating the module.

Routes

Like accessing controllers in an application, routes are used to address
controllers in a module. A route for a controller within a module must begin with the module ID followed by
the controller ID and action ID.
For example, if an application uses a module named forum, then the route
forum/post/index would represent the index action of the post controller in the module. If the route
only contains the module ID, then the [[yii\base\Module::defaultRoute]] property, which defaults to default,
will determine which controller/action should be used. This means a route forum would represent the default
controller in the forum module.

The URL manager rules for the modules should be added before [[yii\web\UrlManager::parseRequest()]] is fired. That means doing it
in module’s init() won’t work because module will be initialized when routes were already processed. Thus, the rules
should be added at bootstrap stage. It is a also a good practice
to wrap module’s URL rules with [[\yii\web\GroupUrlRule]].

In case a module is used to version API, its URL rules should be added directly in urlManager
section of the application config.

Accessing Modules

Within a module, you may often need to get the instance of the module class so that you can
access the module ID, module parameters, module components, etc. You can do so by using the following statement:

$module = MyModuleClass::getInstance();

where MyModuleClass refers to the name of the module class that you are interested in. The getInstance() method
will return the currently requested instance of the module class. If the module is not requested, the method will
return null. Note that you do not want to manually create a new instance of the module class because it will be
different from the one created by Yii in response to a request.

Info: When developing a module, you should not assume the module will use a fixed ID. This is because a module
can be associated with an arbitrary ID when used in an application or within another module. In order to get
the module ID, you should use the above approach to get the module instance first, and then get the ID via
$module->id.

You may also access the instance of a module using the following approaches:

// get the child module whose ID is "forum"
$module = \Yii::$app->getModule('forum');

// get the module to which the currently requested controller belongs
$module = \Yii::$app->controller->module;

The first approach is only useful when you know the module ID, while the second approach is best used when you
know about the controllers being requested.

Once you have the module instance, you can access parameters and components registered with the module. For example,

$maxPostCount = $module->params['maxPostCount'];

Bootstrapping Modules

Some modules may need to be run for every request. The [[yii\debug\Module|debug]] module is such an example.
To do so, list the IDs of such modules in the [[yii\base\Application::bootstrap|bootstrap]] property of the application.

For example, the following application configuration makes sure the debug module is always loaded:

[
 'bootstrap' => [
 'debug',
],

 'modules' => [
 'debug' => 'yii\debug\Module',
],
]

Nested Modules

Modules can be nested in unlimited levels. That is, a module can contain another module which can contain yet
another module. We call the former parent module while the latter child module. Child modules must be declared
in the [[yii\base\Module::modules|modules]] property of their parent modules. For example,

namespace app\modules\forum;

class Module extends \yii\base\Module
{
 public function init()
 {
 parent::init();

 $this->modules = [
 'admin' => [
 // you should consider using a shorter namespace here!
 'class' => 'app\modules\forum\modules\admin\Module',
],
];
 }
}

For a controller within a nested module, its route should include the IDs of all its ancestor modules.
For example, the route forum/admin/dashboard/index represents the index action of the dashboard controller
in the admin module which is a child module of the forum module.

Info: The [[yii\base\Module::getModule()|getModule()]] method only returns the child module directly belonging
to its parent. The [[yii\base\Application::loadedModules]] property keeps a list of loaded modules, including both
direct children and nested ones, indexed by their class names.

Accessing components from within modules

Since version 2.0.13 modules support tree traversal. This allows module
developers to reference (application) components via the service locator that is their module.
This means that it is preferable to use $module->get('db') over Yii::$app->get('db').
The user of a module is able to specify a specific component to be used for the module in case a different component
(configuration) is required.

For example consider partial this application configuration:

'components' => [
 'db' => [
 'tablePrefix' => 'main_',
 'class' => Connection::class,
 'enableQueryCache' => false
],
],
'modules' => [
 'mymodule' => [
 'components' => [
 'db' => [
 'tablePrefix' => 'module_',
 'class' => Connection::class
],
],
],
],

The application database tables will be prefixed with main_, while all module tables will be prefixed with module_.
Note that configuration above is not merged; the modules’ component for example will have the query cache enabled since that is the default value.

Best Practices

Modules are best used in large applications whose features can be divided into several groups, each consisting of
a set of closely related features. Each such feature group can be developed as a module which is developed and
maintained by a specific developer or team.

Modules are also a good way of reusing code at the feature group level. Some commonly used features, such as
user management, comment management, can all be developed in terms of modules so that they can be reused easily
in future projects.

 Overview

Overview

Yii applications are organized according to the model-view-controller (MVC) [http://wikipedia.org/wiki/Model-view-controller]
architectural pattern. Models represent data, business logic and rules; views
are output representation of models; and controllers take input and convert
it to commands for models and views.

Besides MVC, Yii applications also have the following entities:

	entry scripts: they are PHP scripts that are directly accessible by end users.
They are responsible for starting a request handling cycle.

	applications: they are globally accessible objects that manage application components
and coordinate them to fulfill requests.

	application components: they are objects registered with applications and
provide various services for fulfilling requests.

	modules: they are self-contained packages that contain complete MVC by themselves.
An application can be organized in terms of multiple modules.

	filters: they represent code that need to be invoked before and after the actual
handling of each request by controllers.

	widgets: they are objects that can be embedded in views. They
may contain controller logic and can be reused in different views.

The following diagram shows the static structure of an application:

[image: Static Structure of Application]

 Views

Views

Views are part of the MVC [http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller] architecture.
They are code responsible for presenting data to end users. In a Web application, views are usually created
in terms of view templates which are PHP script files containing mainly HTML code and presentational PHP code.
They are managed by the [[yii\web\View|view]] application component which provides commonly used methods
to facilitate view composition and rendering. For simplicity, we often call view templates or view template files
as views.

Creating Views

As aforementioned, a view is simply a PHP script mixed with HTML and PHP code. The following is the view
that presents a login form. As you can see, PHP code is used to generate the dynamic content, such as the
page title and the form, while HTML code organizes them into a presentable HTML page.

<?php
use yii\helpers\Html;
use yii\widgets\ActiveForm;

/* @var $this yii\web\View */
/* @var $form yii\widgets\ActiveForm */
/* @var $model app\models\LoginForm */

$this->title = 'Login';
?>
<h1><?= Html::encode($this->title) ?></h1>

<p>Please fill out the following fields to login:</p>

<?php $form = ActiveForm::begin(); ?>
 <?= $form->field($model, 'username') ?>
 <?= $form->field($model, 'password')->passwordInput() ?>
 <?= Html::submitButton('Login') ?>
<?php ActiveForm::end(); ?>

Within a view, you can access $this which refers to the [[yii\web\View|view component]] managing
and rendering this view template.

Besides $this, there may be other predefined variables in a view, such as $model in the above
example. These variables represent the data that are pushed into the view by controllers
or other objects which trigger the view rendering.

Tip: The predefined variables are listed in a comment block at beginning of a view so that they can
be recognized by IDEs. It is also a good way of documenting your views.

Security

When creating views that generate HTML pages, it is important that you encode and/or filter the data coming
from end users before presenting them. Otherwise, your application may be subject to
cross-site scripting [http://en.wikipedia.org/wiki/Cross-site_scripting] attacks.

To display a plain text, encode it first by calling [[yii\helpers\Html::encode()]]. For example, the following code
encodes the user name before displaying it:

<?php
use yii\helpers\Html;
?>

<div class="username">
 <?= Html::encode($user->name) ?>
</div>

To display HTML content, use [[yii\helpers\HtmlPurifier]] to filter the content first. For example, the following
code filters the post content before displaying it:

<?php
use yii\helpers\HtmlPurifier;
?>

<div class="post">
 <?= HtmlPurifier::process($post->text) ?>
</div>

Tip: While HTMLPurifier does excellent job in making output safe, it is not fast. You should consider
caching the filtering result if your application requires high performance.

Organizing Views

Like controllers and models, there are conventions to organize views.

	For views rendered by a controller, they should be put under the directory @app/views/ControllerID by default,
where ControllerID refers to the controller ID. For example, if
the controller class is PostController, the directory would be @app/views/post; if it is PostCommentController,
the directory would be @app/views/post-comment. In case the controller belongs to a module, the directory
would be views/ControllerID under the [[yii\base\Module::basePath|module directory]].

	For views rendered in a widget, they should be put under the WidgetPath/views directory by
default, where WidgetPath stands for the directory containing the widget class file.

	For views rendered by other objects, it is recommended that you follow the similar convention as that for widgets.

You may customize these default view directories by overriding the [[yii\base\ViewContextInterface::getViewPath()]]
method of controllers or widgets.

Rendering Views

You can render views in controllers, widgets, or any
other places by calling view rendering methods. These methods share a similar signature shown as follows,

/**
 * @param string $view view name or file path, depending on the actual rendering method
 * @param array $params the data to be passed to the view
 * @return string rendering result
 */
methodName($view, $params = [])

Rendering in Controllers

Within controllers, you may call the following controller methods to render views:

	[[yii\base\Controller::render()|render()]]: renders a named view and applies a layout
to the rendering result.

	[[yii\base\Controller::renderPartial()|renderPartial()]]: renders a named view without any layout.

	[[yii\web\Controller::renderAjax()|renderAjax()]]: renders a named view without any layout,
and injects all registered JS/CSS scripts and files. It is usually used in response to AJAX Web requests.

	[[yii\base\Controller::renderFile()|renderFile()]]: renders a view specified in terms of a view file path or
alias.

	[[yii\base\Controller::renderContent()|renderContent()]]: renders a static string by embedding it into
the currently applicable layout. This method is available since version 2.0.1.

For example,

namespace app\controllers;

use Yii;
use app\models\Post;
use yii\web\Controller;
use yii\web\NotFoundHttpException;

class PostController extends Controller
{
 public function actionView($id)
 {
 $model = Post::findOne($id);
 if ($model === null) {
 throw new NotFoundHttpException;
 }

 // renders a view named "view" and applies a layout to it
 return $this->render('view', [
 'model' => $model,
]);
 }
}

Rendering in Widgets

Within widgets, you may call the following widget methods to render views.

	[[yii\base\Widget::render()|render()]]: renders a named view.

	[[yii\base\Widget::renderFile()|renderFile()]]: renders a view specified in terms of a view file path or
alias.

For example,

namespace app\components;

use yii\base\Widget;
use yii\helpers\Html;

class ListWidget extends Widget
{
 public $items = [];

 public function run()
 {
 // renders a view named "list"
 return $this->render('list', [
 'items' => $this->items,
]);
 }
}

Rendering in Views

You can render a view within another view by calling one of the following methods provided by the [[yii\base\View|view component]]:

	[[yii\base\View::render()|render()]]: renders a named view.

	[[yii\web\View::renderAjax()|renderAjax()]]: renders a named view and injects all registered
JS/CSS scripts and files. It is usually used in response to AJAX Web requests.

	[[yii\base\View::renderFile()|renderFile()]]: renders a view specified in terms of a view file path or
alias.

For example, the following code in a view renders the _overview.php view file which is in the same directory
as the view being currently rendered. Remember that $this in a view refers to the [[yii\base\View|view]] component:

<?= $this->render('_overview') ?>

Rendering in Other Places

In any place, you can get access to the [[yii\base\View|view]] application component by the expression
Yii::$app->view and then call its aforementioned methods to render a view. For example,

// displays the view file "@app/views/site/license.php"
echo \Yii::$app->view->renderFile('@app/views/site/license.php');

Named Views

When you render a view, you can specify the view using either a view name or a view file path/alias. In most cases,
you would use the former because it is more concise and flexible. We call views specified using names as named views.

A view name is resolved into the corresponding view file path according to the following rules:

	A view name may omit the file extension name. In this case, .php will be used as the extension. For example,
the view name about corresponds to the file name about.php.

	If the view name starts with double slashes //, the corresponding view file path would be @app/views/ViewName.
That is, the view is looked for under the [[yii\base\Application::viewPath|application’s view path]].
For example, //site/about will be resolved into @app/views/site/about.php.

	If the view name starts with a single slash /, the view file path is formed by prefixing the view name
with the [[yii\base\Module::viewPath|view path]] of the currently active module.
If there is no active module, @app/views/ViewName will be used. For example, /user/create will be resolved into
@app/modules/user/views/user/create.php, if the currently active module is user. If there is no active module,
the view file path would be @app/views/user/create.php.

	If the view is rendered with a [[yii\base\View::context|context]] and the context implements [[yii\base\ViewContextInterface]],
the view file path is formed by prefixing the [[yii\base\ViewContextInterface::getViewPath()|view path]] of the
context to the view name. This mainly applies to the views rendered within controllers and widgets. For example,
about will be resolved into @app/views/site/about.php if the context is the controller SiteController.

	If a view is rendered within another view, the directory containing the other view file will be prefixed to
the new view name to form the actual view file path. For example, item will be resolved into @app/views/post/item.php
if it is being rendered in the view @app/views/post/index.php.

According to the above rules, calling $this->render('view') in a controller app\controllers\PostController will
actually render the view file @app/views/post/view.php, while calling $this->render('_overview') in that view
will render the view file @app/views/post/_overview.php.

Accessing Data in Views

There are two approaches to access data within a view: push and pull.

By passing the data as the second parameter to the view rendering methods, you are using the push approach.
The data should be represented as an array of name-value pairs. When the view is being rendered, the PHP
extract() function will be called on this array so that the array is extracted into variables in the view.
For example, the following view rendering code in a controller will push two variables to the report view:
$foo = 1 and $bar = 2.

echo $this->render('report', [
 'foo' => 1,
 'bar' => 2,
]);

The pull approach actively retrieves data from the [[yii\base\View|view component]] or other objects accessible
in views (e.g. Yii::$app). Using the code below as an example, within the view you can get the controller object
by the expression $this->context. And as a result, it is possible for you to access any properties or methods
of the controller in the report view, such as the controller ID shown in the following:

The controller ID is: <?= $this->context->id ?>

The push approach is usually the preferred way of accessing data in views, because it makes views less dependent
on context objects. Its drawback is that you need to manually build the data array all the time, which could
become tedious and error prone if a view is shared and rendered in different places.

Sharing Data among Views

The [[yii\base\View|view component]] provides the [[yii\base\View::params|params]] property that you can use
to share data among views.

For example, in an about view, you can have the following code which specifies the current segment of the
breadcrumbs.

$this->params['breadcrumbs'][] = 'About Us';

Then, in the layout file, which is also a view, you can display the breadcrumbs using the data
passed along [[yii\base\View::params|params]]:

<?= yii\widgets\Breadcrumbs::widget([
 'links' => isset($this->params['breadcrumbs']) ? $this->params['breadcrumbs'] : [],
]) ?>

Layouts

Layouts are a special type of views that represent the common parts of multiple views. For example, the pages
for most Web applications share the same page header and footer. While you can repeat the same page header and footer
in every view, a better way is to do this once in a layout and embed the rendering result of a content view at
an appropriate place in the layout.

Creating Layouts

Because layouts are also views, they can be created in the similar way as normal views. By default, layouts
are stored in the directory @app/views/layouts. For layouts used within a module,
they should be stored in the views/layouts directory under the [[yii\base\Module::basePath|module directory]].
You may customize the default layout directory by configuring the [[yii\base\Module::layoutPath]] property of
the application or modules.

The following example shows how a layout looks like. Note that for illustrative purpose, we have greatly simplified
the code in the layout. In practice, you may want to add more content to it, such as head tags, main menu, etc.

<?php
use yii\helpers\Html;

/* @var $this yii\web\View */
/* @var $content string */
?>
<?php $this->beginPage() ?>
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8"/>
 <?= Html::csrfMetaTags() ?>
 <title><?= Html::encode($this->title) ?></title>
 <?php $this->head() ?>
</head>
<body>
<?php $this->beginBody() ?>
 <header>My Company</header>
 <?= $content ?>
 <footer>© 2014 by My Company</footer>
<?php $this->endBody() ?>
</body>
</html>
<?php $this->endPage() ?>

As you can see, the layout generates the HTML tags that are common to all pages. Within the <body> section,
the layout echoes the $content variable which represents the rendering result of content views and is pushed
into the layout when [[yii\base\Controller::render()]] is called.

Most layouts should call the following methods like shown in the above code. These methods mainly trigger events
about the rendering process so that scripts and tags registered in other places can be properly injected into
the places where these methods are called.

	[[yii\base\View::beginPage()|beginPage()]]: This method should be called at the very beginning of the layout.
It triggers the [[yii\base\View::EVENT_BEGIN_PAGE|EVENT_BEGIN_PAGE]] event which indicates the beginning of a page.

	[[yii\base\View::endPage()|endPage()]]: This method should be called at the end of the layout.
It triggers the [[yii\base\View::EVENT_END_PAGE|EVENT_END_PAGE]] event which indicates the end of a page.

	[[yii\web\View::head()|head()]]: This method should be called within the <head> section of an HTML page.
It generates a placeholder which will be replaced with the registered head HTML code (e.g. link tags, meta tags)
when a page finishes rendering.

	[[yii\web\View::beginBody()|beginBody()]]: This method should be called at the beginning of the <body> section.
It triggers the [[yii\web\View::EVENT_BEGIN_BODY|EVENT_BEGIN_BODY]] event and generates a placeholder which will
be replaced by the registered HTML code (e.g. JavaScript) targeted at the body begin position.

	[[yii\web\View::endBody()|endBody()]]: This method should be called at the end of the <body> section.
It triggers the [[yii\web\View::EVENT_END_BODY|EVENT_END_BODY]] event and generates a placeholder which will
be replaced by the registered HTML code (e.g. JavaScript) targeted at the body end position.

Accessing Data in Layouts

Within a layout, you have access to two predefined variables: $this and $content. The former refers to
the [[yii\base\View|view]] component, like in normal views, while the latter contains the rendering result of a content
view which is rendered by calling the [[yii\base\Controller::render()|render()]] method in controllers.

If you want to access other data in layouts, you have to use the pull method as described in
the Accessing Data in Views subsection. If you want to pass data from a content view
to a layout, you may use the method described in the Sharing Data among Views subsection.

Using Layouts

As described in the Rendering in Controllers subsection, when you render a view
by calling the [[yii\base\Controller::render()|render()]] method in a controller, a layout will be applied
to the rendering result. By default, the layout @app/views/layouts/main.php will be used.

You may use a different layout by configuring either [[yii\base\Application::layout]] or [[yii\base\Controller::layout]].
The former governs the layout used by all controllers, while the latter overrides the former for individual controllers.
For example, the following code makes the post controller to use @app/views/layouts/post.php as the layout
when rendering its views. Other controllers, assuming their layout property is untouched, will still use the default
@app/views/layouts/main.php as the layout.

namespace app\controllers;

use yii\web\Controller;

class PostController extends Controller
{
 public $layout = 'post';

 // ...
}

For controllers belonging to a module, you may also configure the module’s [[yii\base\Module::layout|layout]] property to
use a particular layout for these controllers.

Because the layout property may be configured at different levels (controllers, modules, application),
behind the scene Yii takes two steps to determine what is the actual layout file being used for a particular controller.

In the first step, it determines the layout value and the context module:

	If the [[yii\base\Controller::layout]] property of the controller is not null, use it as the layout value and
the [[yii\base\Controller::module|module]] of the controller as the context module.

	If the [[yii\base\Controller::layout]] property of the controller is null, search through all ancestor modules (including the application itself) of the controller and
find the first module whose [[yii\base\Module::layout|layout]] property is not null. Use that module and
its [[yii\base\Module::layout|layout]] value as the context module and the chosen layout value.
If such a module cannot be found, it means no layout will be applied.

In the second step, it determines the actual layout file according to the layout value and the context module
determined in the first step. The layout value can be:

	a path alias (e.g. @app/views/layouts/main).

	an absolute path (e.g. /main): the layout value starts with a slash. The actual layout file will be
looked for under the application’s [[yii\base\Application::layoutPath|layout path]] which defaults to
@app/views/layouts.

	a relative path (e.g. main): the actual layout file will be looked for under the context module’s
[[yii\base\Module::layoutPath|layout path]] which defaults to the views/layouts directory under the
[[yii\base\Module::basePath|module directory]].

	the boolean value false: no layout will be applied.

If the layout value does not contain a file extension, it will use the default one .php.

Nested Layouts

Sometimes you may want to nest one layout in another. For example, in different sections of a Web site, you
want to use different layouts, while all these layouts share the same basic layout that generates the overall
HTML5 page structure. You can achieve this goal by calling [[yii\base\View::beginContent()|beginContent()]] and
[[yii\base\View::endContent()|endContent()]] in the child layouts like the following:

<?php $this->beginContent('@app/views/layouts/base.php'); ?>

...child layout content here...

<?php $this->endContent(); ?>

As shown above, the child layout content should be enclosed within [[yii\base\View::beginContent()|beginContent()]] and
[[yii\base\View::endContent()|endContent()]]. The parameter passed to [[yii\base\View::beginContent()|beginContent()]]
specifies what is the parent layout. It can be either a layout file or alias.

Using the above approach, you can nest layouts in more than one levels.

Using Blocks

Blocks allow you to specify the view content in one place while displaying it in another. They are often used together
with layouts. For example, you can define a block in a content view and display it in the layout.

You call [[yii\base\View::beginBlock()|beginBlock()]] and [[yii\base\View::endBlock()|endBlock()]] to define a block.
The block can then be accessed via $view->blocks[$blockID], where $blockID stands for a unique ID that you assign
to the block when defining it.

The following example shows how you can use blocks to customize specific parts of a layout in a content view.

First, in a content view, define one or multiple blocks:

...

<?php $this->beginBlock('block1'); ?>

...content of block1...

<?php $this->endBlock(); ?>

...

<?php $this->beginBlock('block3'); ?>

...content of block3...

<?php $this->endBlock(); ?>

Then, in the layout view, render the blocks if they are available, or display some default content if a block is
not defined.

...
<?php if (isset($this->blocks['block1'])): ?>
 <?= $this->blocks['block1'] ?>
<?php else: ?>
 ... default content for block1 ...
<?php endif; ?>

...

<?php if (isset($this->blocks['block2'])): ?>
 <?= $this->blocks['block2'] ?>
<?php else: ?>
 ... default content for block2 ...
<?php endif; ?>

...

<?php if (isset($this->blocks['block3'])): ?>
 <?= $this->blocks['block3'] ?>
<?php else: ?>
 ... default content for block3 ...
<?php endif; ?>
...

Using View Components

[[yii\base\View|View components]] provides many view-related features. While you can get view components
by creating individual instances of [[yii\base\View]] or its child class, in most cases you will mainly use
the view application component. You can configure this component in application configurations
like the following:

[
 // ...
 'components' => [
 'view' => [
 'class' => 'app\components\View',
],
 // ...
],
]

View components provide the following useful view-related features, each described in more details in a separate section:

	theming: allows you to develop and change the theme for your Web site.

	fragment caching: allows you to cache a fragment within a Web page.

	client script handling: supports CSS and JavaScript registration and rendering.

	asset bundle handling: supports registering and rendering of asset bundles.

	alternative template engines: allows you to use other template engines, such as
Twig [http://twig.sensiolabs.org/], Smarty [http://www.smarty.net/].

You may also frequently use the following minor yet useful features when you are developing Web pages.

Setting Page Titles

Every Web page should have a title. Normally the title tag is being displayed in a layout. However, in practice
the title is often determined in content views rather than layouts. To solve this problem, [[yii\web\View]] provides
the [[yii\web\View::title|title]] property for you to pass the title information from content views to layouts.

To make use of this feature, in each content view, you can set the page title like the following:

<?php
$this->title = 'My page title';
?>

Then in the layout, make sure you have the following code in the <head> section:

<title><?= Html::encode($this->title) ?></title>

Registering Meta Tags

Web pages usually need to generate various meta tags needed by different parties. Like page titles, meta tags
appear in the <head> section and are usually generated in layouts.

If you want to specify what meta tags to generate in content views, you can call [[yii\web\View::registerMetaTag()]]
in a content view, like the following:

<?php
$this->registerMetaTag(['name' => 'keywords', 'content' => 'yii, framework, php']);
?>

The above code will register a “keywords” meta tag with the view component. The registered meta tag is
rendered after the layout finishes rendering. The following HTML code will be generated and inserted
at the place where you call [[yii\web\View::head()]] in the layout:

<meta name="keywords" content="yii, framework, php">

Note that if you call [[yii\web\View::registerMetaTag()]] multiple times, it will register multiple meta tags,
regardless whether the meta tags are the same or not.

To make sure there is only a single instance of a meta tag type, you can specify a key as a second parameter when calling the method.
For example, the following code registers two “description” meta tags. However, only the second one will be rendered.

$this->registerMetaTag(['name' => 'description', 'content' => 'This is my cool website made with Yii!'], 'description');
$this->registerMetaTag(['name' => 'description', 'content' => 'This website is about funny raccoons.'], 'description');

Registering Link Tags

Like meta tags, link tags are useful in many cases, such as customizing favicon, pointing to
RSS feed or delegating OpenID to another server. You can work with link tags in the similar way as meta tags
by using [[yii\web\View::registerLinkTag()]]. For example, in a content view, you can register a link tag like follows,

$this->registerLinkTag([
 'title' => 'Live News for Yii',
 'rel' => 'alternate',
 'type' => 'application/rss+xml',
 'href' => 'http://www.yiiframework.com/rss.xml/',
]);

The code above will result in

<link title="Live News for Yii" rel="alternate" type="application/rss+xml" href="http://www.yiiframework.com/rss.xml/">

Similar as [[yii\web\View::registerMetaTag()|registerMetaTag()]], you can specify a key when calling
[[yii\web\View::registerLinkTag()|registerLinkTag()]] to avoid generating repeated link tags.

View Events

[[yii\base\View|View components]] trigger several events during the view rendering process. You may respond
to these events to inject content into views or process the rendering results before they are sent to end users.

	[[yii\base\View::EVENT_BEFORE_RENDER|EVENT_BEFORE_RENDER]]: triggered at the beginning of rendering a file
in a controller. Handlers of this event may set [[yii\base\ViewEvent::isValid]] to be false to cancel the rendering process.

	[[yii\base\View::EVENT_AFTER_RENDER|EVENT_AFTER_RENDER]]: triggered after rendering a file by the call of [[yii\base\View::afterRender()]].
Handlers of this event may obtain the rendering result through [[yii\base\ViewEvent::output]] and may modify
this property to change the rendering result.

	[[yii\base\View::EVENT_BEGIN_PAGE|EVENT_BEGIN_PAGE]]: triggered by the call of [[yii\base\View::beginPage()]] in layouts.

	[[yii\base\View::EVENT_END_PAGE|EVENT_END_PAGE]]: triggered by the call of [[yii\base\View::endPage()]] in layouts.

	[[yii\web\View::EVENT_BEGIN_BODY|EVENT_BEGIN_BODY]]: triggered by the call of [[yii\web\View::beginBody()]] in layouts.

	[[yii\web\View::EVENT_END_BODY|EVENT_END_BODY]]: triggered by the call of [[yii\web\View::endBody()]] in layouts.

For example, the following code injects the current date at the end of the page body:

\Yii::$app->view->on(View::EVENT_END_BODY, function () {
 echo date('Y-m-d');
});

Rendering Static Pages

Static pages refer to those Web pages whose main content are mostly static without the need of accessing
dynamic data pushed from controllers.

You can output static pages by putting their code in the view, and then using the code like the following in a controller:

public function actionAbout()
{
 return $this->render('about');
}

If a Web site contains many static pages, it would be very tedious repeating the similar code many times.
To solve this problem, you may introduce a standalone action
called [[yii\web\ViewAction]] in a controller. For example,

namespace app\controllers;

use yii\web\Controller;

class SiteController extends Controller
{
 public function actions()
 {
 return [
 'page' => [
 'class' => 'yii\web\ViewAction',
],
];
 }
}

Now if you create a view named about under the directory @app/views/site/pages, you will be able to
display this view by the following URL:

http://localhost/index.php?r=site%2Fpage&view=about

The GET parameter view tells [[yii\web\ViewAction]] which view is requested. The action will then look
for this view under the directory @app/views/site/pages. You may configure [[yii\web\ViewAction::viewPrefix]]
to change the directory for searching these views.

Best Practices

Views are responsible for presenting models in the format that end users desire. In general, views

	should mainly contain presentational code, such as HTML, and simple PHP code to traverse, format and render data.

	should not contain code that performs DB queries. Such code should be done in models.

	should avoid direct access to request data, such as $_GET, $_POST. This belongs to controllers.
If request data is needed, they should be pushed into views by controllers.

	may read model properties, but should not modify them.

To make views more manageable, avoid creating views that are too complex or contain too much redundant code.
You may use the following techniques to achieve this goal:

	use layouts to represent common presentational sections (e.g. page header, footer).

	divide a complicated view into several smaller ones. The smaller views can be rendered and assembled into a bigger
one using the rendering methods that we have described.

	create and use widgets as building blocks of views.

	create and use helper classes to transform and format data in views.

 Widgets

Widgets

Widgets are reusable building blocks used in views to create complex and configurable user
interface elements in an object-oriented fashion. For example, a date picker widget may generate a fancy date picker
that allows users to pick a date as their input. All you need to do is just to insert the code in a view
like the following:

<?php
use yii\jui\DatePicker;
?>
<?= DatePicker::widget(['name' => 'date']) ?>

There are a good number of widgets bundled with Yii, such as [[yii\widgets\ActiveForm|active form]],
[[yii\widgets\Menu|menu]], jQuery UI widgets [https://www.yiiframework.com/extension/yiisoft/yii2-jui], Twitter Bootstrap widgets [https://www.yiiframework.com/extension/yiisoft/yii2-bootstrap].
In the following, we will introduce the basic knowledge about widgets. Please refer to the class API documentation
if you want to learn about the usage of a particular widget.

Using Widgets

Widgets are primarily used in views. You can call the [[yii\base\Widget::widget()]] method
to use a widget in a view. The method takes a configuration array for initializing
the widget and returns the rendering result of the widget. For example, the following code inserts a date picker
widget which is configured to use the Russian language and keep the input in the from_date attribute of $model.

<?php
use yii\jui\DatePicker;
?>
<?= DatePicker::widget([
 'model' => $model,
 'attribute' => 'from_date',
 'language' => 'ru',
 'dateFormat' => 'php:Y-m-d',
]) ?>

Some widgets can take a block of content which should be enclosed between the invocation of
[[yii\base\Widget::begin()]] and [[yii\base\Widget::end()]]. For example, the following code uses the
[[yii\widgets\ActiveForm]] widget to generate a login form. The widget will generate the opening and closing
<form> tags at the place where begin() and end() are called, respectively. Anything in between will be
rendered as is.

<?php
use yii\widgets\ActiveForm;
use yii\helpers\Html;
?>

<?php $form = ActiveForm::begin(['id' => 'login-form']); ?>

 <?= $form->field($model, 'username') ?>

 <?= $form->field($model, 'password')->passwordInput() ?>

 <div class="form-group">
 <?= Html::submitButton('Login') ?>
 </div>

<?php ActiveForm::end(); ?>

Note that unlike [[yii\base\Widget::widget()]] which returns the rendering result of a widget, the method
[[yii\base\Widget::begin()]] returns an instance of the widget which you can use to build the widget content.

Note: Some widgets will use output buffering [http://php.net/manual/en/book.outcontrol.php] to adjust the enclosed
content when [[yii\base\Widget::end()]] is called. For this reason calling [[yii\base\Widget::begin()]] and
[[yii\base\Widget::end()]] is expected to happen in the same view file.
Not following this rule may result in unexpected output.

Configuring global defaults

Global defaults for a widget type could be configured via DI container:

\Yii::$container->set('yii\widgets\LinkPager', ['maxButtonCount' => 5]);

See “Practical Usage” section in Dependency Injection Container guide for
details.

Creating Widgets

Widget can be created in either of two different ways depending on the requirement.

1: Utilizing widget() method

To create a widget, extend from [[yii\base\Widget]] and override the [[yii\base\Widget::init()]] and/or
[[yii\base\Widget::run()]] methods. Usually, the init() method should contain the code that initializes the widget
properties, while the run() method should contain the code that generates the rendering result of the widget.
The rendering result may be directly “echoed” or returned as a string by run().

In the following example, HelloWidget HTML-encodes and displays the content assigned to its message property.
If the property is not set, it will display “Hello World” by default.

namespace app\components;

use yii\base\Widget;
use yii\helpers\Html;

class HelloWidget extends Widget
{
 public $message;

 public function init()
 {
 parent::init();
 if ($this->message === null) {
 $this->message = 'Hello World';
 }
 }

 public function run()
 {
 return Html::encode($this->message);
 }
}

To use this widget, simply insert the following code in a view:

<?php
use app\components\HelloWidget;
?>
<?= HelloWidget::widget(['message' => 'Good morning']) ?>

Sometimes, a widget may need to render a big chunk of content. While you can embed the content within the run()
method, a better approach is to put it in a view and call [[yii\base\Widget::render()]] to
render it. For example,

public function run()
{
 return $this->render('hello');
}

2: Utilizing begin() and end() methods

This is similar to above one with minor difference.
Below is a variant of HelloWidget which takes the content enclosed within the begin() and end() calls,
HTML-encodes it and then displays it.

namespace app\components;

use yii\base\Widget;
use yii\helpers\Html;

class HelloWidget extends Widget
{
 public function init()
 {
 parent::init();
 ob_start();
 }

 public function run()
 {
 $content = ob_get_clean();
 return Html::encode($content);
 }
}

As you can see, PHP’s output buffer is started in init() so that any output between the calls of init() and run()
can be captured, processed and returned in run().

Info: When you call [[yii\base\Widget::begin()]], a new instance of the widget will be created and the init() method
will be called at the end of the widget constructor. When you call [[yii\base\Widget::end()]], the run() method
will be called whose return result will be echoed by end().

The following code shows how to use this new variant of HelloWidget:

<?php
use app\components\HelloWidget;
?>
<?php HelloWidget::begin(); ?>

 sample content that may contain one or more HTML <pre>tags</pre>

 If this content grows too big, use sub views

 For e.g.

 <?php echo $this->render('viewfile'); // Note: here render() method is of class \yii\base\View as this part of code is within view file and not in Widget class file ?>

<?php HelloWidget::end(); ?>

By default, views for a widget should be stored in files in the WidgetPath/views directory, where WidgetPath
stands for the directory containing the widget class file. Therefore, the above example will render the view file
@app/components/views/hello.php, assuming the widget class is located under @app/components. You may override
the [[yii\base\Widget::getViewPath()]] method to customize the directory containing the widget view files.

Best Practices

Widgets are an object-oriented way of reusing view code.

When creating widgets, you should still follow the MVC pattern. In general, you should keep logic in widget
classes and keep presentation in views.

Widgets should be designed to be self-contained. That is, when using a widget, you should be able to just drop
it in a view without doing anything else. This could be tricky if a widget requires external resources, such as
CSS, JavaScript, images, etc. Fortunately, Yii provides the support for asset bundles,
which can be utilized to solve the problem.

When a widget contains view code only, it is very similar to a view. In fact, in this case,
their only difference is that a widget is a redistributable class, while a view is just a plain PHP script
that you would prefer to keep within your application.

 Acceptance Tests

Acceptance Tests

Acceptance test verifies scenarios from a user’s perspective. The application tested is accessed via either PhpBrowser or
a real browser. In both cases the browsers are communicating via HTTP so application should be served via web server.

Acceptance testing is implemented with the help of Codeception framework which has a nice documentation about it:

	Codeception for Yii framework [http://codeception.com/for/yii]

	Codeception Acceptance Tests [http://codeception.com/docs/03-AcceptanceTests]

Running basic and advanced template tests

If you’ve started with advanced template, please refer to “testing” guide [https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/start-testing.md]
for more details about running tests.

If you’ve started with basic template, check its README “testing” section [https://github.com/yiisoft/yii2-app-basic/blob/master/README.md#testing].

 Testing environment setup

Testing environment setup

Yii 2 has officially maintained integration with Codeception [https://github.com/Codeception/Codeception] testing
framework that allows you to create the following test types:

	Unit - verifies that a single unit of code is working as expected;

	Functional - verifies scenarios from a user’s perspective via browser emulation;

	Acceptance - verifies scenarios from a user’s perspective in a browser.

Yii provides ready to use test sets for all three test types in both
yii2-basic [https://github.com/yiisoft/yii2-app-basic] and
yii2-advanced [https://github.com/yiisoft/yii2-app-advanced] project templates.

Codeception comes preinstalled with both basic and advanced project templates.
In case you are not using one of these templates, Codeception could be installed
by issuing the following console commands:

composer require codeception/codeception
composer require codeception/specify
composer require codeception/verify

 Fixtures

Fixtures

Fixtures are an important part of testing. Their main purpose is to set up the environment in a fixed/known state
so that your tests are repeatable and run in an expected way. Yii provides a fixture framework that allows
you to define your fixtures precisely and use them easily both when running your tests with Codeception
and independently.

A key concept in the Yii fixture framework is the so-called fixture object. A fixture object represents
a particular aspect of a test environment and is an instance of [[yii\test\Fixture]] or its child class. For example,
you may use UserFixture to make sure the user DB table contains a fixed set of data. You load one or multiple
fixture objects before running a test and unload them when finishing.

A fixture may depend on other fixtures, specified via its [[yii\test\Fixture::depends]] property.
When a fixture is being loaded, the fixtures it depends on will be automatically loaded BEFORE the fixture;
and when the fixture is being unloaded, the dependent fixtures will be unloaded AFTER the fixture.

Defining a Fixture

To define a fixture, create a new class by extending [[yii\test\Fixture]] or [[yii\test\ActiveFixture]].
The former is best suited for general purpose fixtures, while the latter has enhanced features specifically
designed to work with database and ActiveRecord.

The following code defines a fixture about the User ActiveRecord and the corresponding user table.

<?php
namespace app\tests\fixtures;

use yii\test\ActiveFixture;

class UserFixture extends ActiveFixture
{
 public $modelClass = 'app\models\User';
}

Tip: Each ActiveFixture is about preparing a DB table for testing purpose. You may specify the table
by setting either the [[yii\test\ActiveFixture::tableName]] property or the [[yii\test\ActiveFixture::modelClass]]
property. If the latter, the table name will be taken from the ActiveRecord class specified by modelClass.

Note: [[yii\test\ActiveFixture]] is only suited for SQL databases. For NoSQL databases, Yii provides the following
ActiveFixture classes:

	Mongo DB: [[yii\mongodb\ActiveFixture]]

	Elasticsearch: [[yii\elasticsearch\ActiveFixture]] (since version 2.0.2)

The fixture data for an ActiveFixture fixture is usually provided in a file located at FixturePath/data/TableName.php,
where FixturePath stands for the directory containing the fixture class file, and TableName
is the name of the table associated with the fixture. In the example above, the file should be
@app/tests/fixtures/data/user.php. The data file should return an array of data rows
to be inserted into the user table. For example,

<?php
return [
 'user1' => [
 'username' => 'lmayert',
 'email' => 'strosin.vernice@jerde.com',
 'auth_key' => 'K3nF70it7tzNsHddEiq0BZ0i-OU8S3xV',
 'password' => '$2y$13$WSyE5hHsG1rWN2jV8LRHzubilrCLI5Ev/iK0r3jRuwQEs2ldRu.a2',
],
 'user2' => [
 'username' => 'napoleon69',
 'email' => 'aileen.barton@heaneyschumm.com',
 'auth_key' => 'dZlXsVnIDgIzFgX4EduAqkEPuphhOh9q',
 'password' => '$2y$13$kkgpvJ8lnjKo8RuoR30ay.RjDf15bMcHIF7Vz1zz/6viYG5xJExU6',
],
];

You may give an alias to a row so that later in your test, you may refer to the row via the alias. In the above example,
the two rows are aliased as user1 and user2, respectively.

Also, you do not need to specify the data for auto-incremental columns. Yii will automatically fill the actual
values into the rows when the fixture is being loaded.

Tip: You may customize the location of the data file by setting the [[yii\test\ActiveFixture::dataFile]] property.
You may also override [[yii\test\ActiveFixture::getData()]] to provide the data.

As we described earlier, a fixture may depend on other fixtures. For example, a UserProfileFixture may need to depends on UserFixture
because the user profile table contains a foreign key pointing to the user table.
The dependency is specified via the [[yii\test\Fixture::depends]] property, like the following,

namespace app\tests\fixtures;

use yii\test\ActiveFixture;

class UserProfileFixture extends ActiveFixture
{
 public $modelClass = 'app\models\UserProfile';
 public $depends = ['app\tests\fixtures\UserFixture'];
}

The dependency also ensures, that the fixtures are loaded and unloaded in a well defined order. In the above example UserFixture will
always be loaded before UserProfileFixture to ensure all foreign key references exist and will be unloaded after UserProfileFixture
has been unloaded for the same reason.

In the above, we have shown how to define a fixture about a DB table. To define a fixture not related with DB
(e.g. a fixture about certain files and directories), you may extend from the more general base class
[[yii\test\Fixture]] and override the [[yii\test\Fixture::load()|load()]] and [[yii\test\Fixture::unload()|unload()]] methods.

Using Fixtures

If you are using Codeception [http://codeception.com/] to test your code, you can use built-in support for loading
and accessing fixtures.

If you are using other testing frameworks, you may use [[yii\test\FixtureTrait]] in your
test cases to achieve the same goal.

In the following we will describe how to write a UserProfile unit test class using Codeception.

In your unit test class extending \Codeception\Test\Unit either declare fixtures you want to use in the
_fixtures() method or use haveFixtures() method of an actor directly. For example,

namespace app\tests\unit\models;

use app\tests\fixtures\UserProfileFixture;

class UserProfileTest extends \Codeception\Test\Unit
{
 public function _fixtures()
 {
 return [
 'profiles' => [
 'class' => UserProfileFixture::className(),
 // fixture data located in tests/_data/user.php
 'dataFile' => codecept_data_dir() . 'user.php'
],
];
 }

 // ...test methods...
}

The fixtures listed in the _fixtures() method will be automatically loaded before a test is executed. And as we
described before, when a fixture is being loaded, all its dependent fixtures will be automatically loaded first.
In the above example, because UserProfileFixture depends on UserFixture, when running any test method in the test
class, two fixtures will be loaded sequentially: UserFixture and UserProfileFixture.

When specifying fixtures for both _fixtures() and haveFixtures(), you may use either a class name
or a configuration array to refer to a fixture. The configuration array will let you customize
the fixture properties when the fixture is loaded.

You may also assign an alias to a fixture. In the above example, the UserProfileFixture is aliased as profiles.
In the test methods, you may then access a fixture object using its alias in grabFixture() method. For example,

$profile = $I->grabFixture('profiles', 'user1');

will return the UserProfileFixture object.

Because UserProfileFixture extends from ActiveFixture, you may further use the following syntax to access
the data provided by the fixture:

// returns the UserProfile model corresponding to the data row aliased as 'user1'
$profile = $I->grabFixture('profiles', 'user1');
// traverse data in the fixture
foreach ($I->grabFixture('profiles') as $profile) ...

Organizing Fixture Classes and Data Files

By default, fixture classes look for the corresponding data files under the data folder which is a sub-folder
of the folder containing the fixture class files. You can follow this convention when working with simple projects.
For big projects, chances are that you often need to switch different data files for the same fixture class for
different tests. We thus recommend that you organize the data files in a hierarchical way that is similar to
your class namespaces. For example,

under folder tests\unit\fixtures

data\
 components\
 fixture_data_file1.php
 fixture_data_file2.php
 ...
 fixture_data_fileN.php
 models\
 fixture_data_file1.php
 fixture_data_file2.php
 ...
 fixture_data_fileN.php
and so on

In this way you will avoid collision of fixture data files between tests and use them as you need.

Note: In the example above fixture files are named only for example purpose. In real life you should name them
according to which fixture class your fixture classes are extending from. For example, if you are extending
from [[yii\test\ActiveFixture]] for DB fixtures, you should use DB table names as the fixture data file names;
If you are extending from [[yii\mongodb\ActiveFixture]] for MongoDB fixtures, you should use collection names as the file names.

The similar hierarchy can be used to organize fixture class files. Instead of using data as the root directory, you may
want to use fixtures as the root directory to avoid conflict with the data files.

Managing fixtures with yii fixture

Yii supports fixtures via the yii fixture command line tool. This tool supports:

	Loading fixtures to different storage such as: RDBMS, NoSQL, etc;

	Unloading fixtures in different ways (usually it is clearing storage);

	Auto-generating fixtures and populating it with random data.

Fixtures data format

Lets assume we have fixtures data to load:

#users.php file under fixtures data path, by default @tests\unit\fixtures\data

return [
 [
 'name' => 'Chase',
 'login' => 'lmayert',
 'email' => 'strosin.vernice@jerde.com',
 'auth_key' => 'K3nF70it7tzNsHddEiq0BZ0i-OU8S3xV',
 'password' => '$2y$13$WSyE5hHsG1rWN2jV8LRHzubilrCLI5Ev/iK0r3jRuwQEs2ldRu.a2',
],
 [
 'name' => 'Celestine',
 'login' => 'napoleon69',
 'email' => 'aileen.barton@heaneyschumm.com',
 'auth_key' => 'dZlXsVnIDgIzFgX4EduAqkEPuphhOh9q',
 'password' => '$2y$13$kkgpvJ8lnjKo8RuoR30ay.RjDf15bMcHIF7Vz1zz/6viYG5xJExU6',
],
];

If we are using fixture that loads data into database then these rows will be applied to users table. If we are using nosql fixtures, for example mongodb
fixture, then this data will be applied to users mongodb collection. In order to learn about implementing various loading strategies and more, refer to official documentation [https://github.com/yiisoft/yii2/blob/master/docs/guide/test-fixtures.md].
Above fixture example was auto-generated by yii2-faker extension, read more about it in these section.
Fixture classes name should not be plural.

Loading fixtures

Fixture classes should be suffixed by Fixture class. By default fixtures will be searched under tests\unit\fixtures namespace, you can
change this behavior with config or command options. You can exclude some fixtures due load or unload by specifying - before its name like -User.

To load fixture, run the following command:

Note: Prior to loading data unload sequence is executed. Usually that results in cleaning up all the existing data inserted by previous fixture executions.

yii fixture/load <fixture_name>

The required fixture_name parameter specifies a fixture name which data will be loaded. You can load several fixtures at once.
Below are correct formats of this command:

// load `User` fixture
yii fixture/load User

// same as above, because default action of "fixture" command is "load"
yii fixture User

// load several fixtures
yii fixture "User, UserProfile"

// load all fixtures
yii fixture/load "*"

// same as above
yii fixture "*"

// load all fixtures except ones
yii fixture "*, -DoNotLoadThisOne"

// load fixtures, but search them in different namespace. By default namespace is: tests\unit\fixtures.
yii fixture User --namespace='alias\my\custom\namespace'

// load global fixture `some\name\space\CustomFixture` before other fixtures will be loaded.
// By default this option is set to `InitDbFixture` to disable/enable integrity checks. You can specify several
// global fixtures separated by comma.
yii fixture User --globalFixtures='some\name\space\Custom'

Unloading fixtures

To unload fixture, run the following command:

// unload Users fixture, by default it will clear fixture storage (for example "users" table, or "users" collection if this is mongodb fixture).
yii fixture/unload User

// Unload several fixtures
yii fixture/unload "User, UserProfile"

// unload all fixtures
yii fixture/unload "*"

// unload all fixtures except ones
yii fixture/unload "*, -DoNotUnloadThisOne"

Same command options like: namespace, globalFixtures also can be applied to this command.

Configure Command Globally

While command line options allow us to configure the fixture command
on-the-fly, sometimes we may want to configure the command once for all. For example you can configure
different fixture path as follows:

'controllerMap' => [
 'fixture' => [
 'class' => 'yii\console\controllers\FixtureController',
 'namespace' => 'myalias\some\custom\namespace',
 'globalFixtures' => [
 'some\name\space\Foo',
 'other\name\space\Bar'
],
],
]

Auto-generating fixtures

Yii also can auto-generate fixtures for you based on some template. You can generate your fixtures with different data on different languages and formats.
This feature is done by Faker [https://github.com/fzaninotto/Faker] library and yii2-faker extension.
See extension guide [https://github.com/yiisoft/yii2-faker] for more docs.

Summary

In the above, we have described how to define and use fixtures. Below we summarize the typical workflow
of running unit tests related with DB:

	Use yii migrate tool to upgrade your test database to the latest version;

	Run a test case:

	Load fixtures: clean up the relevant DB tables and populate them with fixture data;

	Perform the actual test;

	Unload fixtures.

	Repeat Step 2 until all tests finish.

 Functional Tests

Functional Tests

Functional test verifies scenarios from a user’s perspective. It is similar to acceptance test
but instead of communicating via HTTP it is filling up environment such as POST and GET parameters and then executes
application instance right from the code.

Functional tests are generally faster than acceptance tests and are providing detailed stack traces on failures.
As a rule of thumb, they should be preferred unless you have a special web server setup or complex UI powered by
JavaScript.

Functional testing is implemented with the help of Codeception framework which has a nice documentation about it:

	Codeception for Yii framework [http://codeception.com/for/yii]

	Codeception Functional Tests [http://codeception.com/docs/04-FunctionalTests]

Running basic and advanced template tests

If you’ve started with advanced template, please refer to “testing” guide [https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/start-testing.md]
for more details about running tests.

If you’ve started with basic template, check its README “testing” section [https://github.com/yiisoft/yii2-app-basic/blob/master/README.md#testing].

 Testing

Testing

Testing is an important part of software development. Whether we are aware of it or not, we conduct testing continuously.
For example, when we write a class in PHP, we may debug it step by step or simply use echo or die statements to verify
the implementation works according to our initial plan. In the case of a web application, we’re entering some test data
in forms to ensure the page interacts with us as expected.

The testing process could be automated so that each time when we need to verify something, we just need to call up
the code that does it for us. The code that verifies the result matches what we’ve planned is called test and
the process of its creation and further execution is known as automated testing, which is the main topic of these
testing chapters.

Developing with tests

Test-Driven Development (TDD) and Behavior-Driven Development (BDD) are approaches of developing
software by describing behavior of a piece of code or the whole feature as a set of scenarios or tests before
writing actual code and only then creating the implementation that allows these tests to pass verifying that intended
behavior is achieved.

The process of developing a feature is the following:

	Create a new test that describes a feature to be implemented.

	Run the new test and make sure it fails. It is expected since there’s no implementation yet.

	Write simple code to make the new test pass.

	Run all tests and make sure they all pass.

	Improve code and make sure tests are still OK.

After it’s done the process is repeated again for another feature or improvement. If the existing feature is to be changed,
tests should be changed as well.

Tip: If you feel that you are losing time doing a lot of small and simple iterations, try covering more by your
test scenario so you do more before executing tests again. If you’re debugging too much, try doing the opposite.

The reason to create tests before doing any implementation is that it allows us to focus on what we want to achieve
and fully dive into “how to do it” afterwards. Usually it leads to better abstractions and easier test maintenance when
it comes to feature adjustments or less coupled components.

So to sum up the advantages of such approach are the following:

	Keeps you focused on one thing at a time which results in improved planning and implementation.

	Results in test-covering more features in greater detail i.e. if tests are OK most likely nothing’s broken.

In the long term it usually gives you a good time-saving effect.

When and how to test

While the test first approach described above makes sense for long term and relatively complex projects it could be overkill
for simpler ones. There are some indicators of when it’s appropriate:

	Project is already large and complex.

	Project requirements are starting to get complex. Project grows constantly.

	Project is meant to be long term.

	The cost of the failure is too high.

There’s nothing wrong in creating tests covering behavior of existing implementation.

	Project is a legacy one to be gradually renewed.

	You’ve got a project to work on and it has no tests.

In some cases any form of automated testing could be overkill:

	Project is simple and isn’t getting anymore complex.

	It’s a one-time project that will no longer be worked on.

Still if you have time it’s good to automate testing in these cases as well.

Further reading

	Test Driven Development: By Example / Kent Beck. ISBN: 0321146530.

 Unit Tests

Unit Tests

A unit test verifies that a single unit of code is working as expected. That is, given different input parameters,
the test verifies the class method returns expected results. Unit tests are usually developed by people who write the
classes being tested.

Unit testing in Yii is built on top of PHPUnit and, optionally, Codeception so it’s recommended to go through their docs:

	Codeception for Yii framework [http://codeception.com/for/yii]

	Codeception Unit Tests [http://codeception.com/docs/05-UnitTests]

	PHPUnit docs starting from chapter 2 [http://phpunit.de/manual/current/en/writing-tests-for-phpunit.html]

Running basic and advanced template tests

If you’ve started with advanced template, please refer to “testing” guide [https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/start-testing.md]
for more details about running tests.

If you’ve started with basic template, check its README “testing” section [https://github.com/yiisoft/yii2-app-basic/blob/master/README.md#testing].

Framework unit tests

If you want to run unit tests for Yii framework itself follow
“Getting started with Yii 2 development [https://github.com/yiisoft/yii2/blob/master/docs/internals/getting-started.md]”.

 Console applications

Console applications

Besides the rich features for building web applications, Yii also has full-featured support for console applications
which are mainly used to create background and maintenance tasks that need to be performed for a website.

The structure of console applications is very similar to a Yii web application. It consists of one
or more [[yii\console\Controller]] classes, which are often referred to as commands in the console environment.
Each controller can also have one or more actions, just like web controllers.

Both project templates already have a console application with them.
You can run it by calling the yii script, which is located in the base directory of the repository.
This will give you a list of available commands when you run it without any further parameters:

[image: Running ./yii command for help output]

As you can see in the screenshot, Yii has already defined a set of commands that are available by default:

	[[yii\console\controllers\AssetController|AssetController]] - Allows you to combine and compress your JavaScript and CSS files.
You can learn more about this command in the Assets Section.

	[[yii\console\controllers\CacheController|CacheController]] - Allows you to flush application caches.

	[[yii\console\controllers\FixtureController|FixtureController]] - Manages fixture data loading and unloading for testing purposes.
This command is described in more detail in the Testing Section about Fixtures.

	[[yii\console\controllers\HelpController|HelpController]] - Provides help information about console commands, this is the default command
and prints what you have seen in the above output.

	[[yii\console\controllers\MessageController|MessageController]] - Extracts messages to be translated from source files.
To learn more about this command, please refer to the I18N Section.

	[[yii\console\controllers\MigrateController|MigrateController]] - Manages application migrations.
Database migrations are described in more detail in the Database Migration Section.

	[[yii\console\controllers\ServeController|ServeController]] - Allows you run PHP built-in web server.

Usage

You execute a console controller action using the following syntax:

yii <route> [--option1=value1 --option2=value2 ... argument1 argument2 ...]

In the above, <route> refers to the route to the controller action. The options will populate the class
properties and arguments are the parameters of the action method.

For example, the [[yii\console\controllers\MigrateController::actionUp()|MigrateController::actionUp()]]
with [[yii\console\controllers\MigrateController::$migrationTable|MigrateController::$migrationTable]] set to migrations
and a limit of 5 migrations can be called like so:

yii migrate/up 5 --migrationTable=migrations

Note: When using * in console, don’t forget to quote it as "*" in order to avoid executing it as a shell
glob that will be replaced by all file names of the current directory.

The entry script

The console application entry script is equivalent to the index.php bootstrap file used for the web application.
The console entry script is typically called yii, and located in your application’s root directory.
It contains code like the following:

#!/usr/bin/env php
<?php
/**
 * Yii console bootstrap file.
 */

defined('YII_DEBUG') or define('YII_DEBUG', true);
defined('YII_ENV') or define('YII_ENV', 'dev');

require __DIR__ . '/vendor/autoload.php';
require __DIR__ . '/vendor/yiisoft/yii2/Yii.php';

$config = require __DIR__ . '/config/console.php';

$application = new yii\console\Application($config);
$exitCode = $application->run();
exit($exitCode);

This script will be created as part of your application; you’re free to edit it to suit your needs. The YII_DEBUG constant can be set to false if you do
not want to see a stack trace on error, and/or if you want to improve the overall performance. In both basic and advanced application
templates, the console application entry script has debugging enabled by default to provide a more developer-friendly environment.

Configuration

As can be seen in the code above, the console application uses its own configuration file, named console.php. In this file
you should configure various application components and properties for the console application in particular.

If your web application and console application share a lot of configuration parameters and values, you may consider moving the common
parts into a separate file, and including this file in both of the application configurations (web and console).
You can see an example of this in the advanced project template.

Tip: Sometimes, you may want to run a console command using an application configuration that is different
from the one specified in the entry script. For example, you may want to use the yii migrate command to
upgrade your test databases, which are configured in each individual test suite. To change the configuration
dynamically, simply specify a custom application configuration
file via the appconfig option when executing the command:

yii <route> --appconfig=path/to/config.php ...

Console command completion

Auto-completion of command arguments is a useful thing when working with the shell.
Since version 2.0.11, the ./yii command provides auto completion for the Bash and ZSH out of the box.

Bash completion

Make sure bash completion is installed. For most of installations it is available by default.

Place the completion script in /etc/bash_completion.d/:

 curl -L https://raw.githubusercontent.com/yiisoft/yii2/master/contrib/completion/bash/yii -o /etc/bash_completion.d/yii

For temporary usage you can put the file into the current directory and include it in the current session via source yii.
If globally installed you may need to restart the terminal or source ~/.bashrc to activate it.

Check the Bash Manual [https://www.gnu.org/software/bash/manual/html_node/Programmable-Completion.html] for
other ways of including completion script to your environment.

ZSH completion

Put the completion script in directory for completions, using e.g. ~/.zsh/completion/

mkdir -p ~/.zsh/completion
curl -L https://raw.githubusercontent.com/yiisoft/yii2/master/contrib/completion/zsh/_yii -o ~/.zsh/completion/_yii

Include the directory in the $fpath, e.g. by adding it to ~/.zshrc

fpath=(~/.zsh/completion $fpath)

Make sure compinit is loaded or do it by adding in ~/.zshrc

autoload -Uz compinit && compinit -i

Then reload your shell

exec $SHELL -l

Creating your own console commands

Console Controller and Action

A console command is defined as a controller class extending from [[yii\console\Controller]]. In the controller class,
you define one or more actions that correspond to sub-commands of the controller. Within each action, you write code that implements the appropriate tasks for that particular sub-command.

When running a command, you need to specify the route to the controller action. For example,
the route migrate/create invokes the sub-command that corresponds to the
[[yii\console\controllers\MigrateController::actionCreate()|MigrateController::actionCreate()]] action method.
If a route offered during execution does not contain an action ID, the default action will be executed (as with a web controller).

Options

By overriding the [[yii\console\Controller::options()]] method, you can specify options that are available
to a console command (controller/actionID). The method should return a list of the controller class’s public properties.
When running a command, you may specify the value of an option using the syntax --optionName=optionValue.
This will assign optionValue to the optionName property of the controller class.

If the default value of an option is of an array type and you set this option while running the command,
the option value will be converted into an array by splitting the input string on any commas.

Options Aliases

Since version 2.0.8 console command provides [[yii\console\Controller::optionAliases()]] method to add
aliases for options.

To define an alias, override [[yii\console\Controller::optionAliases()]] in your controller, for example:

namespace app\commands;

use yii\console\Controller;

class HelloController extends Controller
{
 public $message;

 public function options($actionID)
 {
 return ['message'];
 }

 public function optionAliases()
 {
 return ['m' => 'message'];
 }

 public function actionIndex()
 {
 echo $this->message . "\n";
 }
}

Now, you can use the following syntax to run the command:

yii hello -m=hello

Arguments

Besides options, a command can also receive arguments. The arguments will be passed as the parameters to the action
method corresponding to the requested sub-command. The first argument corresponds to the first parameter, the second
corresponds to the second, and so on. If not enough arguments are provided when the command is called, the corresponding parameters
will take the declared default values, if defined. If no default value is set, and no value is provided at runtime, the command will exit with an error.

You may use the array type hint to indicate that an argument should be treated as an array. The array will be generated
by splitting the input string on commas.

The following example shows how to declare arguments:

class ExampleController extends \yii\console\Controller
{
 // The command "yii example/create test" will call "actionCreate('test')"
 public function actionCreate($name) { ... }

 // The command "yii example/index city" will call "actionIndex('city', 'name')"
 // The command "yii example/index city id" will call "actionIndex('city', 'id')"
 public function actionIndex($category, $order = 'name') { ... }

 // The command "yii example/add test" will call "actionAdd(['test'])"
 // The command "yii example/add test1,test2" will call "actionAdd(['test1', 'test2'])"
 public function actionAdd(array $name) { ... }
}

Exit Code

Using exit codes is a best practice for console application development. Conventionally, a command returns 0 to indicate that
everything is OK. If the command returns a number greater than zero, that’s considered to be indicative of an error. The number returned will be the error
code, potentially usable to find out details about the error.
For example 1 could stand generally for an unknown error and all codes above would be reserved for specific cases: input errors, missing files, and so forth.

To have your console command return an exit code, simply return an integer in the controller action
method:

public function actionIndex()
{
 if (/* some problem */) {
 echo "A problem occurred!\n";
 return 1;
 }
 // do something
 return 0;
}

There are some predefined constants you can use. These are defined in the [[yii\console\ExitCode]] class:

public function actionIndex()
{
 if (/* some problem */) {
 echo "A problem occurred!\n";
 return ExitCode::UNSPECIFIED_ERROR;
 }
 // do something
 return ExitCode::OK;
}

It’s a good practice to define meaningful constants for your controller in case you have more specific error code types.

Formatting and colors

Yii console supports formatted output that is automatically degraded to non-formatted one if it’s not supported
by terminal running the command.

Outputting formatted strings is simple. Here’s how to output some bold text:

$this->stdout("Hello?\n", Console::BOLD);

If you need to build string dynamically combining multiple styles it’s better to use [[yii\helpers\Console::ansiFormat()|ansiFormat()]]:

$name = $this->ansiFormat('Alex', Console::FG_YELLOW);
echo "Hello, my name is $name.";

Tables

Since version 2.0.13 there is a widget that allows you to format table data in console. It could be used as the following:

echo Table::widget([
 'headers' => ['Project', 'Status', 'Participant'],
 'rows' => [
 ['Yii', 'OK', '@samdark'],
 ['Yii', 'OK', '@cebe'],
],
]);

For details please refer to [[yii\console\widgets\Table|API documentation]].

 Core Validators

Core Validators

Yii provides a set of commonly used core validators, found primarily under the yii\validators namespace.
Instead of using lengthy validator class names, you may use aliases to specify the use of these core
validators. For example, you can use the alias required to refer to the [[yii\validators\RequiredValidator]] class:

public function rules()
{
 return [
 [['email', 'password'], 'required'],
];
}

The [[yii\validators\Validator::builtInValidators]] property declares all supported validator aliases.

In the following, we will describe the main usage and properties of every core validator.

[[yii\validators\BooleanValidator|boolean]]

[
 // checks if "selected" is either 0 or 1, regardless of data type
 ['selected', 'boolean'],

 // checks if "deleted" is of boolean type, either true or false
 ['deleted', 'boolean', 'trueValue' => true, 'falseValue' => false, 'strict' => true],
]

This validator checks if the input value is a boolean.

	trueValue: the value representing true. Defaults to '1'.

	falseValue: the value representing false. Defaults to '0'.

	strict: whether the type of the input value should match that of trueValue and falseValue. Defaults to false.

Note: Because data input submitted via HTML forms are all strings, you normally should leave the
[[yii\validators\BooleanValidator::strict|strict]] property as false.

[[yii\captcha\CaptchaValidator|captcha]]

[
 ['verificationCode', 'captcha'],
]

This validator is usually used together with [[yii\captcha\CaptchaAction]] and [[yii\captcha\Captcha]]
to make sure an input is the same as the verification code displayed by [[yii\captcha\Captcha|CAPTCHA]] widget.

	caseSensitive: whether the comparison of the verification code is case sensitive. Defaults to false.

	captchaAction: the route corresponding to the
[[yii\captcha\CaptchaAction|CAPTCHA action]] that renders the CAPTCHA image. Defaults to 'site/captcha'.

	skipOnEmpty: whether the validation can be skipped if the input is empty. Defaults to false,
which means the input is required.

[[yii\validators\CompareValidator|compare]]

[
 // validates if the value of "password" attribute equals to that of "password_repeat"
 ['password', 'compare'],

 // same as above but with explicitly specifying the attribute to compare with
 ['password', 'compare', 'compareAttribute' => 'password_repeat'],

 // validates if age is greater than or equal to 30
 ['age', 'compare', 'compareValue' => 30, 'operator' => '>=', 'type' => 'number'],
]

This validator compares the specified input value with another one and make sure if their relationship
is as specified by the operator property.

	compareAttribute: the name of the attribute whose value should be compared with. When the validator
is being used to validate an attribute, the default value of this property would be the name of
the attribute suffixed with _repeat. For example, if the attribute being validated is password,
then this property will default to password_repeat.

	compareValue: a constant value that the input value should be compared with. When both
of this property and compareAttribute are specified, this property will take precedence.

	operator: the comparison operator. Defaults to ==, meaning checking if the input value is equal
to that of compareAttribute or compareValue. The following operators are supported:

	==: check if two values are equal. The comparison is done is non-strict mode.

	===: check if two values are equal. The comparison is done is strict mode.

	!=: check if two values are NOT equal. The comparison is done is non-strict mode.

	!==: check if two values are NOT equal. The comparison is done is strict mode.

	>: check if value being validated is greater than the value being compared with.

	>=: check if value being validated is greater than or equal to the value being compared with.

	<: check if value being validated is less than the value being compared with.

	<=: check if value being validated is less than or equal to the value being compared with.

	type: The default comparison type is ‘[[yii\validators\CompareValidator::TYPE_STRING|string]]’, which means the values are
compared byte by byte. When comparing numbers, make sure to set the [[yii\validators\CompareValidator::$type|$type]]
to ‘[[yii\validators\CompareValidator::TYPE_NUMBER|number]]’ to enable numeric comparison.

Comparing date values

The compare validator can only be used to compare strings and numbers. If you need to compare values
like dates you have two options. For comparing a date against a fixed value, you can simply use the
[[yii\validators\DateValidator|date]] validator and specify its
[[yii\validators\DateValidator::$min|$min]] or [[yii\validators\DateValidator::$max|$max]] property.
If you need to compare two dates entered in the form, e.g. a fromDate and a toDate field,
you can use a combination of compare and date validator like the following:

['fromDate', 'date', 'timestampAttribute' => 'fromDate'],
['toDate', 'date', 'timestampAttribute' => 'toDate'],
['fromDate', 'compare', 'compareAttribute' => 'toDate', 'operator' => '<', 'enableClientValidation' => false],

As validators are executed in the order they are specified this will first validate that the values entered in
fromDate and toDate are valid date values and if so, they will be converted into a machine readable format.
Afterwards these two values are compared with the compare validator.
Client validation is not enabled as this will only work on the server-side because the date validator currently does not
provide client validation, so [[yii\validators\CompareValidator::$enableClientValidation|$enableClientValidation]]
is set to false on the compare validator too.

[[yii\validators\DateValidator|date]]

The [[yii\validators\DateValidator|date]] validator comes with three different
shortcuts:

[
 [['from_date', 'to_date'], 'date'],
 [['from_datetime', 'to_datetime'], 'datetime'],
 [['some_time'], 'time'],
]

This validator checks if the input value is a date, time or datetime in a proper format.
Optionally, it can convert the input value into a UNIX timestamp or other machine readable format and store it in an attribute
specified via [[yii\validators\DateValidator::timestampAttribute|timestampAttribute]].

	format: the date/time format that the value being validated should be in.
This can be a date time pattern as described in the ICU manual [http://userguide.icu-project.org/formatparse/datetime#TOC-Date-Time-Format-Syntax].
Alternatively this can be a string prefixed with php: representing a format that can be recognized by the PHP
Datetime class. Please refer to http://php.net/manual/en/datetime.createfromformat.php on supported formats.
If this is not set, it will take the value of Yii::$app->formatter->dateFormat.
See the [[yii\validators\DateValidator::$format|API documentation]] for more details.

	timestampAttribute: the name of the attribute to which this validator may assign the UNIX timestamp
converted from the input date/time. This can be the same attribute as the one being validated. If this is the case,
the original value will be overwritten with the timestamp value after validation.
See “Handling date input with the DatePicker” [https://github.com/yiisoft/yii2-jui/blob/master/docs/guide/topics-date-picker.md] for a usage example.

Since version 2.0.4, a format and timezone can be specified for this attribute using
[[yii\validators\DateValidator::$timestampAttributeFormat|$timestampAttributeFormat]] and
[[yii\validators\DateValidator::$timestampAttributeTimeZone|$timestampAttributeTimeZone]].

Note, that when using timestampAttribute, the input value will be converted to a unix timestamp, which by definition is in UTC, so
a conversion from the [[yii\validators\DateValidator::timeZone|input time zone]] to UTC will be performed.

	Since version 2.0.4 it is also possible to specify a [[yii\validators\DateValidator::$min|minimum]] or
[[yii\validators\DateValidator::$max|maximum]] timestamp.

In case the input is optional you may also want to add a default value filter in addition to the date validator
to ensure empty input is stored as null. Otherwise you may end up with dates like 0000-00-00 in your database
or 1970-01-01 in the input field of a date picker.

[
 [['from_date', 'to_date'], 'default', 'value' => null],
 [['from_date', 'to_date'], 'date'],
],

[[yii\validators\DefaultValueValidator|default]]

[
 // set "age" to be null if it is empty
 ['age', 'default', 'value' => null],

 // set "country" to be "USA" if it is empty
 ['country', 'default', 'value' => 'USA'],

 // assign "from" and "to" with a date 3 days and 6 days from today, if they are empty
 [['from', 'to'], 'default', 'value' => function ($model, $attribute) {
 return date('Y-m-d', strtotime($attribute === 'to' ? '+3 days' : '+6 days'));
 }],
]

This validator does not validate data. Instead, it assigns a default value to the attributes being validated
if the attributes are empty.

	value: the default value or a PHP callable that returns the default value which will be assigned to
the attributes being validated if they are empty. The signature of the PHP callable should be as follows,

function foo($model, $attribute) {
 // ... compute $value ...
 return $value;
}

Info: How to determine if a value is empty or not is a separate topic covered
in the Empty Values section. Default value from database
schema could be loaded via loadDefaultValues() method of the model.

[[yii\validators\NumberValidator|double]]

[
 // checks if "salary" is a double number
 ['salary', 'double'],
]

This validator checks if the input value is a double number. It is equivalent to the number validator.

	max: the upper limit (inclusive) of the value. If not set, it means the validator does not check the upper limit.

	min: the lower limit (inclusive) of the value. If not set, it means the validator does not check the lower limit.

[[yii\validators\EachValidator|each]]

Info: This validator has been available since version 2.0.4.

[
 // checks if every category ID is an integer
 ['categoryIDs', 'each', 'rule' => ['integer']],
]

This validator only works with an array attribute. It validates if every element of the array can be successfully
validated by a specified validation rule. In the above example, the categoryIDs attribute must take an array value
and each array element will be validated by the integer validation rule.

	rule: an array specifying a validation rule. The first element in the array specifies the class name or
the alias of the validator. The rest of the name-value pairs in the array are used to configure the validator object.

	allowMessageFromRule: whether to use the error message returned by the embedded validation rule. Defaults to true.
If false, it will use message as the error message.

Note: If the attribute value is not an array, it is considered validation fails and the message will be returned
as the error message.

[[yii\validators\EmailValidator|email]]

[
 // checks if "email" is a valid email address
 ['email', 'email'],
]

This validator checks if the input value is a valid email address.

	allowName: whether to allow name in the email address (e.g. John Smith <john.smith@example.com>). Defaults to false.

	checkDNS, whether to check whether the email’s domain exists and has either an A or MX record.
Be aware that this check may fail due to temporary DNS problems, even if the email address is actually valid.
Defaults to false.

	enableIDN, whether the validation process should take into account IDN (internationalized domain names).
Defaults to false. Note that in order to use IDN validation you have to install and enable the intl PHP extension,
or an exception would be thrown.

[[yii\validators\ExistValidator|exist]]

[
 // a1 needs to exist in the column represented by the "a1" attribute
 ['a1', 'exist'],

 // a1 needs to exist, but its value will use a2 to check for the existence
 ['a1', 'exist', 'targetAttribute' => 'a2'],

 // a1 and a2 need to exist together, and they both will receive error message
 [['a1', 'a2'], 'exist', 'targetAttribute' => ['a1', 'a2']],

 // a1 and a2 need to exist together, only a1 will receive error message
 ['a1', 'exist', 'targetAttribute' => ['a1', 'a2']],

 // a1 needs to exist by checking the existence of both a2 and a3 (using a1 value)
 ['a1', 'exist', 'targetAttribute' => ['a2', 'a1' => 'a3']],

 // a1 needs to exist. If a1 is an array, then every element of it must exist.
 ['a1', 'exist', 'allowArray' => true],

 // type_id needs to exist in the column "id" in the table defined in ProductType class
 ['type_id', 'exist', 'targetClass' => ProductType::class, 'targetAttribute' => ['type_id' => 'id']],

 // the same as the previous, but using already defined relation "type"
 ['type_id', 'exist', 'targetRelation' => 'type'],
]

This validator checks if the input value can be found in a table column represented by
an Active Record attribute. You can use targetAttribute to specify the
Active Record attribute and targetClass the corresponding Active Record
class. If you do not specify them, they will take the values of the attribute and the model class being validated.

You can use this validator to validate against a single column or multiple columns (i.e., the combination of
multiple attribute values should exist).

	targetClass: the name of the Active Record class that should be used
to look for the input value being validated. If not set, the class of the model currently being validated will be used.

	targetAttribute: the name of the attribute in targetClass that should be used to validate the existence
of the input value. If not set, it will use the name of the attribute currently being validated.
You may use an array to validate the existence of multiple columns at the same time. The array values
are the attributes that will be used to validate the existence, while the array keys are the attributes
whose values are to be validated. If the key and the value are the same, you can just specify the value.

	targetRelation: since version 2.0.14 you can use convenient attribute targetRelation, which overrides the targetClass and targetAttribute attributes using specs from the requested relation.

	filter: additional filter to be applied to the DB query used to check the existence of the input value.
This can be a string or an array representing the additional query condition (refer to [[yii\db\Query::where()]]
on the format of query condition), or an anonymous function with the signature function ($query), where $query
is the [[yii\db\Query|Query]] object that you can modify in the function.

	allowArray: whether to allow the input value to be an array. Defaults to false. If this property is true
and the input is an array, then every element of the array must exist in the target column. Note that
this property cannot be set true if you are validating against multiple columns by setting targetAttribute as an array.

[[yii\validators\FileValidator|file]]

[
 // checks if "primaryImage" is an uploaded image file in PNG, JPG or GIF format.
 // the file size must be less than 1MB
 ['primaryImage', 'file', 'extensions' => ['png', 'jpg', 'gif'], 'maxSize' => 1024*1024],
]

This validator checks if the input is a valid uploaded file.

	extensions: a list of file name extensions that are allowed to be uploaded. This can be either
an array or a string consisting of file extension names separated by space or comma (e.g. “gif, jpg”).
Extension names are case-insensitive. Defaults to null, meaning all file name
extensions are allowed.

	mimeTypes: a list of file MIME types that are allowed to be uploaded. This can be either an array
or a string consisting of file MIME types separated by space or comma (e.g. “image/jpeg, image/png”).
The wildcard mask with the special character * can be used to match groups of mime types.
For example image/* will pass all mime types, that begin with image/ (e.g. image/jpeg, image/png).
Mime type names are case-insensitive. Defaults to null, meaning all MIME types are allowed.
For more details, please refer to common media types [http://en.wikipedia.org/wiki/Internet_media_type#List_of_common_media_types].

	minSize: the minimum number of bytes required for the uploaded file. Defaults to null, meaning no lower limit.

	maxSize: the maximum number of bytes allowed for the uploaded file. Defaults to null, meaning no upper limit.

	maxFiles: the maximum number of files that the given attribute can hold. Defaults to 1, meaning
the input must be a single uploaded file. If it is greater than 1, then the input must be an array
consisting of at most maxFiles number of uploaded files.

	checkExtensionByMimeType: whether to check the file extension by the file’s MIME type. If the extension produced by
MIME type check differs from the uploaded file extension, the file will be considered as invalid. Defaults to true,
meaning perform such check.

FileValidator is used together with [[yii\web\UploadedFile]]. Please refer to the Uploading Files
section for complete coverage about uploading files and performing validation about the uploaded files.

[[yii\validators\FilterValidator|filter]]

[
 // trim "username" and "email" inputs
 [['username', 'email'], 'filter', 'filter' => 'trim', 'skipOnArray' => true],

 // normalize "phone" input
 ['phone', 'filter', 'filter' => function ($value) {
 // normalize phone input here
 return $value;
 }],

 // normalize "phone" using the function "normalizePhone"
 ['phone', 'filter', 'filter' => [$this, 'normalizePhone']],

 public function normalizePhone($value) {
 return $value;
 }
]

This validator does not validate data. Instead, it applies a filter on the input value and assigns it
back to the attribute being validated.

	filter: a PHP callback that defines a filter. This can be a global function name, an anonymous function, etc.
The function signature must be function ($value) { return $newValue; }. This property must be set.

	skipOnArray: whether to skip the filter if the input value is an array. Defaults to false.
Note that if the filter cannot handle array input, you should set this property to be true. Otherwise some
PHP error might occur.

Tip: If you want to trim input values, you may directly use the trim validator.

Tip: There are many PHP functions that have the signature expected for the filter callback.
For example to apply type casting (using e.g. intval [http://php.net/manual/en/function.intval.php],
boolval [http://php.net/manual/en/function.boolval.php], …) to ensure a specific type for an attribute,
you can simply specify the function names of the filter without the need to wrap them in a closure:

['property', 'filter', 'filter' => 'boolval'],
['property', 'filter', 'filter' => 'intval'],

[[yii\validators\ImageValidator|image]]

[
 // checks if "primaryImage" is a valid image with proper size
 ['primaryImage', 'image', 'extensions' => 'png, jpg',
 'minWidth' => 100, 'maxWidth' => 1000,
 'minHeight' => 100, 'maxHeight' => 1000,
],
]

This validator checks if the input value represents a valid image file. It extends from the file validator
and thus inherits all its properties. Besides, it supports the following additional properties specific for image
validation purpose:

	minWidth: the minimum width of the image. Defaults to null, meaning no lower limit.

	maxWidth: the maximum width of the image. Defaults to null, meaning no upper limit.

	minHeight: the minimum height of the image. Defaults to null, meaning no lower limit.

	maxHeight: the maximum height of the image. Defaults to null, meaning no upper limit.

[[yii\validators\IpValidator|ip]]

[
 // checks if "ip_address" is a valid IPv4 or IPv6 address
 ['ip_address', 'ip'],

 // checks if "ip_address" is a valid IPv6 address or subnet,
 // value will be expanded to full IPv6 notation.
 ['ip_address', 'ip', 'ipv4' => false, 'subnet' => null, 'expandIPv6' => true],

 // checks if "ip_address" is a valid IPv4 or IPv6 address,
 // allows negation character `!` at the beginning
 ['ip_address', 'ip', 'negation' => true],
]

The validator checks if the attribute value is a valid IPv4/IPv6 address or subnet.
It also may change attribute’s value if normalization or IPv6 expansion is enabled.

The validator has such configuration options:

	ipv4: whether the validating value can be an IPv4 address. Defaults to true.

	ipv6: whether the validating value can be an IPv6 address. Defaults to true.

	subnet: whether the address can be an IP with CIDR subnet, like 192.168.10.0/24

	true - the subnet is required, addresses without CIDR will be rejected

	false - the address can not have the CIDR

	null - the CIDR is optional

Defaults to false.

	normalize: whether to add the CIDR prefix with the smallest length (32 for IPv4 and 128 for IPv6) to an
address without it. Works only when subnet is not false. For example:

	10.0.1.5 will normalized to 10.0.1.5/32

	2008:db0::1 will be normalized to 2008:db0::1/128

Defaults to false.

	negation: whether the validation address can have a negation character ! at the beginning. Defaults to false.

	expandIPv6: whether to expand an IPv6 address to the full notation format.
For example, 2008:db0::1 will be expanded to 2008:0db0:0000:0000:0000:0000:0000:0001. Defaults to false.

	ranges: array of IPv4 or IPv6 ranges that are allowed or forbidden.

When the array is empty, or the option is not set, all the IP addresses are allowed.
Otherwise, the rules are checked sequentially until the first match is found.
IP address is forbidden, when it has not matched any of the rules.

For example:

[
 'client_ip', 'ip', 'ranges' => [
 '192.168.10.128'
 '!192.168.10.0/24',
 'any' // allows any other IP addresses
]
]

In this example, access is allowed for all the IPv4 and IPv6 addresses excluding 192.168.10.0/24 subnet.
IPv4 address 192.168.10.128 is also allowed, because it is listed before the restriction.

	networks: array of network aliases, that can be used in ranges. Format of array:

	key - alias name

	value - array of strings. String can be a range, IP address or another alias. String can be
negated with ! (independent of negation option).

The following aliases are defined by default:

	*: any

	any: 0.0.0.0/0, ::/0

	private: 10.0.0.0/8, 172.16.0.0/12, 192.168.0.0/16, fd00::/8

	multicast: 224.0.0.0/4, ff00::/8

	linklocal: 169.254.0.0/16, fe80::/10

	localhost: 127.0.0.0/8', ::1

	documentation: 192.0.2.0/24, 198.51.100.0/24, 203.0.113.0/24, 2001:db8::/32

	system: multicast, linklocal, localhost, documentation

Info: This validator has been available since version 2.0.7.

[[yii\validators\RangeValidator|in]]

[
 // checks if "level" is 1, 2 or 3
 ['level', 'in', 'range' => [1, 2, 3]],
]

This validator checks if the input value can be found among the given list of values.

	range: a list of given values within which the input value should be looked for.

	strict: whether the comparison between the input value and the given values should be strict
(both the type and value must be the same). Defaults to false.

	not: whether the validation result should be inverted. Defaults to false. When this property is set true,
the validator checks if the input value is NOT among the given list of values.

	allowArray: whether to allow the input value to be an array. When this is true and the input value is an array,
every element in the array must be found in the given list of values, or the validation would fail.

[[yii\validators\NumberValidator|integer]]

[
 // checks if "age" is an integer
 ['age', 'integer'],
]

This validator checks if the input value is an integer.

	max: the upper limit (inclusive) of the value. If not set, it means the validator does not check the upper limit.

	min: the lower limit (inclusive) of the value. If not set, it means the validator does not check the lower limit.

[[yii\validators\RegularExpressionValidator|match]]

[
 // checks if "username" starts with a letter and contains only word characters
 ['username', 'match', 'pattern' => '/^[a-z]\w*$/i']
]

This validator checks if the input value matches the specified regular expression.

	pattern: the regular expression that the input value should match. This property must be set,
or an exception will be thrown.

	not: whether to invert the validation result. Defaults to false, meaning the validation succeeds
only if the input value matches the pattern. If this is set true, the validation is considered
successful only if the input value does NOT match the pattern.

[[yii\validators\NumberValidator|number]]

[
 // checks if "salary" is a number
 ['salary', 'number'],
]

This validator checks if the input value is a number. It is equivalent to the double validator.

	max: the upper limit (inclusive) of the value. If not set, it means the validator does not check the upper limit.

	min: the lower limit (inclusive) of the value. If not set, it means the validator does not check the lower limit.

[[yii\validators\RequiredValidator|required]]

[
 // checks if both "username" and "password" are not empty
 [['username', 'password'], 'required'],
]

This validator checks if the input value is provided and not empty.

	requiredValue: the desired value that the input should be. If not set, it means the input should not be empty.

	strict: whether to check data types when validating a value. Defaults to false.
When requiredValue is not set, if this property is true, the validator will check if the input value is
not strictly null; If this property is false, the validator will use a loose rule to determine a value is empty or not.
When requiredValue is set, the comparison between the input and requiredValue will also check data types
if this property is true.

Info: How to determine if a value is empty or not is a separate topic covered
in the Empty Values section.

[[yii\validators\SafeValidator|safe]]

[
 // marks "description" to be a safe attribute
 ['description', 'safe'],
]

This validator does not perform data validation. Instead, it is used to mark an attribute to be
a safe attribute.

[[yii\validators\StringValidator|string]]

[
 // checks if "username" is a string whose length is between 4 and 24
 ['username', 'string', 'length' => [4, 24]],
]

This validator checks if the input value is a valid string with certain length.

	length: specifies the length limit of the input string being validated. This can be specified
in one of the following forms:

	an integer: the exact length that the string should be of;

	an array of one element: the minimum length of the input string (e.g. [8]). This will overwrite min.

	an array of two elements: the minimum and maximum lengths of the input string (e.g. [8, 128]).
This will overwrite both min and max.

	min: the minimum length of the input string. If not set, it means no minimum length limit.

	max: the maximum length of the input string. If not set, it means no maximum length limit.

	encoding: the encoding of the input string to be validated. If not set, it will use the application’s
[[yii\base\Application::charset|charset]] value which defaults to UTF-8.

[[yii\validators\FilterValidator|trim]]

[
 // trims the white spaces surrounding "username" and "email"
 [['username', 'email'], 'trim'],
]

This validator does not perform data validation. Instead, it will trim the surrounding white spaces around
the input value. Note that if the input value is an array, it will be ignored by this validator.

[[yii\validators\UniqueValidator|unique]]

[
 // a1 needs to be unique in the column represented by the "a1" attribute
 ['a1', 'unique'],

 // a1 needs to be unique, but column a2 will be used to check the uniqueness of the a1 value
 ['a1', 'unique', 'targetAttribute' => 'a2'],

 // a1 and a2 need to be unique together, and they both will receive error message
 [['a1', 'a2'], 'unique', 'targetAttribute' => ['a1', 'a2']],

 // a1 and a2 need to be unique together, only a1 will receive error message
 ['a1', 'unique', 'targetAttribute' => ['a1', 'a2']],

 // a1 needs to be unique by checking the uniqueness of both a2 and a3 (using a1 value)
 ['a1', 'unique', 'targetAttribute' => ['a2', 'a1' => 'a3']],
]

This validator checks if the input value is unique in a table column. It only works
with Active Record model attributes. It supports validation against
either a single column or multiple columns.

	targetClass: the name of the Active Record class that should be used
to look for the input value being validated. If not set, the class of the model currently being validated will be used.

	targetAttribute: the name of the attribute in targetClass that should be used to validate the uniqueness
of the input value. If not set, it will use the name of the attribute currently being validated.
You may use an array to validate the uniqueness of multiple columns at the same time. The array values
are the attributes that will be used to validate the uniqueness, while the array keys are the attributes
whose values are to be validated. If the key and the value are the same, you can just specify the value.

	filter: additional filter to be applied to the DB query used to check the uniqueness of the input value.
This can be a string or an array representing the additional query condition (refer to [[yii\db\Query::where()]]
on the format of query condition), or an anonymous function with the signature function ($query), where $query
is the [[yii\db\Query|Query]] object that you can modify in the function.

[[yii\validators\UrlValidator|url]]

[
 // checks if "website" is a valid URL. Prepend "http://" to the "website" attribute
 // if it does not have a URI scheme
 ['website', 'url', 'defaultScheme' => 'http'],
]

This validator checks if the input value is a valid URL.

	validSchemes: an array specifying the URI schemes that should be considered valid. Defaults to ['http', 'https'],
meaning both http and https URLs are considered to be valid.

	defaultScheme: the default URI scheme to be prepended to the input if it does not have the scheme part.
Defaults to null, meaning do not modify the input value.

	enableIDN: whether the validator should take into account IDN (internationalized domain names).
Defaults to false. Note that in order to use IDN validation you have to install and enable the intl PHP
extension, otherwise an exception would be thrown.

Note: The validator checks that URL scheme and host part is correct. It does NOT check the remaining parts of a URL
and is NOT designed to protect against XSS or any other attacks. See Security best practices
article to learn more about threats prevention when developing applications.

 Yii and Docker

Yii and Docker

For development and deployments Yii applications can be run as Docker containers. A container is like a lightweight isolated virtual machine that maps its services to host’s ports, i.e. a webserver in a container on port 80 is available on port 8888 on your (local)host.

Containers can solve many issues such as having identical software versions at developer’s computer and the server, fast deployments or simulating mutli-server architecture while developing.

You can read more about Docker containers on docker.com [https://www.docker.com/what-docker].

Requirements

	docker

	docker-compose

Visit the download page [https://www.docker.com/community-edition] to get the Docker tooling.

Installation

After installation, you should be able to run docker ps and see an output similar to

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS

This means your Docker daemon is up and running.

Additionally run docker-compose version, your output should look like this

docker-compose version 1.20.0, build unknown
docker-py version: 3.1.3
CPython version: 3.6.4
OpenSSL version: OpenSSL 1.1.0g 2 Nov 2017

With Compose you can configure manage all services required for your application, such as databases and caching.

Resources

	PHP-base images for Yii can be found at yii2-docker [https://github.com/yiisoft/yii2-docker]

	Docker support for yii2-app-basic [https://github.com/yiisoft/yii2-app-basic#install-with-docker]

	Docker support for yii2-app-advanced [https://github.com/yiisoft/yii2-app-advanced/pull/347] is in development

Usage

Basic commands for Docker are

docker-compose up -d

to start all services in your stack, in the background

docker-compose ps

to list running services

docker-compose logs -f

to view logs for all services, continuously

docker-compose stop

to stop all services in your stack, gracefully

docker-compose kill

to stop all services in your stack, immediately

docker-compose down -v

to stop and remove all services, be aware of data loss when not using host-volumes

To run commands in a container

docker-compose run --rm php composer install

runs composer installation in a new container

docker-compose exec php bash

executes a bash in a running php service

Advanced topics

Yii framework tests

You can run the dockerized framework tests for Yii itself as described here [https://github.com/yiisoft/yii2/blob/master/tests/README.md#dockerized-testing].

Database administration tools

When running MySQL as (mysql), you can add phpMyAdmin container to your stack like the following:

 phpmyadmin:
 image: phpmyadmin/phpmyadmin
 ports:
 - '8888:80'
 environment:
 - PMA_ARBITRARY=1
 - PMA_HOST=mysql
 depends_on:
 - mysql

 Internationalization

Internationalization

Internationalization (I18N) refers to the process of designing a software application so that it can be adapted to
various languages and regions without engineering changes. For Web applications, this is of particular importance
because the potential users may be worldwide. Yii offers a full spectrum of I18N features that support message
translation, view translation, date and number formatting.

Locale and Language

Locale

Locale is a set of parameters that defines the user’s language, country and any special variant preferences
that the user wants to see in their user interface. It is usually identified by an ID consisting of a language
ID and a region ID.

For example, the ID en-US stands for the locale of “English and the United States”.

For consistency reasons, all locale IDs used in Yii applications should be canonicalized to the format of
ll-CC, where ll is a two- or three-letter lowercase language code according to
ISO-639 [http://www.loc.gov/standards/iso639-2/] and CC is a two-letter country code according to
ISO-3166 [https://en.wikipedia.org/wiki/ISO_3166-1#Current_codes].
More details about locale can be found in the
documentation of the ICU project [http://userguide.icu-project.org/locale#TOC-The-Locale-Concept].

Language

In Yii, we often use the term “language” to refer to a locale.

A Yii application uses two kinds of languages:

	[[yii\base\Application::$sourceLanguage|source language]]: This refers to the language in which the text messages in the source code are written.

	[[yii\base\Application::$language|target language]]: This is the language that should be used to display content to end users.

The so-called message translation service mainly translates a text message from source language to target language.

Configuration

You can configure application languages in the “application configuration” like the following:

return [
 // set target language to be Russian
 'language' => 'ru-RU',

 // set source language to be English
 'sourceLanguage' => 'en-US',

];

The default value for the [[yii\base\Application::$sourceLanguage|source language]] is en-US, meaning
US English. It is recommended that you keep this default value unchanged. Usually it is much easier
to find people who can translate from “English to other languages” than from “non-English to non-English”.

You often need to set the [[yii\base\Application::$language|target language]] dynamically based on different
factors, such as the language preference of end users. Instead of configuring it in the application configuration,
you can use the following statement to change the target language:

// change target language to Chinese
\Yii::$app->language = 'zh-CN';

Tip: If your source language varies among different parts of your code, you can
override the source language for different message sources, which are described in the next section.

Message Translation

From source language to target language

The message translation service translates a text message from one language (usually the [[yii\base\Application::$sourceLanguage|source language]])
to another (usually the [[yii\base\Application::$language|target language]]).

It does the translation by looking up the message to be translated in a message source which stores the original messages and the translated messages. If the message is found, the corresponding translated message will be returned; otherwise the original message will be
returned untranslated.

How to implement

To use the message translation service, you mainly need to do the following work:

	Wrap every text message that needs to be translated in a call to the [[Yii::t()]] method.

	Configure one or multiple message sources in which the message translation service can look for translated messages.

	Let the translators translate messages and store them in the message source(s).

1. Wrap a text message

The method [[Yii::t()]] can be used like the following,

echo \Yii::t('app', 'This is a string to translate!');

where the second parameter refers to the text message to be translated, while the first parameter refers to
the name of the category which is used to categorize the message.

2. Configure one or multiple message sources

The [[Yii::t()]] method will call the i18n application component translate
method to perform the actual translation work. The component can be configured in the application configuration as follows,

'components' => [
 // ...
 'i18n' => [
 'translations' => [
 'app*' => [
 'class' => 'yii\i18n\PhpMessageSource',
 //'basePath' => '@app/messages',
 //'sourceLanguage' => 'en-US',
 'fileMap' => [
 'app' => 'app.php',
 'app/error' => 'error.php',
],
],
],
],
],

In the above code, a message source supported by [[yii\i18n\PhpMessageSource]] is being configured.

Category wildcards with * symbol

The pattern app* indicates that all message categories whose names start with app should be translated using this
message source.

3. Let the translators translate messages and store them in the message source(s)

The [[yii\i18n\PhpMessageSource]] class uses PHP files with a simple PHP array to store message translations.
These files contain a map of the messages in source language to the translation in the target language.

Info: You can automatically generate these PHP files by using the message command,
which will be introduced later in this chapter.

Each PHP file corresponds to the messages of a single category. By default, the file name should be the same as
the category name. Example for app/messages/nl-NL/main.php:

<?php

/**
* Translation map for nl-NL
*/
return [
 'welcome' => 'welkom'
];

File mapping

You may configure [[yii\i18n\PhpMessageSource::fileMap|fileMap]] to map a category to a PHP file with a different naming approach.

In the above example, the category app/error is mapped to the PHP file @app/messages/ru-RU/error.php
(assuming ru-RU is the target language).
However, without this configuration the category would be mapped to @app/messages/ru-RU/app/error.php instead.

Other storage types

Besides storing the messages in PHP files, you may also use the following message sources to store translated messages
in different storage:

	[[yii\i18n\GettextMessageSource]] uses GNU Gettext MO or PO files to maintain translated messages.

	[[yii\i18n\DbMessageSource]] uses a database table to store translated messages.

Message Formatting

When translating a message, you can embed some placeholders and have them replaced by dynamic parameter values.
You can even use special placeholder syntax to have the parameter values formatted according to the target language.
In this subsection, we will describe different ways of formatting messages.

Message Parameters

In a message to be translated, you can embed one or multiple parameters (also called placeholders) so that they can be
replaced by the given values. By giving different sets of values, you can variate the translated message dynamically.
In the following example, the placeholder {username} in the message 'Hello, {username}!' will be replaced
by 'Alexander' and 'Qiang', respectively.

$username = 'Alexander';
// display a translated message with username being "Alexander"
echo \Yii::t('app', 'Hello, {username}!', [
 'username' => $username,
]);

$username = 'Qiang';
// display a translated message with username being "Qiang"
echo \Yii::t('app', 'Hello, {username}!', [
 'username' => $username,
]);

While translating a message containing placeholders, you should leave the placeholders as is. This is because the placeholders
will be replaced with the actual values when you call Yii::t() to translate a message.

You can use either named placeholders or positional placeholders, but not both, in a single message.

The previous example shows how you can use named placeholders. That is, each placeholder is written in the format of
{name}, and you provide an associative array whose keys are the placeholder names
(without the curly brackets) and whose values are the corresponding values placeholder to be replaced with.

Positional placeholders use zero-based integer sequence as names which are replaced by the provided values
according to their positions in the call of Yii::t(). In the following example, the positional placeholders
{0}, {1} and {2} will be replaced by the values of $price, $count and $subtotal, respectively.

$price = 100;
$count = 2;
$subtotal = 200;
echo \Yii::t('app', 'Price: {0}, Count: {1}, Subtotal: {2}', [$price, $count, $subtotal]);

In case of a single positional parameter its value could be specified without wrapping it into array:

echo \Yii::t('app', 'Price: {0}', $price);

Tip: In most cases you should use named placeholders. This is because the names will make the translators
understand better the whole messages being translated.

Parameter Formatting

You can specify additional formatting rules in the placeholders of a message so that the parameter values can be
formatted properly before they replace the placeholders. In the following example, the price parameter value will be
treated as a number and formatted as a currency value:

$price = 100;
echo \Yii::t('app', 'Price: {0,number,currency}', $price);

Note: Parameter formatting requires the installation of the intl PHP extension [http://www.php.net/manual/en/intro.intl.php].

You can use either the short form or the full form to specify a placeholder with formatting:

short form: {name,type}
full form: {name,type,style}

Note: If you need to use special characters such as {, }, ', #, wrap them in ':

echo Yii::t('app', "Example of string with ''-escaped characters'': '{' '}' '{test}' {count,plural,other{''count'' value is # '#{}'}}", ['count' => 3]);

Complete format is described in the ICU documentation [http://icu-project.org/apiref/icu4c/classMessageFormat.html].
In the following we will show some common usages.

Number

The parameter value is treated as a number. For example,

$sum = 42;
echo \Yii::t('app', 'Balance: {0,number}', $sum);

You can specify an optional parameter style as integer, currency, or percent:

$sum = 42;
echo \Yii::t('app', 'Balance: {0,number,currency}', $sum);

You can also specify a custom pattern to format the number. For example,

$sum = 42;
echo \Yii::t('app', 'Balance: {0,number,,000,000000}', $sum);

Characters used in the custom format could be found in
ICU API reference [http://icu-project.org/apiref/icu4c/classicu_1_1DecimalFormat.html] under “Special Pattern Characters”
section.

The value is always formatted according to the locale you are translating to i.e. you cannot change decimal or thousands
separators, currency symbol etc. without changing translation locale. If you need to customize these you can
use [[yii\i18n\Formatter::asDecimal()]] and [[yii\i18n\Formatter::asCurrency()]].

Date

The parameter value should be formatted as a date. For example,

echo \Yii::t('app', 'Today is {0,date}', time());

You can specify an optional parameter style as short, medium, long, or full:

echo \Yii::t('app', 'Today is {0,date,short}', time());

You can also specify a custom pattern to format the date value:

echo \Yii::t('app', 'Today is {0,date,yyyy-MM-dd}', time());

Formatting reference [http://icu-project.org/apiref/icu4c/classicu_1_1SimpleDateFormat.html#details].

Time

The parameter value should be formatted as a time. For example,

echo \Yii::t('app', 'It is {0,time}', time());

You can specify an optional parameter style as short, medium, long, or full:

echo \Yii::t('app', 'It is {0,time,short}', time());

You can also specify a custom pattern to format the time value:

echo \Yii::t('app', 'It is {0,date,HH:mm}', time());

Formatting reference [http://icu-project.org/apiref/icu4c/classicu_1_1SimpleDateFormat.html#details].

Spellout

The parameter value should be treated as a number and formatted as a spellout. For example,

// may produce "42 is spelled as forty-two"
echo \Yii::t('app', '{n,number} is spelled as {n,spellout}', ['n' => 42]);

By default the number is spelled out as cardinal. It could be changed:

// may produce "I am forty-seventh agent"
echo \Yii::t('app', 'I am {n,spellout,%spellout-ordinal} agent', ['n' => 47]);

Note that there should be no space after spellout, and before %.

To get a list of options available for locale you’re using check
“Numbering schemas, Spellout” at http://intl.rmcreative.ru/.

Ordinal

The parameter value should be treated as a number and formatted as an ordinal name. For example,

// may produce "You are the 42nd visitor here!"
echo \Yii::t('app', 'You are the {n,ordinal} visitor here!', ['n' => 42]);

Ordinal supports more ways of formatting for languages such as Spanish:

// may produce 471ª
echo \Yii::t('app', '{n,ordinal,%digits-ordinal-feminine}', ['n' => 471]);

Note that there should be no space after ordinal, and before %.

To get a list of options available for locale you’re using check
“Numbering schemas, Ordinal” at http://intl.rmcreative.ru/.

Duration

The parameter value should be treated as the number of seconds and formatted as a time duration string. For example,

// may produce "You are here for 47 sec. already!"
echo \Yii::t('app', 'You are here for {n,duration} already!', ['n' => 47]);

Duration supports more ways of formatting:

// may produce 130:53:47
echo \Yii::t('app', '{n,duration,%in-numerals}', ['n' => 471227]);

Note that there should be no space after duration, and before %.

To get a list of options available for locale you’re using check
“Numbering schemas, Duration” at http://intl.rmcreative.ru/.

Plural

Different languages have different ways to inflect plurals. Yii provides a convenient way for translating messages in
different plural forms that works well even for very complex rules. Instead of dealing with the inflection rules directly,
it is sufficient to provide the translation of inflected words in certain situations only. For example,

// When $n = 0, it may produce "There are no cats!"
// When $n = 1, it may produce "There is one cat!"
// When $n = 42, it may produce "There are 42 cats!"
echo \Yii::t('app', 'There {n,plural,=0{are no cats} =1{is one cat} other{are # cats}}!', ['n' => $n]);

In the plural rule arguments above, = means explicit value. So =0 means exactly zero, =1 means exactly one.
other stands for any other value. # is replaced with the value of n formatted according to target language.

Plural forms can be very complicated in some languages. In the following Russian example, =1 matches exactly n = 1
while one matches 21 or 101:

Здесь {n,plural,=0{котов нет} =1{есть один кот} one{# кот} few{# кота} many{# котов} other{# кота}}!

These other, few, many and other special argument names vary depending on language. To learn which ones you should
specify for a particular locale, please refer to “Plural Rules, Cardinal” at http://intl.rmcreative.ru/.
Alternatively you can refer to rules reference at unicode.org [http://cldr.unicode.org/index/cldr-spec/plural-rules].

Note: The above example Russian message is mainly used as a translated message, not an original message, unless you set
the [[yii\base\Application::$sourceLanguage|source language]] of your application as ru-RU and translating from Russian.

When a translation is not found for an original message specified in Yii::t() call, the plural rules for the
[[yii\base\Application::$sourceLanguage|source language]] will be applied to the original message.

There’s an offset parameter for the cases when the string is like the following:

$likeCount = 2;
echo Yii::t('app', 'You {likeCount,plural,
 offset: 1
 =0{did not like this}
 =1{liked this}
 one{and one other person liked this}
 other{and # others liked this}
}', [
 'likeCount' => $likeCount
]);

// You and one other person liked this

Ordinal selection

 Mailing

Mailing

Note: This section is under development.

Yii supports composition and sending of the email messages. However, the framework core provides
only the content composition functionality and basic interface. Actual mail sending mechanism should
be provided by the extension, because different projects may require its different implementation and
it usually depends on the external services and libraries.

For the most common cases you can use yii2-swiftmailer [https://www.yiiframework.com/extension/yiisoft/yii2-swiftmailer] official extension.

Configuration

Mail component configuration depends on the extension you have chosen.
In general your application configuration should look like:

return [
 //....
 'components' => [
 'mailer' => [
 'class' => 'yii\swiftmailer\Mailer',
],
],
];

Basic usage

Once the mailer component is configured, you can use the following code to send an email message:

Yii::$app->mailer->compose()
 ->setFrom('from@domain.com')
 ->setTo('to@domain.com')
 ->setSubject('Message subject')
 ->setTextBody('Plain text content')
 ->setHtmlBody('HTML content')
 ->send();

In the above example the method compose() creates an instance of the mail message, which then is populated and sent.
You may put more complex logic in this process if needed:

$message = Yii::$app->mailer->compose();
if (Yii::$app->user->isGuest) {
 $message->setFrom('from@domain.com');
} else {
 $message->setFrom(Yii::$app->user->identity->email);
}
$message->setTo(Yii::$app->params['adminEmail'])
 ->setSubject('Message subject')
 ->setTextBody('Plain text content')
 ->send();

Note: each mailer extension comes in 2 major classes: Mailer and Message. Mailer always knows
the class name and specific of the Message. Do not attempt to instantiate Message object directly —
always use compose() method for it.

You may also send several messages at once:

$messages = [];
foreach ($users as $user) {
 $messages[] = Yii::$app->mailer->compose()
 // ...
 ->setTo($user->email);
}
Yii::$app->mailer->sendMultiple($messages);

Some particular mail extensions may benefit from this approach, using single network message etc.

Composing mail content

Yii allows composition of the actual mail messages content via special view files.
By default these files should be located at @app/mail path.

Example mail view file content:

<?php
use yii\helpers\Html;
use yii\helpers\Url;

/* @var $this \yii\web\View view component instance */
/* @var $message \yii\mail\BaseMessage instance of newly created mail message */

?>
<h2>This message allows you to visit our site home page by one click</h2>
<?= Html::a('Go to home page', Url::home('http')) ?>

In order to compose message content via view file simply pass view name to the compose() method:

Yii::$app->mailer->compose('home-link') // a view rendering result becomes the message body here
 ->setFrom('from@domain.com')
 ->setTo('to@domain.com')
 ->setSubject('Message subject')
 ->send();

You may pass additional view parameters to compose() method, which will be available inside the view files:

Yii::$app->mailer->compose('greetings', [
 'user' => Yii::$app->user->identity,
 'advertisement' => $adContent,
]);

You can specify different view files for HTML and plain text message contents:

Yii::$app->mailer->compose([
 'html' => 'contact-html',
 'text' => 'contact-text',
]);

If you specify view name as a scalar string, its rendering result will be used as HTML body, while
plain text body will be composed by removing all HTML entities from HTML one.

View rendering result can be wrapped into the layout, which can be setup using [[yii\mail\BaseMailer::htmlLayout]]
and [[yii\mail\BaseMailer::textLayout]]. It will work the same way like layouts in regular web application.
Layout can be used to setup mail CSS styles or other shared content:

<?php
use yii\helpers\Html;

/* @var $this \yii\web\View view component instance */
/* @var $message \yii\mail\MessageInterface the message being composed */
/* @var $content string main view render result */
?>
<?php $this->beginPage() ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=<?= Yii::$app->charset ?>" />
 <style type="text/css">
 .heading {...}
 .list {...}
 .footer {...}
 </style>
 <?php $this->head() ?>
</head>
<body>
 <?php $this->beginBody() ?>
 <?= $content ?>
 <div class="footer">With kind regards, <?= Yii::$app->name ?> team</div>
 <?php $this->endBody() ?>
</body>
</html>
<?php $this->endPage() ?>

File attachment

You can add attachments to message using methods attach() and attachContent():

$message = Yii::$app->mailer->compose();

// attach file from local file system
$message->attach('/path/to/source/file.pdf');

// create attachment on-the-fly
$message->attachContent('Attachment content', ['fileName' => 'attach.txt', 'contentType' => 'text/plain']);

Embedding images

You can embed images into the message content using embed() method. This method returns the attachment id,
which should be then used at img tag.
This method is easy to use when composing message content via view file:

Yii::$app->mailer->compose('embed-email', ['imageFileName' => '/path/to/image.jpg'])
 // ...
 ->send();

Then inside the view file you can use the following code:

<img src="<?= $message->embed($imageFileName); ?>">

Testing and debugging

A developer often has to check, what actual emails are sent by the application, what was their content and so on.
Such ability is granted by Yii via yii\mail\BaseMailer::useFileTransport. If enabled, this option enforces
saving mail message data into the local files instead of regular sending. These files will be saved under
yii\mail\BaseMailer::fileTransportPath, which is @runtime/mail by default.

Note: you can either save the messages to the files or send them to the actual recipients, but can not do both simultaneously.

A mail message file can be opened by a regular text file editor, so you can browse the actual message headers, content and so on.
This mechanism may prove itself, while debugging application or running unit test.

Note: the mail message file content is composed via \yii\mail\MessageInterface::toString(), so it depends on the actual
mail extension you are using in your application.

Creating your own mail solution

In order to create your own custom mail solution, you need to create 2 classes: one for the Mailer and
another one for the Message.
You can use yii\mail\BaseMailer and yii\mail\BaseMessage as the base classes for your solution. These classes
already contain the basic logic, which is described in this guide. However, their usage is not mandatory, it is enough
to implement yii\mail\MailerInterface and yii\mail\MessageInterface interfaces.
Then you need to implement all the abstract methods to build your solution.

 Performance Tuning

Performance Tuning

There are many factors affecting the performance of your Web application. Some are environmental, some are related
with your code, while some others are related with Yii itself. In this section, we will enumerate most of these
factors and explain how you can improve your application performance by adjusting these factors.

Optimizing your PHP Environment

A well configured PHP environment is very important. In order to get maximum performance,

	Use the latest stable PHP version. Major releases of PHP may bring significant performance improvements.

	Enable bytecode caching with Opcache [http://php.net/opcache] (PHP 5.5 or later) or APC [http://php.net/apc]
(PHP 5.4). Bytecode caching avoids the time spent in parsing and including PHP scripts for every
incoming request.

	Tune realpath() cache [https://github.com/samdark/realpath_cache_tuner].

Disabling Debug Mode

When running an application in production, you should disable debug mode. Yii uses the value of a constant
named YII_DEBUG to indicate whether debug mode should be enabled. When debug mode is enabled, Yii
will take extra time to generate and record debugging information.

You may place the following line of code at the beginning of the entry script to
disable debug mode:

defined('YII_DEBUG') or define('YII_DEBUG', false);

Info: The default value of YII_DEBUG is false. So if you are certain that you do not change its default
value somewhere else in your application code, you may simply remove the above line to disable debug mode.

Using Caching Techniques

You can use various caching techniques to significantly improve the performance of your application. For example,
if your application allows users to enter text in Markdown format, you may consider caching the parsed Markdown
content to avoid parsing the same Markdown text repeatedly in every request. Please refer to
the Caching section to learn about the caching support provided by Yii.

Enabling Schema Caching

Schema caching is a special caching feature that should be enabled whenever you are using Active Record.
As you know, Active Record is intelligent enough to detect schema information (e.g. column names, column types, constraints)
about a DB table without requiring you to manually describe them. Active Record obtains this information by executing
extra SQL queries. By enabling schema caching, the retrieved schema information will be saved in the cache and reused
in future requests.

To enable schema caching, configure a cache application component to store
the schema information and set [[yii\db\Connection::enableSchemaCache]] to be true in the application configuration:

return [
 // ...
 'components' => [
 // ...
 'cache' => [
 'class' => 'yii\caching\FileCache',
],
 'db' => [
 'class' => 'yii\db\Connection',
 'dsn' => 'mysql:host=localhost;dbname=mydatabase',
 'username' => 'root',
 'password' => '',
 'enableSchemaCache' => true,

 // Duration of schema cache.
 'schemaCacheDuration' => 3600,

 // Name of the cache component used to store schema information
 'schemaCache' => 'cache',
],
],
];

Combining and Minimizing Assets

A complex Web page often includes many CSS and/or JavaScript asset files. To reduce the number of HTTP requests
and the overall download size of these assets, you should consider combining them into one single file and
compressing it. This may greatly improve the page loading time and reduce the server load. For more details,
please refer to the Assets section.

Optimizing Session Storage

By default session data are stored in files. The implementation is locking a file from opening a session to the point it’s
closed either by session_write_close() (in Yii it could be done as Yii::$app->session->close()) or at the end of request.
While session file is locked all other requests which are trying to use the same session are blocked i.e. waiting for the
initial request to release session file. This is fine for development and probably small projects. But when it comes
to handling massive concurrent requests, it is better to use more sophisticated storage, such as database. Yii supports
a variety of session storage out of box. You can use these storage by configuring the session component in the
application configuration like the following,

return [
 // ...
 'components' => [
 'session' => [
 'class' => 'yii\web\DbSession',

 // Set the following if you want to use DB component other than
 // default 'db'.
 // 'db' => 'mydb',

 // To override default session table, set the following
 // 'sessionTable' => 'my_session',
],
],
];

The above configuration uses a database table to store session data. By default, it will use the db application
component as the database connection and store the session data in the session table. You do have to create the
session table as follows in advance, though,

CREATE TABLE session (
 id CHAR(40) NOT NULL PRIMARY KEY,
 expire INTEGER,
 data BLOB
)

You may also store session data in a cache by using [[yii\web\CacheSession]]. In theory, you can use any supported
cache storage. Note, however, that some cache storage may flush cached data
when the storage limit is reached. For this reason, you should mainly use those cache storage that do not enforce
storage limit.

If you have Redis [http://redis.io/] on your server, it is highly recommended you use it as session storage by using
[[yii\redis\Session]].

Optimizing Databases

Executing DB queries and fetching data from databases are often the main performance bottleneck in
a Web application. Although using data caching techniques may alleviate the performance hit,
it does not fully solve the problem. When the database contains enormous amounts of data and the cached data is invalid,
fetching the latest data could be prohibitively expensive without proper database and query design.

A general technique to improve the performance of DB queries is to create indices for table columns that
need to be filtered by. For example, if you need to look for a user record by username, you should create an index
on username. Note that while indexing can make SELECT queries much faster, it will slow down INSERT, UPDATE and DELETE queries.

For complex DB queries, it is recommended that you create database views to save the query parsing and preparation time.

Last but not least, use LIMIT in your SELECT queries. This avoids fetching an overwhelming amount of data from the database
and exhausting the memory allocated to PHP.

Using Plain Arrays

Although Active Record is very convenient to use, it is not as efficient as using plain arrays
when you need to retrieve a large amount of data from database. In this case, you may consider calling asArray()
while using Active Record to query data so that the retrieved data is represented as arrays instead of bulky Active
Record objects. For example,

class PostController extends Controller
{
 public function actionIndex()
 {
 $posts = Post::find()->limit(100)->asArray()->all();

 return $this->render('index', ['posts' => $posts]);
 }
}

In the above code, $posts will be populated as an array of table rows. Each row is a plain array. To access
the title column of the i-th row, you may use the expression $posts[$i]['title'].

You may also use DAO to build queries and retrieve data in plain arrays.

Optimizing Composer Autoloader

Because Composer autoloader is used to include most third-party class files, you should consider optimizing it
by executing the following command:

composer dumpautoload -o

Additionally you may consider using
authoritative class maps [https://getcomposer.org/doc/articles/autoloader-optimization.md#optimization-level-2-a-authoritative-class-maps]
and APCu cache [https://getcomposer.org/doc/articles/autoloader-optimization.md#optimization-level-2-b-apcu-cache].
Note that both opmizations may or may not be suitable for your particular case.

Processing Data Offline

When a request involves some resource intensive operations, you should think of ways to perform those operations
in offline mode without having users wait for them to finish.

There are two methods to process data offline: pull and push.

In the pull method, whenever a request involves some complex operation, you create a task and save it in a persistent
storage, such as database. You then use a separate process (such as a cron job) to pull the tasks and process them.
This method is easy to implement, but it has some drawbacks. For example, the task process needs to periodically pull
from the task storage. If the pull frequency is too low, the tasks may be processed with great delay, but if the frequency
is too high, it will introduce high overhead.

In the push method, you would use a message queue (e.g. RabbitMQ, ActiveMQ, Amazon SQS, etc.) to manage the tasks.
Whenever a new task is put on the queue, it will initiate or notify the task handling process to trigger the task processing.

Performance Profiling

You should profile your code to find out the performance bottlenecks and take appropriate measures accordingly.
The following profiling tools may be useful:

	Yii debug toolbar and debugger [https://github.com/yiisoft/yii2-debug/blob/master/docs/guide/README.md]

	Blackfire [https://blackfire.io/]

	XHProf [http://www.php.net/manual/en/book.xhprof.php]

	XDebug profiler [http://xdebug.org/docs/profiler]

Prepare application for scaling

When nothing helps you may try making your application scalabe. A good introduction is provided in Configuring a Yii 2 Application for an Autoscaling Stack [https://github.com/samdark/yii2-cookbook/blob/master/book/scaling.md]. For further reading you may refer to Web apps performance and scaling [http://thehighload.com/].

 Shared Hosting Environment

Shared Hosting Environment

Shared hosting environments are often quite limited about configuration and directory structure. Still in most cases you
can run Yii 2.0 on a shared hosting environment with a few adjustments.

Deploying a basic project template

Since in a shared hosting environment there’s typically only one webroot, use the basic project template if you can.
Refer to the Installing Yii chapter and install the basic project template locally.
After you have the application working locally, we’ll make some adjustments so it can be hosted on your shared hosting
server.

Renaming webroot

Connect to your shared host using FTP or by other means. You will probably see something like the following.

config
logs
www

In the above, www is your webserver webroot directory. It could be named differently. Common names are: www,
htdocs, and public_html.

The webroot in our basic project template is named web. Before uploading the application to your webserver rename
your local webroot to match your server, i.e., from web to www, public_html or whatever the name of your hosting
webroot.

FTP root directory is writeable

If you can write to the root level directory i.e. where config, logs and www are, then upload assets, commands
etc. as is to the root level directory.

Add extras for webserver

If your webserver is Apache you’ll need to add an .htaccess file with the following content to web
(or public_html or whatever) (where the index.php file is located):

Options +FollowSymLinks
IndexIgnore */*

RewriteEngine on

if a directory or a file exists, use it directly
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d

otherwise forward it to index.php
RewriteRule . index.php

In case of nginx you should not need any extra config files.

Check requirements

In order to run Yii, your webserver must meet its requirements. The very minimum requirement is PHP 5.4. In order to
check the requirements copy requirements.php from your root directory into the webroot directory and run it via
browser using http://example.com/requirements.php URL. Don’t forget to delete the file afterwards.

Deploying an advanced project template

Deploying an advanced application to shared hosting is a bit trickier than a basic application but it could be achieved.
Follow instructions described in
advanced project template documentation [https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/topic-shared-hosting.md].

 Creating your own Application structure

Creating your own Application structure

Note: This section is under development.

While the basic [https://github.com/yiisoft/yii2-app-basic] and advanced [https://github.com/yiisoft/yii2-app-advanced]
project templates are great for most of your needs, you may want to create your own project template with which
to start your projects.

Project templates in Yii are simply repositories containing a composer.json file, and registered as a Composer package.
Any repository can be identified as a Composer package, making it installable via create-project Composer command.

Since it’s a bit too much to start building your entire template from scratch, it is better to use one of the built-in
templates as a base. Let’s use the basic template here.

Clone the Basic Template

The first step is to clone the basic Yii template’s Git repository:

git clone git@github.com:yiisoft/yii2-app-basic.git

Then wait for the repository to be downloaded to your computer. Since the changes made to the template won’t be pushed
back, you can delete the .git directory and all of its contents from the download.

Modify the Files

Next, you’ll want to modify the composer.json to reflect your template. Change the name, description, keywords,
homepage, license, and support values to describe your new template. Also adjust the require, require-dev,
suggest, and other options to match your template’s requirements.

Note: In the composer.json file, use the writable parameter under extra to specify
per file permissions to be set after an application is created using the template.

Next, actually modify the structure and contents of the application as you would like the default to be.
Finally, update the README file to be applicable to your template.

Make a Package

With the template defined, create a Git repository from it, and push your files there. If you’re going to open source
your template, Github [http://github.com] is the best place to host it. If you intend to keep your template
non-collaborative, any Git repository site will do.

Next, you need to register your package for Composer’s sake. For public templates, the package should be registered
at Packagist [https://packagist.org/]. For private templates, it is a bit more tricky to register the package. For
instructions, see the Composer documentation [https://getcomposer.org/doc/05-repositories.md#hosting-your-own].

Use the Template

That’s all that’s required to create a new Yii project template. Now you can create projects using your template:

composer create-project --prefer-dist --stability=dev mysoft/yii2-app-coolone new-project

 Using template engines

Using template engines

By default, Yii uses PHP as its template language, but you can configure Yii to support other rendering engines, such as
Twig [http://twig.sensiolabs.org/] or Smarty [http://www.smarty.net/] available as extensions.

The view component is responsible for rendering views. You can add a custom template engine by reconfiguring this
component’s behavior:

[
 'components' => [
 'view' => [
 'class' => 'yii\web\View',
 'renderers' => [
 'tpl' => [
 'class' => 'yii\smarty\ViewRenderer',
 //'cachePath' => '@runtime/Smarty/cache',
],
 'twig' => [
 'class' => 'yii\twig\ViewRenderer',
 'cachePath' => '@runtime/Twig/cache',
 // Array of twig options:
 'options' => [
 'auto_reload' => true,
],
 'globals' => ['html' => '\yii\helpers\Html'],
 'uses' => ['yii\bootstrap'],
],
 // ...
],
],
],
]

In the code above, both Smarty and Twig are configured to be useable by the view files. But in order to get these extensions into your project, you need to also modify
your composer.json file to include them, too:

"yiisoft/yii2-smarty": "~2.0.0",
"yiisoft/yii2-twig": "~2.0.0",

That code would be added to the require section of composer.json. After making that change and saving the file, you can install the extensions by running composer update --prefer-dist in the command-line.

For details about using concrete template engine please refer to its documentation:

	Twig guide [https://www.yiiframework.com/extension/yiisoft/yii2-twig/doc/guide/]

	Smarty guide [https://www.yiiframework.com/extension/yiisoft/yii2-smarty/doc/guide/]

 Using Yii as a Micro-framework

Using Yii as a Micro-framework

Yii can be easily used without the features included in basic and advanced templates. In other words, Yii is already a micro-framework. It is not required to have the directory structure provided by templates to work with Yii.

This is especially handy when you do not need all the pre-defined template code like assets or views. One of such cases is building a JSON API. In the following sections will show how to do that.

Installing Yii

Create a directory for your project files and change working directory to that path. Commands used in examples are Unix-based but similar commands exist in Windows.

mkdir micro-app
cd micro-app

Note: A little bit of Composer knowledge is required to continue. If you don’t know how to use composer yet, please take time to read Composer Guide [https://getcomposer.org/doc/00-intro.md].

Create file composer.json under the micro-app directory using your favorite editor and add the following:

{
 "require": {
 "yiisoft/yii2": "~2.0.0"
 },
 "repositories": [
 {
 "type": "composer",
 "url": "https://asset-packagist.org"
 }
]
}

Save the file and run the composer install command. This will install the framework with all its dependencies.

Creating the Project Structure

After you have installed the framework, it’s time to create an entry point for the application. Entry point is the very first file that will be executed when you try to open your application. For the security reasons, it is recommended to put the entrypoint file in a separate directory and make it a web root.

Create a web directory and put index.php inside with the following content:

<?php

// comment out the following two lines when deployed to production
defined('YII_DEBUG') or define('YII_DEBUG', true);
defined('YII_ENV') or define('YII_ENV', 'dev');

require(__DIR__ . '/../vendor/autoload.php');
require(__DIR__ . '/../vendor/yiisoft/yii2/Yii.php');

$config = require __DIR__ . '/../config.php';
(new yii\web\Application($config))->run();

Also create a file named config.php which will contain all application configuration:

<?php
return [
 'id' => 'micro-app',
 // the basePath of the application will be the `micro-app` directory
 'basePath' => __DIR__,
 // this is where the application will find all controllers
 'controllerNamespace' => 'micro\controllers',
 // set an alias to enable autoloading of classes from the 'micro' namespace
 'aliases' => [
 '@micro' => __DIR__,
],
];

Info: Even though the configuration could be kept in the index.php file it is recommended
to have it separately. This way it can be used for console application also as it is shown below.

Your project is now ready for coding. Although it’s up to you to decide the project directory structure, as long as you observe namespaces.

Creating the first Controller

Create a controllers directory and add a file SiteController.php, which is the default
controller that will handle a request with no path info.

<?php

namespace micro\controllers;

use yii\web\Controller;

class SiteController extends Controller
{
 public function actionIndex()
 {
 return 'Hello World!';
 }
}

If you want to use a different name for this controller you can change it and configure [[yii\base\Application::$defaultRoute]] accordingly.
For example, for a DefaultController that would be 'defaultRoute' => 'default/index'.

At this point the project structure should look like this:

micro-app/
├── composer.json
├── config.php
├── web/
 └── index.php
└── controllers/
 └── SiteController.php

If you have not set up the web server yet, you may want to take a look at web server configuration file examples.
Another options is to use the yii serve command which will use the PHP build-in web server. You can run
it from the micro-app/ directory via:

vendor/bin/yii serve --docroot=./web

Opening the application URL in a browser should now print “Hello World!” which has been returned in the SiteController::actionIndex().

Info: In our example, we have changed default application namespace app to micro to demonstrate
that you are not tied to that name (in case you thought you were), then adjusted
[[yii\base\Application::$controllerNamespace|controllers namespace]] and set the correct alias.

Creating a REST API

In order to demonstrate the usage of our “micro framework”, we will create a simple REST API for posts.

For this API to serve some data, we need a database first. Add the database connection configuration
to the application configuration:

'components' => [
 'db' => [
 'class' => 'yii\db\Connection',
 'dsn' => 'sqlite:@micro/database.sqlite',
],
],

Info: We use an sqlite database here for simplicity. Please refer to the Database guide for more options.

Next we create a database migration to create a post table.
Make sure you have a separate configuration file as explained above, we need it to run the console commands below.
Running the following commands will
create a database migration file and apply the migration to the database:

vendor/bin/yii migrate/create --appconfig=config.php create_post_table --fields="title:string,body:text"
vendor/bin/yii migrate/up --appconfig=config.php

Create directory models and a Post.php file in that directory. This is the code for the model:

<?php

namespace micro\models;

use yii\db\ActiveRecord;

class Post extends ActiveRecord
{
 public static function tableName()
 {
 return '{{post}}';
 }
}

Info: The model created here is an ActiveRecord class, which represents the data from the post table.
Please refer to the active record guide for more information.

To serve posts on our API, add the PostController in controllers:

<?php

namespace micro\controllers;

use yii\rest\ActiveController;

class PostController extends ActiveController
{
 public $modelClass = 'micro\models\Post';

 public function behaviors()
 {
 // remove rateLimiter which requires an authenticated user to work
 $behaviors = parent::behaviors();
 unset($behaviors['rateLimiter']);
 return $behaviors;
 }
}

At this point our API will provide the following URLs:

	/index.php?r=post - list all posts

	/index.php?r=post/view&id=1 - show post with ID 1

	/index.php?r=post/create - create a post

	/index.php?r=post/update&id=1 - update post with ID 1

	/index.php?r=post/delete&id=1 - delete post with ID 1

Starting from Here you may want to look at the following guides to further develop your application:

	The API currently only understands urlencoded form data as input, to make it a real JSON API, you
need to configure [[yii\web\JsonParser]].

	To make the URLs more friendly you need to configure routing.
See guide on REST routing on how to do this.

	Please also refer to the Looking Ahead section for further references.

 Working with Third-Party Code

Working with Third-Party Code

From time to time, you may need to use some third-party code in your Yii applications. Or you may want to
use Yii as a library in some third-party systems. In this section, we will show how to achieve these goals.

Using Third-Party Libraries in Yii

To use a third-party library in a Yii application, you mainly need to make sure the classes in the library
are properly included or can be autoloaded.

Using Composer Packages

Many third-party libraries are released in terms of Composer [https://getcomposer.org/] packages.
You can install such libraries by taking the following two simple steps:

	modify the composer.json file of your application and specify which Composer packages you want to install.

	run composer install to install the specified packages.

The classes in the installed Composer packages can be autoloaded using the Composer autoloader. Make sure
the entry script of your application contains the following lines to install
the Composer autoloader:

// install Composer autoloader
require __DIR__ . '/../vendor/autoload.php';

// include Yii class file
require __DIR__ . '/../vendor/yiisoft/yii2/Yii.php';

Using Downloaded Libraries

If a library is not released as a Composer package, you should follow its installation instructions to install it.
In most cases, you will need to download a release file manually and unpack it in the BasePath/vendor directory,
where BasePath represents the base path of your application.

If a library carries its own class autoloader, you may install it in the entry script
of your application. It is recommended the installation is done before you include the Yii.php file so that
the Yii class autoloader can take precedence in autoloading classes.

If a library does not provide a class autoloader, but its class naming follows PSR-4 [http://www.php-fig.org/psr/psr-4/],
you may use the Yii class autoloader to autoload the classes. All you need to do is just to declare a
root alias for each root namespace used in its classes. For example,
assume you have installed a library in the directory vendor/foo/bar, and the library classes are under
the xyz root namespace. You can include the following code in your application configuration:

[
 'aliases' => [
 '@xyz' => '@vendor/foo/bar',
],
]

If neither of the above is the case, it is likely that the library relies on PHP include path configuration to
correctly locate and include class files. Simply follow its instruction on how to configure the PHP include path.

In the worst case when the library requires explicitly including every class file, you can use the following method
to include the classes on demand:

	Identify which classes the library contains.

	List the classes and the corresponding file paths in Yii::$classMap in the entry script
of the application. For example,

Yii::$classMap['Class1'] = 'path/to/Class1.php';
Yii::$classMap['Class2'] = 'path/to/Class2.php';

Using Yii in Third-Party Systems

Because Yii provides many excellent features, sometimes you may want to use some of its features to support
developing or enhancing 3rd-party systems, such as WordPress, Joomla, or applications developed using other PHP
frameworks. For example, you may want to use the [[yii\helpers\ArrayHelper]] class or use the
Active Record feature in a third-party system. To achieve this goal, you mainly need to
take two steps: install Yii, and bootstrap Yii.

If the third-party system uses Composer to manage its dependencies, run the following command to add Yii
to the project requirements:

composer require yiisoft/yii2

In case you would like to use only the database abstraction layer or other non-asset related features of Yii,
you should require a special composer package that prevent Bower and NPM packages installation. See
cebe/assetfree-yii2 [https://github.com/cebe/assetfree-yii2] for details.

See also the general section about installing Yii for more information
on Composer and solution to possible issues popping up during the installation.

Otherwise, you can download [http://www.yiiframework.com/download/] the Yii release file and unpack it in
the BasePath/vendor directory.

Next, you should modify the entry script of the 3rd-party system by including the following code at the beginning:

require __DIR__ . '/../vendor/yiisoft/yii2/Yii.php';

$yiiConfig = require __DIR__ . '/../config/yii/web.php';
new yii\web\Application($yiiConfig); // Do NOT call run() here

As you can see, the code above is very similar to that in the entry script of
a typical Yii application. The only difference is that after the application instance is created, the run() method
is not called. This is because by calling run(), Yii will take over the control of the request handling workflow
which is not needed in this case and already handled by the existing application.

Like in a Yii application, you should configure the application instance based on the environment running
the third-party system. For example, to use the Active Record feature, you need to configure
the db application component with the DB connection setting used by the third-party system.

Now you can use most features provided by Yii. For example, you can create Active Record classes and use them
to work with databases.

Using Yii 2 with Yii 1

If you were using Yii 1 previously, it is likely you have a running Yii 1 application. Instead of rewriting
the whole application in Yii 2, you may just want to enhance it using some of the features only available in Yii 2.
This can be achieved as described below.

Note: Yii 2 requires PHP 5.4 or above. You should make sure that both your server and the existing application
support this.

First, install Yii 2 in your existing application by following the instructions given in the last subsection.

Second, modify the entry script of the application as follows,

// include the customized Yii class described below
require __DIR__ . '/../components/Yii.php';

// configuration for Yii 2 application
$yii2Config = require __DIR__ . '/../config/yii2/web.php';
new yii\web\Application($yii2Config); // Do NOT call run(), yii2 app is only used as service locator

// configuration for Yii 1 application
$yii1Config = require __DIR__ . '/../config/yii1/main.php';
Yii::createWebApplication($yii1Config)->run();

Because both Yii 1 and Yii 2 have the Yii class, you should create a customized version to combine them.
The above code includes the customized Yii class file, which can be created as follows.

$yii2path = '/path/to/yii2';
require $yii2path . '/BaseYii.php'; // Yii 2.x

$yii1path = '/path/to/yii1';
require $yii1path . '/YiiBase.php'; // Yii 1.x

class Yii extends \yii\BaseYii
{
 // copy-paste the code from YiiBase (1.x) here
}

Yii::$classMap = include($yii2path . '/classes.php');
// register Yii 2 autoloader via Yii 1
Yii::registerAutoloader(['yii\BaseYii', 'autoload']);
// create the dependency injection container
Yii::$container = new yii\di\Container;

That’s all! Now in any part of your code, you can use Yii::$app to access the Yii 2 application instance, while
Yii::app() will give you the Yii 1 application instance:

echo get_class(Yii::app()); // outputs 'CWebApplication'
echo get_class(Yii::$app); // outputs 'yii\web\Application'

 Yii 2.0 الدليل التقني الخاص ببيئة العمل

Yii 2.0 الدليل التقني الخاص ببيئة العمل

تم تحرير هذا الملف اعتمادا على الشروط الخاصة بتوثيف ال Yii [http://www.yiiframework.com/doc/terms/].

جميع الحقوق محفوظة

2014 (c) Yii Software LLC.

المقدمة

	عن بيئة العمل Yii

	التحديث من الإصدار 1.1

البداية من هنا

	ماذا يجب أن تعرف عن بيئة العمل

	تثبيت ال Yii

	تشغيل التطبيقات - Running Applications

	قل مرحبا - المشروع الأول

	التعامل مع ال forms

	التعامل مع قواعد البيانات

	إنشاء الشيفرة البرمجية من خلال ال gii

	ماذا الآن - الخطوة القادمة

الهيكلية الخاصة بالتطبيق (Application Structure)

	نظرة عامة عن الهيكلية الخاصة بالتطبيق

	Entry Scripts

	التطبيقات

	مكونات التطبيقات

	Controllers

	Models

	Views

	Modules

	Filters

	Widgets

	Assets

	Extensions

التعامل مع ال requests

	نظرة عامة عن التعامل مع ال requests

	Bootstrapping

	Routing and URL Creation

	Requests

	Responses

	Sessions and Cookies

	Handling Errors - التحكم بالأخطاء

	Logging - تسجيل الحركات

المفاهيم الرئيسية (Key Concepts)

	Components

	Properties

	Events

	Behaviors

	Configurations

	Aliases

	Class Autoloading

	Service Locator

	Dependency Injection Container

التعامل مع قواعد البيانات

	Database Access Objects: Connecting to a database, basic queries, transactions, and schema manipulation

	Query Builder: Querying the database using a simple abstraction layer

	Active Record: The Active Record ORM, retrieving and manipulating records, and defining relations

	Migrations: Apply version control to your databases in a team development environment

	Sphinx [https://www.yiiframework.com/extension/yiisoft/yii2-sphinx/doc/guide]

	Redis [https://www.yiiframework.com/extension/yiisoft/yii2-redis/doc/guide]

	MongoDB [https://www.yiiframework.com/extension/yiisoft/yii2-mongodb/doc/guide]

	ElasticSearch [https://www.yiiframework.com/extension/yiisoft/yii2-elasticsearch/doc/guide]

الحصول على البيانات من خلال المستخدمين

	Creating Forms

	Validating Input

	Uploading Files

	Collecting Tabular Input

	Getting Data for Multiple Models

	Extending ActiveForm on the Client Side

عرض البيانات

	Data Formatting

	Pagination

	Sorting

	Data Providers

	Data Widgets

	Working with Client Scripts

	Theming

الامان والحماية

	Security Overview

	Authentication

	Authorization

	Working with Passwords

	Cryptography

	Auth Clients [https://www.yiiframework.com/extension/yiisoft/yii2-authclient/doc/guide]

	Best Practices

Caching التخزين المؤقت

	Caching Overview

	Data Caching

	Fragment Caching

	Page Caching

	HTTP Caching

RESTful Web Services

	Quick Start

	Resources

	Controllers

	Routing

	Response Formatting

	Authentication

	Rate Limiting

	Versioning

	Error Handling

الأدوات المساعدة أثناء تطوير التطبيقات

	Debug Toolbar and Debugger [https://www.yiiframework.com/extension/yiisoft/yii2-debug/doc/guide]

	Generating Code using Gii [https://www.yiiframework.com/extension/yiisoft/yii2-gii/doc/guide]

	Generating API Documentation [https://www.yiiframework.com/extension/yiisoft/yii2-apidoc]

فحص واختبار التطبيقات

	Testing Overview

	Testing environment setup

	Unit Tests

	Functional Tests

	Acceptance Tests

	Fixtures

مواضيع وعناوين مميزة

	Advanced Project Template [https://www.yiiframework.com/extension/yiisoft/yii2-app-advanced/doc/guide]

	Building Application from Scratch

	Console Commands

	Core Validators

	Docker

	Internationalization

	Mailing

	Performance Tuning

	Shared Hosting Environment

	Template Engines

	Working with Third-Party Code

	Using Yii as a micro framework

Widgets

	GridView [https://www.yiiframework.com/doc-2.0/yii-grid-gridview.html]

	ListView [https://www.yiiframework.com/doc-2.0/yii-widgets-listview.html]

	DetailView [https://www.yiiframework.com/doc-2.0/yii-widgets-detailview.html]

	ActiveForm [https://www.yiiframework.com/doc-2.0/guide-input-forms.html#activerecord-based-forms-activeform]

	Pjax [https://www.yiiframework.com/doc-2.0/yii-widgets-pjax.html]

	Menu [https://www.yiiframework.com/doc-2.0/yii-widgets-menu.html]

	LinkPager [https://www.yiiframework.com/doc-2.0/yii-widgets-linkpager.html]

	LinkSorter [https://www.yiiframework.com/doc-2.0/yii-widgets-linksorter.html]

	Bootstrap Widgets [https://www.yiiframework.com/extension/yiisoft/yii2-bootstrap/doc/guide]

	jQuery UI Widgets [https://www.yiiframework.com/extension/yiisoft/yii2-jui/doc/guide]

Helpers

	Helpers Overview

	ArrayHelper

	Html

	Url

 ما هي بيئة العمل Yii

ما هي بيئة العمل Yii

Yii هو إطار PHP عالي الأداء يعتمد على المكونات لتطوير تطبيقات الويب الحديثة بسرعة.
إن الاسم "Yii" (يُنطق بـ "يي" أو "[جي:]" يعني "بسيطًا وتطوريًا" باللغة الصينية. ومن الممكن ايضا
 اعتباره اختصارًا لـ Yes It Is!

ما هي أفضل التطبيقات أو البرمجيات التي يمكن برمجتها وتتناسب مع ال Yii

Yii هو إطار عام لبرمجة الويب ، مما يعني أنه يمكن استخدامه لتطوير كافة أنواع
تطبيقات الويب باستخدام PHP. وذلك بسبب البنية القائمة على البنية التركيبة لبيئة العمل وترابطها مع المكونات والتخزين المؤقت، وهو مناسب بشكل خاص لتطوير portals, forums, content management systems (CMS), e-commerce projects, RESTful Web services. وما إلى ذلك.

كيف يمكن مقارنة بيئة العمل الخاصة بال Yii مع الأطر أو بيئات العمل الأخرى؟

 إذا كنت بالفعل على دراية بإطار العمل الأخرى ، فيمكنك معرفة كيف تتم مقارنة ال Yii:
 	 مثل معظم أطر عمل ال PHP ، يطبق Yii النمط المعماري MVC (Model-View-Controller).

	 ال Yii يتبنى الفلسفة التي تقول أن الشيفرة البرمجية يجب أن تكتب بأسهل طريقها وادقها، ولكنها بذات الوقت يجب أن تكون أنيقة الكتابة مظهرا ومضمونا (شكلا وتطيبقا).

	 ال Yii هو إطار متكامل (full stack) يوفر العديد من الميزات الجاهزة للإستخدام والمعدة مسبقا، مثل ال query builders وال ActiveRecord لقواعد البيانات العلاقئية (relational) وغير العلائقية (Nosql)، بالإضافة الى دعم وتجهيز ال RESTful API والتخزين المؤقت (caching) وغيرها الكثير.

	 من مميزات ال Yii إمكانية التعديل (استبدال جزء معين أو تخيصيص وإضافة) جزء معين على أغلب ال Yii core code، وبالإضافة الى هذا، يمكنك بناء ملحقات برمجية اعتمادا على ال core code، ومن ثم نشر هذه الشيفرة وتوزيعها واستخدامها دون وجود أي مشاكل أو صعوبة تذكر.

	 الأداء العالي هو الهدف الأساسي من ال Yii.

ال Yii إطار عمل صمم من قبل فريق برمجي متكامل، فهو ليس مجرد عمل فردي ، بل يتكون من فريق تطوير أساسي وقوي(http://www.yiiframework.com/team/) ، بالإضافة إلى منتدى كبير
من المهنيين الذين يساهمون باستمرار في تطوير هذا الإطار. فريق المطورين الخاص بال Yii
يراقب عن كثب أحدث اتجاهات تطوير الويب وأفضل الممارسات والمميزات التي
وجدت في الأطر والمشاريع الأخرى. وتدرج بانتظام بإضافة أفضل الممارسات والميزات الى ال Yii عبر واجهات بسيطة وأنيقة.

الإصدارات الخاصة بال Yii

 يتوفر لدى Yii حاليًا إصداران رئيسيان: 1.1 و 2.0. الإصدار 1.1 هو الجيل القديم وهو الآن في وضع الصيانة. الإصدار 2.0 هو إعادة كتابة وهيكلة كاملة لل Yii، تم اعتماد أحدث التقنيات والبروتوكولات فيها مثل including Composer, PSR, namespaces, traits والكثير من الأمور الأخرى، وفي هذه الإرشادات، سيكون الكلام كله موجها الى الإصدار الثاني من بيئة العمل ال Yii.

المتطلبات الأساسية للعمل على إطار ال Yii

 	الإصدار PHP 5.4.0 أو أكثر

 	المعرفة الأساسية بمفاهيم البرمجة كائنية التوجه OOP

 	المعرفة بآخر وأحدث التقنيات الموجودة بال php مثل ال namespaces, traits، الفهم لهذه المفاهيم سيسهل عليك العمل كثيرا

 ملاحظة: يمكن التحقق من توافق المتطلبات الخاصة بك مع ال yii من خلال الدخول الى الصفحة requirement الموجودة بال yii

 التعامل مع قواعد البيانات

التعامل مع قواعد البيانات

 في هذا الجزء التعليمي ستتعلم آلية إنشاء صفحة جديدة تعرض بيانات يتم جلبها من قاعدة البيانات -في هذا المثال، البيانات تخص ال country-، هذه البيانات سيتم جلبها من جدول موجود في قاعدة البيانات يسمى ب country. لتحقيق هذا المهمة، ستقوم بعمل ال config الخاص بالإتصال بقاعدة بيانات، بالإضافة لإنشاء ال Active Record class، وتعريف ال action، وإنشاء view لهذه الصفحة.

 في هذا الشرح ستتعلم كيف يمكنك القيام بما يلي:

 	إعداد ال connection الخاص بقاعدة البيانات

 	 التعرف على ال active record.

 	إنشاء جمل إستعلام عن البياتات بإستخدام ال active record class

 	عرض البيانات داخل ال view من خلال ال paginated fashion.

 ملاحظة: من أجل الانتهاء من هذا الجزء التعليمي، يجب أن يكون لديك المعرفة الأساسية والخبرة باستخدام قواعد البيانات. وعلى وجه الخصوص، يجب أن تعرف كيفية إنشاء قواعد البيانات، وكيفية تنفيذ ال statements SQL باستخدام أي DB client tool.

إعداد قاعدة البيانات

 في البداية، عليك إنشاء قاعدة بيانات تسمى ب yii2basic، والتي ستستخدم لجلب البيانات الخاصة بالتطبيق، ويمكنك إستخدام أي من ال SQLite, MySql, PostgreSQL, MSSQL or Oracle database, ال Yii بشكل افتراضي بدعم العديد من قواعد البيانات والتي يمكنك إستخدامها مباشرة في التطبيق الخاص بك، ولتبسيط الأمور، ال MySql هي التي سيتم إستخدامها في في هذا الشرح.

 معلومة: إذا كنت ترغب بالحصول على خيارات متقدمة مثل دعم ال JSON الموجود داخل MariaDB، فيمكنك من إستخدام أحد ال Extension المذكوره بالأسفل للقيام بهذه المهمة بدلا من الإستغناء عن ال MySql، فإستخدام MariaDB بدلا عن ال MySql لم يعد صحيحا تماما.

 بعد قيامك بإنشاء قاعدة البيانات، سنقوم بإنشاء جدول إسمه country، ومن ثم سنقوم بإدخال بعض البيانات كعينة للإختيار، وللقيام بذلك، قم بتنفيذ الأوامر التالية:

CREATE TABLE `country` (
 `code` CHAR(2) NOT NULL PRIMARY KEY,
 `name` CHAR(52) NOT NULL,
 `population` INT(11) NOT NULL DEFAULT '0'
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

INSERT INTO `country` VALUES ('AU','Australia',24016400);
INSERT INTO `country` VALUES ('BR','Brazil',205722000);
INSERT INTO `country` VALUES ('CA','Canada',35985751);
INSERT INTO `country` VALUES ('CN','China',1375210000);
INSERT INTO `country` VALUES ('DE','Germany',81459000);
INSERT INTO `country` VALUES ('FR','France',64513242);
INSERT INTO `country` VALUES ('GB','United Kingdom',65097000);
INSERT INTO `country` VALUES ('IN','India',1285400000);
INSERT INTO `country` VALUES ('RU','Russia',146519759);
INSERT INTO `country` VALUES ('US','United States',322976000);

 الآن، أصبح لديك قاعدة بيانات إسمها yii2basic، وتحوي بداخلها جدول بثلاث أعمدة يسمى ب country، وفيه 10 صفوف من البيانات.

إعدادات الإتصال الخاصة بقواعد البيانات - Configuring a DB Connection

 قبل أن تكمل الشرح، تأكد من تثبيت ال PHP PDO وال PDO driver، بالنسبة لهذا المثال، فإننا سنستخدم ال driver الخاص بال MySql وهو ال pdo_mysql، وهذه هي المتطلبات الأساسية لبناء أي التطبيق اذا كان التطبيق يستخدم ال relational database.

 ملاحظة: يمكنك تقعيل ال PDO مباشرة من خلال الدخول الى php.ini ومن ثم حذف الفاصلة المنقوطة قبل السطر التالي: extension=php_pdo.dll
 كما يمكنك تفعيل ال driver المطلوب عن طريق حذف الفاصلة المنقوطة قبل ال driver المقصود مثل:
extension=php_pdo_mysql.dll
 ويمكنك الإطلاع على المزيد من هنا:
pdo installation

 بعد إتمام ما سبق، قم بفتح الملف config/db.php ومن ثم قم بتعديل ال parameters لتكون الإعدادات الخاصة بقاعدة البيانات صحيحة -الإعدادت الخاصة بك-، بشكل افتراضي، يحتوي الملف على ما يلي:

<?php

return [
 'class' => 'yii\db\Connection',
 'dsn' => 'mysql:host=localhost;dbname=yii2basic',
 'username' => 'root',
 'password' => '',
 'charset' => 'utf8',
];

 يمثل ملف ال config/db.php أداة نموذجية تعتمد على الملفات للقيام بال configuration. يقوم ملف ال configuration بتحديد ال parameters المطلوبة لإنشاء وإعداد ال instance الخاص بال [[yii\db\Connection]]، ومن خلالها يمكنك إجراء عمليات الإستعلام على قاعدة البيانات.

 الإعدادات الخاصة بالإتصال بقاعدة البيانات والمذكورة في الملف أعلاه يمكن الوصول اليها من خلال التطبيق عن طريق تنفيذ الأمر التالي
 Yii::$app->db

 معلومة: سيتم تضمين ملف ال config/db.php من خلال ال main application configuration والذي يتمثل بالملف config/web.php، والذي يقوم بدوره بتحديد كيف يمكن تهيئة ال instance الخاص بالتطبيق، لمزيد من المعلومات، يرجى الإطلاع على قسم ال Configurations.

 إذا كنت بحاجة إلى العمل مع إحدى قواعد البيانات الغير مدعومة بشكل إفتراضي من ال Yii، فيمكنك التحقق من الإضافات التالية:

 	Informix

	 IBM DB2

	 Firebird

	 MariaDB

إنشاء ال Active Record

 العمل مع ال Forms

العمل مع ال Forms

في هذا الموضوع سنتعلم كيفية إنشاء صفحة تحتوي على form للحصول على البيانات من خلال المستخدمين، وستعرض هذه الصفحة form يحتوي على حقل لإدخال الإسم وحقل إدخال للبريد الإلكتروني.
وبعد الحصول على المعلومات الخاصة بهذه الحقول من المستخدم، ستقوم الصفحة بطباعة القيم التي تم إدخالها.

 في هذا الشرح، ستقوم بإضافة action وصحفتين views، وستتعرف أيضا على طريقة إنشاء ال model.

من خلال هذا البرنامج التعليمي ، ستتعلم كيفية:

 	إنشاء model لتمثيل البيانات التي تم إدخالها من خلال المستخدم عن طريق ال form.

 	إنشاء rules للتحقق من صحة البيانات التي تم إدخالها.

 	بناء html form داخل صفحة ال view.

إنشاء ال Model

 يتم تمثيل البيانات التي يتم طلبها من خلال المستخدم عن طريق ال EntryForm model class كما هو موضح أدناه، ويتم حفظ هذا الملف داخل المسار models، ويكون إسم ال model ومساره في مثالنا هذا هو models/EntryForm.php. يرجى الرجوع إلى صفحة ال Class Autoloading للحصول على مزيد من التفاصيل حول طريقة التعامل مع التسمية الخاصة بال class في Yii.

<?php

namespace app\models;

use Yii;
use yii\base\Model;

class EntryForm extends Model
{
 public $name;
 public $email;

 public function rules()
 {
 return [
 [['name', 'email'], 'required'],
 ['email', 'email'],
];
 }
}

 هذا ال class يرث ال [[yii\base\Model]], وهو base class تم تصميمه من خلال ال Yii, وبشكل عام وظيفته هي تثمثيل البيانات الخاصة بأي نموذج.

معلومة: يتم إستخدام ال [[yii\base\Model]] كأصل لل model class ولا يرتبط بجداول قواعد البيانات. ويستخدم ال [[yii\db\ActiveRecord]] بالشكل الإعتيادي ليكون هو الأصل الذي من خلاله يتم الإرتباط بجداول بقواعد البيانات.

 يحتوي class ال EntryForm على متغيرين إثنين من نوع Public، هما name و email، واللذان يستخدمان في تخزين البيانات التي أدخلها المستخدم. كما يحتوي أيضًا على method باسم rules()، والتي تُرجع مجموعة
الشروط الخاصة بالبيانات للتحقق من صحتها. والشيفرة البرمجية الموجودة داخل ال rules method تعني:

 	كل من ال name وال email حقول الزامية (required).

 	ال email حقل يجب أن يحتوي بداخله قيمة صحيحة تعبر عن البريد الإلكتروني (القواعد النحوية لكتابة البريد الإلكتروني).

 إذا كان لديك object من ال EntryForm ويحتوي على البيانات التي أدخلها المستخدم، فيمكنك حينها إستدعاء الدالة [[yii\base\Model::validate()|validate()]] للتحقق من صحة البيانات. اذا فشلت عملية التحقق من صحة البيانات، فسيؤدي ذلك إلى تغيير قيمة ال [[yii\base\Model::hasErrors|hasErrors]] إلى true ، بالإضافة الى ذلك يمكنك التعرف الى الأخطاء المتعلقة بهذه البيانات من خلال الدالة [[yii\base\Model::getErrors|errors]].

<?php
$model = new EntryForm();
$model->name = 'Qiang';
$model->email = 'bad';
if ($model->validate()) {
 // Good!
} else {
 // Failure!
 // Use $model->getErrors()
}

إنشاء Action

 الآن، ستحتاج إلى إنشاء action جديد في ال site controller وليكن إسمه entry، والذي سيقوم بدوره باستخدام ال model الجديد الذي قمنا بإنشائه. هذه العملية تم شرحها سابقا في الجزء التالي من التوثيق Saying Hello - قل مرحبا.

<?php

namespace app\controllers;

use Yii;
use yii\web\Controller;
use app\models\EntryForm;

class SiteController extends Controller
{
 // ...existing code...

 public function actionEntry()
 {
 $model = new EntryForm();

 if ($model->load(Yii::$app->request->post()) && $model->validate()) {
 // valid data received in $model

 // do something meaningful here about $model ...

 return $this->render('entry-confirm', ['model' => $model]);
 } else {
 // either the page is initially displayed or there is some validation error
 return $this->render('entry', ['model' => $model]);
 }
 }
}

 أولا، يقوم ال action بإنشاء object من ال EntryForm. ثم يحاول تعبئة البيانات لل object من خلال ال $ _POST، والتي يتم تقديمها في ال Yii من خلال ال [[yii\web\Request::post()]].
إذا تم ملء ال object بنجاح (على سبيل المثال، إذا قام المستخدم بإدخال البيانات داخل ال form ومن ثم قام بإرسالها(submitted html form))، فسيتم استدعاء ال [[yii\base\Model::validate()|validate()]] من خلال ال action للتأكد من صلاحية القيم المدخلة.

 معلومة: يمثل التعبير Yii::$app ال Application instance الذي يمكن الوصول اليه من خلال ال singleton
(singleton globally accessible). وهو أيضا service locator بحيث يوفر الدعم لل components مثل ال request, response, db..الخ، لدعم وظائف محددة. مثلا في المثال الموجود في الأعلى، فإن ال request هو component من ال application instance والذي يستخدم للوصول الى البيانات الموجودة داخل ال $_POST.

 إذا كان كل شيء على ما يرام، فسوف يقوم ال action بجلب ال view التالية: entry-confirm، وذلك لتأكيد أن العملية قد تمت بنجاح بالنسبة للمستخدم، أما إن كانت البيانات غير صحيحة، أو لم يتم إرسال أي بيانات، فإن ال view entry هي التي سيتم جلبها وعرضها للمستخدم، حيث يتم عرض ال Html form، مع أي رسائل تحذير بخصوص الأخطاء التي تم العثور عليها من عملية التحقق.

ملاحظة: في هذا المثال البسيط، نعرض صفحة التأكيد فقط عند إرسال البيانات بشكل صحيح. عند الممارسة العملية، يجب عليك استخدام [[yii\web\Controller::refresh()|refresh()]] أو [[yii\web\Controller::redirect()|redirect()]] لتجنب أي مشكلة تحصل عن طريق ال resubmission والتي تندرج تحت العنوان form resubmission problems.

إنشاء ال views

 أخيرا، سنقوم بإنشاء صفحتين لل views الأولى بإسم entry-confirm والثانية entry. وهاتين الصفحتين سيتم جلبهم من خلال ال entry action.

 ال entry-confirm ستقوم بكل بساطة بعرض الإسم والبريد الإلكتروني الذي تم إدخالهم من قبل المستخدم. ويجب حفظ هذه الصفحة بالمسار التالي: views/site/entry-confirm.php

<?php
use yii\helpers\Html;
?>
<p>You have entered the following information:</p>

 <label>Name</label>: <?= Html::encode($model->name) ?>
 <label>Email</label>: <?= Html::encode($model->email) ?>

 صفحة ال entry ستقوم بعرض ال HTML form. هذه الصفحة يجب أن يتم حفظها داخل المسار التالي: views/site/entry.php

<?php
use yii\helpers\Html;
use yii\widgets\ActiveForm;
?>
<?php $form = ActiveForm::begin(); ?>

 <?= $form->field($model, 'name') ?>

 <?= $form->field($model, 'email') ?>

 <div class="form-group">
 <?= Html::submitButton('Submit', ['class' => 'btn btn-primary']) ?>
 </div>

<?php ActiveForm::end(); ?>

 تستخدم ال view أسلوب مميز لبناء ال Forms، وذلك عن طريق ال widget الذي يسمى ب [[yii\widgets\ActiveForm|ActiveForm]]. إن الأسلوب المستخدم في هذا ال widget يقوم على إستخدام كل من الدالة begin() و end() لجلب ال opening وال closing form tags على التوالي (فتحة ال tag، ثم الإغلاق الخاص بهذا ال tag)، وبين الفتحة والإغلاق يمكنك إنشاء الحقول عن طريق إستخدام الدالة [[yii\widgets\ActiveForm::field()|field()]]. في هذا المثال كان الحقل الأول في ال form يشير الى name data، والثاني يشير الى ال email data، وبعد هذه الحقول ستجد الدالة المستخدمة لإنشاء ال Submit button وهي [[yii\helpers\Html::submitButton()]].

لنجرب المثال

 لتشاهد آلية العمل لهذا المثال، والنتائج المتعلقة به، يمكنك إستخدام المتصفح والدخول الى الرابط التالي:

http://hostname/index.php?r=site%2Fentry

عند دخولك الى الرابط السابق، سترى صفحة تعرض Html form يحتوي على حقلين لإدخال المعلومات. أمام كل حقل إدخال ستجد label يشير إلى البيانات المطلوب إدخالها. إذا قمت بالنقر فوق الزر "submit" بدون
أي إدخال، أو إذا لم تقم بكتابة عنوان البريد الإلكتروني بشكل صحيح، فستظهر لك رسالة خطأ بجوار الحقل المقصود.

[image: Form with Validation Errors]

 بعد إدخالك لإسم وبريد الكتروني صحيح، وقيامك بالنقر على زر submit، فإنك ستشاهد صفحة جديدة تقوم بعرض البيانات التي قمت بإدخالها.

[image: Confirmation of Data Entry]

كيف ظهر الخطأ؟ هل هو سحر؟!

قد تتساءل كيف يعمل ال Html form بالخفاء، وقد يبدو ذلك سحرا للوهلة الأولى، فهو يعرض ال label لكل حقل إدخال، ويعرض رسائل الخطأ إذا لم تقم بإدخال البيانات بشكل صحيح، وكل ذلك دون الحاجة لإعادة تحميل الصفحة.

 إن السحر الموجود لدينا هنا، هو كيفية العمل الخاصة بالشيفرة البرمجية لل form، والتي تعمل بالخفاء، إن إجراء التحقق عن صحة البيانات يتم في البداية من جانب العميل -client side- وذلك باستخدام الجافا سكربت، ومن ثم -بعد تجاوز التحقق الخاص بالجافا سكربت- بتم تنفيذ التحقق من جانب ال server-side عبر ال PHP. ال [[yii\widgets\ActiveForm]] ذكية بما فيه الكفاية لاستخراج ال rule الخاصة بالتحقق والتي قمت بإنشائها وتعريفها داخل ال EntryForm، ومن ثم تحويل هذه القواعد إلى شيفرة برمجية بالجافا سكربت قابلة للتنفيذ، ومن ثم استخدام هذه الشيفرة من قبل الجافا سكربت لإجراء التحقق من صحة البيانات. في حال قمت بإيقاف الجافا سكربت في المتصفح الخاص بك، سوف يستمر إجراء التحقق من جانب الخادم -server side-، كما هو موضح في ال action المسمى actionEntry(). وهذا يضمن صحة البيانات في جميع الظروف.

 تحذير: التحقق من جانب العميل -client side- يوفر تجربة أفضل للمستخدم، لكن يجب الأخذ بعين الإعتبار أن التحقق من جانب الخادم -server- مطلوب دائمًا، سواء تم التحقق من جانب العميل أم لا.

 يتم إنشاء ال labels الخاصة بحقول الإدخال بواسطة الدالة field()، وذلك من خلال إستخدام أسماء ال property الموجودة داخل ال model. على سبيل المثال، سيتم إنشاء ال label التالي Name للproperty التالية: name.

 كما يمكنك تعديل ال label الإفتراضي لأي حقل من خلال الشيفرة البرمجية التالية:

<?= $form->field($model, 'name')->label('Your Name') ?>
<?= $form->field($model, 'email')->label('Your Email') ?>

 معلومة: يوفر ال Yii العديد من ال widgets لمساعدتك في إنشاء views معقدة وديناميكية بسرعة. كما أنك ستتعلم في وقت لاحق كيف يمكنك إنشاء widget جديد، وستكتشف أن الموضوع سهل وبسيط، مما سيدفعك إلى كتابة الشيفرة البرمجية الخاصة بك داخل ال widget، والذي بدوره سيجعل من هذه الشيفرة قابلة للتطوير والإستخدام في أكثر من مكان في المستقبل.

الخلاصة

 في هذا الجزء من التوثيق، تحدثنا عن كل جزء في ال MVC architectural pattern، لقد تعلمت الآن كيف يمكنك إنشاء model class ليقوم بتمثيل البيانات الخاصة بالمستخدمين، ومن ثم التحقق منها.

 لقد تعلمت أيضًا كيفية الحصول على البيانات من المستخدمين، وكيفية عرض البيانات مرة أخرى في المتصفح. هذه المهمة يمكن أن تأخذ الكثير من الوقت عند تطوير أي تطبيق، ولكن، يوفر ال Yii العديد من ال widgets القوية، والتي تجعل من هذه المهمة أمرا سهلا للغاية.

 في الجزء القادم من هذا التوثيق، ستتعلم كيف يمكنك التعامل مع قواعد البيانات، والتي سنحتاجها -غالبا- مع كل تطبيق ستعمل عليه تقريبا.

 إنشاء الشيفرة البرمجية من خلال ال gii

إنشاء الشيفرة البرمجية من خلال ال gii

 في هذا الجزء التعليمي سنتعرف على آلية التعامل مع ال Gii، والذي يستخدم لإنتاج الشيفرة البرمجية الخاصة بمعظم الميزات والخصائص المشتركة في أغلب المواقع بشكل تلقائي، بالإضافة الى ذلك، فإن استخدام ال Gii لإنشاء الشيفرة البرمجية بشكل تلقائي يمثل مجموعة من المعلومات الصحيحة التي بتم إدخالها إعتمادا على التعليمات الموجودة في ال Gii Web Pages.

 من خلال هذا البرنامج التعليمي، ستتعلم كيفية:

 	تفعيل ال Gii داخل التطبيق الخاص بك

 	إستخدام ال Gii لإنشاء ال Active Record class

 	إستخدام ال Gii لإنشاء الشيفرة البرمجية الخاصة بال CRUD إعتمادا على الجداول الموجودة في قاعدة البيانات

 	تخصيص (custmize) الشيفرة البرمجية التي سيتم إنتاجها من خلال ال Gii.

البدء باستخدام ال Gii

 قل مرحبا - Saying Hello

قل مرحبا - Saying Hello

 في هذا الموضوع سنتعرف على كيفية إنشاء صفحة "Hello" جديدة في التطبيق الذي قمت بتثبيته، ولتحقيق ذلك، يجب عليك القيام بإنشاء action و view لهذه الصفحة:

 	سيقوم التطبيق بإرسال ال request الخاص بالصفحة إلى ال action.

 	وسيقوم ال action بدوره في جلب ال view التي تعرض كلمة "Hello" إلى المستخدم النهائي.

 من خلال هذا البرنامج التعليمي ، ستتعلم ثلاثة أشياء:

 	كيفية إنشاء action ليقوم بإستقبال ال request ومن ثم الرد (respond) عليها.

 	كيفية إنشاء view وإضافة المحتوى الى ال respond.

 	و كيفية إنشاء التطبيق لل requests التي يوجهها لل actions.

إنشاء ال Action

 لإنشاء صفحة "Hello"، ستقوم بإنشاء say action والذي بدوره سيقوم بقراءة ال message parameter من ال request، ومن ثم عرض ال message مرة أخرى إلى المستخدم. إذا كان ال request لا يحمل معه ال message parameter فإن ال action سيقوم بطباعة message إفتراضية وهي "Hello".

معلومة: ال Actions هي الكائنات(objects) التي يمكن للمستخدمين من الوصول اليها وتنفيذ ما في بداخلها بشكل مباشر. يتم تجميع هذه ال Actions بواسطة ال controllers. ونتيجة لذلك فإن ال response الراجعة للمستخدم ستكون هي نتيجة التنفيذ الخاصة بال action.

 تثبيت ال Yii

تثبيت ال Yii

يمكنك تثبيت ال Yii بطريقتين ، الأولى باستخدام مدير الحزم Composer أو عن طريق تنزيل Archive File. الطريقة الأولى هي الطريقة المفضلة للعمل، ، لأنها تتيح لك تثبيت [extensions - ملحقات أو اضافات] جديدة، أو تحديث إطار العمل Yii ببساطة عن طريق تشغيل أمر واحد فقط.

 التثبيت الإفتراضي لل Yii ينتج عنه بنية تركيبة منظمة ومرتبة للمجلدات والملفات التي بداخلها، ويوفر هذا الكلام بعض المميزات التي يتم إضافتها وإنشائها بشكل تلقائي مثل صفحة تسجيل الدخول، ونموذج اتصل بنا...الخ، هذا الأمر سيشكل نقطة إنطلاق جيدة لبدء العمل على أي مشروع.

 في هذه الصفحة من التوثيق سنقوم بشرح ووصف كيف يمكن تثبيت إطار العمل Yii وبالتحديد Yii2 Basic Project Template.
 هناك Template آخر موجود بإطار العمل Yii وهو Yii2 Advanced Project Template، وهو الأفضل للعمل وإنشاء المشاريع لفريق عمل برمجي، ولتطوير المشاريع متعددة الطبقات(multiple tires).

معلومة: قالب المشروع الأساسي (Basic) مناسب لتطوير 90% من تطبيقات الويب. ويختلف القالب المتقدم (Advanced Template) عن القالب الأساسي في كيفية تنظيم وهيكلة الشيفرة البرمجية.
اذا كنت جديدا في عالم تطوير تطبيقات الويب باستخدام ال Yii، فإننا نوصيك بقوة بأن تستخدم القالب الأساسي في بناء المشروع الخاص بك.

تثبيت ال Yii من خلال (Composer)

تثبيت ال Composer

إن لم يكن لديك Composer مثبت مسبقا، فيمكنك السير بخطوات تثبيته من خلال الدخول الى هذا الرابط https://getcomposer.org/download/.
لتثبيت ال Composer في كل من نظامي Linux و Max OS X، يمكنك تنفيذ الأوامر التالية:

curl -sS https://getcomposer.org/installer | php
sudo mv composer.phar /usr/local/bin/composer

 ولنظام ويندوز يمكنك تثبيت ال Composer-Setup.exe ومن ثم عمل run

يرجى الدخول الى Troubleshooting section of the Composer Documentation في حال واجهتك أي مشاكل متعلقة بال composer, وإذا كنت مستخدمًا جديدًا لل composer، ننصحك أيضًا بقراءة قسم الاستخدام الأساسي على الأقل من التوثيف الخاص بال composer.

 في هذا الدليل ، نفترض أنك قمت بتثبيت ال composer على مستوى جميع المشاريع (globally) بحيث تكون أوامر ال composer متاحة لجميع المشاريع من أي مكان. أما إذا كنت تستخدم ال composer.phar لمسار محدد فقط(local directory)، فيجب عليك ضبط الأومر وفقًا لذلك.إذا كان ال composer مثبتًا من قبل، فتأكد من استخدام إصدار حديث. يمكنك تحديث ال composer عن طريق تنفيذ الأمر التالي composer self-update

 ملاحظة مهمة: أثناء تثبيت ال Yii ، سيحتاج ال composer إلى طلب(request) الكثير من المعلومات من ال Github Api. يعتمد عدد الطلبات على عدد dependencies التي يمتلكها التطبيق الخاص بك، وقد يكون هذا العدد أكبر من الحد المسموح به من قبل ال Github Api (Github API rate limit). إذا وصلت الى الحد الأعلى المسموح به من الطلبات، فقد يطلب منك ال composer بيانات تسجيل الدخول إلى Github، وذلك للحصول على رمز (token) للدخول إلى Github Api. اذا كانت عمليات الإتصال سريعة، فقد تصل إلى هذا الحد(limit) قبل أن يتمكن ال composer من التعامل معه ، لذالك نوصي بتكوين رمز الدخول(access token) قبل تثبيت ال Yii. يرجى الرجوع إلى التوثيق الخاص بال Composer والإطلاع على التعليمات الخاصة Github API tokens للحصول على الإرشادات اللازمة للقيام بذلك.

تثبيت ال Yii

 من خلال ال Composer، يمكنك الآن تثبيت ال Yii من خلال تنفيذ سطر الأوامر التالي داخل أي مسار يمكن الوصول اليه من قبل الويب

composer create-project --prefer-dist yiisoft/yii2-app-basic basic

 سطر الأوامر السابق سيقوم بتثبيت أحدث نسخة مستقرة(stable) من إطار العمل Yii داخل مسار جديد اسمه basic، ويمكنك التعديل على سطر الأوامر السابق لتغيير اسم المشروع لأي اسم ترغب فيه.

معلومة: اذا واجهتك أي مشكلة عند تنفيذ السطر `composer create-project` فيمكنك الذهاب إلى قسم استكشاف الأخطاء في ال composer.
في معظم الأخطاء الشائعة، وعند حل المشكلة أو الخطأ، يمكنك إكمال التثبيت من خلال الدخول الى المسار `basic` ومن ثم تنفيذ الأمر التالي: `composer update`.

 تلميح: اذا كنت ترغب بتثبيت أحدث نسخة خاصة بالمطورين من ال Yii، فيمكنك ذلك من خلال إضافة الخيار stability وذلك من خلال سطر الأوامر التالي:

 composer create-project --prefer-dist --stability=dev yiisoft/yii2-app-basic basic

 ملاحظة: نسخة المطورين من ال Yii يجب أن يتم إستخدامها للمواقع الإلكترونية التي لن تصدر كنسخة نهائية للمستخدم(Not for production) لأن ذلك يمكن أن يسبب بإيقاف المشروع أو الشيفرة البرمجية الخاصة بك.

تثبيت ال Yii من خلال ال Archive File

يتضمن تثبيت Yii من ملف أرشيف ثلاث خطوات وهي:

	 تثبت الملف من خلال الموقع الرسمي yiiframework.com.

	 قم بفك ضغط الملف الذي تم تنزيله إلى مجلد يمكن الوصول إليه عبر الويب.

	 قم بتعديل ملف `config / web.php` عن طريق إدخال secret key ل` cookieValidationKey`
(يتم ذلك تلقائيًا إذا قمت بتثبيت ال Yii باستخدام Composer):

// !!! insert a secret key in the following (if it is empty) - this is required by cookie validation
'cookieValidationKey' => 'enter your secret key here',

خيارات تثبيت أخرى

توضح تعليمات التثبيت أعلاه كيفية تثبيت ال Yii ، والذي يقوم أيضًا بإنشاء تطبيق ويب أساسي(basic).
هذا النهج هو نقطة انطلاق جيدة لمعظم المشاريع، صغيرة كانت أو كبيرة. خصوصا اذا كنت قد بدأت تعلم ال Yii من وقت قريب.

لكن، هناك خيارات أخرى متاحة لتثبيت ال Yii وهي:

	 إذا كنت ترغب فقط في تثبيت ال core لإطار العمل Yii، وترغب ببناء المكونات الخاصة بإطار العمل كما ترغب أنت وبطريقتك أنت، يمكنك اتباع التعليمات كما هو موضح في هذه الصفحة Building Application from Scratch.

	 إذا كنت تريد البدء بتطبيق أكثر تعقيدًا وأكثر إحترافية، ويتناسب بشكل أفضل مع وجود فريق عمل تقني،
فأنت اذا سترغب بتثبيت ال Advanced Project Template

تثبيت ال Assets

 تعتمد ال Yii على حزم Bower و / أو NPM لتثبيت مكتبات ال (CSS و JavaScript). ويستخدم ال composer للحصول على هذه المكتبات ، مما يسمح بالحصول على إصدارات ال PHP و CSS / JavaScript في نفس الوقت. ويمكن تحقيق ذلك إما عن طريق استخدام asset-packagist.org أو من خلال ال composer asset plugin، يرجى الرجوع إلى Assets documentation لمزيد من التفاصيل.

قد ترغب في إدارة ال assets عبر ال native Bower / NPM أو استخدام ال CDN أو تجنب تثبيت ال assets بالكامل من حلال ال Composer ، ويمكن ذلك من خلال إضافة الأسطر التالية إلى "composer.json":

"replace": {
 "bower-asset/jquery": ">=1.11.0",
 "bower-asset/inputmask": ">=3.2.0",
 "bower-asset/punycode": ">=1.3.0",
 "bower-asset/yii2-pjax": ">=2.0.0"
},

ملاحظة: في حالة تجاوز تثبيت ال assets عبر ال Composer، فأنت المسؤول عن تثبيت ال assets وحل مشكلات التعارض بين الإصدارات والمكتبات المختلفة. وكن مستعدًا لعدم تناسق محتمل بين ملفات ال asstes والإضافات المختلفة.

التحقق من التثبيت

 بعد الانتهاء من التثبيت، ستحتاج الى القيام بإعداد خادم الويب الخاص بك(your web server) (انظر القسم التالي) أو قم باستخدام built-in PHP web server عن طريق تنفيذ الأمر التالي داخل المسار web في المشروع الخاص بك:

php yii serve

ملاحظة: افتراضيًا ال HTTP-server يعمل على البورت 8080. ومع ذلك ، إذا كان هذا البورت قيد الاستخدام بالفعل أو كنت ترغب في تشغيل أكثر من تطبيق بهذه الطريقة، حينها سيلزمك تحديد البورت الذي يجب استخدامه. ما عليك سوى إضافة --port:

php yii serve --port=8888

 يمكنك استخدام الرابط الموجود في الأسفل للوصول الى تطبيق ال Yii الذي قمت بتثبيته وتنفيذ الأوامر السابقة عليه.

http://localhost:8080/

[image: Successful Installation of Yii]

 اذا كانت كل الإعدادات السابقة تعمل بشكل صحيح، فيجب أن ترى الصورة الموجودة بالأعلى "Congratulations!" على المتصفح. إذا لم يكن كذلك، يرجى التحقق مما إذا كان تثبيت الPHP الخاص بك متوافق مع متطلبات ال Yii. يمكنك التحقق من ذلك باستخدام أحد الأساليب التالية:

 	قم بنسخ الملف /requirements.php
 الى المسار /web/requirements.php
 بحيث يمكنك الوصول الى الصفحة من خلال الرابط التالي: http://localhost/requirements.php

 	قم بتنفيذ الأوامر التالية:

 cd basic
 php requirements.php

 يجب عليك أن تقوم بتثبيت وإعداد ال PHP الخاص بك بحيث تلبي الحد الأدنى من متطلبات ال Yii. الأهم من ذلك يجب أن يكون الإصدار الخاص بال PHP أعلى أو يساوي 5.4. من الناحية المثالية أحدث إصدار يعمل مع ال Yii هو ال PHP 7. يجب عليك أيضًا تثبيت ال PDO PHP Extension.

إعداد ال Web Servers

معلومة: يمكنك تخطي هذا الجزء الآن إذا كنت تختبر فقط إطار العمل Yii دون أي نية لنشر هذا التطبيق على الويب(بدون رفع التطبيق على production server).

 يجب أن يعمل التطبيق الذي تم تثبيته وفقًا للتعليمات المذكورة أعلاه مع أي من الخوادم ال Apache HTTP أو ال Nginx HTTP في كل من أنظمة التشغيل Windows, Mac OS X أو Linux ممن لديها إصدار أعلى أو يساوي PHP 5.4، كما أن ال Yii 2.0 متوافق مع ال Facebook HHVM، لكن، يجب أن تأخذ بعين الإعتبار أن ال HHVM يسلك في بعض الأحيان بطريقة مختلفة عن ال Native PHP، لذلك يجب أن تأخذ عناية إضافية عندما تعمل على ال HHVM.

 على ال production server، قد ترغب في إعداد خادم الويب الخاص بك بحيث يمكن الوصول إلى التطبيق
الخاص بك عبر ال URL التالي http: // www.example.com / index.php بدلاً من http: // www.example.com / basic / web / index.php. هذا الكلام يتطلب إنشاء إعداد يقوم بتوجيه ال document root الموجود على ال web server الى مجلد ال basic/web، كما قد ترغب أيضا بإخفاء ال index.php من ال URL كما هو موضح في ال Routing and URL Creation. في هذا الموضوع ستتعلم كيف يمكنك إعداد ال Apache أو ال Nginx server لتحقيق هذه الأهداف.

 معلومة: من خلال تعيين ال basic/web ك document root، فإنك بذلك تمنع أيضًا المستخدمين النهائيين من الوصول الى الشيفرة البرمجية الخاصة بالتطبيق الخاص بك، وتمنعهم من الوصول الى الملفات الحساسة والمهمة والمخزنة في sibling directories من basic/web، ويعبر رفض الوصول الى المجلدات الأخرى تحسينا أمنيا مهما، يساعد في الحفاظ على مستوى أعلى من الحماية.

معلومة: إذا كان سيتم تشغيل التطبيق الخاص بك في بيئة استضافة مشتركة(shared hosting) حيث ليس لديك الصلاحية لتعديل الإعدادات الخاصة بال web server، ستحتاج حينها الى تعديل في البنية الخاصة بالمشروع للحصول على أفضل أمان ممكن. يرجى الرجوع إلى Shared Hosting Environment لمزيد من المعلومات.

 معلومة: إذا كنت تقوم بتشغيل تطبيق ال Yii بوجود ال proxy، فقد تحتاج إلى إعداد التطبيق ليكون ضمن ال trusted proxies and header.

الإعدادات الموصى بها لل Apache

 استخدم الإعدادات التالية في ملف ال httpd.conf في Apache أو ضمن إعدادات ال virtual host.
 ملاحظة: يجب عليك استبدال المسار التالي path / to / basic / web بالمسار الفعلي للتطبيق الخاص بك وصولا الى ال basic / web.

Set document root to be "basic/web"
DocumentRoot "path/to/basic/web"

<Directory "path/to/basic/web">
 # use mod_rewrite for pretty URL support
 RewriteEngine on
 # If a directory or a file exists, use the request directly
 RewriteCond %{REQUEST_FILENAME} !-f
 RewriteCond %{REQUEST_FILENAME} !-d
 # Otherwise forward the request to index.php
 RewriteRule . index.php

 # if $showScriptName is false in UrlManager, do not allow accessing URLs with script name
 RewriteRule ^index.php/ - [L,R=404]

 # ...other settings...
</Directory>

الإعدادات الموصى بها لل Nginx

 لاستخدام Nginx، يجب تثبيت PHP على أنه FPM SAPI، ويمكنك استخدام إعدادات ال Nginx التالية، مع الإنتباه على استبدال المسار من path / to / basic / web الى المسار الفعلي وصولا إلى basic / web بالإضافة الى إستبدال mysite.test إلى ال hostname الخاص بالتطبيق.

server {
 charset utf-8;
 client_max_body_size 128M;

 listen 80; ## listen for ipv4
 #listen [::]:80 default_server ipv6only=on; ## listen for ipv6

 server_name mysite.test;
 root /path/to/basic/web;
 index index.php;

 access_log /path/to/basic/log/access.log;
 error_log /path/to/basic/log/error.log;

 location / {
 # Redirect everything that isn't a real file to index.php
 try_files $uri $uri/ /index.php$is_args$args;
 }

 # uncomment to avoid processing of calls to non-existing static files by Yii
 #location ~ \.(js|css|png|jpg|gif|swf|ico|pdf|mov|fla|zip|rar)$ {
 # try_files $uri =404;
 #}
 #error_page 404 /404.html;

 # deny accessing php files for the /assets directory
 location ~ ^/assets/.*\.php$ {
 deny all;
 }

 location ~ \.php$ {
 include fastcgi_params;
 fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name;
 fastcgi_pass 127.0.0.1:9000;
 #fastcgi_pass unix:/var/run/php5-fpm.sock;
 try_files $uri =404;
 }

 location ~* /\. {
 deny all;
 }
}

 عند استخدامك لهذا الإعداد، يجب عليك أيضًا تعيين cgi.fix_pathinfo = 0 في ملف php.ini
 من أجل تجنب العديد من طلبات ال stat() الغير الضرورية للنظام.

 لاحظ أيضًا أنه عند تشغيل خادم HTTPS، تحتاج إلى إضافة fastcgi_param HTTPS on;
بحيث يمكنك إكتشاف إذا ما كان الاتصال آمنًا أم لا.

 ماذا يجب أن تعرف قبل البدء بال Yii

ماذا يجب أن تعرف قبل البدء بال Yii

 منحنى التعلم الخاص بال Yii ليس حادًا مثل أطر PHP الأخرى، ولكن لا يزال هناك بعض الأشياء التي يجب أن تتعلمها قبل البدء بـال Yii.

PHP

 ال Yii هو إطار عمل PHP، لذا تأكد من قراءة وفهم المرجع الرسمي الخاص باللغة (http://php.net/manual/en/langref.php). عند البدء بتطوير المشاريع أو التطبيقات باستخدام ال Yii ، ستكتب التعليمات البرمجية بطريقة كائنية التوجه OOP، لذا تأكد من أنك على دراية بـمفاهيم ال OOP (https://secure.php.net/manual/en/language.oop5.basic.php) وكذلك ال namespaces (https://secure.php.net/manual/en/language.namespaces.php).

البرمجة كائنية التوجه object oriented programming

 كمبرمج أو مطور يرغب بالعمل على ال Yii، يجب عليك أن تمتلك المعرفة الأساسية للبرمجة كائنية التوجه OOP. إذا لم تكن على دراية بها ، فيمكنك تعلم ذلك من خلال واحدة من هذه الدورات المنتشرة مثل (https://code.tutsplus.com/tutorials/object-oriented-php-for-beginners--net-12762).

ملاحظة: كلما زاد تعقيد التطبيق أو المشروع الذي تعمل عليه، كلما احتجت الى مستوى أعلى وإحترافي أكثر من مفاهيم ال OOP لحل وإدارة التعقديات التي ستترب على مثل هذه المشاريع.

Command line and composer

تستخدم ال Yii بشكل كبير de-facto standard PHP package manager، ال Composer (https://getcomposer.org/)، لذلك تأكد من قرائتك وفهمك لهذا الموضوع قبل أن تبدء. بالإضافة الى ذلك إذا لم تكن على دراية باستخدام سطر الأوامر (command line) ، فقد حان الوقت لبدء المحاولة. بمجرد تعلم الأساسيات ، لن ترغب في العمل بدون إستخدام سطر الأوامر.

ال composer: ويترجم حرفيا الى كلمة "الملحن"، وهي عبارة عن أداة لإدارة المشاريع البرمجية والتي تسمح لك بتحديث وتنزيل المكتبات البرمجية المطلوبة للمشروع الخاص بك.

 تشغيل التطبيقات

تشغيل التطبيقات

بعد تثبيت ال Yii، سيكون لديك تطبيق Yii جاهز للعمل عليه ويمكن الوصول إليه عبر
الرابط التالي: http://hostname/basic/web/index.php أو http://hostname/index.php إعتمادا على الإعدادات
الخاصة بك (إعدادت ال web server). في هذا الجزء سنستعرض الوظائف ال built-in الموجودة في التطبيق الإفتراضي لإطار العمل Yii، وكيف يقوم بتنظيم الشيفرة البرمجية، وكيف يعالج (handling) هذا التطبيق الطلبات (requests) بشكل عام.

 معلومة: من أجل تبسيط الطرح، ومن خلال هذا البرنامج التعليمي " Getting Started - البداية من هنا"، من المفترض أنك قمت بتعيين basic/web ك document root لل Web server، وقد قمت أيضا بإعداد ال Url الذي يسمح لك بالوصول الى التطبيق المثبت من خلاله ليكون على الشكل التالي: http://hostname/index.php أو ما شابه ذلك.
اذا لم تقم بذلك، ولتلبية إحتياجاتك في هذا البرنامج التعليمي، يرجى ضبط ال Url كما هو موضح في هذه الصفحة.
يمكنك معرفة الضبط الخاص بال Web server من هنا: تثبيت ال Yii

ملاحظة: بخلاف إطار العمل نفسه(Yii framework)، بعد تثبيت ال template الخاص بالمشروع، يكون كل شيء في هذا التطبيق يخصك أنت، بحيث تملك الحرية في إضافة أو حذف أو تعديل كل ما تحتاج اليه.

خصائص / وظائف التطبيق المثبت - Functionality

 يحتوي ال Basic ِApplication Template الذي قمنا بتثبيته على أربع صفحات:

 	الصفحة الرئيسية(Homepage): يتم عرض هذه الصفحة من خلال الرابط التالي http://hostname/index.php

 	صفحة من نحن(About)

 	صفحة اتصل بنا (Contact): في هذه الصفحة يتم عرض form يسمح للأعشاء بالإتصال بك من خلال البريد الإلكتروني.

 	صفحة تسجيل الدخول (Login): في هذه الصفحة يتم عرض form يسمح للأعضاء بالحصول على الإذن لإستخدام الخصائص التي لا يجوز لغيرهم من الوصول اليها، قم بتجربة تسجيل الدخول من خلال استخدام admin/admin ولاحظ أن كلمة "Login" ستختفي من القائمة الرئيسية وستظهر محلها الكلمة "Logout"

هذه الصفحات تشترك بامتلاكها common header and footer -الترويسة أعلى الصفحة، والذيل أسفل الصفحة-. ويحتوي ال header على القائمة الرئيسية (main menu) والتي بدورها تسمح لك بالتنقل بين الصفحات المختلفة.

 أيضا، يجب عليك أن تنظر الى ال toolbar الموجود في أسفل نافذة المتصفح. ال debugger tool هذه تعتبر كأداة مفيدة مقدمة من ال Yii لتسجيل وعرض الكثير من المعلومات وتصحيح الأخطاء، مثل log messages, response statuses, the database queries run وما إلى ذلك.

 بالإضافة إلى ال web application، يوجد هناك "console script" يسمى ب yii، والذي ستجده في المسار الرئيسي للتطبيق. هذا السكربت يمكن استخدامه لتشغيل المهام التي تعمل في الخفاء (background) أو لتنفيذ مهام الصيانة (ال maintenance).
 ستجد الوصف الخاص بهذا السكربت
 داخل هذه الصفحة Console Application Section.

هيكلية التطبيق - Application Structure

 Das umfassende Handbuch für Yii 2.0

Das umfassende Handbuch für Yii 2.0

Dieses Tutorial wurde unter den Bedingungen der Yii-Dokumentation [http://www.yiiframework.com/doc/terms/] veröffentlicht.

Alle Rechte vorbehalten.

2014 (c) Yii Software LLC.

Einführung

	Über Yii

	Upgrade von Version 1.1

Einstieg

	Yii installieren

	Running Applications

	Hallo sagen

	Arbeiten mit Formularen

	Arbeiten mit Datenbanken

	Code generieren mit Gii

	Ausblick

Application Struktur

	Überblick

	Entry Scripts

	Applications

	Application Komponenten

	Controller

	Model

	View

	TBD Filters

	TBD Widgets

	TBD Modules

	Assets

	TBD Extensions

Anfragen bearbeiten

	TBD Bootstrapping

	TBD Routing

	TBD Requests

	TBD Responses

	TBD Sessions and Cookies

	Parsen und Generieren von URLs

	Fehlerbehandlung

	Logging

Kern-Konzepte

	Komponenten

	Eigenschaften

	Events (Ereignisse)

	Behaviors

	Konfiguration

	Aliase

	Class Autoloading

	Service Locator

	Dependency Injection Container

Arbeiten mit Datenbanken

	Data Access Objects - Connecting to a database, basic queries, transactions and schema manipulation

	Query Builder - Querying the database using a simple abstraction layer

	Active Record - The active record ORM, retrieving and manipulating records and defining relations

	Migrations - Version control your databases in a team development environment

	TBD Sphinx

	TBD Redis

	TBD MongoDB

	TBD ElasticSearch

Eingabedaten verarbeiten

	Creating Forms

	Validating Input

	TBD Uploading Files

	TBD Getting Data for Multiple Models

Ausgabe von Daten

	TBD Data Formatting

	TBD Pagination

	TBD Sorting

	Data Providers

	Data Widgets

	Theming

Sicherheit

	Authentication

	Authorization

	Working with Passwords

	TBD Auth Clients

	TBD Best Practices

Caching

	Overview

	Data Caching

	Fragment Caching

	Page Caching

	HTTP Caching

RESTful Web Services

	Quick Start

	Resources

	Controllers

	Routing

	Response Formatting

	Authentication

	Rate Limiting

	Versioning

	Error Handling

Development Tools

	Debug Toolbar and Debugger

	Generating Code using Gii

	TBD Generating API Documentation

Testing

	Overview

	TBD Unit Tests

	TBD Functional Tests

	TBD Acceptance Tests

	Fixtures

Yii erweitern

	Creating Extensions

	Customizing Core Code

	Using 3rd-Party Libraries

	TBD Using Yii in 3rd-Party Systems

	TBD Using Yii 1.1 and 2.0 Together

	Using Composer

Weitere Themen

	Advanced Application Template

	Building Application from Scratch

	Console Commands

	Core Validators

	Internationalization

	Mailing

	Performance Tuning

	TBD Shared Hosting Environment

	Template Engines

Widgets

	GridView: link to demo page

	ListView: link to demo page

	DetailView: link to demo page

	ActiveForm: link to demo page

	Pjax: link to demo page

	Menu: link to demo page

	LinkPager: link to demo page

	LinkSorter: link to demo page

	Bootstrap Widgets

	Jquery UI Widgets

Helfer-Klassen

	Overview

	TBD ArrayHelper

	TBD Html

	TBD Url

	TBD Security

 Guía Definitiva de Yii 2.0

Guía Definitiva de Yii 2.0

Este tutorial se publica bajo los Términos de Documentación Yii [http://www.yiiframework.com/doc/terms/].

Todos los derechos reservados.

2014 (c) Yii Software LLC.

Introducción

	Acerca de Yii

	Actualizar desde Yii 1.1

Primeros pasos

	Qué necesita saber

	Instalar Yii

	Funcionamiento de aplicaciones

	Hola a todos

	Trabajar con formularios

	Trabajar con bases de datos

	Generar códigos con Gii

	Adentrarse en Yii

Estructura de una aplicación

	Información general

	Script de entrada

	Aplicaciones

	Componentes de una aplicación

	Controladores

	Modelos

	Vistas

	Filtros

	Widgets

	Módulos

	Assets

	Extensiones

Gestión de las peticiones

	Información general

	Bootstrapping

	Routing y Creación de las URL

	Peticiones (Requests)

	Respuestas (Responses)

	Sesiones (Sessions) y Cookies

	Gestión de errores

	Registro de anotaciones

Conceptos clave

	Componentes

	Propiedades

	Eventos

	Comportamientos (Behaviors)

	Configuraciones

	Alias

	Autocarga de clases

	Localizador de servicios (Service Locator)

	Contenedor de inyección de dependencia

Trabajar con bases de datos

	Objeto de acceso a datos - Conexión a una base de datos, consultas básicas, transacciones y
manipulación de esquemas

	Constructor de consultas - Consulta de la base de datos utilizando una simple capa de
abstracción

	TBD Active Record - ORM Active Record, recuperación y manipulación de registros y
definición de relaciones

	TBD Migraciones - Control de versiones de bases de datos en el entorno de desarrollo en
equipo

	TBD Sphinx

	TBD Redis

	TBD MongoDB

	TBD ElasticSearch

Obtener datos de los usuarios

	TBD Crear formularios

	TBD Validar datos

	TBD Subir archivos

	TBD Recogida de tabular input

	TBD Obtener datos para múltiples modelos

Visualizar datos

	TBD Formato de datos

	TBD Paginación

	TBD Ordenación

	TBD Proveedores de datos

	TBD Widgets de datos

	TBD Trabajar con scripts de cliente

	Temas

Seguridad

	TBD Autenticación

	TBD Autorización

	TBD Trabajar con contraseñas

	TBD Autenticar Clientes

	TBD Buenas prácticas

Caché

	Información general

	Caché de datos

	Caché de fragmentos

	Caché de páginas

	Caché HTTP

Servicios Web RESTful

	Guía breve

	Recursos (Resources)

	Controladores

	Gestión de rutas

	Formateo de respuestas

	Autenticación

	Límite de Rango

	Gestión de versiones

	Gestión de errores

Herramientas de Desarrollo

	Depurador y Barra de Herramientas de Depuración [https://github.com/yiisoft/yii2-debug/blob/master/docs/guide-es/README.md]

	TBD Generación de códigos con Gii

	TBD Generación de documentación de API

Pruebas

	TBD Información general

	TBD Configuración del entorno de pruebas

	TBD Pruebas unitarias

	TBD Pruebas funcionales

	TBD Pruebas de aceptación

	TBD Fixtures

Temas especiales

	TBD Plantilla aplicación avanzada

	TBD Creación de una aplicación desde cero

	TBD Comandos de consola

	Validadores del núcleo

	TBD Internacionalización

	TBD Envío de correos electrónicos

	TBD Mejora del rendimiento

	TBD Entorno de alojamiento compartido

	TBD Motores de plantillas

	TBD Trabajar con Código de Terceros

Widgets

	GridView: TBD link to demo page

	ListView: TBD link to demo page

	DetailView: TBD link to demo page

	ActiveForm: TBD link to demo page

	Pjax: TBD link to demo page

	Menu: TBD link to demo page

	LinkPager: TBD link to demo page

	LinkSorter: TBD link to demo page

	Bootstrap Widgets [https://github.com/yiisoft/yii2-bootstrap/blob/master/docs/guide-es/README.md]

	Jquery UI Widgets [https://github.com/yiisoft/yii2-jui/blob/master/docs/guide-es/README.md]

Clases auxiliares

	Información general

	ArrayHelper

	Html

	Url

 Almacenamiento de Datos en Caché

Almacenamiento de Datos en Caché

El almacenamiento de datos en caché trata del almacenamiento de alguna variable PHP en caché y recuperarla más tarde del mismo. También es la base de algunas de las características avanzadas de almacenamiento en caché, tales como el almacenamiento en caché de consultas a la base de datos y el almacenamiento en caché de contenido.

El siguiente código muestra el típico patrón de uso para el almacenamiento en caché, donde la variable $cache se refiere al componente caché:

// intenta recuperar $data de la caché
$data = $cache->get($key);

if ($data === false) {

 // $data no ha sido encontrada en la caché, calcularla desde cero

 // guardar $data en caché para así recuperarla la próxima vez
 $cache->set($key, $data);
}

// $data está disponible aquí

Componentes de Caché

El almacenamiento de datos en caché depende de los llamados cache components (componentes de caché) los cuales
representan diferentes tipos de almacenamiento en caché, como por ejemplo en memoria, en archivos o en base de datos.

Los Componentes de Caché están normalmente registrados como componentes de la aplicación para que de esta forma puedan
ser configurados y accesibles globalmente. El siguiente código muestra cómo configurar el componente de aplicación
cache para usar memcached [http://memcached.org/] con dos servidores caché:

'components' => [
 'cache' => [
 'class' => 'yii\caching\MemCache',
 'servers' => [
 [
 'host' => 'server1',
 'port' => 11211,
 'weight' => 100,
],
 [
 'host' => 'server2',
 'port' => 11211,
 'weight' => 50,
],
],
],
],

Puedes acceder al componente de caché usando la expresión Yii::$app->cache.

Debido a que todos los componentes de caché soportan el mismo conjunto de APIs, podrías cambiar el componente de caché
subyacente por otro diferente mediante su reconfiguración en la configuración de la aplicación sin tener que modificar
el código que utiliza la caché. Por ejemplo, podrías modificar la configuración anterior para usar [[yii\caching\ApcCache|APC cache]]:

'components' => [
 'cache' => [
 'class' => 'yii\caching\ApcCache',
],
],

Tip: Puedes registrar múltiples componentes de aplicación de caché. El componente llamado cache es usado por defecto por muchas clases caché-dependiente (ej. [[yii\web\UrlManager]]).

Almacenamientos de Caché Soportados

Yii proporciona varios componentes de caché que pueden almacenar datos en diferentes medios. A continuación
se muestra un listado con los componentes de caché disponibles:

	[[yii\caching\ApcCache]]: utiliza la extensión de PHP APC [http://php.net/manual/es/book.apc.php]. Esta opción puede ser considerada como la más rápida de entre todas las disponibles para una aplicación centralizada. (ej. un servidor, no dedicado al balance de carga, etc).

	[[yii\caching\DbCache]]: utiliza una tabla de base de datos para almacenar los datos. Por defecto, se creará y usará como base de datos SQLite3 [http://sqlite.org/] en el directorio runtime. Se puede especificar explícitamente que base de datos va a ser utilizada configurando la propiedad db.

	[[yii\caching\DummyCache]]: dummy cache (caché tonta) que no almacena en caché nada. El propósito de este componente es simplificar el código necesario para chequear la disponibilidad de caché. Por ejemplo, durante el desarrollo o si el servidor no tiene soporte de caché actualmente, puede utilizarse este componente de caché. Cuando este disponible un soporte en caché, puede cambiarse el componente correspondiente. En ambos casos, puede utilizarse el mismo código Yii::$app->cache->get($key) para recuperar un dato sin la preocupación de que Yii::$app->cache pueda ser null.

	[[yii\caching\FileCache]]: utiliza un fichero estándar para almacenar los datos. Esto es adecuado para almacenar grandes bloques de datos (como páginas).

	[[yii\caching\MemCache]]: utiliza las extensiones de PHP memcache [http://php.net/manual/es/book.memcache.php] y memcached [http://php.net/manual/es/book.memcached.php]. Esta opción puede ser considerada como la más rápida cuando la caché es manejada en una aplicación distribuida (ej. con varios servidores, con balance de carga, etc..)

	[[yii\redis\Cache]]: implementa un componente de caché basado en Redis [http://redis.io/] que almacenan pares clave-valor (requiere la versión 2.6.12 de redis).

	[[yii\caching\WinCache]]: utiliza la extensión de PHP WinCache [http://iis.net/downloads/microsoft/wincache-extension] (ver también [http://php.net/manual/es/book.wincache.php]).

	[[yii\caching\XCache]] (deprecated): utiliza la extensión de PHP XCache [http://xcache.lighttpd.net/].

	[[yii\caching\ZendDataCache]] (deprecated): utiliza Zend Data Cache [http://files.zend.com/help/Zend-Server-6/zend-server.htm#data_cache_component.htm] como el medio fundamental de caché.

Tip: Puedes utilizar diferentes tipos de almacenamiento de caché en la misma aplicación. Una estrategia común es la de usar almacenamiento de caché en memoria para almacenar datos que son pequeños pero que son utilizados constantemente (ej. datos estadísticos), y utilizar el almacenamiento de caché en archivos o en base de datos para guardar datos que son grandes y utilizados con menor frecuencia (ej. contenido de página).

API de Caché

Todos los componentes de almacenamiento de caché provienen de la misma clase “padre” [[yii\caching\Cache]] y por lo tanto soportan la siguiente API:

	[[yii\caching\Cache::get()|get()]]: recupera un elemento de datos de la memoria caché con una clave especificada.
Un valor nulo será devuelto si el elemento de datos no ha sido encontrado en la memoria caché o si ha expirado o ha sido invalidado.

	[[yii\caching\Cache::set()|set()]]: almacena un elemento de datos identificado por una clave en la memoria caché.

	[[yii\caching\Cache::add()|add()]]: almacena un elemento de datos identificado por una clave en la memoria caché si la clave no se encuentra en la memoria caché.

	[[yii\caching\Cache::mget()|mget()]]: recupera varios elementos de datos de la memoria caché con las claves especificadas.

	[[yii\caching\Cache::mset()|mset()]]: almacena múltiples elementos de datos en la memoria caché. Cada elemento se identifica por una clave.

	[[yii\caching\Cache::madd()|madd()]]: almacena múltiples elementos de datos en la memoria caché. Cada elemento se identifica con una clave. Si una clave ya existe en la caché, el elemento será omitido.

	[[yii\caching\Cache::exists()|exists()]]: devuelve un valor que indica si la clave especificada se encuentra en la memoria caché.

	[[yii\caching\Cache::delete()|delete()]]: elimina un elemento de datos identificado por una clave de la caché.

	[[yii\caching\Cache::flush()|flush()]]: elimina todos los elementos de datos de la cache.

Note: No Almacenes el valor boolean false en caché directamente porque el método [[yii\caching\Cache::get()|get()]] devuelve
el valor false para indicar que el dato no ha sido encontrado en la caché. Puedes poner false dentro de un array y cachear
este array para evitar este problema.

Algunos sistemas de almacenamiento de caché, como por ejemplo MemCache, APC, pueden recuperar múltiples valores almacenados en modo de lote (batch), lo que puede reducir considerablemente la sobrecarga que implica la recuperación de datos almacenados en la caché. Las API [[yii\caching\Cache::mget()|mget()]] y [[yii\caching\Cache::madd()|madd()]]
se proporcionan para utilizar esta característica. En el caso de que el sistema de memoria caché no lo soportara, ésta sería simulada.

Puesto que [[yii\caching\Cache]] implementa ArrayAccess, un componente de caché puede ser usado como un array.
El siguiente código muestra unos ejemplos:

$cache['var1'] = $value1; // equivalente a: $cache->set('var1', $value1);
$value2 = $cache['var2']; // equivalente a: $value2 = $cache->get('var2');

Claves de Caché

Cada elemento de datos almacenado en caché se identifica por una clave. Cuando se almacena un elemento de datos en la memoria caché, se debe especificar una clave. Más tarde, cuando se recupera el elemento de datos de la memoria caché, se debe proporcionar la clave correspondiente.

Puedes utilizar una cadena o un valor arbitrario como una clave de caché. Cuando una clave no es una cadena de texto, ésta será automáticamente serializada en una cadena.

Una estrategia común para definir una clave de caché es incluir en ella todos los factores determinantes en términos de un array. Por ejemplo, [[yii\db\Schema]] utiliza la siguiente clave para almacenar en caché la información del esquema de una tabla de base de datos:

[
 __CLASS__, // nombre de la clase del esquema
 $this->db->dsn, // nombre del origen de datos de la conexión BD
 $this->db->username, // usuario para la conexión BD
 $name, // nombre de la tabla
];

Como puedes ver, la clave incluye toda la información necesaria para especificar de una forma exclusiva una tabla de base de datos.

Cuando en un mismo almacenamiento en caché es utilizado por diferentes aplicaciones, se debería especificar un prefijo único para las claves de la caché por cada una de las aplicaciones para así evitar conflictos. Esto puede hacerse mediante la configuración de la propiedad [[yii\caching\Cache::keyPrefix]]. Por ejemplo, en la configuración de la aplicación podrías escribir el siguiente código:

'components' => [
 'cache' => [
 'class' => 'yii\caching\ApcCache',
 'keyPrefix' => 'myapp', // un prefijo de clave de caché único
],
],

Para garantizar la interoperabilidad, deberían utilizarse sólo caracteres alfanuméricos.

Caducidad de Caché

Un elemento de datos almacenado en la memoria caché permanecerá en ella para siempre, a menos que sea removida de alguna manera debido a alguna directiva de caché (ej. el espacio de almacenamiento en caché está lleno y los datos más antiguos se eliminan). Para cambiar este comportamiento, podrías proporcionar un parámetro de caducidad al llamar [[yii\caching\Cache::set()|set()]] para guardar el elemento de datos. El parámetro nos indica por cuántos segundos el elemento se mantendrá válido en memoria caché. Cuando llames [[yii\caching\Cache::get()|get()]] para recuperar el elemento, si el tiempo de caducidad ha pasado, el método devolverá false, indicando que el elemento de datos no ha sido encontrado en la memoria caché. Por ejemplo,

// guardar los datos en memoria caché al menos 45 segundos
$cache->set($key, $data, 45);

sleep(50);

$data = $cache->get($key);
if ($data === false) {
 // $data ha caducado o no ha sido encontrado en la memoria caché
}

Dependencias de Caché

Además de configurar el tiempo de caducidad, los datos almacenados en caché pueden también ser invalidados conforme a algunos cambios en la caché de dependencias. Por ejemplo, [[yii\caching\FileDependency]] representa la dependencia del tiempo de modificación del archivo. Cuando esta dependencia cambia, significa que el archivo correspondiente ha cambiado. Como resultado, cualquier contenido anticuado que sea encontrado en la caché debería ser invalidado y la llamada a [[yii\caching\Cache::get()|get()]] debería retornar falso.

Una dependencia es representada como una instancia de [[yii\caching\Dependency]] o su clase hija. Cuando llamas [[yii\caching\Cache::set()|set()]] para almacenar un elemento de datos en la caché, puedes pasar el objeto de dependencia asociado. Por ejemplo,

// Crear una dependencia sobre el tiempo de modificación del archivo example.txt.
$dependency = new \yii\caching\FileDependency(['fileName' => 'example.txt']);

// Los datos expirarán en 30 segundos.
// También podría ser invalidada antes si example.txt es modificado.
$cache->set($key, $data, 30, $dependency);

// La caché comprobará si los datos han expirado.
// También comprobará si la dependencia ha cambiado.
// Devolverá `false` si se encuentran algunas de esas condiciones.
$data = $cache->get($key);

Aquí abajo se muestra un sumario de las dependencias disponibles:

	[[yii\caching\ChainedDependency]]: la dependencia cambia si cualquiera de las dependencias en la cadena cambia.

	[[yii\caching\DbDependency]]: la dependencia cambia si el resultado de la consulta de la sentencia SQL especificada cambia.

	[[yii\caching\ExpressionDependency]]: la dependencia cambia si el resultado de la expresión de PHP especificada cambia.

	[[yii\caching\FileDependency]]: la dependencia cambia si se modifica la última fecha de modificación del archivo.

	[[yii\caching\TagDependency]]: marca un elemento de datos en caché con un nombre de grupo. Puedes invalidar los elementos de datos almacenados en caché
con el mismo nombre del grupo a la vez llamando a [[yii\caching\TagDependency::invalidate()]].

Consultas en Caché

Las consultas en caché es una característica especial de caché construido sobre el almacenamiento de caché de datos. Se
proporciona para almacenar en caché el resultado de consultas a la base de datos.

Las consultas en caché requieren una [[yii\db\Connection|DB connection]] y un componente de aplicación caché válido. El uso básico de las consultas en memoria caché es el siguiente, asumiendo que db es una instancia de [[yii\db\Connection]]:

$result = $db->cache(function ($db) {

 // el resultado de la consulta SQL será servida de la caché
 // si el cacheo de consultas está habilitado y el resultado de la consulta se encuentra en la caché
 return $db->createCommand('SELECT * FROM customer WHERE id=1')->queryOne();

});

El cacheo de consultas puede ser usado tanto para DAO como para ActiveRecord:

$result = Customer::getDb()->cache(function ($db) {
 return Customer::find()->where(['id' => 1])->one();
});

Note: Algunos DBMS (ej. MySQL [http://dev.mysql.com/doc/refman/5.1/en/query-cache.html]) también soporta el almacenamiento en caché desde el mismo servidor de la BD. Puedes optar por utilizar cualquiera de los mecanismos de memoria caché. El almacenamiento en caché de consultas previamente descrito tiene la ventaja que de que se puede especificar dependencias de caché de una forma flexible y son potencialmente mucho más eficientes.

Configuraciones

Las consultas en caché tienen tres opciones configurables globales a través de [[yii\db\Connection]]:

	[[yii\db\Connection::enableQueryCache|enableQueryCache]]: activa o desactiva el cacheo de consultas.
Por defecto es true. Tenga en cuenta que para activar el cacheo de consultas, también necesitas tener una caché válida, especificada por [[yii\db\Connection::queryCache|queryCache]].

	[[yii\db\Connection::queryCacheDuration|queryCacheDuration]]: representa el número de segundos que un resultado de la consulta permanecerá válida en la memoria caché. Puedes usar 0 para indicar que el resultado de la consulta debe permanecer en la caché para siempre. Esta propiedad es el valor usado por defecto cuando [[yii\db\Connection::cache()]] es llamada sin especificar una duración.

	[[yii\db\Connection::queryCache|queryCache]]: representa el ID del componente de aplicación de caché.
Por defecto es 'cache'. El almacenamiento en caché de consultas se habilita sólo si hay un componente de la aplicación de caché válida.

Usos

Puedes usar [[yii\db\Connection::cache()]] si tienes multiples consultas SQL que necesitas a aprovechar el cacheo de consultas. El uso es de la siguiente manera,

$duration = 60; // resultado de la consulta de caché durante 60 segundos.
$dependency = ...; // dependencia opcional

$result = $db->cache(function ($db) {

 // ... realiza consultas SQL aquí ...

 return $result;

}, $duration, $dependency);

Cualquier consulta SQL en una función anónima será cacheada durante el tiempo indicado con la dependencia especificada.
Si el resultado de la consulta se encuentra válida en la caché, la consulta se omitirá y el resultado se servirá de la caché en su lugar. Si no especificar el parámetro $duration, el valor [[yii\db\Connection::queryCacheDuration|queryCacheDuration]] será usado en su lugar.

A veces dentro de cache(), puedes querer desactivar el cacheo de consultas para algunas consultas especificas. Puedes usar [[yii\db\Connection::noCache()]] en este caso.

$result = $db->cache(function ($db) {

 // consultas SQL que usan el cacheo de consultas

 $db->noCache(function ($db) {

 // consultas SQL que no usan el cacheo de consultas

 });

 // ...

 return $result;
});

Si lo deseas puedes usar el cacheo de consultas para una simple consulta, puedes llamar a [[yii\db\Command::cache()]] cuando construyas el comando. Por ejemplo,

// usa el cacheo de consultas y asigna la duración de la consulta de caché por 60 segundos
$customer = $db->createCommand('SELECT * FROM customer WHERE id=1')->cache(60)->queryOne();

También puedes usar [[yii\db\Command::noCache()]] para desactivar el cacheo de consultas de un simple comando. Por ejemplo,

$result = $db->cache(function ($db) {

 // consultas SQL que usan cacheo de consultas

 // no usa cacheo de consultas para este comando
 $customer = $db->createCommand('SELECT * FROM customer WHERE id=1')->noCache()->queryOne();

 // ...

 return $result;
});

Limitaciones

El almacenamiento en caché de consultas no funciona con los resultados de consulta que contienen controladores de recursos.
Por ejemplo, cuando se utiliza el tipo de columna BLOB en algunos DBMS, el resultado de la consulta devolverá un recurso para manejar los datos de la columna.

Algunos sistemas de almacenamiento caché tienen limitación de tamaño. Por ejemplo, memcache limita el tamaño máximo de cada entrada a 1MB. Por lo tanto, si el tamaño de un resultado de la consulta excede ese límite, el almacenamiento en caché fallará.

 Caché de Fragmentos

Caché de Fragmentos

La Caché de Fragmentos se refiere al almacenamiento en caché de un fragmento, o sección, de una página Web. Por ejemplo, si
una página muestra un sumario de las ventas anuales en una tabla, podrías guardar esta tabla en memoria caché para
eliminar el tiempo necesario para generar esta tabla en cada petición (request). La caché de fragmentos está construido
sobre la caché de datos.

Para usar la caché de fragmentos, utiliza el siguiente código en tu vista (view):

if ($this->beginCache($id)) {

 // ... generar contenido aquí ...

 $this->endCache();
}

Es decir, encierra la lógica de la generación del contenido entre las llamadas [[yii\base\View::beginCache()|beginCache()]] y
[[yii\base\View::endCache()|endCache()]]. Si el contenido se encuentra en la memoria caché, [[yii\base\View::beginCache()|beginCache()]]
mostrará el contenido y devolverá false, saltandose así la lógica de generación del contenido. De lo contrario, el
código de generación se ejecutaría y al alcanzar la llamada [[yii\base\View::endCache()|endCache()]], el contenido
generado será capturado y almacenado en la memoria caché.

Como en la caché de datos, un $id (clave) único es necesario para identificar un contenido guardado en
caché.

Opciones de Caché

Puedes especificar opciones adicionales para la caché de fragmentos pasando el array de opciones como segundo
parametro del método [[yii\base\View::beginCache()|beginCache()]]. Entre bastidores, este array de opciones se utiliza
para configurar el widget [[yii\widgets\FragmentCache]] que es en realidad el que implementa la funcionalidad de la caché
de fragmentos.

Duración

Quizás la opción más utilizada en la caché de fragmentos es [[yii\widgets\FragmentCache::duration|duración]]. Ésta
especifica cuántos segundos el contenido puede permanecer como válido en la memoria caché. El siguiente código almacena
en la caché el fragmento de contenido para una hora a lo sumo:

if ($this->beginCache($id, ['duration' => 3600])) {

 // ... generar contenido aquí ...

 $this->endCache();
}

Si la opción no está activada, se tomará el valor por defecto 60, lo que significa que el contenido almacenado en caché expirará en 60 segundos.

Dependencias

Como en la caché de datos, el fragmento de contenido que está siendo almacenado en caché
también puede tener dependencias. Por ejemplo, el contenido de un artículo que se muestre depende de si el mensaje se
modifica o no.

Para especificar una dependencia, activa la opción [[yii\widgets\FragmentCache::dependency|dependencia]] (dependency),
que puede ser un objecto [[yii\caching\Dependency]] o un array de configuración para crear un objecto Dependency. El
siguiente código especifica que la caché de fragmento depende del cambio del valor de la columna updated_at:

$dependency = [
 'class' => 'yii\caching\DbDependency',
 'sql' => 'SELECT MAX(updated_at) FROM post',
];

if ($this->beginCache($id, ['dependency' => $dependency])) {

 // ... generar contenido aquí ...

 $this->endCache();
}

Variaciones

El contenido almacenado en caché puede variar de acuerdo a ciertos parámetros. Por ejemplo, para una aplicación Web que
soporte multiples idiomas, la misma pieza del código de la vista puede generar el contenido almacenado en caché
en diferentes idiomas. Por lo tanto, es posible que desees hacer variaciones del mismo contenido almacenado en caché de
acuerdo con la actual selección del idioma en la aplicación.

Para especificar variaciones en la memoria caché, configura la opción [[yii\widgets\FragmentCache::variations|variaciones]]
(variations), la cual deberá ser un array de valores escalares, cada uno de ellos representando un factor de variación.
Por ejemplo, para hacer que el contenido almacenado en la caché varíe por lenguaje, podrías usar el siguiente código:

if ($this->beginCache($id, ['variations' => [Yii::$app->language]])) {

 // ... generar código aquí ...

 $this->endCache();
}

Alternando el Almacenamiento en Caché

Puede que a veces quieras habilitar la caché de fragmentos únicamente cuando ciertas condiciones se cumplan. Por ejemplo,
para una página que muestra un formulario, tal vez quieras guardarlo en la caché cuando es inicialmente solicitado (a
través de una petición GET). Cualquier muestra posterior (a través de una petición POST) del formulario no debería ser
almacenada en caché ya que el formulario puede que contenga entradas del usuario. Para hacerlo, podrías configurar la
opción de [[yii\widgets\FragmentCache::enabled|activado]] (enabled), de la siguiente manera:

if ($this->beginCache($id, ['enabled' => Yii::$app->request->isGet])) {

 // ... generar contenido aquí ...

 $this->endCache();
}

Almacenamiento en Caché Anidada

El almacenamiento en caché de fragmentos se puede anidar. Es decir, un fragmento de caché puede ser encerrado dentro de
otro fragmento que también se almacena en caché. Por ejemplo, los comentarios se almacenan en una caché de fragmento
interno, y se almacenan conjuntamente con el contenido del artículo en un fragmento de caché exterior. El siguiente
código muestra cómo dos fragmentos de caché pueden ser anidados:

if ($this->beginCache($id1)) {

 // ... lógica de generación de contenido externa ...

 if ($this->beginCache($id2, $options2)) {

 // ... lógica de generación de contenido anidada ...

 $this->endCache();
 }

 // ... lógica de generación de contenido externa ...

 $this->endCache();
}

Existen diferentes opciones de configuración para las cachés anidadas. Por ejemplo, las cachés internas y las cachés
externas pueden usar diferentes valores de duración. Aún cuando los datos almacenados en la caché externa sean invalidados,
la caché interna puede todavía proporcionar un fragmento válido. Sin embargo, al revés no es cierto. Si la caché externa
es evaluada como válida, seguiría proporcionando la misma copia en caché incluso después de que el contenido en la
caché interna haya sido invalidada. Por lo tanto, hay que tener mucho cuidado al configurar el tiempo de duración o las
dependencias de las cachés anidadas, de lo contrario los fragmentos internos que ya estén obsoletos se pueden seguir
manteniendo en el fragmento externo.

Contenido Dinámico

Cuando se usa la caché de fragmentos, podrías encontrarte en la situación que un fragmento grande de contenido es
relavitamente estático excepto en uno u otro lugar. Por ejemplo, la cabeza de una página (header) puede que muestre el
menú principal junto al nombre del usuario actual. Otro problema es que el contenido que está siendo almacenado en caché
puede que contenga código PHP que debe ser ejecutado en cada petición (por ejemplo, el código para registrar
un paquete de recursos (asset bundle)). En ambos casos, podríamos resolver el problema con lo que llamamos la
característica de contenido dinámico.

Entendemos contenido dinámico como un fragmento de salida que no debería ser guardado en caché incluso si está
encerrado dentro de un fragmento de caché. Para hacer el contenido dinámico todo el tiempo, éste ha de ser generado ejecutando
cierto código PHP en cada petición, incluso si el contenido está siendo mostrado desde la caché.

Puedes llamar a [[yii\base\View::renderDynamic()]] dentro de un fragmento almacenado en caché para insertar código
dinámico en el lugar deseado como, por ejemplo, de la siguiente manera,

if ($this->beginCache($id1)) {

 // ... lógica de generación de contenido ...

 echo $this->renderDynamic('return Yii::$app->user->identity->name;');

 // ... lógica de generación de contenido ...

 $this->endCache();
}

El método [[yii\base\View::renderDynamic()|renderDynamic()]] toma una pieza de código PHP como su parámetro. El valor
devuelto del código PHP se trata como contenido dinámico. El mismo código PHP será ejecutado en cada petición,
sin importar que esté dentro de un fragmento que está siendo servido desde la caché o no.

 Caché HTTP

Caché HTTP

Además del almacenamiento de caché en el servidor que hemos descrito en secciones anteriores, las aplicaciones Web
pueden hacer uso de la caché en el lado del cliente para así ahorrar tiempo y recursos para generar y transmitir el
mismo contenido una y otra vez.

Para usar la caché del lado del cliente, puedes configurar [[yii\filters\HttpCache]] como un filtro en el controlador
para aquellas acciones cuyo resultado deba estar almacenado en la caché en el lado del cliente. [[yii\filters\HttpCache|HttpCache]]
solo funciona en peticiones GET y HEAD. Puede manejar tres tipos de cabeceras (headers) HTTP relacionadas en este tipo de
consultas:

	[[yii\filters\HttpCache::lastModified|Last-Modified]]

	[[yii\filters\HttpCache::etagSeed|Etag]]

	[[yii\filters\HttpCache::cacheControlHeader|Cache-Control]]

La Cabecera Last-Modified

La cabecera Last-Modified usa un sello de tiempo para indicar si la página ha sido modificada desde que el cliente la
almacena en la caché.

Puedes configurar la propiedad [[yii\filters\HttpCache::lastModified]] para activar el envío de la cabecera Last-Modified.
La propiedad debe ser una llamada de retorno (callable) PHP que devuelva un timestamp UNIX sobre el tiempo de modificación de
la página. El formato de la función de llamada de retorno debe ser el siguiente,

/**
 * @param Action $action el objeto acción que se está controlando actualmente
 * @param array $params el valor de la propiedad "params"
 * @return int un sello de tiempo UNIX que representa el tiempo de modificación de la página
 */
function ($action, $params)

El siguiente es un ejemplo haciendo uso de la cabecera Last-Modified:

public function behaviors()
{
 return [
 [
 'class' => 'yii\filters\HttpCache',
 'only' => ['index'],
 'lastModified' => function ($action, $params) {
 $q = new \yii\db\Query();
 return $q->from('post')->max('updated_at');
 },
],
];
}

El código anterior establece que la memoria caché HTTP debe ser habilitada únicamente por la acción index. Se debe
generar una cabecera HTTP Last-Modified basado en el último tiempo de actualización de los artículos. Cuando un
navegador visita la página index la primera vez, la página será generada en el servidor y enviada al navegador; Si el
navegador visita la misma página de nuevo y no ningún artículo modificado durante el período, el servidor no volverá a
regenerar la página, y el navegador usará la versión caché del lado del cliente. Como resultado, la representación del
lado del servidor y la transmisión del contenido de la página son ambos omitidos.

La Cabecera ETag

La cabecera “Entity Tag” (o para abreviar ETag) usa un hash para representar el contenido de una página. Si la página
ha sido cambiada, el hash también cambiará. Al comparar el hash guardado en el lado del cliente con el hash generado en
el servidor, la caché puede determinar si la página ha cambiado y deber ser retransmitida.

Puedes configurar la propiedad [[yii\filters\HttpCache::etagSeed]] para activar el envío de la cabecera ETag.
La propiedad debe ser una función de retorno (callable) PHP que devuelva una semilla para la generación del hash de ETag.
El formato de la función de retorno es el siguiente:

/**
 * @param Action $action el objeto acción que se está controlando actualmente
 * @param array $params el valor de la propiedad "params"
 * @return string una cadena usada como semilla para la generación del hash de ETag
 */
function ($action, $params)

El siguiente es un ejemplo de cómo usar la cabecera ETag:

public function behaviors()
{
 return [
 [
 'class' => 'yii\filters\HttpCache',
 'only' => ['view'],
 'etagSeed' => function ($action, $params) {
 $post = $this->findModel(\Yii::$app->request->get('id'));
 return serialize([$post->title, $post->content]);
 },
],
];
}

El código anterior establece que la caché HTTP debe ser activada únicamente para la acción view. Debería generar una
cabecera HTTP ETag basándose en el título y contenido del artículo consultado. Cuando un navegador visita la página
view por primera vez, la página se generará en el servidor y será enviada al navegador; Si el navegador visita la
misma página de nuevo y no ha ocurrido un cambio en el título o contenido del artículo, el servidor no volverá a generar
la página, y el navegador usará la versión guardada en la caché del lado del cliente. Como resultado, la representación del
lado del servidor y la transmisión del contenido de la página son ambos omitidos.

ETags permiten estrategias de almacenamiento de caché más complejas y/o mucho más precisas que las cabeceras Last-Modified.
Por ejemplo, un ETag puede ser invalidado si el sitio Web ha cambiado de tema (theme).

La generación de un ETag que requiera muchos recursos puede echar por tierra el propósito de estar usando HttpCache e
introducir una sobrecarga innecesaria, ya que debe ser re-evaluada en cada solicitud (request). Trata de encontrar una
expresión sencilla para invalidar la caché si la página ha sido modificada.

Note: En cumplimiento con RFC 7232 [http://tools.ietf.org/html/rfc7232#section-2.4],
HttpCache enviará ambas cabeceras ETag y Last-Modified si ambas están configuradas. Y si el clientes envía tanto la cabecera If-None-Match como la cabecera If-Modified-Since, solo la primera será respetada.

La Cabecera Cache-Control

La cabecera Cache-Control especifica la directiva general de la caché para páginas. Puedes enviarla configurando la
propiedad [[yii\filters\HttpCache::cacheControlHeader]] con el valor de la cabecera. Por defecto, la siguiente cabecera
será enviada:

Cache-Control: public, max-age=3600

Limitador de la Sesión de Caché

Cuando una página utiliza la sesión, PHP enviará automáticamente cabeceras HTTP relacionadas con la caché tal y como se
especifican en session.cache_limiter de la configuración INI de PHP. Estas cabeceras pueden interferir o deshabilitar
el almacenamiento de caché que desees de HttpCache. Para evitar este problema, por defecto HttpCache deshabilitará
automáticamente el envío de estas cabeceras. Si deseas modificar este comportamiento, tienes que configurar la propiedad
[[yii\filters\HttpCache::sessionCacheLimiter]]. La propiedad puede tomar un valor de cadena, incluyendo public, private,
private_no_expire, and nocache. Por favor, consulta el manual PHP acerca de session_cache_limiter() [http://www.php.net/manual/es/function.session-cache-limiter.php]
para una mejor explicación sobre esos valores.

Implicaciones SEO

Los robots de motores de búsqueda tienden a respetar las cabeceras de caché. Dado que algunos crawlers tienen limitado
el número de páginas que pueden rastrear por dominios dentro de un cierto período de tiempo, la introducción de cabeceras
de caché pueden ayudar a la indexación del sitio Web y reducir el número de páginas que deben ser procesadas.

 El Almacenamiento en Caché

El Almacenamiento en Caché

El almacenamiento en caché es una forma económica y eficaz para mejorar el rendimiento de una aplicación web. Mediante
el almacenamiento de datos relativamente estáticos en la memoria caché y su correspondiente recuperación cuando éstos sean
solicidatos, la aplicación salvaría todo ese tiempo y recursos necesarios para volver a generarlos cada vez desde cero.

El almacenamiento en caché se puede usar en diferentes niveles y lugares en una aplicación web. En el lado del servidor, al más bajo nivel,
la caché puede ser usada para almacenar datos básicos, tales como una una lista de los artículos más recientes obtenidos de una base de datos;
y en el más alto nivel, la caché puede ser usada para almacenar fragmentos o la totalidad de las páginas web, tales como el resultado del renderizado de los artículos más recientes. En el lado del cliente, el almacenamiento en caché HTTP puede ser utilizado para mantener
el contenido de la página que ha sido visitada más recientemente en el caché del navegador.

Yii soporta los siguientes mecanismos de almacenamiento de caché:

	Caché de datos

	Caché de fragmentos

	Caché de páginas

	Caché HTTP

 Caché de Páginas

Caché de Páginas

La caché de páginas se refiere a guardar el contenido de toda una página en el almacenamiento de caché del servidor.
Posteriormente, cuando la misma página sea requerida de nuevo, su contenido será devuelto desde la caché en vez de
volver a generarlo desde cero.

El almacenamiento en caché de páginas está soportado por [[yii\filters\PageCache]], un filtro de acción.
Puede ser utilizado de la siguiente forma en un controlador:

public function behaviors()
{
 return [
 [
 'class' => 'yii\filters\PageCache',
 'only' => ['index'],
 'duration' => 60,
 'variations' => [
 \Yii::$app->language,
],
 'dependency' => [
 'class' => 'yii\caching\DbDependency',
 'sql' => 'SELECT COUNT(*) FROM post',
],
],
];
}

El código anterior establece que el almacenamiento de páginas en caché debe ser utilizado sólo en la acción index; el
contenido de la página debería almacenarse durante un máximo de 60 segundos y ser variado por el idioma actual de la
aplicación; además, el almacenamiento de la página en caché debería ser invalidado si el número total de
artículos ha cambiado.

Como puedes ver, la caché de páginas es muy similar a la caché de fragmentos. Ambos soportan opciones
tales como duration, dependencies, variations, y enabled. Su principal diferencia es que la caché de páginas está
implementado como un filtro de acción mientras que la caché de fragmentos se hace en un widget.

Puedes usar la caché de fragmentos así como el contenido dinámico
junto con la caché de páginas.

 Alias

Alias

Loa alias son utilizados para representar rutas o URLs de manera que no tengas que escribir explícitamente rutas absolutas o URLs en tu
proyecto. Un alias debe comenzar con el signo @ para ser diferenciado de una ruta normal de archivo y de URLs. Los alias definidos
sin el @ del principio, serán prefijados con el signo @.

Yii trae disponibles varios alias predefinidos. Por ejemplo, el alias @yii representa la ruta de instalación del
framework Yii; @web representa la URL base para la aplicación Web ejecutándose.

Definir Alias

Para definir un alias puedes llamar a [[Yii::setAlias()]] para una determinada ruta de archivo o URL. Por ejemplo,

// un alias de una ruta de archivos
Yii::setAlias('@foo', '/path/to/foo');

// una alias de un URL
Yii::setAlias('@bar', 'http://www.example.com');

Note: Una ruta de archivo o URL en alias NO debe necesariamente referirse a un archivo o recurso existente.

Dado un alias, puedes derivar un nuevo alias (sin necesidad de llamar [[Yii::setAlias()]]) anexando una barra diagonal /
seguida por uno o varios segmentos de la ruta. Llamamos los alias definidos a través de [[Yii::setAlias()]]
alias de raíz (root alias), mientras que los alias derivados de ellos alias derivados (derived aliases). Por ejemplo,
@foo es un alias de raíz, mientras que @foo/bar/file.php es un alias derivado.

Puedes definir un alias usando otro alias (ya sea un alias de raíz o derivado):

Yii::setAlias('@foobar', '@foo/bar');

Los alias de raíz están usualmente definidos durante la etapa bootstrapping de la aplicación.
Por ejemplo, puedes llamar a [[Yii::setAlias()]] en el script de entrada.
Por conveniencia, Application provee una propiedad modificable llamada aliases que puedes
configurar en la configuración de la aplicación, como por ejemplo,

return [
 // ...
 'aliases' => [
 '@foo' => '/path/to/foo',
 '@bar' => 'http://www.example.com',
],
];

Resolución de Alias

Puedes llamar [[Yii::getAlias()]] para resolver un alias de raíz en la ruta o URL que representa. El mismo método puede
además resolver un alias derivado en su correspondiente ruta de archivo o URL. Por ejemplo,

echo Yii::getAlias('@foo'); // muestra: /path/to/foo
echo Yii::getAlias('@bar'); // muestra: http://www.example.com
echo Yii::getAlias('@foo/bar/file.php'); // muestra: /path/to/foo/bar/file.php

La ruta de archivo/URL representado por un alias derivado está determinado por la sustitución de la parte de su alias raíz
con su correspondiente ruta/Url en el alias derivado.

Note: El método [[Yii::getAlias()]] no comprueba si la ruta/URL resultante hacer referencia a un archivo o recurso existente.

Un alias de raíz puede contener carácteres /. El método [[Yii::getAlias()]] es lo suficientemente inteligente para saber
qué parte de un alias es un alias de raíz y por lo tanto determinar correctamente la correspondiente ruta de archivo o URL.
Por ejemplo,

Yii::setAlias('@foo', '/path/to/foo');
Yii::setAlias('@foo/bar', '/path2/bar');
Yii::getAlias('@foo/test/file.php'); // muestra: /path/to/foo/test/file.php
Yii::getAlias('@foo/bar/file.php'); // muestra: /path2/bar/file.php

Si @foo/bar no está definido como un alias de raíz, la última declaración mostraría /path/to/foo/bar/file.php.

Usando Alias

Los alias son utilizados en muchos lugares en Yii sin necesidad de llamar [[Yii::getAlias()]] para convertirlos
en rutas/URLs. Por ejemplo, [[yii\caching\FileCache::cachePath]] puede aceptar tanto una ruta de archivo como un alias
que represente la ruta de archivo, gracias al prefijo @ el cual permite diferenciar una ruta de archivo
de un alias.

use yii\caching\FileCache;

$cache = new FileCache([
 'cachePath' => '@runtime/cache',
]);

Por favor, presta atención a la documentación API para ver si una propiedad o el parámetro de un método soporta alias.

Alias Predefinidos

Yii predefine un conjunto de alias para aliviar la necesidad de hacer referencia a rutas de archivo o URLs que son
utilizadas regularmente. La siguiente es la lista de alias predefinidos por Yii:

	@yii: el directorio donde el archivo BaseYii.php se encuentra (también llamado el directorio del framework).

	@app: la [[yii\base\Application::basePath|ruta base]] de la aplicación que se está ejecutando actualmente.

	@runtime: la [[yii\base\Application::runtimePath|ruta de ejecución]] de la aplicación en ejecución. Por defecto @app/runtime.

	@webroot: el directorio raíz Web de la aplicación Web se está ejecutando actualmente.

	@web: la URL base de la aplicación web se ejecuta actualmente. Tiene el mismo valor que [[yii\web\Request::baseUrl]].

	@vendor: el [[yii\base\Application::vendorPath|directorio vendor de Composer]]. Por defecto @app/vendor.

	@bower, el directorio raíz que contiene paquetes bower [http://bower.io/]. Por defecto @vendor/bower.

	@npm, el directorio raíz que contiene paquetes npm [https://www.npmjs.org/]. Por defecto @vendor/npm.

El alias @yii se define cuando incluyes el archivo Yii.php en tu script de entrada,
mientras que el resto de los alias están definidos en el constructor de la aplicación cuando se aplica la
configuración de la aplicación.

Alias en Extensiones

Un alias se define automáticamente por cada extensión que ha sido instalada a través de Composer.
El alias es nombrado tras el namespace de raíz de la extensión instalada tal y como está declarada en su archivo composer.json,
y representa el directorio raíz de la extensión. Por ejemplo, si instalas la extensión yiisoft/yii2-jui, tendrás
automáticamente definido el alias @yii/jui durante la etapa bootstrapping de la aplicación:

Yii::setAlias('@yii/jui', 'VendorPath/yiisoft/yii2-jui');

 Autocarga de clases

Autocarga de clases

Yii depende del mecanismo de autocarga de clases [http://www.php.net/manual/es/language.oop5.autoload.php] para localizar
e incluir los archivos de las clases requiridas. Proporciona un cargador de clases de alto rendimiento que cumple con el
estandard PSR-4 [https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-4-autoloader.md].
El cargador se instala cuando incluyes el archivo Yii.php.

Note: Para simplificar la descripción, en esta sección sólo hablaremos de la carga automática de clases. Sin embargo,
ten en cuenta que el contenido que describimos aquí también se aplica a la autocarga de interfaces y rasgos (Traits).

Usando el Autocargador de Yii

Para utilizar el cargador automático de clases de Yii, deberías seguir dos reglas básicas cuando desarrolles y nombres tus
clases:

	Cada clase debe estar bajo un espacio de nombre (namespace). Por ejemplo foo\bar\MyClass.

	Cada clase debe estar guardada en un archivo individual cuya ruta está determinada por el siguiente algoritmo:

// $className es un nombre completo de clase con las iniciales barras invertidas.
$classFile = Yii::getAlias('@' . str_replace('\\', '/', $className) . '.php');

Por ejemplo, si el nombre de una clase es foo\bar\MyClass, el alias la correspondiente ruta de
archivo de la clase sería @foo/bar/MyClass.php. Para que este sea capaz de ser resuelto como una ruta de archivo, ya sea
@foo o @foo/bar debe ser un alias de raíz (root alias).

Cuando utilizas la Plantilla de Aplicación Básica, puede que pongas tus clases bajo el nivel superior
de espacio de nombres app para que de esta manera pueda ser automáticamente cargado por Yii sin tener la necesidad de
definir un nuevo alias. Esto es porque @app es un alias predefinido, y el
nombre de una clase tal como app\components\MyClass puede ser resuelto en el archivo de la clase AppBasePath/components/MyClass.php,
de acuerdo con el algoritmo previamente descrito.

En la Plantilla de Aplicación Avanzada, cada nivel tiene su propio alias. Por ejemplo, el nivel
front-end tiene un alias de raíz @frontend mientras que el nivel back-end tiene @backend. Como resultado, es posible
poner las clases front-end bajo el espacio de nombres frontend mientras que las clases back-end pueden hacerlo bajo
backend. Esto permitirá que estas clases sean automaticamente cargadas por el autocargador de Yii.

Mapa de Clases

El autocargador de clases de Yii soporta el mapa de clases, que mapea nombres de clases to sus correpondientes rutas de
archvios. Cuando el autocargador esta cargando una clase, primero chequeará si la clase se encuentra en el mapa. Si es así,
el correspondiente archivo será incluido directamente sin más comprobación. Esto hace que la clase se cargue muy rápidamente.
De hecho, todas las clases de Yii son autocargadas de esta manera.

Puedes añadir una clase al mapa de clases Yii::$classMap de la siguiente forma,

Yii::$classMap['foo\bar\MyClass'] = 'path/to/MyClass.php';

Alias puede ser usado para especificar la ruta de archivos de clases. Deberías iniciar el mapeo de
clases en el proceso bootstrapping de la aplicación para que de esta manera el mapa esté listo
antes de que tus clases sean usadas.

Usando otros Autocargadores

Debido a que Yii incluye Composer como un gestor de dependencias y extensions, es recomendado que también instales el
autocargador de Composer. Si estás usando alguna librería externa que requiere sus autocargadores, también deberías
instalarlos.

Cuando se utiliza el cargador de clases automático de Yii conjuntamente con otros autocargadores, deberías incluir el
archivo Yii.php después de que todos los demás autocargadores se hayan instalado. Esto hará que el autocargador de
Yii sea el primero en responder a cualquier petición de carga automática de clases. Por ejemplo, el siguiente código ha
sido extraido del script de entrada de la Plantilla de Aplicación Básica.
La primera línea instala el autocargador de Composer, mientras que la segunda línea instala el autocargador de Yii.

require __DIR__ . '/../vendor/autoload.php';
require __DIR__ . '/../vendor/yiisoft/yii2/Yii.php';

Puedes usar el autocargador de Composer sin el autocargador de Yii. Sin embargo, al hacerlo, la eficacia de la carga de
tus clases puede que se degrade, y además deberías seguir las reglas establecidas por Composer para que tus clases pudieran
ser autocargables.

Note: Si no deseas utilizar el autocargador de Yii, tendrás que crear tu propia versión del archivo Yii.php e
incluirlo en tu script de entrada.

Carga Automática de Clases de Extensiones

El autocargador de Yii es capaz de autocargar clases de extensiones. El único requirimiento es
que la extensión especifique correctamente la sección de autoload (autocarga) en su archivo composer.json. Por favor,
consulta la documentación de Composer [https://getcomposer.org/doc/04-schema.md#autoload] para más detalles acerca de la
especificación autoload.

En el caso de que no quieras usar el autocargador de Yii, el autocargador de Composer podría cargar las clases de extensiones
por tí.

 Comportamientos

Comportamientos

Comportamientos son instancias de [[yii\base\Behavior]] o sus clases “hija”. Comportamientos, también conocido como
mixins [http://en.wikipedia.org/wiki/Mixin], te permiten mejorar la funcionalidad de un [[yii\base\Component|componente]]
existente sin necesidad de modificar su herencia de clases.
Cuando un comportamiento se une a un componente, “inyectará” sus métodos y propiedades dentro del componente, y podrás
acceder a esos métodos y propiedades como si hubieran estado definidos por la clase de componente. Además, un
comportamiento puede responder a eventos disparados por el componente de modo que se pueda personalizar
o adaptar a la ejecución normal del código del componente.

Definiendo comportamientos

Para definir un comportamiento, se debe crear una clase que exiende [[yii\base\Behavior]], o se extiende una clase hija. Por ejemplo:

namespace app\components;

use yii\base\Behavior;

class MyBehavior extends Behavior
{
 public $prop1;

 private $_prop2;

 public function getProp2()
 {
 return $this->_prop2;
 }

 public function setProp2($value)
 {
 $this->_prop2 = $value;
 }

 public function foo()
 {
 // ...
 }
}

El código anterior define la clase de comportamiento (behavior) app\components\MyBehavior, con dos propiedades --prop1yprop2--y un métodofoo(). Tenga en cuenta que la propiedadprop2se define a través de la gettergetProp2()y el settersetProp2()`. Este caso es porque [[yii\base\Behavior]] extiende [[yii\base\BaseObject]] y por lo tanto se apoya en la definición de propiedades via getters y setters.

Debido a que esta clase es un comportamiento, cuando está unido a un componente, el componente también tienen la propiedad prop1 y prop2 y el método foo().

Tip: Dentro de un comportamiento, puede acceder al componente que el comportamiento está unido a través de la propiedad [[yii\base\Behavior::owner]].

Gestión de eventos de componentes

Si un comportamiento necesita responder a los acontecimientos desencadenados por el componente al que está unido, se debe reemplazar el método [[yii\base\Behavior::events()]]. Por ejemplo:

namespace app\components;

use yii\db\ActiveRecord;
use yii\base\Behavior;

class MyBehavior extends Behavior
{
 // ...

 public function events()
 {
 return [
 ActiveRecord::EVENT_BEFORE_VALIDATE => 'beforeValidate',
];
 }

 public function beforeValidate($event)
 {
 // ...
 }
}

El método [[yii\base\Behavior::events()|events()]] debe devolver una lista de eventos y sus correspondientes controladores.
El ejemplo anterior declara que el evento [[yii\db\ActiveRecord::EVENT_BEFORE_VALIDATE|EVENT_BEFORE_VALIDATE]] existe y esta exists y define su controlador, beforeValidate(). Al especificar un controlador de eventos, puede utilizar uno de los siguientes formatos:

	una cadena que se refiere al nombre de un método de la clase del comportamiento, como el ejemplo anterior

	un arreglo de objeto o nombre de clase, y un nombre de método como una cadena (sin paréntesis), ej., [$object, 'methodName'];

	una función anónima

La firma de un controlador de eventos debe ser la siguiente, donde $ event refiere al parámetro de evento. Por favor, consulte la sección Eventos para más detalles sobre los eventos.

function ($event) {
}

Vinculando Comportamientos

Puedes vincular un comportamiento a un [[yii\base\Component|componente]] ya sea estática o dinámicamente. La primera forma
es la más comúnmente utilizada en la práctica.

Para unir un comportamiento estáticamente, reemplaza el método [[yii\base\Component::behaviors()|behaviors()]] dde la clase de componente a la que se une el comportamiento. El método [[yii\base\Component::behaviors()|behaviors()]] debe devolver una lista de comportamiento configuraciones.
Cada configuración de comportamiento puede ser un nombre de clase de comportamiento o un arreglo de configuración:

namespace app\models;

use yii\db\ActiveRecord;
use app\components\MyBehavior;

class User extends ActiveRecord
{
 public function behaviors()
 {
 return [
 // anonymous behavior, behavior class name only
 MyBehavior::className(),

 // named behavior, behavior class name only
 'myBehavior2' => MyBehavior::className(),

 // anonymous behavior, configuration array
 [
 'class' => MyBehavior::className(),
 'prop1' => 'value1',
 'prop2' => 'value2',
],

 // named behavior, configuration array
 'myBehavior4' => [
 'class' => MyBehavior::className(),
 'prop1' => 'value1',
 'prop2' => 'value2',
]
];
 }
}

Puedes asociciar un nombre a un comportamiento especificándolo en la clave de la matriz correspondiente a la configuración
del comportamiento. En este caso, el comportamiento puede ser llamado un comportamiento nombrado (named behavior). En
el ejemplo anterior, hay dos tipos de comportamientos nombrados: myBehavior2 y myBehavior4. Si un comportamiento
no está asociado con un nombre, se le llama comportamiento anónimo (anonymous behavior).

Para vincular un comportamiento dinámicamente, llama al método [[yii\base\Component::attachBehavior()]] desde el componente al
que se le va a unir el comportamiento:

use app\components\MyBehavior;

// vincular un objeto comportamiento "behavior"
$component->attachBehavior('myBehavior1', new MyBehavior);

// vincular una clase comportamiento
$component->attachBehavior('myBehavior2', MyBehavior::className());

// asociar una matriz de configuración
$component->attachBehavior('myBehavior3', [
 'class' => MyBehavior::className(),
 'prop1' => 'value1',
 'prop2' => 'value2',
]);

Puede vincular múltiples comportamientos a la vez mediante el uso del método [[yii\base\Component::attachBehaviors()]]. Por ejemplo,

$component->attachBehaviors([
 'myBehavior1' => new MyBehavior, // un comportamiento nombrado
 MyBehavior::className(), // un comportamiento anónimo
]);

También puedes asociar comportamientos a traves de configuraciones como el siguiente:

[
 'as myBehavior2' => MyBehavior::className(),

 'as myBehavior3' => [
 'class' => MyBehavior::className(),
 'prop1' => 'value1',
 'prop2' => 'value2',
],
]

Para más detalles, por favor visita la sección Configuraciones.

Usando comportamientos

Para poder utilizar un comportamiento, primero tienes que unirlo a un [[yii\base\Component|componente]] según las instrucciones anteriores. Una vez que un comportamiento ha sido vinculado a un componente, su uso es sencillo.

Puedes usar a una variable pública o a una propiedad definida por un getter y/o un setter
del comportamiento a través del componente con el que se ha vinculado:

// "prop1" es una propiedad definida en la clase comportamiento
echo $component->prop1;
$component->prop1 = $value;

También puedes llamar métodos públicos del comportamiento de una forma similar:

// foo() es un método público definido dentro de la clase comportamiento
$component->foo();

Como puedes ver, aunque $component no tiene definida prop1 y bar(), que se pueden utilizar como si son parte
de la definición de componentes debido al comportamiento vinculado.

Si dos comportamientos definen la misma propiedad o método y ambos están vinculados con el mismo componente, el
comportamiento que ha sido vinculado primero tendrá preferencia cuando se esté accediendo a la propiedad o método.

Un comportamiento puede estar asociado con un nombre cuando se une a un componente. Si este es el caso, es posible
acceder al objeto de comportamiento mediante el nombre, como se muestra a continuación,

$behavior = $component->getBehavior('myBehavior');

También puedes acceder a todos los comportamientos vinculados al componente:

$behaviors = $component->getBehaviors();

Desasociar Comportamientos

Para desasociar un comportamiento, puedes llamar el método [[yii\base\Component::detachBehavior()]] con el nombre con el
que se le asoció:

$component->detachBehavior('myBehavior1');

También puedes desvincular todos los comportamientos:

$component->detachBehaviors();

Utilizando TimestampBehavior

Para terminar, vamos a echar un vistazo a [[yii\behaviors\TimestampBehavior]]. Este comportamiento soporta de forma
automática la actualización de atributos timestamp de un modelo [[yii\db\ActiveRecord|Registro Activo]]
(Active Record) en cualquier momento donde se guarda el modelo (ej., en la inserción o actualización).

Primero, vincula este comportamiento a la clase [[yii\db\ActiveRecord|Active Record]] que desees utilizar.

namespace app\models\User;

use yii\db\ActiveRecord;
use yii\behaviors\TimestampBehavior;

class User extends ActiveRecord
{
 // ...

 public function behaviors()
 {
 return [
 [
 'class' => TimestampBehavior::className(),
 'attributes' => [
 ActiveRecord::EVENT_BEFORE_INSERT => ['created_at', 'updated_at'],
 ActiveRecord::EVENT_BEFORE_UPDATE => ['updated_at'],
],
],
];
 }
}

La configuración del comportamiento anterior especifica que

	cuando el registro está siendo insertado, el comportamiento debe asignar el sello de tiempo actual a los atributos
created_at y updated_at;

	cuando el registro está siendo actualizado, el comportamiento debe asignar el sello de tiempo actual al atributo
updated_at.

Ahora si tienes un objeto User e intentas guardarlo, descubrirás que sus campos created_at y updated_at están
automáticamente actualizados con el sello de tiempo actual:

$user = new User;
$user->email = 'test@example.com';
$user->save();
echo $user->created_at; // muestra el sello tiempo actual (timestamp)

El comportamiento [[yii\behaviors\TimestampBehavior|TimestampBehavior]] también ofrece un método muy útil llamado
[[yii\behaviors\TimestampBehavior::touch()|touch()]], que asigna el sello de tiempo actual a un atributo especificado y lo guarda automáticamente en la base de datos:

$user->touch('login_time');

Comparación con Traits

Mientras que los comportamientos son similares a traits [http://www.php.net/traits] en cuanto que ambos “inyectan” sus
métodos y propiedades a la clase primaria, son diferentes en muchos aspectos. Tal y como se describe abajo, los dos
tienen sus ventajas y desventajas. Son más como complementos el uno al otro en lugar de alternativas.

Razones para utilizar comportamientos

Las clases de comportamientos, como todas las clases, soportan herencias. Traits, por otro lado, pueden ser
considerados como un copia-y-pega de PHP. Ellos no soportan la herencia de clases.

Los comportamientos pueden ser asociados y desasociados a un componente dinámicamente sin necesidad de que la clase del
componente sea modificada. Para usar un trait, debes modificar la clase que la usa.

Los comportamientos son configurables mientras que los traits no.

Los comportamientos pueden personalizar la ejecución de un componente al responder a sus eventos.

Cuando hay un conflicto de nombre entre los diferentes comportamientos vinculados a un mismo componente, el conflicto es
automáticamente resuelto respetando al que ha sido asociado primero.
El conflicto de nombres en traits requiere que manualmente sean resueltos cambiando el nombre de las propiedades o métodos afectados.

Razones para utilizar los Traits

Los Traits son mucho más eficientes que los comportamientos debido a que los últimos son objetos que consumen tiempo y
memoria.

Los IDEs (Programas de desarrollo) son más amigables con traits ya que son una construcción del lenguaje nativo.

 Componentes

Componentes

Los componentes son los principales bloques de construcción de las aplicaciones Yii. Los componentes son instancias de [[yii\base\Component]] o de una clase extendida. Las tres características principales que los componentes proporcionan
a las otras clases son:

	Propiedades

	Eventos

	Comportamientos

Por separado y combinadas, estas características hacen que las clases Yii sean mucho mas personalizables y sean mucho más fáciles de usar. Por ejemplo, el incluido [[yii\jui\DatePicker|widget de selección de fecha]], un componente de la interfaz de usuario, puede ser utilizado en una vista para generar un DatePicker interactivo:

use yii\jui\DatePicker;

echo DatePicker::widget([
 'language' => 'ru',
 'name' => 'country',
 'clientOptions' => [
 'dateFormat' => 'yy-mm-dd',
],
]);

Las propiedades del widget son fácilmente modificables porque la clase se extiende de [[yii\base\Component]].

Mientras que los componentes son muy potentes, son un poco más pesados que los objetos normales, debido al hecho de que necesitan más memoria y tiempo de CPU para poder soportar eventos y comportamientos en particular.
Si tus componentes no necesitan estas dos características, deberías considerar extender tu componente directamente de [[yii\base\BaseObject]] en vez de [[yii\base\Component]]. De esta manera harás que tus componentes sean mucho más eficientes que objetos PHP normales, pero con el añadido soporte para propiedades.

Cuando extiendes tu clase de [[yii\base\Component]] o [[yii\base\BaseObject]], se recomienda que sigas las siguientes convenciones:

	Si sobrescribes el constructor, especifica un parámetro $config como el último parámetro del constructor, y después pasa este parámetro al constructor padre.

	Siempre llama al constructor padre al final de su propio constructor.

	Si sobrescribes el método [[yii\base\BaseObject::init()]], asegúrese de llamar la implementación padre de init * al principio * de su métodoinit.

Por ejemplo:

namespace yii\components\MyClass;

use yii\base\BaseObject;

class MyClass extends BaseObject
{
 public $prop1;
 public $prop2;

 public function __construct($param1, $param2, $config = [])
 {
 // ... inicialización antes de la configuración está siendo aplicada

 parent::__construct($config);
 }

 public function init()
 {
 parent::init();

 // ... inicialización después de la configuración esta siendo aplicada
 }
}

Siguiendo esas directrices hará que tus componentes sean configurables cuando son creados. Por ejemplo:

$component = new MyClass(1, 2, ['prop1' => 3, 'prop2' => 4]);
// alternativamente
$component = \Yii::createObject([
 'class' => MyClass::className(),
 'prop1' => 3,
 'prop2' => 4,
], [1, 2]);

Info: Mientras que el enfoque de llamar [[Yii::createObject()]] parece mucho más complicado, es mucho más potente debido al hecho de que se implementa en la parte superior de un contenedor de inyección de dependencia.

La clase [[yii\base\BaseObject]] hace cumplir el siguiente ciclo de vida del objeto:

	Pre-inicialización en el constructor. Puedes establecer los valores predeterminados de propiedades aquí.

	Configuración del objeto a través de $config. La configuración puede sobrescribir los valores prdeterminados dentro del constructor.

	Post-inicialización dentro de [[yii\base\BaseObject::init()|init()]]. Puedes sobrescribir este método para realizar comprobaciones de validez y normalización de las propiedades.

	Llamadas a métodos del objeto.

Los tres primeros pasos ocurren dentro del constructor del objeto. Esto significa que una vez obtengas la instancia de un objeto, ésta ha sido inicializada para que puedas utilizarla adecuadamente.

 Configuración

Configuración

Las configuraciones se utilizan ampliamente en Yii al crear nuevos objetos o inicializar los objetos existentes. Las configuraciones por lo general incluyen el nombre de la clase del objeto que se está creando, y una lista de los valores iniciales que deberían ser asignadas a las del propiedades objeto. Las configuraciones también pueden incluir una lista de manipuladores que deban imponerse a del objeto eventos y/o una lista de comportamientos que también ha de atribuirse al objeto.

A continuación, una configuración que se utiliza para crear e inicializar una conexión a base de datos:

$config = [
 'class' => 'yii\db\Connection',
 'dsn' => 'mysql:host=127.0.0.1;dbname=demo',
 'username' => 'root',
 'password' => '',
 'charset' => 'utf8',
];

$db = Yii::createObject($config);

El método [[Yii::createObject()]] toma una matriz de configuración como su argumento, y crea un objeto intanciando la clase llamada en la configuración. Cuando se crea una instancia del objeto, el resto de la configuración se utilizará para inicializar las propiedades del objeto, controladores de eventos y comportamientos.

Si usted ya tiene un objeto, puede usar [[Yii::configure()]] para inicializar las propiedades del objeto con una matriz de configuración:

Yii::configure($object, $config);

Tenga en cuenta que en este caso, la matriz de configuración no debe contener un elemento class.

Formato de Configuración

El formato de una configuración se puede describir formalmente como:

[
 'class' => 'ClassName',
 'propertyName' => 'propertyValue',
 'on eventName' => $eventHandler,
 'as behaviorName' => $behaviorConfig,
]

donde

	El elemento class especifica un nombre de clase completo para el objeto que se está creando.

	Los elementos propertyName especifica los valores iniciales de la propiedad con nombre. Las claves son los nombres de las propiedades y los valores son los valores iniciales correspondientes. Sólo los miembros de variables públicas y propiedades definidas por getters/setters se pueden configurar.

	Los elementos on eventName especifican qué manipuladores deberán adjuntarse al del objeto eventos. Observe que las claves de matriz se forman prefijando nombres de eventos con on. Por favor, consulte la sección Eventos para los formatos de controlador de eventos compatibles.

	Los elementos as behaviorName especifican qué comportamientos deben adjuntarse al objeto. Observe que las claves de matriz se forman prefijando nombres de comportamiento con as; el valor, $behaviorConfig, representa la configuración para la creación de un comportamiento, como una configuración normal descrita aquí.

A continuación se muestra un ejemplo de una configuración con los valores de propiedad iniciales, controladores de eventos y comportamientos:

[
 'class' => 'app\components\SearchEngine',
 'apiKey' => 'xxxxxxxx',
 'on search' => function ($event) {
 Yii::info("Keyword searched: " . $event->keyword);
 },
 'as indexer' => [
 'class' => 'app\components\IndexerBehavior',
 // ... property init values ...
],
]

Usando Configuraciones

Las configuraciones se utilizan en muchos lugares en Yii. Al comienzo de esta sección, hemos demostrado cómo crear un objeto según una configuración mediante el uso de [[Yii::createObject()]]. En este apartado, vamos a describir configuraciones de aplicaciones y configuraciones widget - dos principales usos de configuraciones.

Configuraciones de aplicación

Configuración para una aplicación es probablemente una de las configuraciones más complejas. Esto se debe a que la clase [[yii\web\Application|aplicación]] tiene un montón de propiedades y eventos configurables. Más importante aún, su propiedad [[yii\web\Application::components|componentes]] que puede recibir una gran variedad de configuraciones para crear componentes que se registran a través de la aplicación. Lo siguiente es un resumen del archivo de configuración de la aplicación para la plantilla básica de la aplicación.

$config = [
 'id' => 'basic',
 'basePath' => dirname(__DIR__),
 'extensions' => require __DIR__ . '/../vendor/yiisoft/extensions.php',
 'components' => [
 'cache' => [
 'class' => 'yii\caching\FileCache',
],
 'mailer' => [
 'class' => 'yii\swiftmailer\Mailer',
],
 'log' => [
 'class' => 'yii\log\Dispatcher',
 'traceLevel' => YII_DEBUG ? 3 : 0,
 'targets' => [
 [
 'class' => 'yii\log\FileTarget',
],
],
],
 'db' => [
 'class' => 'yii\db\Connection',
 'dsn' => 'mysql:host=localhost;dbname=stay2',
 'username' => 'root',
 'password' => '',
 'charset' => 'utf8',
],
],
];

La configuración no tiene una clave class. Esto es porque se utiliza como sigue en un script de entrada, donde ya se le da el nombre de la clase,

(new yii\web\Application($config))->run();

Para más detalles sobre la configuración de la propiedad components de una aplicación se puede encontrar en la sección Aplicación y la sección Localizador de Servicio.

Configuración Widget

Cuando se utiliza widgets, a menudo es necesario utilizar las configuraciones para personalizar las propiedades de widgets. Tanto los metodos [[yii\base\Widget::widget()]] y [[yii\base\Widget::begin()]] pueden usarse para crear un widget. Toman un arreglo de configuración, como el siguiente,

use yii\widgets\Menu;

echo Menu::widget([
 'activateItems' => false,
 'items' => [
 ['label' => 'Home', 'url' => ['site/index']],
 ['label' => 'Products', 'url' => ['product/index']],
 ['label' => 'Login', 'url' => ['site/login'], 'visible' => Yii::$app->user->isGuest],
],
]);

El código anterior crea un widget Menu e inicializa su propiedad activeItems en falsa. La propiedad items también se configura con elementos de menú que se muestran.

Tenga en cuenta que debido a que el nombre de la clase ya está dado, la matriz de configuración no deben tener la clave class.

Archivos de Configuración

Cuando una configuración es muy compleja, una práctica común es almacenarla en uno o múltiples archivos PHP, conocidos como archivos de configuración. Un archivo de configuración devuelve un array de PHP que representa la configuración. Por ejemplo, es posible mantener una configuración de la aplicación en un archivo llamado web.php, como el siguiente,

return [
 'id' => 'basic',
 'basePath' => dirname(__DIR__),
 'extensions' => require __DIR__ . '/../vendor/yiisoft/extensions.php',
 'components' => require __DIR__ . '/components.php',
];

Debido a que la configuración componentes es compleja también, se guarda en un archivo separado llamado components.php y “requerir” este archivo en web.php como se muestra arriba. El contenido de components.php es el siguiente,

return [
 'cache' => [
 'class' => 'yii\caching\FileCache',
],
 'mailer' => [
 'class' => 'yii\swiftmailer\Mailer',
],
 'log' => [
 'class' => 'yii\log\Dispatcher',
 'traceLevel' => YII_DEBUG ? 3 : 0,
 'targets' => [
 [
 'class' => 'yii\log\FileTarget',
],
],
],
 'db' => [
 'class' => 'yii\db\Connection',
 'dsn' => 'mysql:host=localhost;dbname=stay2',
 'username' => 'root',
 'password' => '',
 'charset' => 'utf8',
],
];

Para obtener una configuración almacenada en un archivo de configuración, simplemente “requerir” este, como el siguiente:

$config = require 'path/to/web.php';
(new yii\web\Application($config))->run();

Configuraciones por Defecto

El método [[Yii::createObject()]] es implementado en base a contenedor de inyección de dependencia. Le permite especificar un conjunto de los llamados configuraciones predeterminadas que se aplicarán a todos los casos de las clases especificadas cuando se crean utilizando [[Yii::createObject()]]. Las configuraciones por defecto se puede especificar llamando Yii::$container->set() en el código bootstrapping.

Por ejemplo, si desea personalizar [[yii\widgets\LinkPager]] para que TODO enlace de búsqueda muestre como máximo 5 botones de página (el valor por defecto es 10), puede utilizar el siguiente código para lograr este objetivo,

\Yii::$container->set('yii\widgets\LinkPager', [
 'maxButtonCount' => 5,
]);

Sin utilizar las configuraciones predeterminadas, usted tendría que configurar maxButtonCount en cada lugar en el que utiliza enlace paginador.

Constantes de Entorno

Las configuraciones a menudo varían de acuerdo al entorno en que se ejecuta una aplicación. Por ejemplo, en el entorno de desarrollo, es posible que desee utilizar una base de datos llamada mydb_dev, mientras que en servidor de producción es posible que desee utilizar la base de datos mydb_prod. Para facilitar la conmutación de entornos, Yii proporciona una constante llamado YII_ENV que se puede definir en el script de entrada de su aplicación. Por ejemplo,

defined('YII_ENV') or define('YII_ENV', 'dev');

Usted puede definir YII_ENV como uno de los valores siguientes:

	prod: entorno de producción. La constante YII_ENV_PROD evaluará como verdadero.
Este es el valor por defecto de YII_ENV si no esta definida.

	dev: entorno de desarrollo. La constante YII_ENV_DEV evaluará como verdadero.

	test: entorno de pruebas. La constante YII_ENV_TEST evaluará como verdadero.

Con estas constantes de entorno, puede especificar sus configuraciones condicionales basado en el entorno actual. Por ejemplo, la configuración de la aplicación puede contener el siguiente código para permitir que el depurador y barra de herramientas de depuración en el entorno de desarrollo.

$config = [...];

if (YII_ENV_DEV) {
 // configuration adjustments for 'dev' environment
 $config['bootstrap'][] = 'debug';
 $config['modules']['debug'] = 'yii\debug\Module';
}

return $config;

 Contenedor de Inyección de Dependencias

Contenedor de Inyección de Dependencias

Un contenedor de Inyección de Dependencias (ID), es un objeto que sabe como instancias y configurar objetos y sus
objetos dependientes. El articulo de Martin [http://martinfowler.com/articles/injection.html] contiene una buena
explicación de porque son útiles los contenedores de ID. A continuación explicaremos como usar el contenedor de ID que
proporciona Yii.

Inyección de Dependencias

Yii proporciona la función de contenedor de ID mediante la clase [[yii\di\Container]]. Soporta los siguientes tipos
de ID:

	Inyección de constructores;

	Inyección de setters y propiedades;

	Inyección de llamadas de retorno PHP [http://php.net/manual/es/language.types.callable.php];

Inyección de Constructores

El contenedor de ID soporta inyección de constructores con la ayuda de los indicios (hint) de tipo para los parámetros del
constructor. Los indicios de tipo le proporcionan información al contenedor para saber cuáles son las clases o
interfaces dependientes al usarse para crear un nuevo objeto. El contenedor intentara obtener las instancias de las
clases o interfaces dependientes y las inyectará dentro del nuevo objeto mediante el constructor. Por ejemplo,

class Foo
{
 public function __construct(Bar $bar)
 {
 }
}

$foo = $container->get('Foo');
// que es equivalente a:
$bar = new Bar;
$foo = new Foo($bar);

Inyección de Setters y Propiedades

La inyección de setters y propiedades se admite a través de configuraciones. Cuando se
registra una dependencia o se crea un nuevo objeto, se puede proporcionar una configuración que usará el contenedor
para inyectar las dependencias a través de sus correspondientes setters y propiedades. Por ejemplo,

use yii\base\BaseObject;

class Foo extends BaseObject
{
 public $bar;

 private $_qux;

 public function getQux()
 {
 return $this->_qux;
 }

 public function setQux(Qux $qux)
 {
 $this->_qux = $qux;
 }
}

$container->get('Foo', [], [
 'bar' => $container->get('Bar'),
 'qux' => $container->get('Qux'),
]);

Inyección de Llamadas de retorno PHP

En este caso, el contenedor usará una llamada de retorno PHP registrada para construir una nueva instancia de una
clase. La llamada de retorno se responsabiliza de que dependencias debe inyectar al nuevo objeto creado. Por ejemplo,

$container->set('Foo', function ($container, $params, $config) {
 return new Foo(new Bar);
});

$foo = $container->get('Foo');

Registro de dependencias

Se puede usar [[yii\di\Container::set()]] para registrar dependencias. El registro requiere un nombre de dependencia
así como una definición de dependencia. Un nombre de dependencia puede ser un nombre de clase, un nombre de interfaz,
o un nombre de alias; y una definición de dependencia puede ser un nombre de clase, un array de configuración, o una
llamada de retorno PHP.

$container = new \yii\di\Container;

// registra un nombre de clase como tal. Puede se omitido.
$container->set('yii\db\Connection');

// registra una interfaz
// Cuando una clase depende de una interfaz, la clase correspondiente
// se instanciará como un objeto dependiente
$container->set('yii\mail\MailInterface', 'yii\swiftmailer\Mailer');

// registra un nombre de alias. Se puede usar $container->get('foo')
// para crear una instancia de Connection
$container->set('foo', 'yii\db\Connection');

// registrar una clase con configuración. La configuración
// se aplicara cuando la clase se instancie por get()
$container->set('yii\db\Connection', [
 'dsn' => 'mysql:host=127.0.0.1;dbname=demo',
 'username' => 'root',
 'password' => '',
 'charset' => 'utf8',
]);

// registra un nombre de alias con configuración de clase
// En este caso, se requiere un elemento "clase" para especificar la clase
$container->set('db', [
 'class' => 'yii\db\Connection',
 'dsn' => 'mysql:host=127.0.0.1;dbname=demo',
 'username' => 'root',
 'password' => '',
 'charset' => 'utf8',
]);

// registra una llamada de retorno de PHP
// La llamada de retorno sera ejecutada cada vez que se ejecute $container->get('db')
$container->set('db', function ($container, $params, $config) {
 return new \yii\db\Connection($config);
});

// registra un componente instancia
// $container->get('pageCache') devolverá la misma instancia cada vez que se ejecute
$container->set('pageCache', new FileCache);

Tip: Si un nombre de dependencia es el mismo que la definición de dependencia, no es necesario registrarlo con
el contenedor de ID.

Una dependencia registrada mediante set() generará una instancia cada vez que se necesite la dependencia. Se puede
usar [[yii\di\Container::setSingleton()]] para registrar una dependencia que genere una única instancia:

$container->setSingleton('yii\db\Connection', [
 'dsn' => 'mysql:host=127.0.0.1;dbname=demo',
 'username' => 'root',
 'password' => '',
 'charset' => 'utf8',
]);

Resolución de Dependencias

Una ves se hayan registrado las dependencias, se puede usar el contenedor de ID para crear nuevos objetos, y el
contenedor resolverá automáticamente las dependencias instanciándolas e inyectándolas dentro de los nuevos objetos
creados. La resolución de dependencias es recursiva, esto significa que si una dependencia tiene otras dependencias,
estas dependencias también se resolverán automáticamente.

Se puede usar [[yii\di\Container::get()]] para crear nuevos objetos. El método obtiene el nombre de dependencia, que
puede ser un nombre de clase, un nombre de interfaz o un nombre de alias. El nombre de dependencia puede estar
registrado o no mediante set() o setSingleton(). Se puede proporcionar opcionalmente un listado de los parámetros
del constructor de clase y una configuración para configurar los nuevos objetos creados.
Por ejemplo,

// "db" ha sido registrado anteriormente como nombre de alias
$db = $container->get('db');

// equivalente a: $engine = new \app\components\SearchEngine($apiKey, ['type' => 1]);
$engine = $container->get('app\components\SearchEngine', [$apiKey], ['type' => 1]);

Por detrás, el contenedor de ID efectúa mucho más trabajo la creación de un nuevo objeto. El contenedor primero
inspeccionará la clase constructora para encontrar los nombres de clase o interfaces dependientes y después
automáticamente resolverá estas dependencias recursivamente.

El siguiente código muestra un ejemplo más sofisticado. La clase UserLister depende del un objeto que implementa la
interfaz UserFinderInterface; la clase UserFinder implementa la interfaz y depende del objeto Connection. Todas
estas dependencias se declaran a través de insinuaciones (hinting) de los parámetros del constructor de clase. Con el
registro de dependencia de propiedades, el contenedor de ID puede resolver las dependencias automáticamente y crear
una nueva instancia de UserLister con una simple llamada a get('userLister').

namespace app\models;

use yii\base\BaseObject;
use yii\db\Connection;
use yii\di\Container;

interface UserFinderInterface
{
 function findUser();
}

class UserFinder extends BaseObject implements UserFinderInterface
{
 public $db;

 public function __construct(Connection $db, $config = [])
 {
 $this->db = $db;
 parent::__construct($config);
 }

 public function findUser()
 {
 }
}

class UserLister extends BaseObject
{
 public $finder;

 public function __construct(UserFinderInterface $finder, $config = [])
 {
 $this->finder = $finder;
 parent::__construct($config);
 }
}

$container = new Container;
$container->set('yii\db\Connection', [
 'dsn' => '...',
]);
$container->set('app\models\UserFinderInterface', [
 'class' => 'app\models\UserFinder',
]);
$container->set('userLister', 'app\models\UserLister');

$lister = $container->get('userLister');

// que es equivalente a:

$db = new \yii\db\Connection(['dsn' => '...']);
$finder = new UserFinder($db);
$lister = new UserLister($finder);

Uso Practico

Yii crea un contenedor de ID cuando se incluye el archivo Yii.php en el
script de entrada de la aplicación. Cuando se llama a [[Yii::createObject()]] el método
realmente llama al contenedor del método [[yii\di\Container::get()|get()]] para crear un nuevo objeto. Como se ha
comentado anteriormente, el contenedor de ID resolverá automáticamente las dependencias (si las hay) y las inyectará
dentro del nuevo objeto creado. Debido a que Yii utiliza [[Yii::createObject()]] en la mayor parte del núcleo (core)
para crear nuevo objetos, podemos personalizar los objetos globalmente para que puedan tratar con [[Yii::$container]].

Por ejemplo, se puede personalizar globalmenete el numero predeterminado de números de botones de paginación de
[[yii\widgets\LinkPager]]:

\Yii::$container->set('yii\widgets\LinkPager', ['maxButtonCount' => 5]);

Ahora si se usa el widget en una vista con el siguiente código, la propiedad maxButtonCount será inicializada con
valor 5 en lugar de 10 que es el valor predeterminado definido en la clase.

echo \yii\widgets\LinkPager::widget();

Se puede sobrescribir el valor establecido mediante el contenedor de ID, como a continuación:

echo \yii\widgets\LinkPager::widget(['maxButtonCount' => 20]);

Otro ejemplo es aprovechar la ventaja de la inyección automática de constructores de contenedores de ID. Asumiendo que
la clase controlador depende de otros objetos, tales como un servicio de reservas de hotel. Se puede declarar una
dependencia a través de un parámetro del constructor y permitir al contenedor de ID resolverla por nosotros.

namespace app\controllers;

use yii\web\Controller;
use app\components\BookingInterface;

class HotelController extends Controller
{
 protected $bookingService;

 public function __construct($id, $module, BookingInterface $bookingService, $config = [])
 {
 $this->bookingService = $bookingService;
 parent::__construct($id, $module, $config);
 }
}

Si se accede al controlador desde el navegador, veremos un error advirtiendo que BookingInterface no puede ser
instanciada. Esto se debe a que necesitamos indicar al contenedor de ID como tratar con esta dependencia:

\Yii::$container->set('app\components\BookingInterface', 'app\components\BookingService');

Ahora si se accede al contenedor nuevamente, se creará una instancia de app\components\BookingService y se inyectará
a como tercer parámetro al constructor del controlador.

Cuando Registrar Dependencias

El registro de dependencias debe hacerse lo antes posible debido a que las dependencias se necesitan cuando se crean
nuevos objetos. A continuación se listan practicas recomendadas:

	Siendo desarrolladores de una aplicación, podemos registrar dependencias en el
script de entrada o en un script incluido en el script de entrada.

	Siendo desarrolladores de una extension redistribuible, podemos registrar dependencias en
la clase de boostraping de la extensión.

Resumen

Tanto la inyección de dependencias como el localizador de servicios son patrones de
diseño populares que permiten construir software con acoplamiento flexible y más fácil de testear. Se recomienda
encarecida la lectura del articulo de Martin [http://martinfowler.com/articles/injection.html] para obtener una mejor
comprensión de la inyección de dependencias y de la localización de servicios.

Yii implementa su propio localizador de servicios por encima del contenedor de ID.
Cuando un localizador de servicios intenta crear una nueva instancia de objeto, se desviará la llamada al contenedor
de ID. Este último resolverá las dependencias automáticamente como se ha descrito anteriormente.

 Eventos

Eventos

Los eventos permiten inyectar código dentro de otro código existente en ciertos puntos de ejecución. Se pueden adjuntar
código personalizado a un evento, cuando se lance (triggered), el código se ejecutará automáticamente. Por ejemplo, un
objeto mailer puede lanzar el evento messageSent cuando se envía un mensaje correctamente. Si se quiere rastrear
el correcto envío del mensaje, se puede, simplemente, añadir un código de seguimiento al evento messageSent.

Yii introduce una clase base [[yii\base\Component]] para soportar eventos. Si una clase necesita lanzar un evento,
este debe extender a [[yii\base\Component]] o a una clase hija.

Gestor de Eventos

Un gestor de eventos es una
llamada de retorno PHP (PHP callback) [http://php.net/manual/es/language.types.callable.php] que se ejecuta cuando se
lanza el evento al que corresponde. Se puede usar cualquier llamada de retorno de las enumeradas a continuación:

	una función de PHP global especificada como una cadena de texto (sin paréntesis), ej. 'trim';

	un método de objeto especificado como un array de un objeto y un nombre de método como una cadena de texto
(sin paréntesis), ej. [$object, 'methodNAme'];

	un método de clase estático especificado como un array de un nombre de clase y un método como una cadena de texto
(sin paréntesis), ej. [$class, 'methodName'];

	una función anónima, ej. function ($event) { ... }.

La firma de un gestor de eventos es:

function ($event) {
 // $event es un objeto de yii\base\Event o de una clase hija
}

Un gestor de eventos puede obtener la siguiente información acerca de un evento ya sucedido mediante el parámetro
$event:

	[[yii\base\Event::name|nombre del evento]]

	[[yii\base\Event::sender|evento enviando]]: el objeto desde el que se ha ejecutado trigger()

	[[yii\base\Event::data|custom data]]: los datos que se proporcionan al adjuntar el gestor de eventos
(se explicará más adelante)

Añadir Gestores de Eventos

Se puede añadir un gestor a un evento llamando al método [[yii\base\Component::on()]]. Por ejemplo:

$foo = new Foo;

// este gestor es una función global
$foo->on(Foo::EVENT_HELLO, 'function_name');

// este gestor es un método de objeto
$foo->on(Foo::EVENT_HELLO, [$object, 'methodName']);

// este gestor es un método de clase estática
$foo->on(Foo::EVENT_HELLO, ['app\components\Bar', 'methodName']);

// este gestor es una función anónima
$foo->on(Foo::EVENT_HELLO, function ($event) {
 // event handling logic
});

También se pueden adjuntar gestores de eventos mediante configuraciones. Se pueden
encontrar más de talles en la sección Configuraciones.

Cuando se adjunta un gestor de eventos, se pueden proporcionar datos adicionales como tercer parámetro de
[[yii\base\Component::on()]]. El gestor podrá acceder a los datos cuando se lance el evento y se ejecute el gestor.
Por ejemplo:

// El siguiente código muestra "abc" cuando se lanza el evento
// ya que $event->data contiene los datos enviados en el tercer parámetro de "on"
$foo->on(Foo::EVENT_HELLO, 'function_name', 'abc');

function function_name($event) {
 echo $event->data;
}

Ordenación de Gestores de Eventos

Se puede adjuntar uno o más gestores a un único evento. Cuando se lanza un evento, se ejecutarán los gestores adjuntos
en el orden que se hayan añadido al evento. Si un gestor necesita parar la invocación de los gestores que le siguen,
se puede establecer la propiedad [[yii\base\Event::handled]] del parámetro $event para que sea true:

$foo->on(Foo::EVENT_HELLO, function ($event) {
 $event->handled = true;
});

De forma predeterminada, cada nuevo gestor añadido se pone a la cola de la lista de gestores del evento. Por lo tanto,
el gestor se ejecutará en el último lugar cuando se lance el evento. Para insertar un nuevo gestor al principio de la
cola de gestores para que sea ejecutado primero, se debe llamar a [[yii\base\Component::on()]], pasando al cuarto
parámetro $append el valor false:

$foo->on(Foo::EVENT_HELLO, function ($event) {
 // ...
}, $data, false);

Lanzamiento de Eventos

Los eventos se lanzan llamando al método [[yii\base\Component::trigger()]]. El método requiere un nombre de evento,
y de forma opcional un objeto de evento que describa los parámetros que se enviarán a los gestores de eventos. Por
ejemplo:

namespace app\components;

use yii\base\Component;
use yii\base\Event;

class Foo extends Component
{
 const EVENT_HELLO = 'hello';

 public function bar()
 {
 $this->trigger(self::EVENT_HELLO);
 }
}

Con el código anterior, cada llamada a bar() lanzará un evento llamado hello

Tip: Se recomienda usar las constantes de clase para representar nombres de eventos. En el anterior ejemplo, la
constante EVENT_HELLO representa el evento hello. Este enfoque proporciona tres beneficios. Primero, previene
errores tipográficos. Segundo, puede hacer que los IDEs reconozcan los eventos en las funciones de auto-completado.
Tercero, se puede ver que eventos soporta una clase simplemente revisando la declaración de constantes.

A veces cuando se lanza un evento se puede querer pasar información adicional al gestor de eventos. Por ejemplo, un
mailer puede querer enviar la información del mensaje para que los gestores del evento messageSent para que los
gestores puedan saber las particularidades del mensaje enviado. Para hacerlo, se puede proporcionar un objeto de tipo
evento como segundo parámetro al método [[yii\base\Component::trigger()]]. El objeto de tipo evento debe ser una
instancia de la clase [[yii\base\Event]] o de su clase hija. Por ejemplo:

namespace app\components;

use yii\base\Component;
use yii\base\Event;

class MessageEvent extends Event
{
 public $message;
}

class Mailer extends Component
{
 const EVENT_MESSAGE_SENT = 'messageSent';

 public function send($message)
 {
 // ...enviando $message...

 $event = new MessageEvent;
 $event->message = $message;
 $this->trigger(self::EVENT_MESSAGE_SENT, $event);
 }
}

Cuando se lanza el método [[yii\base\Component::trigger()]], se ejecutarán todos los gestores adjuntos al evento.

Desadjuntar Gestores de Evento

Para desadjuntar un gestor de un evento, se puede ejecutar el método [[yii\base\Component::off()]]. Por ejemplo:

// el gestor es una función global
$foo->off(Foo::EVENT_HELLO, 'function_name');

// el gestor es un método de objeto
$foo->off(Foo::EVENT_HELLO, [$object, 'methodName']);

// el gestor es un método estático de clase
$foo->off(Foo::EVENT_HELLO, ['app\components\Bar', 'methodName']);

// el gestor es una función anónima
$foo->off(Foo::EVENT_HELLO, $anonymousFunction);

Tenga en cuenta que en general no se debe intentar desadjuntar las funciones anónimas a no ser que se almacene donde
se ha adjuntado al evento. En el anterior ejemplo, se asume que la función anónima se almacena como variable
$anonymousFunction.

Para desadjuntar TODOS los gestores de un evento, se puede llamar [[yii\base\Component::off()]] sin el segundo
parámetro:

$foo->off(Foo::EVENT_HELLO);

Nivel de Clase (Class-Level) Gestores de Eventos

En las subsecciones anteriores se ha descrito como adjuntar un gestor a un evento a nivel de instancia. A veces, se
puede querer que un gestor responda todos los eventos de todos las instancias de una clase en lugar de una instancia
especifica. En lugar de adjuntar un gestor de eventos a una instancia, se puede adjuntar un gestor a nivel de clase
llamando al método estático [[yii\base\Event::on()]].

Por ejemplo, un objeto de tipo Active Record lanzará un evento
[[yii\db\BaseActiveRecord::EVENT_AFTER_INSERT|EVENT_AFTER_INSERT]] cada vez que inserte un nuevo registro en la base
de datos. Para poder registrar las inserciones efectuadas por todos los objetos
Active Record, se puede usar el siguiente código:

use Yii;
use yii\base\Event;
use yii\db\ActiveRecord;

Event::on(ActiveRecord::className(), ActiveRecord::EVENT_AFTER_INSERT, function ($event) {
 Yii::debug(get_class($event->sender) . ' is inserted');
});

Se invocará al gestor de eventos cada vez que una instancia de [[yii\db\ActiveRecord|ActiveRecord]], o de uno de sus
clases hijas, lance un evento de tipo [[yii\db\BaseActiveRecord::EVENT_AFTER_INSERT|EVENT_AFTER_INSERT]]. Se puede
obtener el objeto que ha lanzado el evento mediante $event->sender en el gestor.

Cuando un objeto lanza un evento, primero llamará los gestores a nivel de instancia, y a continuación los gestores a
nivel de clase.

Se puede lanzar un evento de tipo nivel de clase llamando al método estático [[yii\base\Event::trigger()]]. Un
evento de nivel de clase no se asocia a un objeto en particular. Como resultado, esto provocará solamente la
invocación de los gestores de eventos a nivel de clase.

use yii\base\Event;

Event::on(Foo::className(), Foo::EVENT_HELLO, function ($event) {
 var_dump($event->sender); // displays "null"
});

Event::trigger(Foo::className(), Foo::EVENT_HELLO);

Tenga en cuenta que en este caso, el $event->sender hace referencia al nombre de la clase que lanza el evento en
lugar de a la instancia del objeto.

Note: Debido a que los gestores a nivel de clase responderán a los eventos lanzados por cualquier instancia de la
clase, o cualquier clase hija, se debe usar con cuidado, especialmente en las clases de bajo nivel (low-level), tales
como [[yii\base\BaseObject]].

Para desadjuntar un gestor de eventos a nivel de clase, se tiene que llamar a [[yii\base\Event::off()]]. Por ejemplo:

// desadjunta $handler
Event::off(Foo::className(), Foo::EVENT_HELLO, $handler);

// desadjunta todos los gestores de Foo::EVENT_HELLO
Event::off(Foo::className(), Foo::EVENT_HELLO);

Eventos Globales

Yii soporta los llamados eventos globales, que en realidad es un truco basado en el gestor de eventos descrito
anteriormente. El evento global requiere un Singleton globalmente accesible, tal como la instancia de
aplicación en si misma.

Para crear un evento global, un evento remitente (event sender) llama al método trigger() del Singleton para lanzar
el evento, en lugar de llamar al propio método trigger() del remitente. De forma similar, los gestores de eventos se
adjuntan al evento del Singleton. Por ejemplo:

use Yii;
use yii\base\Event;
use app\components\Foo;

Yii::$app->on('bar', function ($event) {
 echo get_class($event->sender); // muestra "app\components\Foo"
});

Yii::$app->trigger('bar', new Event(['sender' => new Foo]));

Un beneficio de usar eventos globales es que no se necesita un objeto cuando se adjuntan gestores a un evento para que
sean lanzados por el objeto. En su lugar, los gestores adjuntos y el lanzamiento de eventos se efectúan en el
Singleton (ej. la instancia de la aplicación).

Sin embargo, debido a que los namespaces de los eventos globales son compartidos por todas partes, se les deben
asignar nombres bien pensados, como puede ser la introducción de algún namespace
(ej. “frontend.mail.sent”, “backend.mail.sent”).

 Propiedades

Propiedades

En PHP, las variables miembro de clases también llamadas propiedades, son parte de la definición de la clase, y se
usan para representar el estado de una instancia de la clase (ej. para diferenciar una instancia de clase de otra).
A la práctica, a menudo, se puede querer gestionar la lectura o escritura de las propiedades de algunos momentos. Por
ejemplo, se puede querer eliminar los espacios en blanco (trim) de una cadena de texto cada vez que esta se asigne a
una propiedad de tipo label. Se podría usar el siguiente código para realizar esta tarea:

$object->label = trim($label);

La desventaja del código anterior es que se tendría que ejecutar trim() en todas las partes del código que pudieran
establecer la propiedad label. Si en el futuro, la propiedad label tiene que seguir otro funcionamiento, como por
ejemplo que la primera letra tiene que estar en mayúsculas, se tendrán que modificar todas las secciones de código que
asignen el valor a la propiedad label. La repetición de código conlleva a bugs, y es una practica que se tiene que
evitar en la medida de lo posible.

Para solventar este problema, Yii introduce la clase base llamada [[yii\base\BaseObject]] que da soporte a la definición
de propiedades basada en los métodos de clase getter y setter. Si una clase necesita más funcionalidad, debe
extender a la clase [[yii\base\BaseObject]] o a alguna de sus hijas.

Info: Casi todas las clases del núcleo (core) en el framework Yii extienden a [[yii\base\BaseObject]] o a una de
sus clases hijas. Esto significa que siempre que se encuentre un getter o un setter en una clase del núcleo, se
puede utilizar como una propiedad.

Un método getter es un método cuyo nombre empieza por la palabra get: un metodo setter empieza por set. El nombre
añadido detrás del prefijo get o set define el nombre de la propiedad. Por ejemplo, un getter getLabel() y/o un
setter setLabel() definen la propiedad label, como se muestra a continuación:

namespace app\components;

use yii\base\BaseObject;

class Foo extends BaseObject
{
 private $_label;

 public function getLabel()
 {
 return $this->_label;
 }

 public function setLabel($value)
 {
 $this->_label = trim($value);
 }
}

(Para ser claros, los métodos getter y setter crean la propiedad label, que en este caso hace una referencia interna
al nombre de atributo privado _label.)

Las propiedades definidas por los getter y los setters se pueden usar como variables de clase miembro. La principal
diferencia radica en que cuando esta propiedad se lea, se ejecutará su correspondiente método getter; cuando se asigne
un valor a la propiedad, se ejecutará el correspondiente método setter. Por ejemplo:

// equivalente a $label = $object->getLabel();
$label = $object->label;

// equivalente a $object->setLabel('abc');
$object->label = 'abc';

Una propiedad definida por un getter sin un setter es de tipo sólo lectura. Si se intenta asignar un valor a esta
propiedad se producirá una excepción de tipo [[yii\base\InvalidCallException|InvalidCallException]]. Del mismo modo
que una propiedad definida con un setter pero sin getter será de tipo sólo escritura, cualquier intento de lectura
de esta propiedad producirá una excepción. No es común tener variables de tipo sólo escritura.

Hay varias reglas especiales y limitaciones en las propiedades definidas mediante getters y setters:

	Los nombres de estas propiedades son case-insensitive. Por ejemplo, $object->label y $object->Label son la
misma. Esto se debe a que los nombres de los métodos en PHP son case-insensitive.

	Si el nombre de una propiedad de este tipo es igual al de una variable miembro de la clase, la segunda tendrá
prioridad. Por ejemplo, si la anterior clase Foo tiene la variable miembro label, entonces la asignación
$object->label = 'abc' afectará a la variable miembro ‘label’; no se ejecutará el método setter setLabel().

	Estas variables no soportan la visibilidad. No hay diferencia en definir los métodos getter o setter en una
propiedad public, protected, o private.

	Las propiedades sólo se pueden definir por getters y setters no estáticos. Los métodos estáticos no se tratarán de
la misma manera.

Volviendo de nuevo al problema descrito al principio de la guía, en lugar de ejecutar trim() cada vez que se asigne
un valor a label, ahora trim() sólo necesita ser invocado dentro del setter setLabel(). I si se tiene que añadir
un nuevo requerimiento, para que label empiece con una letra mayúscula, se puede modificar rápidamente el método setLabel() sin tener que modificar más secciones de código. El cambio afectará a cada asignación de label.

 Localizador de Servicios

Localizador de Servicios

Un localizador de servicios es un objeto que sabe cómo proporcionar todo tipo de servicios (o componentes) que puede necesitar una aplicación. Dentro de un localizador de servicios, existe en cada componente como una única instancia, únicamente identificado por un ID. Se utiliza el ID para recuperar un componente desde el localizador de servicios.

En Yii, un localizador de servicio es simplemente una instancia de [[yii\di\ServiceLocator]], o de una clase hija.

El localizador de servicio más utilizado en Yii es el objeto aplicación, que se puede acceder a través de \Yii::$app. Los servicios que prestá son llamadas componentes de la aplicación, como los componentes request, response, and urlManager. Usted puede configurar estos componentes, o incluso cambiarlos por sus propias implementaciones fácilmente a través de la funcionalidad proporcionada por el localizador de servicios.

Además del objeto de aplicación, cada objeto módulo es también un localizador de servicios.

Para utilizar un localizador de servicios, el primer paso es registrar los componentes de la misma. Un componente se puede registrar a través de [[yii\di\ServiceLocator::set()]]. El código siguiente muestra diferentes maneras de registrarse componentes:

use yii\di\ServiceLocator;
use yii\caching\FileCache;

$locator = new ServiceLocator;

// register "cache" using a class name that can be used to create a component
$locator->set('cache', 'yii\caching\ApcCache');

// register "db" using a configuration array that can be used to create a component
$locator->set('db', [
 'class' => 'yii\db\Connection',
 'dsn' => 'mysql:host=localhost;dbname=demo',
 'username' => 'root',
 'password' => '',
]);

// register "search" using an anonymous function that builds a component
$locator->set('search', function () {
 return new app\components\SolrService;
});

// register "pageCache" using a component
$locator->set('pageCache', new FileCache);

Una vez que el componente se ha registrado, usted puede acceder a él utilizando su ID, en una de las dos formas siguientes:

$cache = $locator->get('cache');
// or alternatively
$cache = $locator->cache;

Como puede observarse, [[yii\di\ServiceLocator]] le permite acceder a un componente como una propiedad utilizando el ID de componente. Cuando acceda a un componente, por primera vez, [[yii\di\ServiceLocator]] utilizará la información de registro de componente para crear una nueva instancia del componente y devolverlo. Más tarde, si se accede de nuevo al componente, el localizador de servicio devolverá la misma instancia.

Usted puede utilizar [[yii\di\ServiceLocator::has()]] para comprobar si un ID de componente ya ha sido registrada.
Si llama [[yii\di\ServiceLocator::get()]] con una identificación válida, se produce una excepción.

Debido a que los localizadores de servicios a menudo se crean con configuraciones, se proporciona una propiedad que puede escribir el nombre [[yii\di\ServiceLocator::setComponents()|components]]. Esto le permite configurar y registrar varios componentes a la vez. El siguiente código muestra un arreglo de configuración que se puede utilizar para configurar una aplicación, al mismo tiempo que el registro de la “db”, “cache” y “buscar” componentes:

return [
 // ...
 'components' => [
 'db' => [
 'class' => 'yii\db\Connection',
 'dsn' => 'mysql:host=localhost;dbname=demo',
 'username' => 'root',
 'password' => '',
],
 'cache' => 'yii\caching\ApcCache',
 'search' => function () {
 return new app\components\SolrService;
 },
],
];

 Objetos de Acceso a Bases de Datos

Objetos de Acceso a Bases de Datos

Construido sobre PDO [http://php.net/manual/es/book.pdo.php], Yii DAO (Objetos de Acceso a Bases de Datos) proporciona una
API orientada a objetos para el acceso a bases de datos relacionales. Es el fundamento para otros métodos de acceso a bases de datos
más avanzados, incluyendo el constructor de consultas y active record.

Al utilizar Yii DAO, principalmente vas a tratar con SQLs planos y arrays PHP. Como resultado, esta es la manera más eficiente
de acceder a las bases de datos. Sin embargo, como la sintaxis puede variar para las diferentes bases de datos, utilizando
Yii DAO también significa que tienes que tienes que tomar un esfuerzo adicional para crear una aplicación de database-agnostic.

Yii DAO soporta las siguientes bases de datos:

	MySQL [http://www.mysql.com/]

	MariaDB [https://mariadb.com/]

	SQLite [http://sqlite.org/]

	PostgreSQL [http://www.postgresql.org/]: versión 8.4 o superior.

	CUBRID [http://www.cubrid.org/]: versión 9.3 o superior.

	Oracle [http://www.oracle.com/us/products/database/overview/index.html]

	MSSQL [https://www.microsoft.com/en-us/sqlserver/default.aspx]: versión 2008 o superior.

Creando Conexiones DB

Para acceder a una base de datos, primero necesitas conectarte a tu bases de datos mediante la creación
de una instancia de [[yii\db\Connection]]:

$db = new yii\db\Connection([
 'dsn' => 'mysql:host=localhost;dbname=example',
 'username' => 'root',
 'password' => '',
 'charset' => 'utf8',
]);

Debido a una conexión DB a menudo necesita ser accedido en diferentes lugares, una práctica común es
configurarlo en términos de un componente de aplicación como
se muestra a continuación:

return [
 // ...
 'components' => [
 // ...
 'db' => [
 'class' => 'yii\db\Connection',
 'dsn' => 'mysql:host=localhost;dbname=example',
 'username' => 'root',
 'password' => '',
 'charset' => 'utf8',
],
],
 // ...
];

Puedes acceder a la conexión DB mediante la expresión Yii::$app->db.

Tip: Puedes configurar múltiples componentes de aplicación DB si tu aplicación necesita acceder a múltiples bases de datos.

Cuando configuras una conexión DB, deberías siempre especificar el Nombre de Origen de Datos (DSN) mediante la
propiedad [[yii\db\Connection::dsn|dsn]]. El formato del DSN varia para cada diferente base de datos. Por favor consulte el
manual de PHP [http://www.php.net/manual/es/function.PDO-construct.php] para más detalles. Abajo están algunos ejemplos:

	MySQL, MariaDB: mysql:host=localhost;dbname=mydatabase

	SQLite: sqlite:/path/to/database/file

	PostgreSQL: pgsql:host=localhost;port=5432;dbname=mydatabase

	CUBRID: cubrid:dbname=demodb;host=localhost;port=33000

	MS SQL Server (mediante sqlsrv driver): sqlsrv:Server=localhost;Database=mydatabase

	MS SQL Server (mediante dblib driver): dblib:host=localhost;dbname=mydatabase

	MS SQL Server (mediante mssql driver): mssql:host=localhost;dbname=mydatabase

	Oracle: oci:dbname=//localhost:1521/mydatabase

Nota que si estás conectándote con una base de datos mediante ODBC, deberías configurar la propiedad [[yii\db\Connection::driverName]]
para que Yii pueda conocer el tipo de base de datos actual. Por ejemplo,

'db' => [
 'class' => 'yii\db\Connection',
 'driverName' => 'mysql',
 'dsn' => 'odbc:Driver={MySQL};Server=localhost;Database=test',
 'username' => 'root',
 'password' => '',
],

Además de la propiedad [[yii\db\Connection::dsn|dsn]], a menudo es necesario configurar el [[yii\db\Connection::username|username]]
y [[yii\db\Connection::password|password]]. Por favor consulta [[yii\db\Connection]] para ver la lista completa de propiedades configurables.

Info: Cuando se crea una instancia de conexión DB, la conexión actual a la base de datos no se establece hasta que
ejecutes el primer SQL o llames explícitamente al método [[yii\db\Connection::open()|open()]].

Ejecutando Consultas SQL

Una vez tienes instanciada una conexión a la base de datos, se pueden ejecutar consultas SQL tomando
los siguientes pasos:

	Crea un [[yii\db\Command]] con SQL plano;

	Vincula parámetros (opcional);

	Llama a uno de los métodos de ejecución SQL con [[yii\db\Command]].

El siguiente ejemplo muestra varias maneras de obtener datos de una base de datos:

$db = new yii\db\Connection(...);

// retorna un conjunto de filas. Cada fila es un array asociativo de columnas de nombres y valores.
// un array vacío es retornado si no hay resultados
$posts = $db->createCommand('SELECT * FROM post')
 ->queryAll();

// retorna una sola fila (la primera fila)
// `false` es retornado si no hay resultados
$post = $db->createCommand('SELECT * FROM post WHERE id=1')
 ->queryOne();

// retorna una sola columna (la primera columna)
// un array vacío es retornado si no hay resultados
$titles = $db->createCommand('SELECT title FROM post')
 ->queryColumn();

// retorna un escalar
// `false` es retornado si no hay resultados
$count = $db->createCommand('SELECT COUNT(*) FROM post')
 ->queryScalar();

Note: Para preservar la precisión, los datos obtenidos de las bases de datos son todos representados como cadenas, incluso si el tipo de columna correspondiente
a la base de datos es numérico.

Tip: Si necesitas ejecutar una consulta SQL inmediatamente después de establecer una conexión (ej., para establecer una zona horaria o un conjunto de caracteres),
puedes hacerlo con el evento [[yii\db\Connection::EVENT_AFTER_OPEN]]. Por ejemplo,

return [
 // ...
 'components' => [
 // ...
 'db' => [
 'class' => 'yii\db\Connection',
 // ...
 'on afterOpen' => function($event) {
 // $event->sender se refiere a la conexión DB
 $event->sender->createCommand("SET time_zone = 'UTC'")->execute();
 }
],
],
 // ...
];

Parámetros Vinculados (Binding Parameters)

Cuando creamos un comando DB para un SQL con parámetros, nosotros deberíamos casi siempre aprovechar el uso de los parámetros vinculados
para prevenir los ataques de inyección de SQL. Por ejemplo,

$post = $db->createCommand('SELECT * FROM post WHERE id=:id AND status=:status')
 ->bindValue(':id', $_GET['id'])
 ->bindValue(':status', 1)
 ->queryOne();

En la sentencia SQL, puedes incrustar uno o múltiples parámetros placeholders (ej. :id en el ejemplo anterior). Un parámetro
placeholder debería ser una cadena que empiece con dos puntos. A continuación puedes llamar a uno de los siguientes métodos para
unir los valores de los parámetros vinculados:

	[[yii\db\Command::bindValue()|bindValue()]]: une un solo parámetro

	[[yii\db\Command::bindValues()|bindValues()]]: une múltiples parámetros en una sola llamada

	[[yii\db\Command::bindParam()|bindParam()]]: similar a [[yii\db\Command::bindValue()|bindValue()]] pero también
soporta las referencias de parámetros vinculados.

El siguiente ejemplo muestra formas alternativas de vincular parámetros:

$params = [':id' => $_GET['id'], ':status' => 1];

$post = $db->createCommand('SELECT * FROM post WHERE id=:id AND status=:status')
 ->bindValues($params)
 ->queryOne();

$post = $db->createCommand('SELECT * FROM post WHERE id=:id AND status=:status', $params)
 ->queryOne();

La vinculación parámetros es implementada mediante sentencias preparadas (prepared statements) [http://php.net/manual/es/mysqli.quickstart.prepared-statements.php].
Además de prevenir ataques de inyección de SQL, también puede mejorar el rendimiento preparando una sola vez una sentencia SQL y ejecutándola múltiples veces con diferentes
parámetros. Por ejemplo,

$command = $db->createCommand('SELECT * FROM post WHERE id=:id');

$post1 = $command->bindValue(':id', 1)->queryOne();
$post2 = $command->bindValue(':id', 2)->queryOne();

Porque [[yii\db\Command::bindParam()|bindParam()]] soporta parámetros vinculados por referencias, el código de arriba también
puede ser escrito como lo siguiente:

$command = $db->createCommand('SELECT * FROM post WHERE id=:id')
 ->bindParam(':id', $id);

$id = 1;
$post1 = $command->queryOne();

$id = 2;
$post2 = $command->queryOne();

Observe que vincula el placeholder a la variable $id antes de la ejecución, y entonces cambia el valor de esa variable
antes de cada subsiguiente ejecución (esto se hace a menudo con bucles). Ejecutando consultas de esta manera puede ser
bastante más eficiente que ejecutar una nueva consulta para cada valor diferente del parámetro.

Ejecutando Consultas Non-SELECT

El método queryXyz() introducidos en las secciones previas todos tratan con consultas SELECT los cuales recogen los
datos de la base de datos. Para las consultas que no devuelven datos, deberías llamar a el método [[yii\db\Command::execute()]]
en su lugar. Por ejemplo,

$db->createCommand('UPDATE post SET status=1 WHERE id=1')
 ->execute();

El método [[yii\db\Command::execute()]] retorna el número de filas afectadas por la ejecución SQL.

Para consultas INSERT, UPDATE y DELETE, en vez de escribir SQLs planos, puedes llamar a [[yii\db\Command::insert()|insert()]],
[[yii\db\Command::update()|update()]], [[yii\db\Command::delete()|delete()]], respectivamente, construyen los correspondientes
SQLs. Estos métodos entrecomillan adecuadamente las tablas y los nombres de columnas y los valores de los parámetros vinculados.
Por ejemplo,

// INSERT (table name, column values)
$db->createCommand()->insert('user', [
 'name' => 'Sam',
 'age' => 30,
])->execute();

// UPDATE (table name, column values, condition)
$db->createCommand()->update('user', ['status' => 1], 'age > 30')->execute();

// DELETE (table name, condition)
$db->createCommand()->delete('user', 'status = 0')->execute();

Puedes también llamar a [[yii\db\Command::batchInsert()|batchInsert()]] para insertar múltiples filas de una sola vez,
que es mucho más eficiente que insertar una fila de cada vez:

// table name, column names, column values
$db->createCommand()->batchInsert('user', ['name', 'age'], [
 ['Tom', 30],
 ['Jane', 20],
 ['Linda', 25],
])->execute();

Entrecomillado de Tablas y Nombres de Columna

Al escribir código de database-agnostic, entrecomillar correctamente los nombres de las tablas y las columnas es a menudo
un dolor de cabeza porque las diferentes bases de datos tienen diferentes reglas para entrecomillar los nombres. Para
solventar este problema, puedes usar la siguiente sintaxis de entrecomillado introducido por Yii:

	[[column name]]: encierra con dobles corchetes el nombre de una columna que debe ser entrecomillado;

	{{table name}}: encierra con dobles llaves el nombre de una tabla que debe ser entrecomillado.

Yii DAO automáticamente convertirá tales construcciones en un SQL con los correspondientes entrecomillados de los nombres de las columnas o tablas.
Por ejemplo,

// ejecuta esta SQL para MySQL: SELECT COUNT(`id`) FROM `employee`
$count = $db->createCommand("SELECT COUNT([[id]]) FROM {{employee}}")
 ->queryScalar();

Usando Prefijos de Tabla

Si la mayoría de tus tablas de BD utilizan algún prefijo común en sus tablas, puedes usar la función de prefijo de tabla soportado
por Yii DAO.

Primero, especifica el prefijo de tabla mediante la propiedad [[yii\db\Connection::tablePrefix]]:

return [
 // ...
 'components' => [
 // ...
 'db' => [
 // ...
 'tablePrefix' => 'tbl_',
],
],
];

Luego en tu código, siempre que lo necesites para hacer referencia a una tabla cuyo nombre tiene un prefijo, utiliza la sintaxis
{{%table name}}. El carácter porcentaje se sustituye con el prefijo de la tabla que has especificado en la configuración de
la conexión DB. Por ejemplo,

// ejecuta esta SQL para MySQL: SELECT COUNT(`id`) FROM `tbl_employee`
$count = $db->createCommand("SELECT COUNT([[id]]) FROM {{%employee}}")
 ->queryScalar();

Realización de Transacciones

Cuando se ejecutan múltiples consultas relacionadas en una secuencia, puede que se tengan que envolver en una
transacción para asegurar la integridad de los datos y la consistencia de tu base de datos. Si cualquiera de las consultas
falla, la base de datos debe ser revertida al estado anterior como si ninguna de estas consultas se haya ejecutado.

El siguiente código muestra una manera típica de usar transacciones:

$db->transaction(function($db) {
 $db->createCommand($sql1)->execute();
 $db->createCommand($sql2)->execute();
 // ... ejecutando otras sentencias SQL
});

El código de arriba es equivalente a lo siguiente:

$transaction = $db->beginTransaction();

try {
 $db->createCommand($sql1)->execute();
 $db->createCommand($sql2)->execute();
 // ... ejecutando otras sentencias SQL

 $transaction->commit();

} catch(\Exception $e) {

 $transaction->rollBack();

 throw $e;
}

Al llamar al método [[yii\db\Connection::beginTransaction()|beginTransaction()]], se inicia una nueva transacción.
La transacción se representa como un objeto [[yii\db\Transaction]] almacenado en la variable $transaction. Luego,
las consultas que se ejecutan están encerrados en un bloque try...catch.... Si todas las consultas son ejecutadas satisfactoriamente,
el método [[yii\db\Transaction::commit()|commit()]] es llamado para confirmar la transacción. De lo contrario, una excepción
se disparará y se capturará, y el método [[yii\db\Transaction::rollBack()|rollBack()]] es llamado para revertir
los cambios hechos por las consultas antes de que fallara la consulta en la transacción.

Especificando los Niveles de Aislamiento

Yii también soporta la configuración de [niveles de aislamiento] para tus transacciones. Por defecto, cuando comienza una nueva transacción,
utilizará el nivel de aislamiento definido por tu sistema de base de datos. Se puede sobrescribir el nivel de aislamiento por defecto de la
siguiente manera,

$isolationLevel = \yii\db\Transaction::REPEATABLE_READ;

$db->transaction(function ($db) {

}, $isolationLevel);

// or alternatively

$transaction = $db->beginTransaction($isolationLevel);

Yii proporciona cuatro constantes para los niveles de aislamiento más comunes:

	[[\yii\db\Transaction::READ_UNCOMMITTED]] - el nivel más bajo, pueden ocurrir lecturas Dirty, lecturas
Non-repeatable y Phantoms.

	[[\yii\db\Transaction::READ_COMMITTED]] - evita lecturas Dirty.

	[[\yii\db\Transaction::REPEATABLE_READ]] - evita lecturas Dirty y lecturas Non-repeatable.

	[[\yii\db\Transaction::SERIALIZABLE]] - el nivel más fuerte, evita todos los problemas nombrados anteriormente.

Además de usar las constantes de arriba para especificar los niveles de aislamiento, puedes también usar cadenas con
una sintaxis valida soportada por el DBMS que estés usando. Por ejemplo, en PostgreSQL, puedes utilizar SERIALIZABLE READ ONLY DEFERRABLE.

Tenga en cuenta que algunos DBMS permiten configuraciones de niveles de aislamiento solo a nivel de conexión. Las transacciones subsiguientes
recibirá el mismo nivel de aislamiento , incluso si no se especifica ninguna. Al utilizar esta característica
es posible que necesites ajustar el nivel de aislamiento para todas las transacciones de forma explícitamente para evitar conflictos
en las configuraciones.
En el momento de escribir esto, solo MSSQL y SQLite serán afectadas.

Note: SQLite solo soporta dos niveles de aislamiento, por lo que solo se puede usar READ UNCOMMITTED y
SERIALIZABLE. El uso de otros niveles causará el lanzamiento de una excepción.

Note: PostgreSQL no permite configurar el nivel de aislamiento antes que la transacción empiece por lo que no se
puede especificar el nivel de aislamiento directamente cuando empieza la transacción. Se tiene que llamar a
[[yii\db\Transaction::setIsolationLevel()]] después de que la transacción haya empezado.

Transacciones Anidadas

Si tu DBMS soporta Savepoint, puedes anidar múltiples transacciones como a continuación:

$db->transaction(function ($db) {
 // outer transaction

 $db->transaction(function ($db) {
 // inner transaction
 });
});

O alternativamente,

$outerTransaction = $db->beginTransaction();
try {
 $db->createCommand($sql1)->execute();

 $innerTransaction = $db->beginTransaction();
 try {
 $db->createCommand($sql2)->execute();
 $innerTransaction->commit();
 } catch (Exception $e) {
 $innerTransaction->rollBack();
 }

 $outerTransaction->commit();
} catch (Exception $e) {
 $outerTransaction->rollBack();
}

Replicación y División Lectura-Escritura

Muchos DBMS soportan replicación de bases de datos [http://en.wikipedia.org/wiki/Replication_(computing)#Database_replication] para tener
una mejor disponibilidad de la base de datos y un mejor tiempo de respuesta del servidor. Con la replicación de bases
de datos, los datos están replicados en los llamados servidores maestros (master servers) y servidores esclavos
(slave servers). Todas las escrituras y actualizaciones deben hacerse en el servidor maestro, mientras que las lecturas
se efectuarán en los servidores esclavos.

Para aprovechar las ventajas de la replicación de la base de datos y lograr una división de lecuta-escritura, se puede configurar
el componente [[yii\db\Connection]] como se muestra a continuación:

[
 'class' => 'yii\db\Connection',

 // configuración para el maestro
 'dsn' => 'dsn for master server',
 'username' => 'master',
 'password' => '',

 // configuración para los esclavos
 'slaveConfig' => [
 'username' => 'slave',
 'password' => '',
 'attributes' => [
 // utiliza un tiempo de espera de conexión más pequeña
 PDO::ATTR_TIMEOUT => 10,
],
],

 // listado de configuraciones de esclavos
 'slaves' => [
 ['dsn' => 'dsn for slave server 1'],
 ['dsn' => 'dsn for slave server 2'],
 ['dsn' => 'dsn for slave server 3'],
 ['dsn' => 'dsn for slave server 4'],
],
]

La configuración anterior especifica una configuración con un único maestro y múltiples esclavos. Uno de los esclavos
se conectará y se usará para ejecutar consultas de lectura, mientras que el maestro se usará para realizar consultas de
escritura. De este modo la división de lectura-escritura se logra automáticamente con esta configuración, Por ejemplo,

// crea una instancia de Connection usando la configuración anterior
$db = Yii::createObject($config);

// consulta contra uno de los esclavos
$rows = $db->createCommand('SELECT * FROM user LIMIT 10')->queryAll();

// consulta contra el maestro
$db->createCommand("UPDATE user SET username='demo' WHERE id=1")->execute();

Info: Las consultas realizadas llamando a [[yii\db\Command::execute()]] se consideran consultas de escritura,
mientras que todas las demás se ejecutan mediante alguno de los métodos “query” de [[yii\db\Command]] son consultas
de lectura. Se puede obtener la conexión de esclavo activa mediante $db->slave.

El componente Connection soporta el balanceo de carga y la conmutación de errores entre esclavos. Cuando se realiza
una consulta de lectura por primera vez, el componente Connection elegirá un esclavo aleatorio e intentará realizar
una conexión a este. Si el esclavo se encuentra “muerto”, se intentará con otro. Si no está disponible ningún esclavo, se conectará al maestro. Configurando una [[yii\db\Connection::serverStatusCache|server status cache]], se recordarán los servidores
“muertos” por lo que no se intentará volver a conectar a ellos durante
[[yii\db\Connection::serverRetryInterval|certain period of time]].

Info: En la configuración anterior, se especifica un tiempo de espera (timeout) de conexión de 10 segundos
para cada esclavo. Esto significa que si no se puede conectar a un esclavo en 10 segundos, este será considerado
como “muerto”. Se puede ajustar el parámetro basado en el entorno actual.

También se pueden configurar múltiples maestros con múltiples esclavos. Por ejemplo,

[
 'class' => 'yii\db\Connection',

 // configuracion habitual para los maestros
 'masterConfig' => [
 'username' => 'master',
 'password' => '',
 'attributes' => [
 // utilizar un tiempo de espera de conexión más pequeña
 PDO::ATTR_TIMEOUT => 10,
],
],

 // listado de configuraciones de maestros
 'masters' => [
 ['dsn' => 'dsn for master server 1'],
 ['dsn' => 'dsn for master server 2'],
],

 // configuración habitual para esclavos
 'slaveConfig' => [
 'username' => 'slave',
 'password' => '',
 'attributes' => [
 // utilizar un tiempo de espera de conexión más pequeña
 PDO::ATTR_TIMEOUT => 10,
],
],

 // listado de configuración de esclavos
 'slaves' => [
 ['dsn' => 'dsn for slave server 1'],
 ['dsn' => 'dsn for slave server 2'],
 ['dsn' => 'dsn for slave server 3'],
 ['dsn' => 'dsn for slave server 4'],
],
]

La configuración anterior especifica dos maestros y cuatro esclavos. El componente Connection también da soporte al
balanceo de carga y la conmutación de errores entre maestros igual que hace con los esclavos. La diferencia es que
cuando no se encuentra ningún maestro disponible se lanza una excepción.

Note: cuando se usa la propiedad [[yii\db\Connection::masters|masters]] para configurar uno o múltiples maestros, se
ignorarán todas las otras propiedades que especifiquen una conexión de base de datos
(ej. dsn, username, password), junto con el mismo objeto Connection.

Por defecto. las transacciones usan la conexión del maestro. Y dentro de una transacción, todas las operaciones de DB usarán
la conexión del maestro. Por ejemplo,

// la transacción empieza con la conexión al maestro
$transaction = $db->beginTransaction();

try {
 // las dos consultas se ejecutan contra el maestro
 $rows = $db->createCommand('SELECT * FROM user LIMIT 10')->queryAll();
 $db->createCommand("UPDATE user SET username='demo' WHERE id=1")->execute();

 $transaction->commit();
} catch(\Exception $e) {
 $transaction->rollBack();
 throw $e;
}

Si se quiere empezar la transacción con una conexión a un esclavo, se debe hacer explícitamente como se muestra a
continuación:

$transaction = $db->slave->beginTransaction();

A veces, se puede querer forzar el uso de una conexión maestra para realizar una consulta de lectura. Se puede lograr
usando el método useMaster():

$rows = $db->useMaster(function ($db) {
 return $db->createCommand('SELECT * FROM user LIMIT 10')->queryAll();
});

También se puede utilizar directamente estableciendo $db->enableSlaves a false para que se redirijan todas las
consultas a la conexión del maestro.

Trabajando con Esquemas de Bases de Datos

Yii DAO proporciona todo un conjunto de métodos que permites manipular el esquema de tu base de datos, tal como
crear nuevas tablas, borrar una columna de una tabla, etc. Estos métodos son listados a continuación:

	[[yii\db\Command::createTable()|createTable()]]: crea una tabla

	[[yii\db\Command::renameTable()|renameTable()]]: renombra una tabla

	[[yii\db\Command::dropTable()|dropTable()]]: remueve una tabla

	[[yii\db\Command::truncateTable()|truncateTable()]]: remueve todas las filas de una tabla

	[[yii\db\Command::addColumn()|addColumn()]]: añade una columna

	[[yii\db\Command::renameColumn()|renameColumn()]]: renombra una columna

	[[yii\db\Command::dropColumn()|dropColumn()]]: remueve una columna

	[[yii\db\Command::alterColumn()|alterColumn()]]: altera una columna

	[[yii\db\Command::addPrimaryKey()|addPrimaryKey()]]: añade una clave primaria

	[[yii\db\Command::dropPrimaryKey()|dropPrimaryKey()]]: remueve una clave primaria

	[[yii\db\Command::addForeignKey()|addForeignKey()]]: añade una clave ajena

	[[yii\db\Command::dropForeignKey()|dropForeignKey()]]: remueve una clave ajena

	[[yii\db\Command::createIndex()|createIndex()]]: crea un indice

	[[yii\db\Command::dropIndex()|dropIndex()]]: remueve un indice

Estos métodos puedes ser usados como se muestra a continuación:

// CREATE TABLE
$db->createCommand()->createTable('post', [
 'id' => 'pk',
 'title' => 'string',
 'text' => 'text',
]);

También puedes recuperar la información de definición de una tabla a través
del método [[yii\db\Connection::getTableSchema()|getTableSchema()]] de una conexión DB. Por ejemplo,

$table = $db->getTableSchema('post');

El método retorna un objeto [[yii\db\TableSchema]] que contiene la información sobre las columnas de las tablas,
claves primarias, claves ajenas, etc. Toda esta información principalmente es utilizada por el
constructor de consultas y active record para ayudar a
escribir código database-agnostic.

 Migración de Base de Datos

Migración de Base de Datos

Durante el curso de desarrollo y mantenimiento de una aplicación con base de datos, la estructura de dicha base de datos
evoluciona tanto como el código fuente. Por ejemplo, durante el desarrollo de una aplicación,
una nueva tabla podría ser necesaria; una vez que la aplicación se encuentra en producción, podría descrubrirse
que debería crearse un índice para mejorar el tiempo de ejecución de una consulta; y así sucesivamente. Debido a los cambios en la estructura de la base de datos
a menudo se requieren cambios en el código, Yii soporta la característica llamada migración de base de datos, la cual permite
tener un seguimiento de esos cambios en término de migración de base de datos, cuyo versionado es controlado
junto al del código fuente.

Los siguientes pasos muestran cómo una migración puede ser utilizada por un equipo durante el desarrollo:

	Tim crea una nueva migración (por ej. crea una nueva table, cambia la definición de una columna, etc.).

	Tim hace un commit con la nueva migración al sistema de control de versiones (por ej. Git, Mercurial).

	Doug actualiza su repositorio desde el sistema de control de versiones y recibe la nueva migración.

	Doug aplica dicha migración a su base de datos local de desarrollo, de ese modo sincronizando su base de datos
y reflejando los cambios que hizo Tim.

Los siguientes pasos muestran cómo hacer una puesta en producción con una migración de base de datos:

	Scott crea un tag de lanzamiento en el repositorio del proyecto que contiene algunas migraciones de base de datos.

	Scott actualiza el código fuente en el servidor de producción con el tag de lanzamiento.

	Scott aplica cualquier migración de base de datos acumulada a la base de datos de producción.

Yii provee un grupo de herramientas de línea de comandos que te permite:

	crear nuevas migraciones;

	aplicar migraciones;

	revertir migraciones;

	re-aplicar migraciones;

	mostrar el historial y estado de migraciones.

Todas esas herramientas son accesibles a través del comando yii migrate. En esta sección describiremos en detalle
cómo lograr varias tareas utilizando dichas herramientas. Puedes a su vez ver el uso de cada herramienta a través del comando
de ayuda yii help migrate.

Tip: las migraciones pueden no sólo afectar un esquema de base de datos sino también ajustar datos existentes para que encajen en el nuevo esquema, crear herencia RBAC
o también limpiar el cache.

Creando Migraciones

Para crear una nueva migración, ejecuta el siguiente comando:

yii migrate/create <name>

El argumento requerido name da una pequeña descripción de la nueva migración. Por ejemplo, si
la migración se trata acerca de crear una nueva tabla llamada news, podrías utilizar el nombre create_news_table
y ejecutar el siguiente comando:

yii migrate/create create_news_table

Note: Debido a que el argumento name será utilizado como parte del nombre de clase de la migración generada,
sólo debería contener letras, dígitos, y/o guines bajos.

El comando anterior un nuevo archivo de clase PHP llamado m150101_185401_create_news_table.php
en el directorio @app/migrations. El archivo contendrá el siguiente código, que principalmente declara
una clase de tipo migración m150101_185401_create_news_table con el siguiente esqueleto de código:

<?php

use yii\db\Migration;

class m150101_185401_create_news_table extends Migration
{
 public function up()
 {

 }

 public function down()
 {
 echo "m101129_185401_create_news_table cannot be reverted.\n";

 return false;
 }

 /*
 // Use safeUp/safeDown to run migration code within a transaction
 public function safeUp()
 {
 }

 public function safeDown()
 {
 }
 */
}

Cada migración de base de datos es definida como una clase PHP que extiende de [[yii\db\Migration]]. La nombre de clase
de la migración es generado automáticamente en el formato m<YYMMDD_HHMMSS>_<Name>, donde

	<YYMMDD_HHMMSS> se refiere a la marca de tiempo UTC en la cual el comando de migración fue ejecutado.

	<Name> es el mismo valor del argumento name provisto al ejecutar el comando.

En la clase de la migración, se espera que tu escribas código en el método up(), que realiza los cambios en la base de datos.
Podrías también querer introducir código en el método down(), que debería revertir los cambios realizados por up(). El método up() es llamado
cuando actualizas la base de datos con esta migración, mientras que el método down() es llamado cuando reviertes dicha migración.
El siguiente código muestra cómo podrías implementar la clase de migración para crear la tabla news:

<?php

use yii\db\Schema;
use yii\db\Migration;

class m150101_185401_create_news_table extends Migration
{
 public function up()
 {
 $this->createTable('news', [
 'id' => Schema::TYPE_PK,
 'title' => Schema::TYPE_STRING . ' NOT NULL',
 'content' => Schema::TYPE_TEXT,
]);
 }

 public function down()
 {
 $this->dropTable('news');
 }
}

Info: No todas las migraciones son reversibles. Por ejemplo, si el método up() elimina un registro en una tabla, podrías
no ser capáz de recuperarla en el método down(). A veces, podrías ser simplemente demasiado perezoso para implementar
el método down(), debido a que no es muy común revertir migraciones de base de datos. En este caso, deberías devolver
false en el método down() para indicar que dicha migración no es reversible.

La clase de migración de base de datos [[yii\db\Migration]] expone una conexión a la base de datos mediante la propiedad [[yii\db\Migration::db|db]].
Puedes utilizar esto para manipular el esquema de la base de datos utilizando métodos como se describen en
Trabajando con Esquemas de Base de Datos.

En vez de utilizar tipos físicos, al crear tablas o columnas deberías utilizar los tipos abstractos
así las migraciones son independientes de algún DBMS específico. La clase [[yii\db\Schema]] define
un grupo de constantes que representan los tipos abstractos soportados. Dichas constantes son llamadas utilizando el formato
de TYPE_<Name>. Por ejemplo, TYPE_PK se refiere al tipo clave primaria auto-incremental; TYPE_STRING
se refiere al tipo string. Cuando se aplica una migración a una base de datos en particular, los tipos abstractos
serán traducidos a los tipos físicos correspondientes. En el caso de MySQL, TYPE_PK será transformado
en int(11) NOT NULL AUTO_INCREMENT PRIMARY KEY, mientras TYPE_STRING se vuelve varchar(255).

Puedes agregar restricciones adicionales al utilizar tipos abstractos. En el ejemplo anterior, NOT NULL es agregado
a Schema::TYPE_STRING para especificar que la columna no puede ser null.

Info: El mapeo entre tipos abstractos y tipos físicos es especificado en
la propiedad [[yii\db\QueryBuilder::$typeMap|$typeMap]] en cada clase concreta QueryBuilder.

Desde la versión 2.0.6, puedes hacer uso del recientemente introducido generador de esquemas, el cual provee una forma más conveniente de definir las columnas.
De esta manera, la migración anterior podría ser escrita así:

<?php

use yii\db\Migration;

class m150101_185401_create_news_table extends Migration
{
 public function up()
 {
 $this->createTable('news', [
 'id' => $this->primaryKey(),
 'title' => $this->string()->notNull(),
 'content' => $this->text(),
]);
 }

 public function down()
 {
 $this->dropTable('news');
 }
}

Existe una lista de todos los métodos disponibles para la definición de tipos de columna en la API de la documentación de [[yii\db\SchemaBuilderTrait]].

Generar Migraciones

Desde la versión 2.0.7 la consola provee una manera muy conveniente de generar migraciones.

Si el nombre de la migración tiene una forma especial, por ejemplo create_xxx_table o drop_xxx_table entonces el archivo de la migración generada
contendrá código extra, en este caso para crear/eliminar tablas.
A continuación se describen todas estas variantes.

Crear Tabla

yii migrate/create create_post_table

esto genera

/**
 * Handles the creation for table `post`.
 */
class m150811_220037_create_post_table extends Migration
{
 /**
 * {@inheritdoc}
 */
 public function up()
 {
 $this->createTable('post', [
 'id' => $this->primaryKey()
]);
 }

 /**
 * {@inheritdoc}
 */
 public function down()
 {
 $this->dropTable('post');
 }
}

Para crear las columnas en ese momento, las puedes especificar vía la opción --fields.

yii migrate/create create_post_table --fields="title:string,body:text"

genera

/**
 * Handles the creation for table `post`.
 */
class m150811_220037_create_post_table extends Migration
{
 /**
 * {@inheritdoc}
 */
 public function up()
 {
 $this->createTable('post', [
 'id' => $this->primaryKey(),
 'title' => $this->string(),
 'body' => $this->text(),
]);
 }

 /**
 * {@inheritdoc}
 */
 public function down()
 {
 $this->dropTable('post');
 }
}

Puedes especificar más parámetros para las columnas.

yii migrate/create create_post_table --fields="title:string(12):notNull:unique,body:text"

genera

/**
 * Handles the creation for table `post`.
 */
class m150811_220037_create_post_table extends Migration
{
 /**
 * {@inheritdoc}
 */
 public function up()
 {
 $this->createTable('post', [
 'id' => $this->primaryKey(),
 'title' => $this->string(12)->notNull()->unique(),
 'body' => $this->text()
]);
 }

 /**
 * {@inheritdoc}
 */
 public function down()
 {
 $this->dropTable('post');
 }
}

Note: la clave primaria es automáticamente agragada y llamada id por defecto. Si quieres utilizar otro nombre puedes
especificarlo así --fields="name:primaryKey".

Claves Foráneas

Desde 2.0.8 el generador soporta claves foráneas utilizando la palabra clave foreignKey.

yii migrate/create create_post_table --fields="author_id:integer:notNull:foreignKey(user),category_id:integer:defaultValue(1):foreignKey,title:string,body:text"

genera

/**
 * Handles the creation for table `post`.
 * Has foreign keys to the tables:
 *
 * - `user`
 * - `category`
 */
class m160328_040430_create_post_table extends Migration
{
 /**
 * {@inheritdoc}
 */
 public function up()
 {
 $this->createTable('post', [
 'id' => $this->primaryKey(),
 'author_id' => $this->integer()->notNull(),
 'category_id' => $this->integer()->defaultValue(1),
 'title' => $this->string(),
 'body' => $this->text(),
]);

 // creates index for column `author_id`
 $this->createIndex(
 'idx-post-author_id',
 'post',
 'author_id'
);

 // add foreign key for table `user`
 $this->addForeignKey(
 'fk-post-author_id',
 'post',
 'author_id',
 'user',
 'id',
 'CASCADE'
);

 // creates index for column `category_id`
 $this->createIndex(
 'idx-post-category_id',
 'post',
 'category_id'
);

 // add foreign key for table `category`
 $this->addForeignKey(
 'fk-post-category_id',
 'post',
 'category_id',
 'category',
 'id',
 'CASCADE'
);
 }

 /**
 * {@inheritdoc}
 */
 public function down()
 {
 // drops foreign key for table `user`
 $this->dropForeignKey(
 'fk-post-author_id',
 'post'
);

 // drops index for column `author_id`
 $this->dropIndex(
 'idx-post-author_id',
 'post'
);

 // drops foreign key for table `category`
 $this->dropForeignKey(
 'fk-post-category_id',
 'post'
);

 // drops index for column `category_id`
 $this->dropIndex(
 'idx-post-category_id',
 'post'
);

 $this->dropTable('post');
 }
}

La posición de la palabra clave foreignKey en la descripción de la columna
no cambia el código generado. Esto significa:

	author_id:integer:notNull:foreignKey(user)

	author_id:integer:foreignKey(user):notNull

	author_id:foreignKey(user):integer:notNull

Todas generan el mismo código.

La palabra clave foreignKey puede tomar un parámetro entre paréntesis el cual
será el nombre de la tabla relacionada por la clave foránea generada. Si no se pasa ningún parámetro
el nombre de la tabla será deducido en base al nombre de la columna.

En el ejemplo anterior author_id:integer:notNull:foreignKey(user) generará
una columna llamada author_id con una clave foránea a la tabla user mientras
category_id:integer:defaultValue(1):foreignKey generará
category_id con una clave foránea a la tabla category.

Eliminar Tabla

yii migrate/create drop_post_table --fields="title:string(12):notNull:unique,body:text"

genera

class m150811_220037_drop_post_table extends Migration
{
 public function up()
 {
 $this->dropTable('post');
 }

 public function down()
 {
 $this->createTable('post', [
 'id' => $this->primaryKey(),
 'title' => $this->string(12)->notNull()->unique(),
 'body' => $this->text()
]);
 }
}

Agregar Columna

Si el nombre de la migración está en la forma add_xxx_column_to_yyy_table entonces el archivo generado contendrá
las declaraciones addColumn y dropColumn necesarias.

Para agregar una columna:

yii migrate/create add_position_column_to_post_table --fields="position:integer"

genera

class m150811_220037_add_position_column_to_post_table extends Migration
{
 public function up()
 {
 $this->addColumn('post', 'position', $this->integer());
 }

 public function down()
 {
 $this->dropColumn('post', 'position');
 }
}

Eliminar Columna

Si el nombre de la migración está en la forma drop_xxx_column_from_yyy_table entonces el archivo generado contendrá
las declaraciones addColumn y dropColumn necesarias.

yii migrate/create drop_position_column_from_post_table --fields="position:integer"

genera

class m150811_220037_drop_position_column_from_post_table extends Migration
{
 public function up()
 {
 $this->dropColumn('post', 'position');
 }

 public function down()
 {
 $this->addColumn('post', 'position', $this->integer());
 }
}

Agregar Tabla de Unión

Si el nombre de la migración está en la forma create_junction_table_for_xxx_and_yyy_tables entonces se generará el código necesario
para una tabla de unión.

yii migrate/create create_junction_table_for_post_and_tag_tables --fields="created_at:dateTime"

genera

/**
 * Handles the creation for table `post_tag`.
 * Has foreign keys to the tables:
 *
 * - `post`
 * - `tag`
 */
class m160328_041642_create_junction_table_for_post_and_tag_tables extends Migration
{
 /**
 * {@inheritdoc}
 */
 public function up()
 {
 $this->createTable('post_tag', [
 'post_id' => $this->integer(),
 'tag_id' => $this->integer(),
 'created_at' => $this->dateTime(),
 'PRIMARY KEY(post_id, tag_id)',
]);

 // creates index for column `post_id`
 $this->createIndex(
 'idx-post_tag-post_id',
 'post_tag',
 'post_id'
);

 // add foreign key for table `post`
 $this->addForeignKey(
 'fk-post_tag-post_id',
 'post_tag',
 'post_id',
 'post',
 'id',
 'CASCADE'
);

 // creates index for column `tag_id`
 $this->createIndex(
 'idx-post_tag-tag_id',
 'post_tag',
 'tag_id'
);

 // add foreign key for table `tag`
 $this->addForeignKey(
 'fk-post_tag-tag_id',
 'post_tag',
 'tag_id',
 'tag',
 'id',
 'CASCADE'
);
 }

 /**
 * {@inheritdoc}
 */
 public function down()
 {
 // drops foreign key for table `post`
 $this->dropForeignKey(
 'fk-post_tag-post_id',
 'post_tag'
);

 // drops index for column `post_id`
 $this->dropIndex(
 'idx-post_tag-post_id',
 'post_tag'
);

 // drops foreign key for table `tag`
 $this->dropForeignKey(
 'fk-post_tag-tag_id',
 'post_tag'
);

 // drops index for column `tag_id`
 $this->dropIndex(
 'idx-post_tag-tag_id',
 'post_tag'
);

 $this->dropTable('post_tag');
 }
}

Migraciones Transaccionales

Al ejecutar migraciones complejas de BD, es importante asegurarse que todas las migraciones funcionen o fallen como una unidad
así la base de datos puede mantener integridad y consistencia. Para alcanzar este objetivo, se recomienda que
encierres las operación de la BD de cada migración en una transacción.

Una manera simple de implementar migraciones transaccionales es poniendo el código de las migraciones en los métodos safeUp() y safeDown().
Estos métodos se diferencias con up() y down() en que son encerrados implícitamente en una transacción.
Como resultado, si alguna de las operaciones dentro de estos métodos falla, todas las operaciones previas son automáticamente revertidas.

En el siguiente ejemplo, además de crear la tabla news también insertamos un registro inicial dentro de la dicha tabla.

<?php

use yii\db\Migration;

class m150101_185401_create_news_table extends Migration
{
 public function safeUp()
 {
 $this->createTable('news', [
 'id' => $this->primaryKey(),
 'title' => $this->string()->notNull(),
 'content' => $this->text(),
]);

 $this->insert('news', [
 'title' => 'test 1',
 'content' => 'content 1',
]);
 }

 public function safeDown()
 {
 $this->delete('news', ['id' => 1]);
 $this->dropTable('news');
 }
}

Ten en cuenta que usualmente cuando ejecutas múltiples operaciones en la BD en safeUp(), deberías revertir su orden de ejecución
en safeDown(). En el ejemplo anterior primero creamos la tabla y luego insertamos la finla en safeUp(); mientras
que en safeDown() primero eliminamos el registro y posteriormente eliminamos la tabla.

Note: No todos los DBMS soportan transacciones. Y algunas consultas a la BD no pueden ser puestas en transacciones. Para algunos ejemplos,
por favor lee acerca de commits implícitos [http://dev.mysql.com/doc/refman/5.7/en/implicit-commit.html]. En estos casos,
deberías igualmente implementar up() y down().

Métodos de Acceso a la Base de Datos

La clase base [[yii\db\Migration]] provee un grupo de métodos que te permiten acceder y manipular bases de datos.
Podrías encontrar que estos métodos son nombrados de forma similar a los métodos DAO provistos por la clase [[yii\db\Command]].
Por ejemplo, el método [[yii\db\Migration::createTable()]] te permite crear una nueva tabla,
tal como lo hace [[yii\db\Command::createTable()]].

El beneficio de utilizar lo métodos provistos por [[yii\db\Migration]] es que no necesitas explícitamente
crear instancias de [[yii\db\Command]], y la ejecución de cada método mostrará automáticamente mensajes útiles
diciéndote qué operaciones de la base de datos se realizaron y cuánto tiempo tomaron.

Debajo hay una lista de todos los métodos de acceso a la base de datos:

	[[yii\db\Migration::execute()|execute()]]: ejecuta una declaración SQL

	[[yii\db\Migration::insert()|insert()]]: inserta un único registro

	[[yii\db\Migration::batchInsert()|batchInsert()]]: inserta múltiples registros

	[[yii\db\Migration::update()|update()]]: actualiza registros

	[[yii\db\Migration::delete()|delete()]]: elimina registros

	[[yii\db\Migration::createTable()|createTable()]]: crea una nueva tabla

	[[yii\db\Migration::renameTable()|renameTable()]]: renombra una tabla

	[[yii\db\Migration::dropTable()|dropTable()]]: elimina una tabla

	[[yii\db\Migration::truncateTable()|truncateTable()]]: elimina todos los registros de una tabla

	[[yii\db\Migration::addColumn()|addColumn()]]: agrega una columna

	[[yii\db\Migration::renameColumn()|renameColumn()]]: renombra una columna

	[[yii\db\Migration::dropColumn()|dropColumn()]]: elimina una columna

	[[yii\db\Migration::alterColumn()|alterColumn()]]: modifica una columna

	[[yii\db\Migration::addPrimaryKey()|addPrimaryKey()]]: agrega una clave primaria

	[[yii\db\Migration::dropPrimaryKey()|dropPrimaryKey()]]: elimina una clave primaria

	[[yii\db\Migration::addForeignKey()|addForeignKey()]]: agrega una clave foránea

	[[yii\db\Migration::dropForeignKey()|dropForeignKey()]]: elimina una clave foránea

	[[yii\db\Migration::createIndex()|createIndex()]]: crea un índice

	[[yii\db\Migration::dropIndex()|dropIndex()]]: elimina un índice

	[[yii\db\Migration::addCommentOnColumn()|addCommentOnColumn()]]: agrega un comentario a una columna

	[[yii\db\Migration::dropCommentFromColumn()|dropCommentFromColumn()]]: elimina un comentario de una columna

	[[yii\db\Migration::addCommentOnTable()|addCommentOnTable()]]: agrega un comentario a una tabla

	[[yii\db\Migration::dropCommentFromTable()|dropCommentFromTable()]]: elimina un comentario de una tabla

Info: [[yii\db\Migration]] no provee un método de consulta a la base de datos. Esto es porque normalmente no necesitas
mostrar mensajes detallados al traer datos de una base de datos. También se debe a que puedes utilizar el poderoso
Query Builder para generar y ejecutar consultas complejas.

Note: Al manipular datos utilizando una migración podrías encontrar que utilizando tus clases Active Record
para esto podría ser útil ya que algo de la lógica ya está implementada ahí. Ten en cuenta de todos modos, que en contraste con
el código escrito en las migraciones, cuya naturaleza es permanecer constante por siempre, la lógica de la aplicación está sujeta a cambios.
Entonces al utilizar Active Record en migraciones, los cambios en la lógica en la capa Active Record podrían accidentalmente romper
migraciones existentes. Por esta razón, el código de las migraciones debería permanecer independiente de determinada lógica de la aplicación
tal como clases Active Record.

Aplicar Migraciones

To upgrade a database to its latest structure, you should apply all available new migrations using the following command:
Para actualizar una base de datos a su última estructura, deberías aplicar todas las nuevas migraciones utilizando el siguiente comando:

yii migrate

Este comando listará todas las migraciones que no han sido aplicadas hasta el momento. Si confirmas que quieres aplicar
dichas migraciones, se correrá el método up() o safeUp() en cada clase de migración nueva, una tras otra,
en el orden de su valor de marca temporal. Si alguna de las migraciones falla, el comando terminará su ejecución sin aplicar
el resto de las migraciones.

Tip: En caso de no disponer de la línea de comandos en el servidor, podrías intentar utilizar
la extensión web shell [https://github.com/samdark/yii2-webshell].

Por cada migración aplicada correctamente, el comando insertará un registro en la base de datos, en la tabla llamada
migration para registrar la correcta aplicación de la migración. Esto permitirá a la herramienta de migración identificar
cuáles migraciones han sido aplicadas y cuáles no.

Info: La herramienta de migración creará automáticamente la tabla migration en la base de datos especificada
en la opción [[yii\console\controllers\MigrateController::db|db]] del comando. Por defecto, la base de datos
es especificada en el componente de aplicación db.

A veces, podrías sólo querer aplicar una o algunas pocas migraciones, en vez de todas las migraciones disponibles.
Puedes hacer esto el número de migraciones que quieres aplicar al ejecutar el comando.
Por ejemplo, el siguiente comando intentará aplicar las tres siguientes migraciones disponibles:

yii migrate 3

Puedes además explícitamente especificar una migración en particular a la cual la base de datos debería migrar
utilizando el comando migrate/to de acuerdo a uno de los siguientes formatos:

yii migrate/to 150101_185401 # utiliza la marca temporal para especificar la migración
yii migrate/to "2015-01-01 18:54:01" # utiliza un string que puede ser analizado por strtotime()
yii migrate/to m150101_185401_create_news_table # utiliza el nombre completo
yii migrate/to 1392853618 # utiliza el tiempo UNIX

Si hubiera migraciones previas a la especificada sin aplicar, estas serán aplicadas antes de que la migración especificada
sea aplicada.

Si la migración especificada ha sido aplicada previamente, cualquier migración aplicada posteriormente será revertida.

Revertir Migraciones

Para revertir (deshacer) una o varias migraciones ya aplicadas, puedes ejecutar el siguiente comando:

yii migrate/down # revierte la más reciente migración aplicada
yii migrate/down 3 # revierte las 3 últimas migraciones aplicadas

Note: No todas las migraciones son reversibles. Intentar revertir tales migraciones producirá un error y detendrá
completamente el proceso de reversión.

Rehacer Migraciones

Rehacer (re-ejecutar) migraciones significa primero revertir las migraciones especificadas y luego aplicarlas nuevamente. Esto puede hacerse
de esta manera:

yii migrate/redo # rehace la más reciente migración aplicada
yii migrate/redo 3 # rehace las 3 últimas migraciones aplicadas

Note: Si una migración no es reversible, no tendrás posibilidades de rehacerla.

Listar Migraciones

Para listar cuáles migraciones han sido aplicadas y cuáles no, puedes utilizar los siguientes comandos:

yii migrate/history # muestra las últimas 10 migraciones aplicadas
yii migrate/history 5 # muestra las últimas 5 migraciones aplicadas
yii migrate/history all # muestra todas las migraciones aplicadas

yii migrate/new # muestra las primeras 10 nuevas migraciones
yii migrate/new 5 # muestra las primeras 5 nuevas migraciones
yii migrate/new all # muestra todas las nuevas migraciones

Modificar el Historial de Migraciones

En vez de aplicar o revertir migraciones, a veces simplemente quieres marcar que tu base de datos
ha sido actualizada a una migración en particular. Esto sucede normalmente cuando cambias manualmente la base de datos
a un estado particular y no quieres que la/s migración/es de ese cambio sean re-aplicadas posteriormente. Puedes alcanzar este objetivo
con el siguiente comando:

yii migrate/mark 150101_185401 # utiliza la marca temporal para especificar la migración
yii migrate/mark "2015-01-01 18:54:01" # utiliza un string que puede ser analizado por strtotime()
yii migrate/mark m150101_185401_create_news_table # utiliza el nombre completo
yii migrate/mark 1392853618 # utiliza el tiempo UNIX

El comando modificará la tabla migration agregando o eliminado ciertos registros para indicar que en la base de datos
han sido aplicadas las migraciones hasta la especificada. Ninguna migración será aplicada ni revertida por este comando.

Personalizar Migraciones

Hay varias maneras de personalizar el comando de migración.

Utilizar Opciones de la Línea de Comandos

El comando de migración trae algunas opciones de línea de comandos que pueden ser utilizadas para personalizar su comportamiento:

	interactive: boolean (por defecto true), especificar si se debe ejecutar la migración en modo interactivo.
Cuando se indica true, se le pedirá confirmación al usuario antes de ejecutar ciertas acciones.
Puedes querer definirlo como false si el comando está siendo utilizado como un proceso de fondo.

	migrationPath: string (por defecto @app/migrations), especifica el directorio que contiene todos los archivos
de clase de las migraciones. Este puede ser especificado tanto como una ruta a un directorio un alias de ruta.
Ten en cuenta que el directorio debe existir, o el comando disparará un error.

	migrationTable: string (por defecto migration), especifica el nombre de la tabla de la base de datos que almacena
información del historial de migraciones. Dicha tabla será creada por el comando en caso de que no exista.
Puedes también crearla manualmente utilizando la estructura version varchar(255) primary key, apply_time integer.

	db: string (por defecto db), especifica el ID del componente de aplicación de la base de datos.
Esto representa la base de datos que será migrada en este comando.

	templateFile: string (por defecto @yii/views/migration.php), especifica la ruta al template
utilizado para generar el esqueleto de los archivos de clases de migración. Puede ser especificado tanto como una ruta a un archivo
como una alias de una ruta. El template es un archivo PHP en el cual puedes utilizar una variable predefinida
llamada $className para obtener el nombre de clase de la migración.

	generatorTemplateFiles: array (por defecto ['create_table' => '@yii/views/createTableMigration.php', 'drop_table' => '@yii/views/dropTableMigration.php', 'add_column' => '@yii/views/addColumnMigration.php', 'drop_column' => '@yii/views/dropColumnMigration.php', 'create_junction' => '@yii/views/createTableMigration.php']), especifica los templates utilizados para generar las migraciones. Ver “Generar Migraciones”
para más detalles.

	fields: array de strings de definiciones de columna utilizado por el código de migración. Por defecto []. El formato de cada
definición es COLUMN_NAME:COLUMN_TYPE:COLUMN_DECORATOR. Por ejemplo, --fields=name:string(12):notNull produce
una columna string de tamaño 12 que es not null.

El siguiente ejemplo muestra cómo se pueden utilizar estas opciones.

Por ejemplo, si queremos migrar un módulo forum cuyos arhivos de migración
están ubicados dentro del directorio migrations del módulo, podemos utilizar el siguientedocs/guide-es/db-migrations.md
comando:

realiza las migraciones de un módulo forum sin interacción del usuario
yii migrate --migrationPath=@app/modules/forum/migrations --interactive=0

Configurar el Comando Globalmente

En vez de introducir los valores de las opciones cada vez que ejecutas un comandod e migración, podrías configurarlos
de una vez por todas en la configuración de la aplicación como se muestra a continuación:

return [
 'controllerMap' => [
 'migrate' => [
 'class' => 'yii\console\controllers\MigrateController',
 'migrationTable' => 'backend_migration',
],
],
];

Con esta configuración, cada vez que ejecutes un comando de migración, la tabla backend_migration
será utilizada para registrar el historial de migraciones. No necesitarás volver a especificarla con la opción migrationTable
de la línea de comandos.

Migrar Múltiples Bases de Datos

Por defecto, las migraciones son aplicadas en la misma base de datos especificada en el componente de aplicación db.
Si quieres que sean aplicadas en una base de datos diferente, puedes especificar la opción db como se muestra a continuación,

yii migrate --db=db2

El comando anterior aplicará las migraciones en la base de datos db2.

A veces puede suceder que quieras aplicar algunas de las migraciones a una base de datos, mientras algunas otras
a una base de datos distinta. Para lograr esto, al implementar una clase de migración debes especificar explícitamente el ID del componente DB
que la migración debe utilizar, como a continuación:

<?php

use yii\db\Migration;

class m150101_185401_create_news_table extends Migration
{
 public function init()
 {
 $this->db = 'db2';
 parent::init();
 }
}

La migración anterior se aplicará a db2, incluso si especificas una base de datos diferente en la opción db de la
línea de comandos. Ten en cuenta que el historial aún será registrado in la base de datos especificada en la opción db de la línea de comandos.

Si tienes múltiples migraciones que utilizan la misma base de datos, es recomandable que crees una clase base de migración
con el código init() mostrado. Entonces cada clase de migración puede extender de esa clase base.

Tip: Aparte de definir la propiedad [[yii\db\Migration::db|db]], puedes también operar en diferentes bases de datos
creando nuevas conexiones de base de datos en tus clases de migración. También puedes utilizar métodos DAO
con esas conexiones para manipular diferentes bases de datos.

Another strategy that you can take to migrate multiple databases is to keep migrations for different databases in
different migration paths. Then you can migrate these databases in separate commands like the following:
Otra estrategia que puedes seguir para migrar múltiples bases de datos es mantener las migraciones para diferentes bases de datos en
distintas rutas de migración. Entonces podrías migrar esas bases de datos en comandos separados como a continuación:

yii migrate --migrationPath=@app/migrations/db1 --db=db1
yii migrate --migrationPath=@app/migrations/db2 --db=db2
...

El primer comando aplicará las migraciones que se encuentran en @app/migrations/db1 en la base de datos db1, el segundo comando
aplicará las migraciones que se encuentran en @app/migrations/db2 en db2, y así sucesivamente.

 Constructor de Consultas

Constructor de Consultas

Note: Esta sección está en desarrollo.

Yii proporciona una capa de acceso básico a bases de datos como se describe en la sección
Objetos de Acceso a Bases de Datos. La capa de acceso a bases de datos proporciona un método de bajo
nivel (low-level) para interaccionar con la base de datos. Aunque a veces puede ser útil la escritura de sentencias
SQLs puras, en otras situaciones puede ser pesado y propenso a errores. Otra manera de tratar con bases de datos puede
ser el uso de Constructores de Consultas (Query Builder). El Constructor de Consultas proporciona un medio orientado a
objetos para generar las consultas que se ejecutarán.

Un uso típico de Constructor de Consultas puede ser el siguiente:

$rows = (new \yii\db\Query())
 ->select('id, name')
 ->from('user')
 ->limit(10)
 ->all();

// que es equivalente al siguiente código:

$query = (new \yii\db\Query())
 ->select('id, name')
 ->from('user')
 ->limit(10);

// Crear un comando. Se puede obtener la consulta SQL actual utilizando $command->sql
$command = $query->createCommand();

// Ejecutar el comando:
$rows = $command->queryAll();

Métodos de Consulta

Como se puede observar, primero se debe tratar con [[yii\db\Query]]. En realidad, Query sólo se encarga de
representar diversa información de la consulta. La lógica para generar la consulta se efectúa mediante
[[yii\db\QueryBuilder]] cuando se llama al método createCommand(), y la ejecución de la consulta la efectúa
[[yii\db\Command]].

Se ha establecido, por convenio, que [[yii\db\Query]] proporcione un conjunto de métodos de consulta comunes que
construirán la consulta, la ejecutarán, y devolverán el resultado. Por ejemplo:

	[[yii\db\Query::all()|all()]]: construye la consulta, la ejecuta y devuelve todos los resultados en formato de array.

	[[yii\db\Query::one()|one()]]: devuelve la primera fila del resultado.

	[[yii\db\Query::column()|column()]]: devuelve la primera columna del resultado.

	[[yii\db\Query::scalar()|scalar()]]: devuelve la primera columna en la primera fila del resultado.

	[[yii\db\Query::exists()|exists()]]: devuelve un valor indicando si la el resultado devuelve algo.

	[[yii\db\Query::count()|count()]]: devuelve el resultado de la consulta COUNT. Otros métodos similares incluidos
son sum($q), average($q), max($q), min($q), que soportan las llamadas funciones de agregación. El parámetro
$q es obligatorio en estos métodos y puede ser el nombre de la columna o expresión.

Construcción de Consultas

A continuación se explicará como construir una sentencia SQL que incluya varias clausulas. Para simplificarlo, usamos
$query para representar el objeto [[yii\db\Query]]:

SELECT

Para formar una consulta SELECT básica, se necesita especificar que columnas y de que tablas se seleccionarán:

$query->select('id, name')
 ->from('user');

Las opciones de select se pueden especificar como una cadena de texto (string) separada por comas o como un array. La
sintaxis del array es especialmente útil cuando se forma la selección dinámicamente.

$query->select(['id', 'name'])
 ->from('user');

Info: Se debe usar siempre el formato array si la clausula SELECT contiene expresiones SQL. Esto se debe a
que una expresión SQL como CONCAT(first_name, last_name) AS full_name puede contener comas. Si se junta con otra
cadena de texto de otra columna, puede ser que la expresión se divida en varias partes por comas, esto puede
conllevar a errores.

Cuando se especifican columnas, se pueden incluir los prefijos de las tablas o alias de columnas, ej. user.id,
user.id AS user_id. Si se usa un array para especificar las columnas, también se pueden usar las claves del array
para especificar los alias de columna, ej. ['user_id' => 'user.id', 'user_name' => 'user.name'].

A partir de la versión 2.0.1, también se pueden seleccionar subconsultas como columnas. Por ejemplo:

$subQuery = (new Query)->select('COUNT(*)')->from('user');
$query = (new Query)->select(['id', 'count' => $subQuery])->from('post');
// $query representa la siguiente sentencia SQL:
// SELECT `id`, (SELECT COUNT(*) FROM `user`) AS `count` FROM `post`

Para seleccionar filas distintas, se puede llamar a distinct(), como se muestra a continuación:

$query->select('user_id')->distinct()->from('post');

FROM

Para especificar de que tabla(s) se quieren seleccionar los datos, se llama a from():

$query->select('*')->from('user');

Se pueden especificar múltiples tablas usando una cadena de texto separado por comas o un array. Los nombres de tablas
pueden contener prefijos de esquema (ej. 'public.user') y/o alias de tablas (ej. `’user u’). El método
entrecomillara automáticamente los nombres de tablas a menos que contengan algún paréntesis (que significa que se
proporciona la tabla como una subconsulta o una expresión de BD). Por ejemplo:

$query->select('u.*, p.*')->from(['user u', 'post p']);

Cuando se especifican las tablas como un array, también se pueden usar las claves de los arrays como alias de tablas
(si una tabla no necesita alias, no se usa una clave en formato texto). Por ejemplo:

$query->select('u.*, p.*')->from(['u' => 'user', 'p' => 'post']);

Se puede especificar una subconsulta usando un objeto Query. En este caso, la clave del array correspondiente se
usará como alias para la subconsulta.

$subQuery = (new Query())->select('id')->from('user')->where('status=1');
$query->select('*')->from(['u' => $subQuery]);

WHERE

Habitualmente se seleccionan los datos basándose en ciertos criterios. El Constructor de Consultas tiene algunos
métodos útiles para especificarlos, el más poderoso de estos es where, y se puede usar de múltiples formas.

La manera más simple para aplicar una condición es usar una cadena de texto:

$query->where('status=:status', [':status' => $status]);

Cuando se usan cadenas de texto, hay que asegurarse que se unen los parámetros de la consulta, no crear una consulta
mediante concatenación de cadenas de texto. El enfoque anterior es seguro, el que se muestra a continuación, no lo es:

$query->where("status=$status"); // Peligroso!

En lugar de enlazar los valores de estado inmediatamente, se puede hacer usando params o addParams:

$query->where('status=:status');
$query->addParams([':status' => $status]);

Se pueden establecer múltiples condiciones en where usando el formato hash.

$query->where([
 'status' => 10,
 'type' => 2,
 'id' => [4, 8, 15, 16, 23, 42],
]);

El código generará la el siguiente SQL:

WHERE (`status` = 10) AND (`type` = 2) AND (`id` IN (4, 8, 15, 16, 23, 42))

El valor NULO es un valor especial en las bases de datos, y el Constructor de Consultas lo gestiona inteligentemente.
Este código:

$query->where(['status' => null]);

da como resultado la siguiente cláusula WHERE:

WHERE (`status` IS NULL)

También se pueden crear subconsultas con objetos de tipo Query como en el siguiente ejemplo:

$userQuery = (new Query)->select('id')->from('user');
$query->where(['id' => $userQuery]);

que generará el siguiente código SQL:

WHERE `id` IN (SELECT `id` FROM `user`)

Otra manera de usar el método es el formato de operando que es [operator, operand1, operand2, ...].

El operando puede ser uno de los siguientes (ver también [[yii\db\QueryInterface::where()]]):

	and: los operandos deben concatenerase usando AND. por ejemplo, ['and', 'id=1', 'id=2'] generará
id=1 AND id=2. Si el operando es un array, se convertirá en una cadena de texto usando las reglas aquí descritas.
Por ejemplo, ['and', 'type=1', ['or', 'id=1', 'id=2']] generará type=1 AND (id=1 OR id=2). El método no
ejecutará ningún filtrado ni entrecomillado.

	or: similar al operando and exceptuando que los operando son concatenados usando OR.

	between: el operando 1 debe ser el nombre de columna, y los operandos 2 y 3 deben ser los valores iniciales y
finales del rango en el que se encuentra la columna. Por ejemplo, ['between', 'id', 1, 10] generará
id BETWEEN 1 AND 10.

	not between: similar a between exceptuando que BETWEEN se reemplaza por NOT BETWEEN en la condición
generada.

	in: el operando 1 debe ser una columna o una expresión de BD. El operando 2 puede ser un array o un objeto de tipo
Query. Generará una condición IN. Si el operando 2 es un array, representará el rango de valores que puede
albergar la columna o la expresión de BD; Si el operando 2 es un objeto de tipo Query, se generará una subconsulta
y se usará como rango de la columna o de la expresión de BD. Por ejemplo, ['in', 'id', [1, 2, 3]] generará
id IN (1, 2, 3). El método entrecomillará adecuadamente el nombre de columna y filtrará los valores del rango. El
operando in también soporta columnas compuestas. En este caso, el operando 1 debe se un array de columnas,
mientras que el operando 2 debe ser un array de arrays o un objeto de tipo Query que represente el rango de las
columnas.

	not in: similar que el operando in exceptuando que IN se reemplaza por NOT IN en la condición generada.

	like: el operando 1 debe ser una columna o una expresión de BD, y el operando 2 debe ser una cadena de texto o un
array que represente los valores a los que tienen que asemejarse la columna o la expresión de BD.Por ejemplo,
['like', 'name', 'tester'] generará name LIKE '%tester%'. Cuando se da el valor rango como un array, se
generarán múltiples predicados LIKE y se concatenaran usando AND. Por ejemplo,
['like', 'name', ['test', 'sample']] generará name LIKE '%test%' AND name LIKE '%sample%'. También se puede
proporcionar un tercer operando opcional para especificar como deben filtrarse los caracteres especiales en los
valores. El operando debe se un array que mapeen los caracteres especiales a sus caracteres filtrados asociados. Si
no se proporciona este operando, se aplicará el mapeo de filtrado predeterminado. Se puede usar false o un array
vacío para indicar que los valores ya están filtrados y no se necesita aplicar ningún filtro. Hay que tener en
cuenta que cuando se usa un el mapeo de filtrado (o no se especifica el tercer operando), los valores se encerraran
automáticamente entre un par de caracteres de porcentaje.

Note: Cuando se usa PostgreSQL también se puede usar
ilike [http://www.postgresql.org/docs/8.3/static/functions-matching.html#FUNCTIONS-LIKE] en lugar de like para
filtrar resultados insensibles a mayúsculas (case-insensitive).

	or like: similar al operando like exceptuando que se usa OR para concatenar los predicados LIKE cuando haya
un segundo operando en un array.

	not like: similar al operando like exceptuando que se usa LIKE en lugar de NOT LIKE en las condiciones
generadas.

	or not like: similar al operando not like exceptuando que se usa OR para concatenar los predicados NOT LIKE.

	exists: requiere un operando que debe ser una instancia de [[yii\db\Query]] que represente la subconsulta. Esto
generará una expresión EXISTS (sub-query).

	not exists: similar al operando exists y genera una expresión NOT EXISTS (sub-query).

Adicionalmente se puede especificar cualquier cosa como operando:

$query->select('id')
 ->from('user')
 ->where(['>=', 'id', 10]);

Cuyo resultado será:

SELECT id FROM user WHERE id >= 10;

Si se construyen partes de una condición dinámicamente, es muy convenientes usar andWhere() y orWhere():

$status = 10;
$search = 'yii';

$query->where(['status' => $status]);
if (!empty($search)) {
 $query->andWhere(['like', 'title', $search]);
}

En el caso que $search no este vacío, se generará el siguiente código SQL:

WHERE (`status` = 10) AND (`title` LIKE '%yii%')

Construcción de Condiciones de Filtro

Cuando se generan condiciones de filtro basadas en datos recibidos de usuarios (inputs), a menudo se quieren gestionar
de forma especial las “datos vacíos” para ignorarlos en los filtros. Por ejemplo, teniendo un formulario HTML que
obtiene el nombre de usuario y la dirección de correo electrónico. Si el usuario solo rellena el campo de nombre de
usuario, se puede querer generar una consulta para saber si el nombre de usuario recibido es valido. Se puede usar
filterWhere() para conseguirlo:

// $username y $email son campos de formulario rellenados por usuarios
$query->filterWhere([
 'username' => $username,
 'email' => $email,
]);

El método filterWhere() es muy similar al método where(). La principal diferencia es que el filterWhere()
eliminará los valores vacíos de las condiciones proporcionadas. Por lo tanto si $email es “vació”, la consulta
resultante será ...WHERE username=:username; y si tanto $username como $email son “vacías”, la consulta no
tendrá WHERE.

Decimos que un valor es vacío si es nulo, una cadena de texto vacía, una cadena de texto que consista en espacios en
blanco o un array vacío.

También se pueden usar andFilterWhere() y orFilterWhere() para añadir más condiciones de filtro.

ORDER BY

Se pueden usar orderBy y addOrderBy para ordenar resultados:

$query->orderBy([
 'id' => SORT_ASC,
 'name' => SORT_DESC,
]);

Aquí estamos ordenando por id ascendente y después por name descendente.

GROUP BY and HAVING

Para añadir GROUP BY al SQL generado se puede usar el siguiente código:

$query->groupBy('id, status');

Si se quieren añadir otro campo después de usar groupBy:

$query->addGroupBy(['created_at', 'updated_at']);

Para añadir la condición HAVING se pueden usar los métodos having y andHaving y orHaving. Los parámetros para
ellos son similares a los del grupo de métodos where:

$query->having(['status' => $status]);

LIMIT and OFFSET

Para limitar el resultado a 10 filas se puede usar limit:

$query->limit(10);

Para saltarse las 100 primeras filas, se puede usar:

$query->offset(100);

JOIN

Las clausulas JOIN se generan en el Constructor de Consultas usando el método join aplicable:

	innerJoin()

	leftJoin()

	rightJoin()

Este left join selecciona los datos desde dos tablas relacionadas en una consulta:

$query->select(['user.name AS author', 'post.title as title'])
 ->from('user')
 ->leftJoin('post', 'post.user_id = user.id');

En el código, el primer parámetro del método leftjoin especifica la tabla a la que aplicar el join. El segundo
parámetro, define la condición del join.

Si la aplicación de bases de datos soporta otros tipos de joins, se pueden usar mediante el método join genérico:

$query->join('FULL OUTER JOIN', 'post', 'post.user_id = user.id');

El primer argumento es el tipo de join a realizar. El segundo es la tabla a la que aplicar el join, y el tercero es la condición:

Como en FROM, también se pueden efectuar joins con subconsultas. Para hacerlo, se debe especificar la subconsulta
como un array que tiene que contener un elemento. El valor del array tiene que ser un objeto de tipo Query que
represente la subconsulta, mientras que la clave del array es el alias de la subconsulta. Por ejemplo:

$query->leftJoin(['u' => $subQuery], 'u.id=author_id');

UNION

En SQL UNION agrega resultados de una consulta a otra consulta. Las columnas devueltas por ambas consultas deben
coincidir. En Yii para construirla, primero se pueden formar dos objetos de tipo query y después usar el método
union:

$query = new Query();
$query->select("id, category_id as type, name")->from('post')->limit(10);

$anotherQuery = new Query();
$anotherQuery->select('id, type, name')->from('user')->limit(10);

$query->union($anotherQuery);

Consulta por Lotes

Cuando se trabaja con grandes cantidades de datos, los métodos como [[yii\db\Query::all()]] no son adecuados ya que
requieren la carga de todos los datos en memoria. Para mantener los requerimientos de memoria reducidos, Yii
proporciona soporte a las llamadas consultas por lotes (batch query). Una consulta por lotes usa un cursor de datos y
recupera los datos en bloques.

Las consultas por lotes se pueden usar del siguiente modo:

use yii\db\Query;

$query = (new Query())
 ->from('user')
 ->orderBy('id');

foreach ($query->batch() as $users) {
 // $users is an array of 100 or fewer rows from the user table
}

// o si se quieren iterar las filas una a una
foreach ($query->each() as $user) {
 // $user representa uno fila de datos de la tabla user
}

Los métodos [[yii\db\Query::batch()]] y [[yii\db\Query::each()]] devuelven un objeto [[yii\db\BatchQueryResult]] que
implementa una interfaz Iterator y así se puede usar en el constructor foreach. Durante la primera iteración, se
efectúa una consulta SQL a la base de datos. Desde entonces, los datos se recuperan por lotes en las iteraciones. El
tamaño predeterminado de los lotes es 100, que significa que se recuperan 100 filas de datos en cada lote. Se puede
modificar el tamaño de los lotes pasando pasando un primer parámetro a los métodos batch() o each().

En comparación con [[yii\db\Query::all()]], las consultas por lotes sólo cargan 100 filas de datos en memoria cada
vez. Si el procesan los datos y después se descartan inmediatamente, las consultas por lotes, pueden ayudar a mantener
el uso de memora bajo un limite.

Si se especifica que el resultado de la consulta tiene que ser indexado por alguna columna mediante
[[yii\db\Query::indexBy()]], las consultas por lotes seguirán manteniendo el indice adecuado. Por ejemplo,

use yii\db\Query;

$query = (new Query())
 ->from('user')
 ->indexBy('username');

foreach ($query->batch() as $users) {
 // $users esta indexado en la columna "username"
}

foreach ($query->each() as $username => $user) {
}

 A

A

alias

Alias es un string utilizado por Yii para referirse a una clase o directorio tal como @app/vendor.

aplicación

La aplicación es el objeto central durante la solicitud HTTP. Contiene un número de componentes con los que toma información de la solicitud y la envía al controlador apropiado para posterior procesamiento.

El objeto de la aplicación es instanciado como un singleton por el script de entrada. El singleton de la aplicación puede ser accedido desde cualquier lugar a través de \Yii::$app.

assets

Asset se refiere a un archivo de recurso. Típicamente contiene JavaScript o CSS pero puede ser cualquier otra cosa que sea accesible vía HTTP.

atributo

Un atributo es una propiedad de un modelo (una variable miembro de clase o una propiedad mágica definida vía __get()/__set()) que almacena datos de negocio.

B

bundle

Bundle, conocido como paquete en Yii 1.1, se refiere a un número de recursos y un archivo de configuración que describe dependencias y lista recursos.

C

configuración

Configuración puede referirse tanto al proceso de establecer propiedades de un objeto como a un archivo de configuración que almacena la definición de propiedades para un objeto o clase de objetos.

E

extensión

Extensión es un grupo de clases, paquete de recursos y configuraciones que agrega más características a la aplicación.

I

instalación

Instalación es el proceso de preparar algo para trabajar, desde seguir un archivo léame hasta ejecutar un script preparado especialmente para tal fin. En el caso de Yii, define permisos y chequea los requerimientos para el funcionamiento del software.

M

módulo

Módulo es una sub-aplicación que contiene elementos MVC en sí mismo, como modelos, vistas, controladores, etc. y puede ser utilizado dentro de la aplicación principal. Típicamente remitiendo las solicitudes al módulo en vez de manejándolo desde controladores.

N

namespace

Namespace (espacio de nombres) se refiere a una característica de PHP [http://php.net/manual/es/language.namespaces.php] activamente utilizada en Yii 2.

P

paquete

Ver bundle.

V

vendor

Vendor (proveedor) es una organización o un desarrollador individual que provee código en forma de extensiones, módulos o librerías.

 ArrayHelper

ArrayHelper

Adicionalmente al rico conjunto de funciones para arrays de PHP [http://php.net/manual/es/book.array.php], el array helper de Yii proporciona
métodos estáticos adicionales permitiendo trabajar con arrays de manera más eficiente.

Devolviendo Valores

Recuperar valores de un array, un objeto o una estructura compleja usando PHP estándar es bastante
repetitivo. Tienes que comprobar primero si una clave existe con isset, después devolver el valor si existe, si no,
devolver un valor por defecto:

class User
{
 public $name = 'Alex';
}

$array = [
 'foo' => [
 'bar' => new User(),
]
];

$value = isset($array['foo']['bar']->name) ? $array['foo']['bar']->name : null;

Yii proviene de un método muy conveniente para hacerlo:

$value = ArrayHelper::getValue($array, 'foo.bar.name');

El primer argumento del método es de donde vamos a obtener el valor. El segundo argumento especifica como devolver el dato. Puede ser
de la siguiente manera:

	Nombre de la clave del array o de la propiedad del objeto para recuperar el valor.

	Conjunto de puntos separados por las claves del array o los nombres de las propiedades del objeto. Esto se ha usado en el ejemplo anterior.

	Un callback que devuelve un valor.

El callback se debería usar de la siguiente manera:

$fullName = ArrayHelper::getValue($user, function ($user, $defaultValue) {
 return $user->firstName . ' ' . $user->lastName;
});

El tercer argumento opcional es el valor por defecto el cual es null si no se especifica. Podría ser utilizado de la siguiente manera:

$username = ArrayHelper::getValue($comment, 'user.username', 'Unknown');

En caso de que quieras coger un valor y luego removerlo inmediatamente del array puedes usar el método remove:

$array = ['type' => 'A', 'options' => [1, 2]];
$type = ArrayHelper::remove($array, 'type');

Después de ejecutar el código el $array contendrá ['options' => [1, 2]] y $type debe ser A. Tenga en cuenta que a diferencia del método
getValue, remove solo soporta nombres clave simples.

Comprobando la Existencia de Claves

ArrayHelper::keyExists funciona de la misma manera que array_key_exists [http://php.net/manual/es/function.array-key-exists.php]
excepto que también soporta case-insensitive para la comparación de claves. Por ejemplo,

$data1 = [
 'userName' => 'Alex',
];

$data2 = [
 'username' => 'Carsten',
];

if (!ArrayHelper::keyExists('username', $data1, false) || !ArrayHelper::keyExists('username', $data2, false)) {
 echo "Please provide username.";
}

Recuperando Columnas

A menudo necesitas obtener unos valores de una columna de las filas de datos u objetos de un array. Un ejemplo común es obtener una lista de IDs.

$data = [
 ['id' => '123', 'data' => 'abc'],
 ['id' => '345', 'data' => 'def'],
];
$ids = ArrayHelper::getColumn($array, 'id');

El resultado será ['123', '345'].

Si se requieren transformaciones adicionales o la manera de obtener el valor es complejo, se podría especificar como segundo argumento
una función anónima :

$result = ArrayHelper::getColumn($array, function ($element) {
 return $element['id'];
});

Re-indexar Arrays

Con el fin de indexar un array según una clave especificada, se puede usar el método index. La entrada debería ser
un array multidimensional o un array de objetos. $key puede ser tanto una clave del sub-array, un nombre de una propiedad
del objeto, o una función anónima que debe devolver el valor que será utilizado como clave.

El atributo $groups es un array de claves, que será utilizado para agrupar el array de entrada en uno o más sub-arrays
basado en la clave especificada.

Si el atributo $key o su valor por el elemento en particular es null y $groups no está definido, dicho elemento del array
será descartado. De otro modo, si $groups es especificado, el elemento del array será agregado al array resultante
sin una clave.

Por ejemplo:

$array = [
 ['id' => '123', 'data' => 'abc', 'device' => 'laptop'],
 ['id' => '345', 'data' => 'def', 'device' => 'tablet'],
 ['id' => '345', 'data' => 'hgi', 'device' => 'smartphone'],
];
$result = ArrayHelper::index($array, 'id');');

El resultado será un array asociativo, donde la clave es el valor del atributo id

[
 '123' => ['id' => '123', 'data' => 'abc', 'device' => 'laptop'],
 '345' => ['id' => '345', 'data' => 'hgi', 'device' => 'smartphone']
 // El segundo elemento del array original es sobrescrito por el último elemento debido a que tiene el mismo id
]

Pasando una función anónima en $key, da el mismo resultado.

$result = ArrayHelper::index($array, function ($element) {
 return $element['id'];
});

Pasando id como tercer argumento, agrupará $array mediante id:

$result = ArrayHelper::index($array, null, 'id');

El resultado será un array multidimensional agrupado por id en su primer nivel y no indexado en su segundo nivel:

[
 '123' => [
 ['id' => '123', 'data' => 'abc', 'device' => 'laptop']
],
 '345' => [// todos los elementos con este índice están presentes en el array resultante
 ['id' => '345', 'data' => 'def', 'device' => 'tablet'],
 ['id' => '345', 'data' => 'hgi', 'device' => 'smartphone'],
]
]

Una función anónima puede ser usada también en el array agrupador:

$result = ArrayHelper::index($array, 'data', [function ($element) {
 return $element['id'];
}, 'device']);

El resultado será un array multidimensional agrupado por id en su primer nivel, por device en su segundo nivel e
indexado por data en su tercer nivel:

[
 '123' => [
 'laptop' => [
 'abc' => ['id' => '123', 'data' => 'abc', 'device' => 'laptop']
]
],
 '345' => [
 'tablet' => [
 'def' => ['id' => '345', 'data' => 'def', 'device' => 'tablet']
],
 'smartphone' => [
 'hgi' => ['id' => '345', 'data' => 'hgi', 'device' => 'smartphone']
]
]
]

Construyendo Mapas (Maps)

Con el fin de construir un mapa (pareja clave-valor) de un array multidimensional o un array de objetos puedes usar el método map.
Los parámetros $from y $to especifican los nombres de las claves o los nombres de las propiedades que serán configuradas en el mapa. Opcionalmente, se puede
agrupar en el mapa de acuerdo al campo de agrupamiento $group. Por ejemplo,

$array = [
 ['id' => '123', 'name' => 'aaa', 'class' => 'x'],
 ['id' => '124', 'name' => 'bbb', 'class' => 'x'],
 ['id' => '345', 'name' => 'ccc', 'class' => 'y'],
);

$result = ArrayHelper::map($array, 'id', 'name');
// el resultado es:
// [
// '123' => 'aaa',
// '124' => 'bbb',
// '345' => 'ccc',
//]

$result = ArrayHelper::map($array, 'id', 'name', 'class');
// el resultado es:
// [
// 'x' => [
// '123' => 'aaa',
// '124' => 'bbb',
//],
// 'y' => [
// '345' => 'ccc',
//],
//]

Ordenamiento Multidimensional

El método multisort ayuda a ordenar un array de objetos o arrays anidados por una o varias claves. Por ejemplo,

$data = [
 ['age' => 30, 'name' => 'Alexander'],
 ['age' => 30, 'name' => 'Brian'],
 ['age' => 19, 'name' => 'Barney'],
];
ArrayHelper::multisort($data, ['age', 'name'], [SORT_ASC, SORT_DESC]);

Después del ordenado obtendremos lo siguiente en $data:

[
 ['age' => 19, 'name' => 'Barney'],
 ['age' => 30, 'name' => 'Brian'],
 ['age' => 30, 'name' => 'Alexander'],
];

El segundo argumento que especifica las claves para ordenar puede ser una cadena si se trata de una clave, un array en caso de que tenga múltiples claves
o una función anónima como la siguiente

ArrayHelper::multisort($data, function($item) {
 return isset($item['age']) ? ['age', 'name'] : 'name';
});

El tercer argumento es la dirección. En caso de ordenar por una clave podría ser SORT_ASC o
SORT_DESC. Si ordenas por múltiples valores puedes ordenar cada valor diferentemente proporcionando un array de
direcciones de ordenación.

El último argumento es un PHP sort flag que toma los mismos valores que los pasados a
PHP sort() [http://php.net/manual/es/function.sort.php].

Detectando Tipos de Array

Es muy útil saber si un array es indexado o asociativo. He aquí un ejemplo:

// sin claves especificadas
$indexed = ['Qiang', 'Paul'];
echo ArrayHelper::isIndexed($indexed);

// todas las claves son strings
$associative = ['framework' => 'Yii', 'version' => '2.0'];
echo ArrayHelper::isAssociative($associative);

Codificación y Decodificación de Valores HTML

Con el fin de codificar o decodificar caracteres especiales en un array de strings con entidades HTML puedes usar lo siguiente:

$encoded = ArrayHelper::htmlEncode($data);
$decoded = ArrayHelper::htmlDecode($data);

Solo los valores se codifican por defecto. Pasando como segundo argumento false puedes codificar un array de claves también.
La codificación utilizará el charset de la aplicación y podría ser cambiado pasandole un tercer argumento.

Fusionando Arrays

 /**
 * Fusiona recursivamente dos o más arrays en uno.
 * Si cada array tiene un elemento con el mismo valor string de clave, el último
 * sobrescribirá el anterior (difiere de array_merge_recursive).
 * Se llegará a una fusión recursiva si ambos arrays tienen un elemento tipo array
 * y comparten la misma clave.
 * Para elementos cuyas claves son enteros, los elementos del array final
 * serán agregados al array anterior.
 * @param array $a array al que se va a fusionar
 * @param array $b array desde el cual fusionar. Puedes especificar
 * arrays adicionales mediante el tercer argumento, cuarto argumento, etc.
 * @return array el array fusionado (los arrays originales no sufren cambios)
 */
 public static function merge($a, $b)

Convirtiendo Objetos a Arrays

A menudo necesitas convertir un objeto o un array de objetos a un array. El caso más común es convertir los modelos de active record
con el fin de servir los arrays de datos vía API REST o utilizarlos de otra manera. El siguiente código se podría utilizar para hacerlo:

$posts = Post::find()->limit(10)->all();
$data = ArrayHelper::toArray($posts, [
 'app\models\Post' => [
 'id',
 'title',
 // el nombre de la clave del resultado del array => nombre de la propiedad
 'createTime' => 'created_at',
 // el nombre de la clave del resultado del array => función anónima
 'length' => function ($post) {
 return strlen($post->content);
 },
],
]);

El primer argumento contiene el dato que queremos convertir. En nuestro caso queremos convertir un modelo AR Post.

El segundo argumento es el mapeo de conversión por clase. Estamos configurando un mapeo para el modelo Post.
Cada array de mapeo contiene un conjunto de mapeos. Cada mapeo podría ser:

	Un campo nombre para incluir como está.

	Un par clave-valor del array deseado con un nombre clave y el nombre de la columna del modelo que tomará el valor.

	Un par clave-valor del array deseado con un nombre clave y una función anónima que retorne el valor.

El resultado de la conversión anterior será:

[
 'id' => 123,
 'title' => 'test',
 'createTime' => '2013-01-01 12:00AM',
 'length' => 301,
]

Es posible proporcionar una manera predeterminada de convertir un objeto a un array para una clase especifica
mediante la implementación de la interfaz [[yii\base\Arrayable|Arrayable]] en esa clase.

Haciendo pruebas con Arrays

A menudo necesitarás comprobar está en un array o un grupo de elementos es un sub-grupo de otro.
A pesar de que PHP ofrece in_array(), este no soporta sub-grupos u objetos de tipo \Traversable.

Para ayudar en este tipo de pruebas, [[yii\helpers\ArrayHelper]] provee [[yii\helpers\ArrayHelper::isIn()|isIn()]]
y [[yii\helpers\ArrayHelper::isSubset()|isSubset()]] con la misma firma del método
in_array() [http://php.net/manual/en/function.in-array.php].

// true
ArrayHelper::isIn('a', ['a']);
// true
ArrayHelper::isIn('a', new(ArrayObject['a']));

// true
ArrayHelper::isSubset(new(ArrayObject['a', 'c']), new(ArrayObject['a', 'b', 'c'])

 Clase auxiliar Html (Html helper)

Clase auxiliar Html (Html helper)

Todas las aplicaciones web generan grandes cantidades de marcado HTML (HTML markup). Si el marcado es estático, se
puede realizar de forma efectiva
mezclando PHP y HTML en un mismo archivo [http://php.net/manual/es/language.basic-syntax.phpmode.php] pero cuando se
generan dinámicamente empieza a complicarse su gestión sin ayuda extra. Yii ofrece esta ayuda en forma de una clase auxiliar Html
que proporciona un conjunto de métodos estáticos para gestionar las etiquetas HTML más comúnmente usadas, sus opciones y contenidos.

Note: Si el marcado es casi estático, es preferible usar HTML directamente. No es necesario encapsularlo todo con
llamadas a la clase auxiliar Html.

Lo fundamental

Teniendo en cuenta que la construcción de HTML dinámico mediante la concatenación de cadenas de texto se complica
rápidamente, Yii proporciona un conjunto de métodos para manipular las opciones de etiquetas y la construcción de las
mismas basadas en estas opciones.

Generación de etiquetas

El código de generación de etiquetas es similar al siguiente:

<?= Html::tag('p', Html::encode($user->name), ['class' => 'username']) ?>

El primer argumento es el nombre de la etiqueta. El segundo es el contenido que se ubicará entre la etiqueta de
apertura y la de cierre. Hay que tener en cuenta que estamos usando Html::encode. Esto es debido a que el contenido
no se codifica automáticamente para permitir usar HTML cuando se necesite. La tercera opción es un array de opciones
HTML o, en otras palabras, los atributos de las etiquetas. En este array la clave representa el nombre del atributo
como podría ser class, href o target y el valor es su valor.

El código anterior generará el siguiente HTML:

<p class="username">samdark</p>

Si se necesita solo la apertura o el cierre de una etiqueta, se pueden usar los métodos Html::beginTag() y
Html::endTag().

Las opciones se usan en muchos métodos de la clase auxiliar Html y en varios widgets. En todos estos casos hay cierta
gestión adicional que se debe conocer:

	Si un valor es null, el correspondiente atributo no se renderizará.

	Los atributos cuyos valores son de tipo booleano serán tratados como
atributos booleanos [http://www.w3.org/TR/html5/infrastructure.html#boolean-attributes].

	Los valores de los atributos se codificarán en HTML usando [[yii\helpers\Html::encode()|Html::encode()]].

	El atributo “data” puede recibir un array. En este caso, se “expandirá” y se renderizará una lista de atributos
data ej. 'data' => ['id' => 1, 'name' => 'yii'] se convierte en data-id="1" data-name="yii".

	El atributo “data” puede recibir un JSON. Se gestionará de la misma manera que un array ej.
'data' => ['params' => ['id' => 1, 'name' => 'yii'], 'status' => 'ok'] se convierte en
data-params='{"id":1,"name":"yii"}' data-status="ok".

Formación de clases y estilos dinámicamente

Cuando se construyen opciones para etiquetas HTML, a menudo nos encontramos con valores predeterminados que hay que
modificar. Para añadir o eliminar clases CSS se puede usar el siguiente ejemplo:

$options = ['class' => 'btn btn-default'];

if ($type === 'success') {
 Html::removeCssClass($options, 'btn-default');
 Html::addCssClass($options, 'btn-success');
}

echo Html::tag('div', 'Pwede na', $options);

// cuando $type sea 'success' se renderizará
// <div class="btn btn-success">Pwede na</div>

Para hacer lo mismo con los estilos para el atributo style:

$options = ['style' => ['width' => '100px', 'height' => '100px']];

// devuelve style="width: 100px; height: 200px; position: absolute;"
Html::addCssStyle($options, 'height: 200px; positon: absolute;');

// devuelve style="position: absolute;"
Html::removeCssStyle($options, ['width', 'height']);

Cuando se usa [[yii\helpers\Html::addCssStyle()|addCssStyle()]] se puede especificar si un array de pares clave-valor
corresponde a nombres y valores de la propiedad CSS correspondiente o a una cadena de texto como por ejemplo
width: 100px; height: 200px;. Estos formatos se pueden “hacer” y “deshacer” usando
[[yii\helpers\Html::cssStyleFromArray()|cssStyleFromArray()]] y
[[yii\helpers\Html::cssStyleToArray()|cssStyleToArray()]]. El método
[[yii\helpers\Html::removeCssStyle()|removeCssStyle()]] acepta un array de propiedades que se eliminarán. Si sólo se
eliminara una propiedad, se puede especificar como una cadena de texto.

Codificación y Decodificación del contenido

Para que el contenido se muestre correctamente y de forma segura con caracteres especiales HTML el contenido debe ser
codificado. En PHP esto se hace con htmlspecialchars [http://www.php.net/manual/es/function.htmlspecialchars.php] y
htmlspecialchars_decode [http://www.php.net/manual/es/function.htmlspecialchars-decode.php]. El problema con el uso
de estos métodos directamente es que se tiene que especificar la codificación y opciones extra cada vez. Ya que las
opciones siempre son las mismas y la codificación debe coincidir con la de la aplicación para prevenir problemas de
seguridad, Yii proporciona dos métodos simples y compactos:

$userName = Html::encode($user->name);
echo $userName;

$decodedUserName = Html::decode($userName);

Formularios

El trato con el marcado de formularios es una tarea repetitiva y propensa a errores. Por esto hay un grupo de métodos
para ayudar a gestionarlos.

Note: hay que considerar la opción de usar [[yii\widgets\ActiveForm|ActiveForm]] en caso de que se gestionen
formularios que requieran validaciones.

Creando formularios

Se puede abrir un formulario con el método [[yii\helpers\Html::beginForm()|beginForm()]] como se muestra a
continuación:

<?= Html::beginForm(['order/update', 'id' => $id], 'post', ['enctype' => 'multipart/form-data']) ?>

El primer argumento es la URL a la que se enviarán los datos del formulario. Se puede especificar en formato de ruta
de Yii con los parámetros aceptados por [[yii\helpers\Url::to()|Url::to()]]. El segundo es el método que se usará.
post es el método predeterminado. El tercero es un array de opciones para la etiqueta form. En este caso cambiamos
el método de codificación del formulario de data en una petición POST a multipart/form-data. Esto se requiere
cuando se quieren subir archivos.

El cierre de la etiqueta form es simple:

<?= Html::endForm() ?>

Botones

Para generar botones se puede usar el siguiente código:

<?= Html::button('Press me!', ['class' => 'teaser']) ?>
<?= Html::submitButton('Submit', ['class' => 'submit']) ?>
<?= Html::resetButton('Reset', ['class' => 'reset']) ?>

El primer argumento para los tres métodos es el título del botón y el segundo son las opciones. El título no está
codificado pero si se usan datos recibidos por el usuario, deben codificarse mediante
[[yii\helpers\Html::encode()|Html::encode()]].

Inputs

Hay dos grupos en los métodos input. Unos empiezan con active y se llaman inputs activos y los otros no empiezan
así. Los inputs activos obtienen datos del modelo y del atributo especificado y los datos de los inputs normales se
especifica directamente.

Los métodos más genéricos son:

type, input name, input value, options
<?= Html::input('text', 'username', $user->name, ['class' => $username]) ?>

type, model, model attribute name, options
<?= Html::activeInput('text', $user, 'name', ['class' => $username]) ?>

Si se conoce el tipo de input de antemano, es conveniente usar los atajos de los métodos:

	[[yii\helpers\Html::buttonInput()]]

	[[yii\helpers\Html::submitInput()]]

	[[yii\helpers\Html::resetInput()]]

	[[yii\helpers\Html::textInput()]], [[yii\helpers\Html::activeTextInput()]]

	[[yii\helpers\Html::hiddenInput()]], [[yii\helpers\Html::activeHiddenInput()]]

	[[yii\helpers\Html::passwordInput()]] / [[yii\helpers\Html::activePasswordInput()]]

	[[yii\helpers\Html::fileInput()]], [[yii\helpers\Html::activeFileInput()]]

	[[yii\helpers\Html::textarea()]], [[yii\helpers\Html::activeTextarea()]]

Los botones de opción (Radios) y las casillas de verificación (checkboxes) se especifican de forma un poco diferente:

<?= Html::radio('agree', true, ['label' => 'I agree']);
<?= Html::activeRadio($model, 'agree', ['class' => 'agreement'])

<?= Html::checkbox('agree', true, ['label' => 'I agree']);
<?= Html::activeCheckbox($model, 'agree', ['class' => 'agreement'])

Las listas desplegables (dropdown list) se pueden renderizar como se muestra a continuación:

<?= Html::dropDownList('list', $currentUserId, ArrayHelper::map($userModels, 'id', 'name')) ?>
<?= Html::activeDropDownList($users, 'id', ArrayHelper::map($userModels, 'id', 'name')) ?>

<?= Html::listBox('list', $currentUserId, ArrayHelper::map($userModels, 'id', 'name')) ?>
<?= Html::activeListBox($users, 'id', ArrayHelper::map($userModels, 'id', 'name')) ?>

El primer argumento es el nombre del input, el segundo es el valor seleccionado actualmente y el tercero es el array
de pares clave-valor donde la clave es la lista de valores y el valor del array es la lista a mostrar.

Si se quiere habilitar la selección múltiple, se puede usar la lista seleccionable (checkbox list):

<?= Html::checkboxList('roles', [16, 42], ArrayHelper::map($roleModels, 'id', 'name')) ?>
<?= Html::activeCheckboxList($user, 'role', ArrayHelper::map($roleModels, 'id', 'name')) ?>

Si no, se puede usar la lista de opciones (radio list):

<?= Html::radioList('roles', [16, 42], ArrayHelper::map($roleModels, 'id', 'name')) ?>
<?= Html::activeRadioList($user, 'role', ArrayHelper::map($roleModels, 'id', 'name')) ?>

Etiquetas y Errores

De forma parecida que en los inputs hay dos métodos para generar etiquetas. El activo que obtiene los datos del modelo y
el no-activo que acepta los datos directamente:

<?= Html::label('User name', 'username', ['class' => 'label username']) ?>
<?= Html::activeLabel($user, 'username', ['class' => 'label username'])

Para mostrar los errores del formulario de un modelo o modelos a modo de resumen puedes usar:

<?= Html::errorSummary($posts, ['class' => 'errors']) ?>

Para mostrar un error individual:

<?= Html::error($post, 'title', ['class' => 'error']) ?>

Input Names y Values

Existen métodos para obtener names, IDs y values para los campos de entrada (inputs) basados en el modelo. Estos se
usan principalmente internamente pero a veces pueden resultar prácticos:

// Post[title]
echo Html::getInputName($post, 'title');

// post-title
echo Html::getInputId($post, 'title');

// mi primer post
echo Html::getAttributeValue($post, 'title');

// $post->authors[0]
echo Html::getAttributeValue($post, '[0]authors[0]');

En el ejemplo anterior, el primer argumento es el modelo y el segundo es un atributo de expresión. En su forma más
simple es su nombre de atributo pero podría ser un nombre de atributo prefijado y/o añadido como sufijo con los
indices de un array, esto se usa principalmente para mostrar inputs en formatos de tablas:

	[0]content se usa en campos de entrada de datos en formato de tablas para representar el atributo “content” para
el primer modelo del input en formato de tabla;

	dates[0] representa el primer elemento del array del atributo “dates”;

	[0]dates[0] representa el primer elemento del array del atributo “dates” para el primer modelo en formato de tabla.

Para obtener el nombre de atributo sin sufijos o prefijos se puede usar el siguiente código:

// dates
echo Html::getAttributeName('dates[0]');

Estilos y scripts

Existen dos métodos para generar etiquetas que envuelvan estilos y scripts incrustados (embebbed):

<?= Html::style('.danger { color: #f00; }') ?>

Genera

<style>.danger { color: #f00; }</style>

<?= Html::script('alert("Hello!");', ['defer' => true]);

Genera

<script defer>alert("Hello!");</script>

Si se quiere enlazar un estilo externo desde un archivo CSS:

<?= Html::cssFile('@web/css/ie5.css', ['condition' => 'IE 5']) ?>

genera

<!--[if IE 5]>
 <link href="http://example.com/css/ie5.css" />
<![endif]-->

El primer argumento es la URL. El segundo es un array de opciones. Adicionalmente, para regular las opciones se puede
especificar:

	condition para envolver <link con los comentarios condicionales con condiciones especificas. Esperamos que sean
necesarios los comentarios condicionales ;)

	noscript se puede establecer como true para envolver <link con la etiqueta <noscript> por lo que el sólo se
incluirá si el navegador no soporta JavaScript o si lo ha deshabilitado el usuario.

Para enlazar un archivo JavaScript:

<?= Html::jsFile('@web/js/main.js') ?>

Es igual que con las CSS, el primer argumento especifica el enlace al fichero que se quiere incluir. Las opciones se
pueden pasar como segundo argumento. En las opciones se puede especificar condition del mismo modo que se puede usar
para cssFile.

Enlaces

Existe un método para generar hipervínculos a conveniencia:

<?= Html::a('Profile', ['user/view', 'id' => $id], ['class' => 'profile-link']) ?>

El primer argumento es el título. No está codificado por lo que si se usan datos enviados por el usuario se tienen que
codificar usando Html::encode(). El segundo argumento es el que se introducirá en href de la etiqueta <a. Se
puede consultar Url::to() para obtener más detalles de los valores que acepta. El tercer argumento es
un array de las propiedades de la etiqueta.

Si se requiere generar enlaces de tipo mailto se puede usar el siguiente código:

<?= Html::mailto('Contact us', 'admin@example.com') ?>

Imagenes

Para generar una etiqueta de tipo imagen se puede usar el siguiente ejemplo:

<?= Html::img('@web/images/logo.png', ['alt' => 'My logo']) ?>

genera

Aparte de los alias el primer argumento puede aceptar rutas, parámetros y URLs. Del mismo modo
que Url::to().

Listas

Las listas desordenadas se puede generar como se muestra a continuación:

<?= Html::ul($posts, ['item' => function($item, $index) {
 return Html::tag(
 'li',
 $this->render('post', ['item' => $item]),
 ['class' => 'post']
);
}]) ?>

Para generar listas ordenadas se puede usar Html::ol() en su lugar.

 Helpers

Helpers

Note: Esta sección está en desarrollo.

Yii ofrece muchas clases que ayudan a simplificar las tareas comunes de codificación, como manipulación de string o array,
generación de código HTML, y más. Estas clases helper están organizadas bajo el namespace yii\helpers y
son todo clases estáticas (lo que significa que sólo contienen propiedades y métodos estáticos y no deben ser instanciadas).

Puedes usar una clase helper directamente llamando a uno de sus métodos estáticos, como a continuación:

use yii\helpers\Html;

echo Html::encode('Test > test');

Note: Para soportar la personalización de clases helper, Yii separa cada clase helper del núcleo
en dos clases: una clase base (ej. BaseArrayHelper) y una clase concreta (ej. ArrayHelper).
Cuando uses un helper, deberías sólo usar la versión concreta y nunca usar la clase base.

Clases Helper del núcleo

Las siguientes clases helper del núcleo son proporcionadas en los releases de Yii:

	ArrayHelper

	Console

	FileHelper

	Html

	HtmlPurifier

	Image

	Inflector

	Json

	Markdown

	Security

	StringHelper

	Url

	VarDumper

Personalizando Las Clases Helper

Para personalizar una clase helper del núcleo (ej. [[yii\helpers\ArrayHelper]]), deberías crear una nueva clase extendiendo
de los helpers correspondientes a la clase base (ej. [[yii\helpers\BaseArrayHelper]]), incluyendo su namespace. Esta clase
será creada para remplazar la implementación original del framework.

El siguiente ejemplo muestra como personalizar el método [[yii\helpers\ArrayHelper::merge()|merge()]] de la clase
[[yii\helpers\ArrayHelper]]:

<?php

namespace yii\helpers;

class ArrayHelper extends BaseArrayHelper
{
 public static function merge($a, $b)
 {
 // tu implementación personalizada
 }
}

Guarda tu clase en un fichero nombrado ArrayHelper.php. El fichero puede estar en cualquier directorio, por ejemplo @app/components.

A continuación, en tu script de entrada de la aplicación, añade las siguientes lineas de código
después de incluir el fichero yii.php para decirle a la clase autoloader de Yii que cargue tu
clase personalizada en vez de la clase helper original del framework:

Yii::$classMap['yii\helpers\ArrayHelper'] = '@app/components/ArrayHelper.php';

Nota que la personalización de clases helper sólo es útil si quieres cambiar el comportamiento de una función
existente de los helpers. Si quieres añadir funciones adicionales para usar en tu aplicación puedes mejor crear un helper
por separado para eso.

 Clase Auxiliar URL (URL Helper)

Clase Auxiliar URL (URL Helper)

La clase auxiliar URL proporciona un conjunto de métodos estáticos para gestionar URLs.

Obtener URLs comúnes

Se pueden usar dos métodos para obtener URLs comunes: URL de inicio (home URL) y URL base (base URL) de la petición
(request) actual. Para obtener la URL de inicio se puede usar el siguiente código:

$relativeHomeUrl = Url::home();
$absoluteHomeUrl = Url::home(true);
$httpsAbsoluteHomeUrl = Url::home('https');

Si no se pasan parámetros, la URL generada es relativa. Se puede pasar truepara obtener la URL absoluta del
esquema actual o especificar el esquema explícitamente (https, http).

Para obtener la URL base de la petición actual, se puede usar el siguiente código:

$relativeBaseUrl = Url::base();
$absoluteBaseUrl = Url::base(true);
$httpsAbsoluteBaseUrl = Url::base('https');

El único parámetro del método funciona exactamente igual que para Url::home().

Creación de URLs

Para crear una URL para una ruta determinada se puede usar Url::toRoute(). El método utiliza [[\yii\web\UrlManager]]
para crear la URL:

$url = Url::toRoute(['product/view', 'id' => 42]);

Se puede especificar la ruta como una cadena de texto, ej. site/index. También se puede usar un array si se
quieren especificar parámetros para la URL que se esta generando. El formato del array debe ser:

// genera: /index.php?r=site%2Findex¶m1=value1¶m2=value2
['site/index', 'param1' => 'value1', 'param2' => 'value2']

Si se quiere crear una URL con un enlace, se puede usar el formato de array con el parámetro #. Por ejemplo,

// genera: /index.php?r=site/index¶m1=value1#name
['site/index', 'param1' => 'value1', '#' => 'name']

Una ruta puede ser absoluta o relativa. Una ruta absoluta tiene una barra al principio (ej. /site/index), mientras que una ruta relativa
no la tiene (ej. site/index o index). Una ruta relativa se convertirá en una ruta absoluta siguiendo las siguientes reglas:

	Si la ruta es una cadena vacía, se usará la [[\yii\web\Controller::route|route]] actual;

	Si la ruta no contiene barras (ej. index), se considerará que es el ID de una acción del controlador actual y
se antepondrá con [[\yii\web\Controller::uniqueId]];

	Si la ruta no tiene barra inicial (ej. site/index), se considerará que es una ruta relativa del modulo actual y
se le antepondrá el [[\yii\base\Module::uniqueId|uniqueId]] del modulo.

Desde la versión 2.0.2, puedes especificar una ruta en términos de alias. Si este es el caso,
el alias será convertido primero en la ruta real, la cual será entonces transformada en una ruta absoluta de acuerdo
a las reglas mostradas arriba.

A continuación se muestran varios ejemplos del uso de este método:

// /index.php?r=site%2Findex
echo Url::toRoute('site/index');

// /index.php?r=site%2Findex&src=ref1#name
echo Url::toRoute(['site/index', 'src' => 'ref1', '#' => 'name']);

// /index.php?r=post%2Fedit&id=100 asume que el alias "@postEdit" se definió como "post/edit"
echo Url::toRoute(['@postEdit', 'id' => 100]);

// http://www.example.com/index.php?r=site%2Findex
echo Url::toRoute('site/index', true);

// https://www.example.com/index.php?r=site%2Findex
echo Url::toRoute('site/index', 'https');

El otro método Url::to() es muy similar a [[toRoute()]]. La única diferencia es que este método requiere que la ruta
especificada sea un array. Si se pasa una cadena de texto, se tratara como una URL.

El primer argumento puede ser:

	un array: se llamará a [[toRoute()]] para generar la URL. Por ejemplo: ['site/index'],
['post/index', 'page' => 2]. Se puede revisar [[toRoute()]] para obtener más detalles acerca de como especificar
una ruta.

	una cadena que empiece por @: se tratará como un alias, y se devolverá la cadena correspondiente asociada a este
alias.

	una cadena vacía: se devolverá la URL de la petición actual;

	una cadena de texto: se devolverá sin alteraciones.

Cuando se especifique $schema (tanto una cadena de text como true), se devolverá una URL con información del host
(obtenida mediante [[\yii\web\UrlManager::hostInfo]]). Si $url ya es una URL absoluta, su esquema se reemplazará con
el especificado.

A continuación se muestran algunos ejemplos de uso:

// /index.php?r=site%2Findex
echo Url::to(['site/index']);

// /index.php?r=site%2Findex&src=ref1#name
echo Url::to(['site/index', 'src' => 'ref1', '#' => 'name']);

// /index.php?r=post%2Fedit&id=100 asume que el alias "@postEdit" se definió como "post/edit"
echo Url::to(['@postEdit', 'id' => 100]);

// the currently requested URL
echo Url::to();

// /images/logo.gif
echo Url::to('@web/images/logo.gif');

// images/logo.gif
echo Url::to('images/logo.gif');

// http://www.example.com/images/logo.gif
echo Url::to('@web/images/logo.gif', true);

// https://www.example.com/images/logo.gif
echo Url::to('@web/images/logo.gif', 'https');

Desde la versión 2.0.3, puedes utilizar [[yii\helpers\Url::current()]] para crear una URL a partir de la ruta
solicitada y los parámetros GET. Puedes modificar o eliminar algunos de los parámetros GET, o también agregar nuevos
pasando un parámetro $params al método. Por ejemplo,

// asume que $_GET = ['id' => 123, 'src' => 'google'], la ruta actual es "post/view"

// /index.php?r=post%2Fview&id=123&src=google
echo Url::current();

// /index.php?r=post%2Fview&id=123
echo Url::current(['src' => null]);
// /index.php?r=post%2Fview&id=100&src=google
echo Url::current(['id' => 100]);

Recordar URLs

Hay casos en que se necesita recordar la URL y después usarla durante el procesamiento de una de las peticiones
secuenciales. Se puede logar de la siguiente manera:

// Recuerda la URL actual
Url::remember();

// Recuerda la URL especificada. Revisar Url::to() para ver formatos de argumentos.
Url::remember(['product/view', 'id' => 42]);

// Recuerda la URL especificada con un nombre asignado
Url::remember(['product/view', 'id' => 42], 'product');

En la siguiente petición se puede obtener la URL memorizada de la siguiente manera:

$url = Url::previous();
$productUrl = Url::previous('product');

Chequear URLs relativas

Para descubrir si una URL es relativa, es decir, que no contenga información del host, se puede utilizar el siguiente código:

$isRelative = Url::isRelative('test/it');

 Subir Archivos

Subir Archivos

Subir archivos en Yii es normalmente realizado con la ayuda de [[yii\web\UploadedFile]], que encapsula cada archivo subido
en un objeto UploadedFile. Combinado con [[yii\widgets\ActiveForm]] y modelos,
puedes fácilmente implementar un mecanismo seguro de subida de archivos.

Crear Modelos

Al igual que al trabajar con entradas de texto plano, para subir un archivo debes crear una clase de modelo y utilizar un atributo
de dicho modelo para mantener la instancia del archivo subido. Debes también declarar una regla para validar la subida del archivo.
Por ejemplo,

namespace app\models;

use yii\base\Model;
use yii\web\UploadedFile;

class UploadForm extends Model
{
 /**
 * @var UploadedFile
 */
 public $imageFile;

 public function rules()
 {
 return [
 [['imageFile'], 'file', 'skipOnEmpty' => false, 'extensions' => 'png, jpg'],
];
 }

 public function upload()
 {
 if ($this->validate()) {
 $this->imageFile->saveAs('uploads/' . $this->imageFile->baseName . '.' . $this->imageFile->extension);
 return true;
 } else {
 return false;
 }
 }
}

En el código anterior, el atributo imageFile es utilizado para mantener una instancia del archivo subido. Este está asociado con
una regla de validación file, que utiliza [[yii\validators\FileValidator]] para asegurarse que el archivo a subir tenga extensión png o jpg.
El método upload() realizará la validación y guardará el archivo subido en el servidor.

El validador file te permite chequear las extensiones, el tamaño, el tipo MIME, etc. Por favor consulta
la sección Validadores del Framework para más detalles.

Tip: Si estás subiendo una imagen, podrías considerar el utilizar el validador image. El validador image es
implementado a través de [[yii\validators\ImageValidator]], que verifica que un atributo haya recibido una imagen válida
que pueda ser tanto guardada como procesada utilizando la Extensión Imagine [https://github.com/yiisoft/yii2-imagine].

Renderizar Campos de Subida de Archivos

A continuación, crea un campo de subida de archivo en la vista:

<?php
use yii\widgets\ActiveForm;
?>

<?php $form = ActiveForm::begin(['options' => ['enctype' => 'multipart/form-data']]) ?>

 <?= $form->field($model, 'imageFile')->fileInput() ?>

 <button>Enviar</button>

<?php ActiveForm::end() ?>

Es importante recordad que agregues la opción enctype al formulario para que el archivo pueda ser subido apropiadamente.
La llamada a fileInput() renderizará un tag <input type="file"> que le permitirá al usuario seleccionar el archivo a subir.

Tip: desde la versión 2.0.8, [[yii\widgets\ActiveField::fileInput|fileInput]] agrega la opción enctype al formulario
automáticamente cuando se utiliza una campo de subida de archivo.

Uniendo Todo

Ahora, en una acción del controlador, escribe el código que una el modelo y la vista para implementar la subida de archivos:

namespace app\controllers;

use Yii;
use yii\web\Controller;
use app\models\UploadForm;
use yii\web\UploadedFile;

class SiteController extends Controller
{
 public function actionUpload()
 {
 $model = new UploadForm();

 if (Yii::$app->request->isPost) {
 $model->imageFile = UploadedFile::getInstance($model, 'imageFile');
 if ($model->upload()) {
 // el archivo se subió exitosamente
 return;
 }
 }

 return $this->render('upload', ['model' => $model]);
 }
}

En el código anterior, cuando se envía el formulario, el método [[yii\web\UploadedFile::getInstance()]] es llamado
para representar el archivo subido como una instancia de UploadedFile. Entonces dependemos de la validación del modelo
para asegurarnos que el archivo subido es válido y entonces subirlo al servidor.

Uploading Multiple Files

También puedes subir varios archivos a la vez, con algunos ajustes en el código de las subsecciones previas.

Primero debes ajustar la clase del modelo, agregando la opción maxFiles en la regla de validación file para limitar
el número máximo de archivos a subir. Definir maxFiles como 0 significa que no hay límite en el número de archivos
a subir simultáneamente. El número máximo de archivos permitidos para subir simultáneamente está también limitado
por la directiva PHP max_file_uploads [http://php.net/manual/en/ini.core.php#ini.max-file-uploads],
cuyo valor por defecto es 20. El método upload() debería también ser modificado para guardar los archivos uno a uno.

namespace app\models;

use yii\base\Model;
use yii\web\UploadedFile;

class UploadForm extends Model
{
 /**
 * @var UploadedFile[]
 */
 public $imageFiles;

 public function rules()
 {
 return [
 [['imageFiles'], 'file', 'skipOnEmpty' => false, 'extensions' => 'png, jpg', 'maxFiles' => 4],
];
 }

 public function upload()
 {
 if ($this->validate()) {
 foreach ($this->imageFiles as $file) {
 $file->saveAs('uploads/' . $file->baseName . '.' . $file->extension);
 }
 return true;
 } else {
 return false;
 }
 }
}

En el archivo de la vista, debes agregar la opción multiple en la llamada a fileInput() de manera que el campo
pueda recibir varios archivos:

<?php
use yii\widgets\ActiveForm;
?>

<?php $form = ActiveForm::begin(['options' => ['enctype' => 'multipart/form-data']]) ?>

 <?= $form->field($model, 'imageFiles[]')->fileInput(['multiple' => true, 'accept' => 'image/*']) ?>

 <button>Enviar</button>

<?php ActiveForm::end() ?>

Y finalmente en la acción del controlador, debes llamar UploadedFile::getInstances() en vez de
UploadedFile::getInstance() para asignar un array de instancias UploadedFile a UploadForm::imageFiles.

namespace app\controllers;

use Yii;
use yii\web\Controller;
use app\models\UploadForm;
use yii\web\UploadedFile;

class SiteController extends Controller
{
 public function actionUpload()
 {
 $model = new UploadForm();

 if (Yii::$app->request->isPost) {
 $model->imageFiles = UploadedFile::getInstances($model, 'imageFiles');
 if ($model->upload()) {
 // el archivo fue subido exitosamente
 return;
 }
 }

 return $this->render('upload', ['model' => $model]);
 }
}

 Obtención de datos para los modelos de múltiples

Obtención de datos para los modelos de múltiples

Cuando se trata de algunos datos complejos, es posible que puede que tenga que utilizar varios modelos diferentes para recopilar
la entrada del usuario. Por ejemplo, suponiendo que la información de inicio de sesión del usuario se almacena en la tabla user,
mientras que el perfil de usuario la información se almacena en la tabla Profile, es posible que desee para recoger los datos
de entrada sobre un usuario a través de un modelo User y un modelo Profile. Con el modelo de Yii y apoyo formulario,
puede solucionar este problema de una manera que no es mucho diferente de la manipulación de un solo modelo.

En lo que sigue, vamos a mostrar cómo se puede crear un formulario que permitirá recoger datos tanto para los modelos User y
Profile.

En primer lugar, la acción del controlador para la recogida de los datos del usuario y del perfil se puede escribir de la
siguiente manera,

namespace app\controllers;

use Yii;
use yii\base\Model;
use yii\web\Controller;
use yii\web\NotFoundHttpException;
use app\models\User;
use app\models\Profile;

class UserController extends Controller
{
 public function actionUpdate($id)
 {
 $user = User::findOne($id);
 if (!$user) {
 throw new NotFoundHttpException("The user was not found.");
 }

 $profile = Profile::findOne($user->profile_id);

 if (!$profile) {
 throw new NotFoundHttpException("The user has no profile.");
 }

 $user->scenario = 'update';
 $profile->scenario = 'update';

 if ($user->load(Yii::$app->request->post()) && $profile->load(Yii::$app->request->post())) {
 $isValid = $user->validate();
 $isValid = $profile->validate() && $isValid;
 if ($isValid) {
 $user->save(false);
 $profile->save(false);
 return $this->redirect(['user/view', 'id' => $id]);
 }
 }

 return $this->render('update', [
 'user' => $user,
 'profile' => $profile,
]);
 }
}

En la acción update, primero cargamos los modelos User y Profile que se actualicen desde la base de datos. Luego llamamos
[[yii\base\Model::load()]] para llenar estos dos modelos con la entrada del usuario. Si tiene éxito, se validará
los dos modelos y guardarlos. De lo contrario vamos a renderizar la vista update que tiene el siguiente contenido:

<?php
use yii\helpers\Html;
use yii\widgets\ActiveForm;

$form = ActiveForm::begin([
 'id' => 'user-update-form',
 'options' => ['class' => 'form-horizontal'],
]) ?>
 <?= $form->field($user, 'username') ?>

 ...other input fields...

 <?= $form->field($profile, 'website') ?>

 <?= Html::submitButton('Update', ['class' => 'btn btn-primary']) ?>
<?php ActiveForm::end() ?>

Como se puede ver, en el update vista que haría que los campos de entrada utilizando dos modelos User y Profile.

 Validación de Entrada

Validación de Entrada

Como regla básica, nunca debes confiar en los datos recibidos de un usuario final y deberías validarlo siempre
antes de ponerlo en uso.

Dado un modelo poblado con entradas de usuarios, puedes validar esas entradas llamando al
método [[yii\base\Model::validate()]]. Dicho método devolverá un valor booleano indicando si la validación
tuvo éxito o no. En caso de que no, puedes obtener los mensajes de error de la propiedad [[yii\base\Model::errors]]. Por ejemplo,

$model = new \app\models\ContactForm();

// poblar los atributos del modelo desde la entrada del usuario
$model->load(\Yii::$app->request->post());
// lo que es equivalente a:
// $model->attributes = \Yii::$app->request->post('ContactForm');

if ($model->validate()) {
 // toda la entrada es válida
} else {
 // la validación falló: $errors es un array que contienen los mensajes de error
 $errors = $model->errors;
}

Declarar Reglas

Para hacer que validate() realmente funcione, debes declarar reglas de validación para los atributos que planeas validar.
Esto debería hacerse sobrescribiendo el método [[yii\base\Model::rules()]]. El siguiente ejemplo muestra cómo
son declaradas las reglas de validación para el modelo ContactForm:

public function rules()
{
 return [
 // los atributos name, email, subject y body son obligatorios
 [['name', 'email', 'subject', 'body'], 'required'],

 // el atributo email debe ser una dirección de email válida
 ['email', 'email'],
];
}

El método [[yii\base\Model::rules()|rules()]] debe devolver un array de reglas, la cual cada una
tiene el siguiente formato:

[
 // requerido, especifica qué atributos deben ser validados por esta regla.
 // Para un sólo atributo, puedes utilizar su nombre directamente
 // sin tenerlo dentro de un array
 ['attribute1', 'attribute2', ...],

 // requerido, especifica de qué tipo es la regla.
 // Puede ser un nombre de clase, un alias de validador, o el nombre de un método de validación
 'validator',

 // opcional, especifica en qué escenario/s esta regla debe aplicarse
 // si no se especifica, significa que la regla se aplica en todos los escenarios
 // Puedes también configurar la opción "except" en caso de que quieras aplicar la regla
 // en todos los escenarios salvo los listados
 'on' => ['scenario1', 'scenario2', ...],

 // opcional, especifica atributos adicionales para el objeto validador
 'property1' => 'value1', 'property2' => 'value2', ...
]

Por cada regla debes especificar al menos a cuáles atributos aplica la regla y cuál es el tipo de la regla.
Puedes especificar el tipo de regla de las siguientes maneras:

	el alias de un validador propio del framework, tal como required, in, date, etc. Por favor consulta
Validadores del núcleo para la lista completa de todos los validadores incluidos.

	el nombre de un método de validación en la clase del modelo, o una función anónima. Consulta la
subsección Validadores en Línea para más detalles.

	el nombre completo de una clase de validador. Por favor consulta la subsección Validadores Independientes
para más detalles.

Una regla puede ser utilizada para validar uno o varios atributos, y un atributo puede ser validado por una o varias reglas.
Una regla puede ser aplicada en ciertos escenarios con tan sólo especificando la opción on.
Si no especificas una opción on, significa que la regla se aplicará en todos los escenarios.

Cuando el método validate() es llamado, este sigue los siguientes pasos para realiza la validación:

	Determina cuáles atributos deberían ser validados obteniendo la lista de atributos de [[yii\base\Model::scenarios()]]
utilizando el [[yii\base\Model::scenario|scenario]] actual. Estos atributos son llamados atributos activos.

	Determina cuáles reglas de validación deberían ser validados obteniendo la lista de reglas de [[yii\base\Model::rules()]]
utilizando el [[yii\base\Model::scenario|scenario]] actual. Estas reglas son llamadas reglas activas.

	Utiliza cada regla activa para validar cada atributo activo que esté asociado a la regla.
Las reglas de validación son evaluadas en el orden en que están listadas.

De acuerdo a los pasos de validación mostrados arriba, un atributo será validado si y sólo si
es un atributo activo declarado en scenarios() y está asociado a una o varias reglas activas
declaradas en rules().

Note: Es práctico darle nombre a las reglas, por ej:

public function rules()
{
 return [
 // ...
 'password' => [['password'], 'string', 'max' => 60],
];
}

Puedes utilizarlas en una subclase del modelo:

public function rules()
{
 $rules = parent::rules();
 unset($rules['password']);
 return $rules;
}

Personalizar Mensajes de Error

La mayoría de los validadores tienen mensajes de error por defecto que serán agregados al modelo siendo validado cuando sus atributos
fallan la validación. Por ejemplo, el validador [[yii\validators\RequiredValidator|required]] agregará
el mensaje “Username no puede estar vacío.” a un modelo cuando falla la validación del atributo username al utilizar esta regla.

Puedes especificar el mensaje de error de una regla especificado la propiedad message al declarar la regla,
como a continuación,

public function rules()
{
 return [
 ['username', 'required', 'message' => 'Por favor escoge un nombre de usuario.'],
];
}

Algunos validadores pueden soportar mensajes de error adicionales para describir más precisamente las causas
del fallo de validación. Por ejemplo, el validador [[yii\validators\NumberValidator|number]] soporta
[[yii\validators\NumberValidator::tooBig|tooBig]] y [[yii\validators\NumberValidator::tooSmall|tooSmall]]
para describir si el fallo de validación es porque el valor siendo validado es demasiado grande o demasiado pequeño, respectivamente.
Puedes configurar estos mensajes de error tal como cualquier otroa propiedad del validador en una regla de validación.

Eventos de Validación

Cuando el método [[yii\base\Model::validate()]] es llamado, este llamará a dos métodos que puedes sobrescribir para personalizar
el proceso de validación:

	[[yii\base\Model::beforeValidate()]]: la implementación por defecto lanzará un evento [[yii\base\Model::EVENT_BEFORE_VALIDATE]].
Puedes tanto sobrescribir este método o responder a este evento para realizar algún trabajo de pre procesamiento
(por ej. normalizar datos de entrada) antes de que ocurra la validación en sí. El método debe devolver un booleano que indique
si la validación debe continuar o no.

	[[yii\base\Model::afterValidate()]]: la implementación por defecto lanzará un evento [[yii\base\Model::EVENT_AFTER_VALIDATE]].
uedes tanto sobrescribir este método o responder a este evento para realizar algún trabajo de post procesamiento después
de completada la validación.

Validación Condicional

Para validar atributos sólo en determinadas condiciones, por ej. la validación de un atributo depende
del valor de otro atributo puedes utilizar la propiedad [[yii\validators\Validator::when|when]]
para definir la condición. Por ejemplo,

 ['state', 'required', 'when' => function($model) {
 return $model->country == 'USA';
 }]

La propiedad [[yii\validators\Validator::when|when]] toma un método invocable PHP con la siguiente firma:

/**
 * @param Model $model el modelo siendo validado
 * @param string $attribute al atributo siendo validado
 * @return bool si la regla debe ser aplicada o no
 */
function ($model, $attribute)

Si también necesitas soportar validación condicional del lado del cliente, debes configurar
la propiedad [[yii\validators\Validator::whenClient|whenClient]], que toma un string que representa una función JavaScript
cuyo valor de retorno determina si debe aplicarse la regla o no. Por ejemplo,

 ['state', 'required', 'when' => function ($model) {
 return $model->country == 'USA';
 }, 'whenClient' => "function (attribute, value) {
 return $('#country').val() == 'USA';
 }"]

Filtro de Datos

La entrada del usuario a menudo debe ser filtrada o pre procesada. Por ejemplo, podrías querer eliminar los espacions alrededor
de la entrada username. Puedes utilizar reglas de validación para lograrlo.

Los siguientes ejemplos muestran cómo eliminar esos espacios en la entrada y cómo transformar entradas vacías en null utilizando
los validadores del framework trim y default:

return [
 [['username', 'email'], 'trim'],
 [['username', 'email'], 'default'],
];

También puedes utilizar el validador más general filter para realizar filtros
de datos más complejos.

Como puedes ver, estas reglas de validación no validan la entrada realmente. En cambio, procesan los valores
y los guardan en el atributo siendo validado.

Manejando Entradas Vacías

Cuando los datos de entrada son enviados desde formularios HTML, a menudo necesitas asignar algunos valores por defecto a las entradas
si estas están vacías. Puedes hacerlo utilizando el validador default. Por ejemplo,

return [
 // convierte "username" y "email" en `null` si estos están vacíos
 [['username', 'email'], 'default'],

 // convierte "level" a 1 si está vacío
 ['level', 'default', 'value' => 1],
];

Por defecto, una entrada se considera vacía si su valor es un string vacío, un array vacío o null.
Puedes personalizar la lógica de detección de valores vacíos configurando la propiedad [[yii\validators\Validator::isEmpty]]
con una función PHP invocable. Por ejemplo,

 ['agree', 'required', 'isEmpty' => function ($value) {
 return empty($value);
 }]

Note: La mayoría de los validadores no manejan entradas vacías si su propiedad [[yii\validators\Validator::skipOnEmpty]] toma
el valor por defecto true. Estas serán simplemente salteadas durante la validación si sus atributos asociados reciben una entrada vacía.
Entre los validadores del framework, sólo captcha, default, filter,
required, y trim manejarán entradas vacías.

Validación Ad Hoc

A veces necesitas realizar validación ad hoc para valores que no están ligados a ningún modelo.

Si sólo necesitas realizar un tipo de validación (por ej: validar direcciones de email), podrías llamar
al método [[yii\validators\Validator::validate()|validate()]] de los validadores deseados, como a continuación:

$email = 'test@example.com';
$validator = new yii\validators\EmailValidator();

if ($validator->validate($email, $error)) {
 echo 'Email válido.';
} else {
 echo $error;
}

Note: No todos los validadores soportan este tipo de validación. Un ejemplo es el validador del framework unique,
que está diseñado para trabajar sólo con un modelo.

Si necesitas realizar varias validaciones contro varios valores, puedes utilizar [[yii\base\DynamicModel]],
que soporta declarar tanto los atributos como las reglas sobre la marcha. Su uso es como a continuación:

public function actionSearch($name, $email)
{
 $model = DynamicModel::validateData(compact('name', 'email'), [
 [['name', 'email'], 'string', 'max' => 128],
 ['email', 'email'],
]);

 if ($model->hasErrors()) {
 // validación fallida
 } else {
 // validación exitosa
 }
}

El método [[yii\base\DynamicModel::validateData()]] crea una instancia de DynamicModel, define los atributos
utilizando los datos provistos (name e email en este ejemplo), y entonces llama a [[yii\base\Model::validate()]]
con las reglas provistas.

Alternativamente, puedes utilizar la sintaxis más “clásica” para realizar la validación ad hoc:

public function actionSearch($name, $email)
{
 $model = new DynamicModel(compact('name', 'email'));
 $model->addRule(['name', 'email'], 'string', ['max' => 128])
 ->addRule('email', 'email')
 ->validate();

 if ($model->hasErrors()) {
 // validación fallida
 } else {
 // validación exitosa
 }
}

Después de la validación, puedes verificar si la validación tuvo éxito o no llamando al
método [[yii\base\DynamicModel::hasErrors()|hasErrors()]], obteniendo así los errores de validación de la
propiedad [[yii\base\DynamicModel::errors|errors]], como haces con un modelo normal.
Puedes también acceder a los atributos dinámicos definidos a través de la instancia del modelo, por ej.,
$model->name y $model->email.

Crear Validadores

Además de los validadores del framework incluidos en los lanzamientos de Yii, puedes también
crear tus propios validadores. Puedes crear validadores en línea o validadores independientes.

Validadores en Línea

Un validador en línea es uno definido en términos del método de un modelo o una función anónima. La firma
del método/función es:

/**
 * @param string $attribute el atributo siendo validado actualmente
 * @param mixed $params el valor de los "parámetros" dados en la regla
 */
function ($attribute, $params)

Si falla la validación de un atributo, el método/función debería llamar a [[yii\base\Model::addError()]] para guardar
el mensaje de error en el modelo de manera que pueda ser recuperado más tarde y presentado a los usuarios finales.

Debajo hay algunos ejemplos:

use yii\base\Model;

class MyForm extends Model
{
 public $country;
 public $token;

 public function rules()
 {
 return [
 // un validador en línea definido como el método del modelo validateCountry()
 ['country', 'validateCountry'],

 // un validador en línea definido como una función anónima
 ['token', function ($attribute, $params) {
 if (!ctype_alnum($this->$attribute)) {
 $this->addError($attribute, 'El token debe contener letras y dígitos.');
 }
 }],
];
 }

 public function validateCountry($attribute, $params)
 {
 if (!in_array($this->$attribute, ['USA', 'Web'])) {
 $this->addError($attribute, 'El país debe ser "USA" o "Web".');
 }
 }
}

Note: Por defecto, los validadores en línea no serán aplicados si sus atributos asociados reciben entradas vacías
o si alguna de sus reglas de validación ya falló. Si quieres asegurarte de que una regla siempre sea aplicada,
puedes configurar las reglas [[yii\validators\Validator::skipOnEmpty|skipOnEmpty]] y/o [[yii\validators\Validator::skipOnError|skipOnError]]
como false en las declaraciones de las reglas. Por ejemplo:

[
 ['country', 'validateCountry', 'skipOnEmpty' => false, 'skipOnError' => false],
]

Validadores Independientes

Un validador independiente es una clase que extiende de [[yii\validators\Validator]] o sus sub clases. Puedes implementar
su lógica de validación sobrescribiendo el método [[yii\validators\Validator::validateAttribute()]]. Si falla la validación
de un atributo, llama a [[yii\base\Model::addError()]] para guardar el mensaje de error en el modelo, tal como haces
con los validadores en línea.

Por ejemplo, el validador en línea de arriba podría ser movida a una nueva clase [[components/validators/CountryValidator]].

namespace app\components;

use yii\validators\Validator;

class CountryValidator extends Validator
{
 public function validateAttribute($model, $attribute)
 {
 if (!in_array($model->$attribute, ['USA', 'Web'])) {
 $this->addError($model, $attribute, 'El país debe ser "USA" o "Web".');
 }
 }
}

Si quieres que tu validador soporte la validación de un valor sin modelo, deberías también sobrescribir
el método[[yii\validators\Validator::validate()]]. Puedes también sobrescribir [[yii\validators\Validator::validateValue()]]
en vez de validateAttribute() y validate() porque por defecto los últimos dos métodos son implementados
llamando a validateValue().

Debajo hay un ejemplo de cómo podrías utilizar la clase del validador de arriba dentro de tu modelo.

namespace app\models;

use Yii;
use yii\base\Model;
use app\components\validators\CountryValidator;

class EntryForm extends Model
{
 public $name;
 public $email;
 public $country;

 public function rules()
 {
 return [
 [['name', 'email'], 'required'],
 ['country', CountryValidator::className()],
 ['email', 'email'],
];
 }
}

Validación del Lado del Cliente

La validación del lado del cliente basada en JavaScript es deseable cuando la entrada del usuario proviene de formularios HTML, dado que
permite a los usuarios encontrar errores más rápido y por lo tanto provee una mejor experiencia. Puedes utilizar o implementar
un validador que soporte validación del lado del cliente en adición a validación del lado del servidor.

Info: Si bien la validación del lado del cliente es deseable, no es una necesidad. Su principal propósito es proveer al usuario una mejor
experiencia. Al igual que datos de entrada que vienen del los usuarios finales, nunca deberías confiar en la validación del lado del cliente. Por esta razón,
deberías realizar siempre la validación del lado del servidor llamando a [[yii\base\Model::validate()]], como
se describió en las subsecciones previas.

Utilizar Validación del Lado del Cliente

Varios validadores del framework incluyen validación del lado del cliente. Todo lo que necesitas hacer
es solamente utilizar [[yii\widgets\ActiveForm]] para construir tus formularios HTML. Por ejemplo, LoginForm mostrado abajo declara dos
reglas: una utiliza el validador del framework required, el cual es soportado tanto en
lado del cliente como del servidor; y el otro usa el validador en línea validatePassword, que es sólo soportado de lado
del servidor.

namespace app\models;

use yii\base\Model;
use app\models\User;

class LoginForm extends Model
{
 public $username;
 public $password;

 public function rules()
 {
 return [
 // username y password son ambos requeridos
 [['username', 'password'], 'required'],

 // password es validado por validatePassword()
 ['password', 'validatePassword'],
];
 }

 public function validatePassword()
 {
 $user = User::findByUsername($this->username);

 if (!$user || !$user->validatePassword($this->password)) {
 $this->addError('password', 'Username o password incorrecto.');
 }
 }
}

El formulario HTML creado en el siguiente código contiene dos campos de entrada: username y password.
Si envias el formulario sin escribir nada, encontrarás que los mensajes de error requiriendo que
escribas algo aparecen sin que haya comunicación alguna con el servidor.

<?php $form = yii\widgets\ActiveForm::begin(); ?>
 <?= $form->field($model, 'username') ?>
 <?= $form->field($model, 'password')->passwordInput() ?>
 <?= Html::submitButton('Login') ?>
<?php yii\widgets\ActiveForm::end(); ?>

Detrás de escena, [[yii\widgets\ActiveForm]] leerá las reglas de validación declaradas en el modelo
y generará el código JavaScript apropiado para los validadores que soportan validación del lado del cliente. Cuando un usuario
cambia el valor de un campo o envia el formulario, se lanzará la validación JavaScript del lado del cliente.

Si quieres deshabilitar la validación del lado del cliente completamente, puedes configurar
la propiedad [[yii\widgets\ActiveForm::enableClientValidation]] como false. También puedes deshabilitar la validación
del lado del cliente de campos individuales configurando su propiedad [[yii\widgets\ActiveField::enableClientValidation]]
como false. Cuando enableClientValidation es configurado tanto a nivel de campo como a nivel de formulario,
tendrá prioridad la primera.

Implementar Validación del Lado del Cliente

Para crear validadores que soportan validación del lado del cliente, debes implementar
el método [[yii\validators\Validator::clientValidateAttribute()]], que devuelve una pieza de código JavaScript
que realiza dicha validación. Dentro del código JavaScript, puedes utilizar las siguientes
variables predefinidas:

	attribute: el nombre del atributo siendo validado.

	value: el valor siendo validado.

	messages: un array utilizado para contener los mensajes de error de validación para el atributo.

	deferred: un array con objetos diferidos puede ser insertado (explicado en la subsección siguiente).

En el siguiente ejemplo, creamos un StatusValidator que valida si la entrada es un status válido
contra datos de status existentes. El validador soporta tato tanto validación del lado del servidor como del lado del cliente.

namespace app\components;

use yii\validators\Validator;
use app\models\Status;

class StatusValidator extends Validator
{
 public function init()
 {
 parent::init();
 $this->message = 'Entrada de Status Inválida.';
 }

 public function validateAttribute($model, $attribute)
 {
 $value = $model->$attribute;
 if (!Status::find()->where(['id' => $value])->exists()) {
 $model->addError($attribute, $this->message);
 }
 }

 public function clientValidateAttribute($model, $attribute, $view)
 {
 $statuses = json_encode(Status::find()->select('id')->asArray()->column());
 $message = json_encode($this->message, JSON_UNESCAPED_SLASHES | JSON_UNESCAPED_UNICODE);
 return <<<JS
if ($.inArray(value, $statuses) === -1) {
 messages.push($message);
}
JS;
 }
}

Tip: El código de arriba muestra principalmente cómo soportar validación del lado del cliente. En la práctica,
puedes utilizar el validador del framework in para alcanzar el mismo objetivo. Puedes
escribir la regla de validación como a como a continuación:

[
 ['status', 'in', 'range' => Status::find()->select('id')->asArray()->column()],
]

Tip: Si necesitas trabajar con validación del lado del cliente manualmente, por ejemplo, agregar campos dinámicamente o realizar alguna lógica de UI,
consulta Trabajar con ActiveForm vía JavaScript [https://github.com/samdark/yii2-cookbook/blob/master/book/forms-activeform-js.md]
en el Yii 2.0 Cookbook.

Validación Diferida

Si necesitas realizar validación del lado del cliente asincrónica, puedes crear Objetos Diferidos [http://api.jquery.com/category/deferred-object/].
Por ejemplo, para realizar validación AJAX personalizada, puedes utilizar el siguiente código:

public function clientValidateAttribute($model, $attribute, $view)
{
 return <<<JS
 deferred.push($.get("/check", {value: value}).done(function(data) {
 if ('' !== data) {
 messages.push(data);
 }
 }));
JS;
}

Arriba, la variable deferred es provista por Yii, y es un array de Objetos Diferidos. El método $.get()
de jQuery crea un Objeto Diferido, el cual es insertado en el array deferred.

Puedes también crear un Objeto Diferito explícitamente y llamar a su método resolve() cuando la llamada asincrónica
tiene lugar. El siguiente ejemplo muestra cómo validar las dimensiones de un archivo de imagen del lado del cliente.

public function clientValidateAttribute($model, $attribute, $view)
{
 return <<<JS
 var def = $.Deferred();
 var img = new Image();
 img.onload = function() {
 if (this.width > 150) {
 messages.push('Imagen demasiado ancha!!');
 }
 def.resolve();
 }
 var reader = new FileReader();
 reader.onloadend = function() {
 img.src = reader.result;
 }
 reader.readAsDataURL(file);

 deferred.push(def);
JS;
}

Note: El método resolve() debe ser llamado después de que el atributo ha sido validado. De otra manera la validación
principal del formulario no será completada.

Por simplicidad, el array deferred está equipado con un método de atajo, add(), que automáticamente crea un
Objeto Diferido y lo agrega al array deferred. Utilizando este método, puedes simplificar el ejemplo de arriba de esta manera,

public function clientValidateAttribute($model, $attribute, $view)
{
 return <<<JS
 deferred.add(function(def) {
 var img = new Image();
 img.onload = function() {
 if (this.width > 150) {
 messages.push('Imagen demasiado ancha!!');
 }
 def.resolve();
 }
 var reader = new FileReader();
 reader.onloadend = function() {
 img.src = reader.result;
 }
 reader.readAsDataURL(file);
 });
JS;
}

Validación AJAX

Algunas validaciones sólo pueden realizarse del lado del servidor, debido a que sólo el servidor tiene la información necesaria.
Por ejemplo, para validar si un nombre de usuario es único o no, es necesario revisar la tabla de usuarios del lado del servidor.
Puedes utilizar validación basada en AJAX en este caso. Esta lanzará una petición AJAX de fondo para validar
la entrada mientras se mantiene la misma experiencia de usuario como en una validación del lado del cliente regular.

Para habilitar la validación AJAX individualmente un campo de entrada, configura la propiedad [[yii\widgets\ActiveField::enableAjaxValidation|enableAjaxValidation]]
de ese campo como true y especifica un único id de formulario:

use yii\widgets\ActiveForm;

$form = ActiveForm::begin([
 'id' => 'registration-form',
]);

echo $form->field($model, 'username', ['enableAjaxValidation' => true]);

// ...

ActiveForm::end();

Para habiliar la validación AJAX en el formulario entero, configura [[yii\widgets\ActiveForm::enableAjaxValidation|enableAjaxValidation]]
como true a nivel del formulario:

$form = ActiveForm::begin([
 'id' => 'contact-form',
 'enableAjaxValidation' => true,
]);

Note: Cuando la propiedad enableAjaxValidation es configurada tanto a nivel de campo como a nivel de formulario,
la primera tendrá prioridad.

Necesitas también preparar el servidor para que pueda manejar las peticiones AJAX.
Esto puede alcanzarse con una porción de código como la siguiente en las acciones del controlador:

if (Yii::$app->request->isAjax && $model->load(Yii::$app->request->post())) {
 Yii::$app->response->format = Response::FORMAT_JSON;
 return ActiveForm::validate($model);
}

El código de arriba chequeará si la petición actual es AJAX o no. Si lo es, responderá
esta petición ejecutando la validación y devolviendo los errores en formato JSON.

Info: Puedes también utilizar Validación Diferida para realizar validación AJAX.
De todos modos, la característica de validación AJAX descrita aquí es más sistemática y requiere menos esfuerzo de escritura de código.

Cuando tanto enableClientValidation como enableAjaxValidation son definidas como true, la petición de validación AJAX será lanzada
sólo después de una validación del lado del cliente exitosa.

 Actualizar desde Yii 1.1

Actualizar desde Yii 1.1

Existen muchas diferencias entre las versiones 1.1 y 2.0 de Yii ya que el framework fue completamente reescrito
en su segunda versión.
Como resultado, actualizar desde la versión 1.1 no es tan trivial como actualizar entre versiones menores. En esta
guía encontrarás las diferencias más grandes entre estas dos versiones.

Si no has utilizado Yii 1.1 antes, puedes saltarte con seguridad esta sección e ir directamente a “Comenzando con Yii”.

Es importante anotar que Yii 2.0 introduce más características de las que van a ser cubiertas en este resumen. Es altamente recomendado
que leas a través de toda la guía definitiva para aprender acerca de todas ellas. Hay muchas posibilidades de que algo que hayas desarrollado anteriormente para extender Yii, sea ahora parte del núcleo de la librería.

Instalación

Yii 2.0 adopta íntegramente Composer [https://getcomposer.org/], el administrador de paquetes de facto de PHP.
Tanto la instalación del núcleo del framework como las extensiones se manejan a través de Composer. Por favor consulta
la sección Comenzando con la Aplicación Básica para aprender a instalar Yii 2.0. Si quieres crear extensiones
o transformar extensiones de Yii 1.1 para que sean compatibles con Yii 2.0, consulta
la sección Creando Extensiones de la guía.

Requerimientos de PHP

Yii 2.0 requiere PHP 5.4 o mayor, lo que es un gran progreso ya que Yii 1.1 funcionaba con PHP 5.2.
Como resultado, hay muchas diferencias a nivel del lenguaje a las que deberías prestar atención.
Abajo hay un resumen de los mayores cambios en relación a PHP:

	Namespaces [http://php.net/manual/es/language.namespaces.php].

	Funciones anónimas [http://php.net/manual/es/functions.anonymous.php].

	La sintaxis corta de Arrays [...elementos...] es utilizada en vez de array(...elementos...).

	Etiquetas cortas de echo. Ahora en las vistas se usa <?=. Esto se puede utilizar desde PHP 5.4.

	SPL - Biblioteca estándar de PHP [http://php.net/manual/es/book.spl.php].

	Enlace estático en tiempo de ejecución [http://php.net/manual/es/language.oop5.late-static-bindings.php].

	Fecha y Hora [http://php.net/manual/es/book.datetime.php].

	Traits [http://php.net/manual/es/language.oop5.traits.php].

	intl [http://php.net/manual/es/book.intl.php]. Yii 2.0 utiliza la extensión intl de PHP
como soporte para internacionalización.

Namespace

El cambio más obvio en Yii 2.0 es el uso de namespaces. Casi todas las clases del núcleo
utilizan namespaces, ej., yii\web\Request. El prefijo “C” no se utiliza más en los nombre de clases.
El esquema de nombres sigue la estructura de directorios. Por ejemplo, yii\web\Request
indica que el archivo de la clase correspondiente web/Request.php está bajo el directorio de Yii framework.

(Puedes utilizar cualquier clase del núcleo sin necesidad de incluir el archivo que la contiene, gracias
al autoloader de Yii.)

Componentes y Objetos

Yii 2.0 parte la clase CComponent de 1.1 en dos clases: [[yii\base\BaseObject]] y [[yii\base\Component]].
La clase [[yii\base\BaseObject|BaseObject]] es una clase base que permite definir propiedades de object
a través de getters y setters. La clase [[yii\base\Component|Component]] extiende de [[yii\base\BaseObject|BaseObject]] y soporta
eventos y comportamientos.

Si tu clase no necesita utilizar las características de eventos o comportamientos, puedes considerar usar
[[yii\base\BaseObject|BaseObject]] como clase base. Esto es frecuente en el caso de que las clases que representan sean
estructuras de datos básicas.

Configuración de objetos

La clase [[yii\base\BaseObject|BaseObject]] introduce una manera uniforme de configurar objetos. Cualquier clase descendiente
de [[yii\base\BaseObject|BaseObject]] debería declarar su constructor (si fuera necesario) de la siguiente manera para que
puede ser adecuadamente configurado:

class MyClass extends \yii\base\BaseObject
{
 public function __construct($param1, $param2, $config = [])
 {
 // ... se aplica la inicialización antes de la configuración

 parent::__construct($config);
 }

 public function init()
 {
 parent::init();

 // ... se aplica la inicialización después de la configuración
 }
}

En el ejemplo de arriba, el último parámetro del constructor debe tomar un array de configuración que
contiene pares clave-valor para la inicialización de las propiedades al final del mismo.
Puedes sobrescribir el método [[yii\base\BaseObject::init()|init()]] para realizar el trabajo de inicialización
que debe ser hecho después de que la configuración haya sido aplicada.

Siguiendo esa convención, podrás crear y configurar nuevos objetos utilizando
un array de configuración:

$object = Yii::createObject([
 'class' => 'MyClass',
 'property1' => 'abc',
 'property2' => 'cde',
], [$param1, $param2]);

Se puede encontrar más detalles acerca del tema en la sección Configuración.

Eventos

En Yii 1, los eventos eran creados definiendo un método on (ej., onBeforeSave). En Yii 2, puedes utilizar cualquier nombre de evento.
Ahora puedes disparar un evento utilizando el método [[yii\base\Component::trigger()|trigger()]]:

$event = new \yii\base\Event;
$component->trigger($eventName, $event);

Para conectar un manejador a un evento, utiliza el método [[yii\base\Component::on()|on()]]:

$component->on($eventName, $handler);
// Para desconectar el manejador, utiliza:
// $component->off($eventName, $handler);

Hay muchas mejoras en lo que respecta a eventos. Para más detalles, consulta la sección Eventos.

Alias

Yii 2.0 extiende el uso de alias tanto para archivos/directorios como URLs. Yii 2.0 ahora requiere que cada
alias comience con el carácter @, para diferenciarlos de rutas o URLs normales.
Por ejemplo, el alias @yii corresponde al directorio donde Yii se encuentra instalado. Los alias
están soportados en la mayor parte del núcleo. Por ejemplo, [[yii\caching\FileCache::cachePath]] puede tomar tanto
una ruta de directorios normal como un alias.

Un alias está estrechamente relacionado con un namespace de la clase. Se recomienda definir un alias
por cada namespace raíz, y así poder utilizar el autoloader de Yii sin otra configuración.
Por ejemplo, debido a que @yii se refiere al directorio de instalación, una clase
como yii\web\Request puede ser auto-cargada. Si estás utilizando una librería de terceros,
como Zend Framework, puedes definir un alias @Zend que se refiera al directorio de instalación
de ese framework. Una vez realizado esto, Yii será capaz de auto-cargar cualquier clase de Zend Framework también.

Se puede encontrar más detalles del tema en la sección Alias.

Vistas

El cambio más significativo con respecto a las vistas en Yii 2 es que la variable especial $this dentro de una vista
ya no se refiere al controlador o widget actual. En vez de eso, $this ahora se refiere al objeto de la vista, un concepto nuevo
introducido en Yii 2.0. El objeto vista es del tipo [[yii\web\View]], que representa la parte de las vistas
en el patrón MVC. Si quieres acceder al controlador o al widget correspondiente desde la propia vista, puedes utilizar $this->context.

Para renderizar una vista parcial (partial) dentro de otra vista, se utiliza $this->render(), no $this->renderPartial(). La llamada a render además tiene que ser mostrada explícitamente a través de echo,
ya que el método render() devuelve el resultado de la renderización en vez de mostrarlo directamente. Por ejemplo:

echo $this->render('_item', ['item' => $item]);

Además de utilizar PHP como el lenguaje principal de plantillas (templates), Yii 2.0 está también equipado con soporte
oficial de otros dos motores de plantillas populares: Smarty y Twig. El motor de plantillas de Prado ya no está soportado.
Para utilizar esos motores, necesitas configurar el componente view de la aplicación, definiendo la propiedad [[yii\base\View::$renderers|View::$renderers]].
Por favor consulta la sección Motores de Plantillas
para más detalles.

Modelos

Yii 2.0 utiliza [[yii\base\Model]] como modelo base, algo similar a CModel en 1.1.
La clase CFormModel ha sido descartada por completo. Ahora, en Yii 2 debes extender de [[yii\base\Model]] para crear clases de modelos basados en formularios.

Yii 2.0 introduce un nuevo método llamado [[yii\base\Model::scenarios()|scenarios()]] para declarar escenarios soportados,
y para indicar bajo que escenario un atributo necesita ser validado, puede ser considerado seguro o no, etc. Por ejemplo:

public function scenarios()
{
 return [
 'backend' => ['email', 'role'],
 'frontend' => ['email', '!role'],
];
}

En el ejemplo anterior, se declaran dos escenarios: backend y frontend. Para el escenario backend son considerados seguros
ambos atributos, email y role, y pueden ser asignados masivamente. Para el escenario frontend, email puede ser asignado
masivamente mientras role no. Tanto email como role deben ser validados utilizando reglas (rules).

El método [[yii\base\Model::rules()|rules()]] aún es utilizado para declara reglas de validación.
Ten en cuenta que dada la introducción de [[yii\base\Model::scenarios()|scenarios()]], ya no existe el validador unsafe.

En la mayoría de los casos, no necesitas sobrescribir [[yii\base\Model::scenarios()|scenarios()]] si el método [[yii\base\Model::rules()|rules()]]
especifica completamente los escenarios que existirán, y si no hay necesidad de declarar atributos inseguros (unsafe).

Para aprender más detalles de modelos, consulta la sección Modelos.

Controladores

Yii 2.0 utiliza [[yii\web\Controller]] como controlador base, similar a CWebController en Yii 1.1.
[[yii\base\Action]] es la clase base para clases de acciones.

El impacto más obvio de estos cambios en tu código es que que cada acción del controlador debe devolver el contenido
que quieres mostrar en vez de mostrarlo directamente:

public function actionView($id)
{
 $model = \app\models\Post::findOne($id);
 if ($model) {
 return $this->render('view', ['model' => $model]);
 } else {
 throw new \yii\web\NotFoundHttpException;
 }
}

Por favor, consulta la sección Controladores para más detalles acerca de los controladores.

Widgets

Yii 2.0 utiliza [[yii\base\Widget]] como clase base de los widgets, similar a CWidget en Yii 1.1.

Para obtener mejor soporte del framework en IDEs, Yii 2.0 introduce una nueva sintaxis para utilizar widgets.
Los métodos estáticos [[yii\base\Widget::begin()|begin()]], [[yii\base\Widget::end()|end()]], y [[yii\base\Widget::widget()|widget()]]
fueron incorporados, y deben utilizarse así:

use yii\widgets\Menu;
use yii\widgets\ActiveForm;

// Ten en cuenta que debes pasar el resultado a "echo" para mostrarlo
echo Menu::widget(['items' => $items]);

// Pasando un array para inicializar las propiedades del objeto
$form = ActiveForm::begin([
 'options' => ['class' => 'form-horizontal'],
 'fieldConfig' => ['inputOptions' => ['class' => 'input-xlarge']],
]);
... campos del formulario aquí ...
ActiveForm::end();

Consulta la sección Widgets para más detalles.

Temas

Los temas funcionan completamente diferente en Yii 2.0. Ahora están basados en un mecanismo de mapeo de rutas,
que mapea la ruta de un archivo de la vista de origen a uno con un tema aplicado. Por ejemplo, si el mapeo de ruta de un tema es
['/web/views' => '/web/themes/basic'], entonces la versión con el tema aplicado del archivo
/web/views/site/index.php será /web/themes/basic/site/index.php. Por esta razón, ahora los temas pueden ser
aplicados a cualquier archivo de la vista, incluso una vista renderizada fuera del contexto de un controlador o widget.

Además, el componente CThemeManager ya no existe. En cambio, theme es una propiedad configurable del componente view
de la aplicación.

Consulta la sección Temas para más detalles.

Aplicaciones de Consola

Las aplicaciones de consola ahora están organizadas en controladores, tal como aplicaciones Web. Estos controladores
deben extender de [[yii\console\Controller]], similar a CConsoleCommand en 1.1.

Para correr un comando de consola, utiliza yii <ruta>, donde <ruta> se refiere a la ruta del controlador
(ej. sitemap/index). Los argumentos anónimos adicionales son pasados como parámetros al método de la acción correspondiente
del controlador, mientras que los argumentos especificados son pasados de acuerdo a las declaraciones en [[yii\console\Controller::options()]].

Yii 2.0 soporta la generación automática de información de ayuda de los comandos a través de los bloques de comentarios del archivo.

Por favor consulta la sección Comandos de Consola para más detalles.

I18N

Yii 2.0 remueve el formateador de fecha y números previamente incluido en favor del módulo de PHP PECL intl [http://pecl.php.net/package/intl].

La traducción de mensajes ahora es ejecutada vía el componente i18n de la aplicación.
Este componente maneja un grupo de mensajes origen, lo que te permite utilizar diferentes mensajes
basados en categorías.

Por favor, consulta la sección Internacionalización para más información.

Filtros de Acciones

Los filtros de acciones son implementados a través de comportamientos. Para definir un
nuevo filtro personalizado, se debe extender de [[yii\base\ActionFilter]]. Para utilizar el filtro, conecta la clase del filtro
al controlador como un comportamiento. Por ejemplo, para utilizar el filtro [[yii\filters\AccessControl]], deberías tener
el siguiente código en el controlador:

public function behaviors()
{
 return [
 'access' => [
 'class' => 'yii\filters\AccessControl',
 'rules' => [
 ['allow' => true, 'actions' => ['admin'], 'roles' => ['@']],
],
],
];
}

Consulta la sección Filtrando para una mayor información acerca del tema.

Assets

Yii 2.0 introduce un nuevo concepto llamado asset bundle que reemplaza el concepto de script package encontrado en Yii 1.1.

Un asset bundle es una colección de archivos assets (ej. archivos JavaScript, archivos CSS, imágenes, etc.) dentro de un directorio.
Cada asset bundle está representado por una clase que extiende de [[yii\web\AssetBundle]].
Al registrar un asset bundle a través de [[yii\web\AssetBundle::register()]], haces que los assets de dicho bundle sean accesibles
vía Web. A diferencia de Yii 1, la página que registra el bundle contendrá automáticamente las referencias a los archivos
JavaScript y CSS especificados en el bundle.

Por favor, consulta la sección Manejando Assets para más detalles.

Helpers

Yii 2.0 introduce muchos helpers estáticos comúnmente utilizados, incluyendo:

	[[yii\helpers\Html]]

	[[yii\helpers\ArrayHelper]]

	[[yii\helpers\StringHelper]]

	[[yii\helpers\FileHelper]]

	[[yii\helpers\Json]]

Por favor, consulta la sección Información General de Helpers para más detalles.

Formularios

Yii 2.0 introduce el concepto de campo (field) para construir formularios utilizando [[yii\widgets\ActiveForm]]. Un campo
es un contenedor que consiste en una etiqueta, un input, un mensaje de error y/o texto de ayuda.
Un campo es representado como un objeto [[yii\widgets\ActiveField|ActiveField]].
Utilizando estos campos, puedes crear formularios más legibles que antes:

<?php $form = yii\widgets\ActiveForm::begin(); ?>
 <?= $form->field($model, 'username') ?>
 <?= $form->field($model, 'password')->passwordInput() ?>
 <div class="form-group">
 <?= Html::submitButton('Login') ?>
 </div>
<?php yii\widgets\ActiveForm::end(); ?>

Por favor, consulta la sección Creando Formularios para más detalles.

Constructor de Consultas

En Yii 1.1, la generación de consultas a la base de datos estaba dividida en varias clases, incluyendo CDbCommand,
CDbCriteria, y CDbCommandBuilder. Yii 2.0 representa una consulta a la base de datos en términos de un objeto [[yii\db\Query|Query]]
que puede ser convertido en una declaración SQL con la ayuda de [[yii\db\QueryBuilder|QueryBuilder]] detrás de la escena.
Por ejemplo:

$query = new \yii\db\Query();
$query->select('id, name')
 ->from('user')
 ->limit(10);

$command = $query->createCommand();
$sql = $command->sql;
$rows = $command->queryAll();

Lo mejor de todo, dichos métodos de generación de consultas pueden ser también utilizados mientras se trabaja con Active Record.

Consulta la sección Constructor de Consultas para más detalles.

Active Record

Yii 2.0 introduce muchísimos cambios con respecto a Active Record. Los dos más obvios se relacionan a
la generación de consultas y al manejo de relaciones.

La clase de Yii 1.1 CDbCriteria es reemplazada por [[yii\db\ActiveQuery]] en Yii 2. Esta clase extiende de [[yii\db\Query]],
y por lo tanto hereda todos los métodos de generación de consultas.
Para comenzar a generar una consulta, llamas al método [[yii\db\ActiveRecord::find()]]:

// Recibe todos los clientes *activos* y ordenados por su ID:
$customers = Customer::find()
 ->where(['status' => $active])
 ->orderBy('id')
 ->all();

Para declarar una relación, simplemente define un método getter que devuelva un objeto [[yii\db\ActiveQuery|ActiveQuery]].
El nombre de la propiedad definida en el getter representa el nombre de la relación. Por ejemplo, el siguiente código declara
una relación orders (en Yii 1.1, las relaciones se declaraban centralmente en el método relations()):

class Customer extends \yii\db\ActiveRecord
{
 public function getOrders()
 {
 return $this->hasMany('Order', ['customer_id' => 'id']);
 }
}

Ahora puedes utilizar $customer->orders para acceder a las órdenes de la tabla relacionada. También puedes utilizar el siguiente
código para realizar una consulta relacional ‘sobre la marcha’ con una condición personalizada:

$orders = $customer->getOrders()->andWhere('status=1')->all();

Cuando se utiliza la carga temprana (eager loading) de la relación, Yii 2.0 lo hace diferente de 1.1. En particular, en 1.1 una declaración JOIN
sería creada para seleccionar tanto los registros de la tabla primaria como los relacionados. En Yii 2.0, dos declaraciones SQL son ejecutadas
sin utilizar un JOIN: la primera trae todos los modelos primarios, mientras que la segunda trae los registros relacionados
utilizando como condición la clave primaria de los primarios.

En vez de devolver objetos [[yii\db\ActiveRecord|ActiveRecord]], puedes conectar el método [[yii\db\ActiveQuery::asArray()|asArray()]]
mientras generas una consulta que devuelve un gran número de registros. Esto causará que el resultado de la consulta sea devuelto como
arrays, lo que puede reducir significativamente la necesidad de tiempo de CPU y memoria si el número de registros es grande.
Por ejemplo:

$customers = Customer::find()->asArray()->all();

Otro cambio es que ya no puedes definir valores por defecto a los atributos a través de propiedades públicas.
Si lo necesitaras, debes definirlo en el método init de la clase del registro en cuestión.

public function init()
{
 parent::init();
 $this->status = self::STATUS_NEW;
}

Anteriormente, solía haber algunos problemas al sobrescribir el constructor de una clase ActiveRecord en 1.1. Estos ya no están presentes en
Yii 2.0. Ten en cuenta que al agregar parámetros al constructor podrías llegar a tener que sobrescribir [[yii\db\ActiveRecord::instantiate()]].

Hay muchos otros cambios y mejoras con respecto a ActiveRecord. Por favor, consulta
la sección Active Record para más detalles.

Active Record Behaviors

En 2.0, hemos eliminado la clase del comportamiento base CActiveRecordBehavior. Si desea crear un comportamiento Active Record, usted tendrá que extender directamente de yii\base\Behavior. Si la clase de comportamiento debe responder a algunos eventos propios, usted tiene que sobrescribir los métodos events() como se muestra a continuación,

namespace app\components;

use yii\db\ActiveRecord;
use yii\base\Behavior;

class MyBehavior extends Behavior
{
 // ...

 public function events()
 {
 return [
 ActiveRecord::EVENT_BEFORE_VALIDATE => 'beforeValidate',
];
 }

 public function beforeValidate($event)
 {
 // ...
 }
}

User e IdentityInterface

La clase CWebUser de 1.1 es reemplazada por [[yii\web\User]], y la clase CUserIdentity ha dejado de existir.
En cambio, ahora debes implementar [[yii\web\IdentityInterface]] el cual es mucho más directo de usar.
El template de proyecto avanzado provee un ejemplo así.

Consulta las secciones Autenticación, Autorización, y Template de Proyecto Avanzado [https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide-es/README.md] para más detalles.

Manejo de URLs

El manejo de URLs en Yii 2 es similar al de 1.1. Una mejora mayor es que el manejador actual ahora soporta parámetros opcionales.
Por ejemplo, si tienes una regla declarada como a continuación, entonces coincidirá tanto con post/popular como con post/1/popular.
En 1.1, tendrías que haber creado dos reglas diferentes para obtener el mismo resultado

[
 'pattern' => 'post/<page:\d+>/<tag>',
 'route' => 'post/index',
 'defaults' => ['page' => 1],
]

Por favor, consulta la sección Documentación del Manejo de URLs para más detalles.

Un cambio importante en la convención de nombres para rutas es que los nombres en CamelCase de controladores
y acciones ahora son convertidos a minúsculas y cada palabra separada por un guión, por ejemplo el id del controlador
CamelCaseController será camel-case.
Consulta la sección acerca de IDs de controladores y IDs de acciones para más detalles.

Utilizar Yii 1.1 y 2.x juntos

Si tienes código en Yii 1.1 que quisieras utilizar junto con Yii 2.0, por favor consulta
la sección Utilizando Yii 1.1 y 2.0 juntos.

 ¿Qué es Yii?

¿Qué es Yii?

Yii es un framework de PHP de alto rendimiento, basado en componentes para desarrollar aplicaciones web
modernas en poco tiempo. El nombre Yii significa “simple y evolutivo” en chino. También se puede considerar como el acrónimo
de Yes It Is (que en inglés significa Sí, lo es)!

¿En qué es mejor Yii?

Yii es un framework genérico de programación web, lo que significa que se puede utilizar para desarrollar todo tipo de aplicaciones web en PHP.
Debido a su arquitectura basada en componentes y a su sofisticada compatibilidad de caché, es especialmente apropiado para el desarrollo
de aplicaciones de gran envergadura, como páginas web, foros, sistemas de gestión de contenidos (CMS), proyectos de comercio electrónico,
servicios web compatibles con la arquitectura REST y muchos más.

¿Cómo se compara Yii con otros frameworks?

Si estás ya familiarizado con otros framework, puedes apreciar como se compara Yii con ellos:

	Como la mayoría de los framework de PHP, Yii implementa el patrón de diseño MVC (Modelo-Vista-Controlador) y
promueve la organización de código basada en este patrón.

	La filosofía de Yii consiste en escribir el código de manera simple y elegante, sin sobrediseñar nunca por el
mero hecho de seguir un patrón de diseño determinado.

	Yii es un framework completo (full stack) que provee muchas características probadas y listas para usar, como los
constructores de consultas y la clase ActiveRecord para las bases de datos relacionales y NoSQL,
la compatibilidad con la arquitectura REST para desarrollar API, la compatibilidad de caché en varios niveles
y muchas más.

	Yii es extremadamente extensible. Puedes personalizar o reemplazar prácticamente cualquier pieza de código de base,
como se puede también aprovechar su sólida arquitectura de extensiones para utilizar o desarrollar extensiones distribuibles.

	El alto rendimiento es siempre la meta principal de Yii.

Yii no es un proyecto de un sola persona, detrás de Yii hay un sólido equipo de desarrollo [http://www.yiiframework.com/team/],
así como una gran comunidad en la que numerosos profesionales contribuyen constantemente a su desarrollo.
El equipo de desarrollo de Yii se mantiene atento a las últimas tendencias de desarrollo web, así como a las mejores prácticas y características de otros frameworks y proyectos.
Las buenas prácticas y características más relevantes de otros proyectos se incorporan regularmente a la base del framework y se exponen a través de interfaces simples y elegantes.

Versiones de Yii

Actualmente existen dos versiones principales de Yii: la versión 1.1 y la versión 2.0. Para la versión 1.1, que es de la generación anterior, actualmente solo se ofrece mantenimiento.
La versión 2.0 está completamente reescrita y adopta las últimas tecnologías y protocolos, incluidos Composer, PSR, namespaces, traits, etc.
La versión 2.0 representa la actual generación del framework y su desarrollo recibirá el principal esfuerzo en los próximos años.
Esta guía está basada principalmente en la versión 2.0. del framework.

Requisitos y Prerequisitos

Yii 2.0 requiere PHP 5.4.0 o una versión posterior y corre de mejor manera en la última versión de PHP 7. Se pueden encontrar requisitos más detallados de características individuales
ejecutando el script de comprobación incluido en cada lanzamiento de Yii.

Para utilizar Yii se requieren conocimientos básicos de programación orientada a objetos (POO), porque el framework Yii se basa íntegramente en esta tecnología.
Yii 2.0 hace uso también de las últimas características de PHP, como namespaces [http://www.php.net/manual/es/language.namespaces.php]
y traits [http://www.php.net/manual/es/language.oop5.traits.php]. Comprender estos conceptos te ayudará a entender mejor Yii 2.0.

 Trabajar con Scripts del Cliente

Trabajar con Scripts del Cliente

Note: Esta sección se encuentra en desarrollo.

Registrar scripts

Con el objeto [[yii\web\View]] puedes registrar scripts. Hay dos métodos dedicados a esto:
[[yii\web\View::registerJs()|registerJs()]] para scripts en línea
[[yii\web\View::registerJsFile()|registerJsFile()]] para scripts externos.
Los scripts en línea son útiles para configuración y código generado dinámicamente.
El método para agregarlos puede ser utilizado así:

$this->registerJs("var options = ".json_encode($options).";", View::POS_END, 'my-options');

El primer argumento es el código JS real que queremos insertar en la página. El segundo argumento
determina en qué parte de la página debería ser insertado el script. Los valores posibles son:

	[[yii\web\View::POS_HEAD|View::POS_HEAD]] para la sección head.

	[[yii\web\View::POS_BEGIN|View::POS_BEGIN]] justo después de la etiqueta <body>.

	[[yii\web\View::POS_END|View::POS_END]] justo antes de cerrar la etiqueta </body>.

	[[yii\web\View::POS_READY|View::POS_READY]] para ejecutar código en el evento ready del documento. Esto registrará [[yii\web\JqueryAsset|jQuery]] automáticamente.

	[[yii\web\View::POS_LOAD|View::POS_LOAD]] para ejecutar código en el evento load del documento. Esto registrará [[yii\web\JqueryAsset|jQuery]] automáticamente.

El último argumento es un ID único del script, utilizado para identificar el bloque de código y reemplazar otro con el mismo ID
en vez de agregar uno nuevo. En caso de no proveerlo, el código JS en sí será utilizado como ID.

Un script externo puede ser agregado de esta manera:

$this->registerJsFile('http://example.com/js/main.js', ['depends' => [\yii\web\JqueryAsset::className()]]);

Los argumentos para [[yii\web\View::registerJsFile()|registerJsFile()]] son similares a los de
[[yii\web\View::registerCssFile()|registerCssFile()]]. En el ejemplo anterior,
registramos el archivo main.js con dependencia de JqueryAsset. Esto quiere decir que el archivo main.js
será agregado DESPUÉS de jquery.js. Si esta especificación de dependencia, el orden relativo entre
main.js y jquery.js sería indefinido.

Como para [[yii\web\View::registerCssFile()|registerCssFile()]], es altamente recomendable que utilices
asset bundles para registrar archivos JS externos más que utilizar [[yii\web\View::registerJsFile()|registerJsFile()]].

Registrar asset bundles

Como mencionamos anteriormente, es preferible utilizar asset bundles en vez de usar CSS y JavaScript directamente. Puedes obtener detalles
de cómo definir asset bundles en la sección gestor de assets de esta guía. Utilizar asset bundles
ya definidos es muy sencillo:

\frontend\assets\AppAsset::register($this);

Registrar CSS

Puedes registrar CSS utilizando [[yii\web\View::registerCss()|registerCss()]] o [[yii\web\View::registerCssFile()|registerCssFile()]].
El primero registra un bloque de código CSS mientras que el segundo registra un archivo CSS externo. Por ejemplo,

$this->registerCss("body { background: #f00; }");

El código anterior dará como resultado que se agregue lo siguiente a la sección head de la página:

<style>
body { background: #f00; }
</style>

Si quieres especificar propiedades adicionales a la etiqueta style, pasa un array de claves-valores como tercer argumento.
Si necesitas asegurarte que haya sólo una etiqueta style utiliza el cuarto argumento como fue mencionado en las descripciones de meta etiquetas.

$this->registerCssFile("http://example.com/css/themes/black-and-white.css", [
 'depends' => [BootstrapAsset::className()],
 'media' => 'print',
], 'css-print-theme');

El código de arriba agregará un link al archivo CSS en la sección head de la página.

	El primer argumento especifica el archivo CSS a ser registrado.

	El segundo argumento especifica los atributos HTML de la etiqueta <link> resultante. La opción depends
es especialmente tratada. Esta especifica de qué asset bundles depende este archivo CSS. En este caso, depende
del asset bundle [[yii\bootstrap\BootstrapAsset|BootstrapAsset]]. Esto significa que el archivo CSS será agregado
después de los archivos CSS de [[yii\bootstrap\BootstrapAsset|BootstrapAsset]].

	El último argumento especifica un ID que identifica al archivo CSS. Si no es provisto, se utilizará la URL
del archivo.

Es altamente recomendable que ustilices asset bundles para registrar archivos CSS en vez de
utilizar [[yii\web\View::registerCssFile()|registerCssFile()]]. Utilizar asset bundles te permite combinar y comprimir
varios archivos CSS, deseable en sitios web de tráfico alto.

 Proveedores de datos

Proveedores de datos

En las secciones sobre paginación y ordenación se
describe como permitir a los usuarios finales elegir que se muestre una página de datos en
particular, y ordenar los datos por algunas columnas. Como la tarea de paginar y ordenar datos
es muy común, Yii proporciona un conjunto de clases proveedoras de datos para encapsularla.

Un proveedor de datos es una clase que implementa la interfaz [[yii\data\DataProviderInterface]].
Básicamente se encarga de obtener datos paginados y ordenados. Normalmente se usa junto con
widgets de datos para que los usuarios finales puedan paginar y
ordenar datos de forma interactiva.

Yii incluye las siguientes clases proveedoras de datos:

	[[yii\data\ActiveDataProvider]]: usa [[yii\db\Query]] o [[yii\db\ActiveQuery]] para consultar datos de bases de datos y devolverlos como arrays o instancias Active Record.

	[[yii\data\SqlDataProvider]]: ejecuta una sentencia SQL y devuelve los datos de la base de datos como arrays.

	[[yii\data\ArrayDataProvider]]: toma un array grande y devuelve una rodaja de él basándose en las especificaciones de paginación y ordenación.

El uso de todos estos proveedores de datos comparte el siguiente patrón común:

// Crear el proveedor de datos configurando sus propiedades de paginación y ordenación
$provider = new XyzDataProvider([
 'pagination' => [...],
 'sort' => [...],
]);

// Obtener los datos paginados y ordenados
$models = $provider->getModels();

// Obtener el número de elementos de la página actual
$count = $provider->getCount();

// Obtener el número total de elementos entre todas las páginas
$totalCount = $provider->getTotalCount();

Se puede especificar los comportamientos de paginación y ordenación de un proveedor de datos
configurando sus propiedades [[yii\data\BaseDataProvider::pagination|pagination]] y
[[yii\data\BaseDataProvider::sort|sort]], que corresponden a las configuraciones para
[[yii\data\Pagination]] y [[yii\data\Sort]] respectivamente. También se pueden configurar a
false para inhabilitar las funciones de paginación y/u ordenación.

Los widgets de datos, como [[yii\grid\GridView]], tienen una
propiedad llamada dataProvider que puede tomar una instancia de un proveedor de datos y
mostrar los datos que proporciona. Por ejemplo,

echo yii\grid\GridView::widget([
 'dataProvider' => $dataProvider,
]);

Estos proveedores de datos varían principalmente en la manera en que se especifica la fuente de
datos. En las siguientes secciones se explica el uso detallado de cada uno de estos proveedores
de datos.

Proveedor de datos activo

Para usar [[yii\data\ActiveDataProvider]], hay que configurar su propiedad
[[yii\data\ActiveDataProvider::query|query]].
Puede tomar un objeto [[yii\db\Query] o [[yii\db\ActiveQuery]]. En el primer caso, los datos
devueltos serán arrays. En el segundo, los datos devueltos pueden ser arrays o instancias de
Active Record. Por ejemplo:

use yii\data\ActiveDataProvider;

$query = Post::find()->where(['state_id' => 1]);

$provider = new ActiveDataProvider([
 'query' => $query,
 'pagination' => [
 'pageSize' => 10,
],
 'sort' => [
 'defaultOrder' => [
 'created_at' => SORT_DESC,
 'title' => SORT_ASC,
]
],
]);

// Devuelve un array de objetos Post
$posts = $provider->getModels();

En el ejemplo anterior, si $query se crea el siguiente código, el proveedor de datos
devolverá arrays en bruto.

use yii\db\Query;

$query = (new Query())->from('post')->where(['state' => 1]);

Note: Si una consulta ya tiene la cláusula orderBy, las nuevas instrucciones de ordenación
dadas por los usuarios finales (mediante la configuración de sort) se añadirán a la cláusula
orderBy previa. Las cláusulas limit y offset que pueda haber se sobrescribirán por la
petición de paginación de los usuarios finales (mediante la configuración de pagination).

Por omisión, [[yii\data\ActiveDataProvider]] usa el componente db de la aplicación como
conexión con la base de datos. Se puede indicar una conexión con base de datos diferente
configurando la propiedad [[yii\data\ActiveDataProvider::db]].

Proveedor de datos SQL

[[yii\data\SqlDataProvider]] funciona con una sentencia SQL en bruto, que se usa para obtener
los datos requeridos.
Basándose en las especificaciones de [[yii\data\SqlDataProvider::sort|sort]] y
[[yii\data\SqlDataProvider::pagination|pagination]], el proveedor ajustará las cláusulas
ORDER BY y LIMIT de la sentencia SQL acordemente para obtener sólo la página de datos
solicitados en el orden deseado.

Para usar [[yii\data\SqlDataProvider]], hay que especificar las propiedades
[[yii\data\SqlDataProvider::sql|sql]] y [yii\data\SqlDataProvider::totalCount|totalCount]].
Por ejemplo:

use yii\data\SqlDataProvider;

$count = Yii::$app->db->createCommand('
 SELECT COUNT(*) FROM post WHERE status=:status
', [':status' => 1])->queryScalar();

$provider = new SqlDataProvider([
 'sql' => 'SELECT * FROM post WHERE status=:status',
 'params' => [':status' => 1],
 'totalCount' => $count,
 'pagination' => [
 'pageSize' => 10,
],
 'sort' => [
 'attributes' => [
 'title',
 'view_count',
 'created_at',
],
],
]);

// Devuelve un array de filas de datos
$models = $provider->getModels();

Info: La propiedad [[yii\data\SqlDataProvider::totalCount|totalCount]] se requiere sólo si se
necesita paginar los datos. Esto es porque el proveedor modificará la sentencia SQL
especificada vía [[yii\data\SqlDataProvider::sql|sql]] para que devuelva sólo la pagina de
datos solicitada. El proveedor sigue necesitando saber el número total de elementos de datos
para calcular correctamente el número de páginas.

Proveedor de datos de arrays

Se recomienda usar [[yii\data\ArrayDataProvider]] cuando se trabaja con un array grande.
El proveedor permite devolver una página de los datos del array ordenados por una o varias
columnas. Para usar [[yii\data\ArrayDataProvider]], hay que especificar la propiedad
[[yii\data\ArrayDataProvider::allModels|allModels]] como el array grande. Los elementos
del array grande pueden ser arrays asociativos (por ejemplo resultados de consultas de
DAO u objetos (por ejemplo instancias de Active Record.
Por ejemplo:

use yii\data\ArrayDataProvider;

$data = [
 ['id' => 1, 'name' => 'name 1', ...],
 ['id' => 2, 'name' => 'name 2', ...],
 ...
 ['id' => 100, 'name' => 'name 100', ...],
];

$provider = new ArrayDataProvider([
 'allModels' => $data,
 'pagination' => [
 'pageSize' => 10,
],
 'sort' => [
 'attributes' => ['id', 'name'],
],
]);

// Obtener las filas de la página solicitada
$rows = $provider->getModels();

Note: En comparación con Active Data Provider y
SQL Data Provider, Array Data Provider es menos eficiente porque
requiere cargar todos los datos en memoria.

Trabajar con las claves de los datos

Al utilizar los elementos de datos devueltos por un proveedor de datos, con frecuencia
necesita identificar cada elemento de datos con una clave única.
Por ejemplo, si los elementos de datos representan información de los clientes, puede querer
usar el ID de cliente como la clave de cada conjunto de datos de un cliente.
Los proveedores de datos pueden devolver una lista de estas claves correspondientes a los
elementos de datos devueltos por [[yii\data\DataProviderInterface::getModels()]].
Por ejemplo:

use yii\data\ActiveDataProvider;

$query = Post::find()->where(['status' => 1]);

$provider = new ActiveDataProvider([
 'query' => $query,
]);

// Devuelve un array de objetos Post
$posts = $provider->getModels();

// Devuelve los valores de las claves primarias correspondientes a $posts
$ids = $provider->getKeys();

En el ejemplo superior, como se le proporciona a [[yii\data\ActiveDataProvider]] un objeto
[[yii\db\ActiveQuery]], es lo suficientemente inteligente como para devolver los valores de
las claves primarias como las claves. También puede indicar explícitamente cómo se deben
calcular los valores de la clave configurando [[yii\data\ActiveDataProvider::key]] con un
nombre de columna o un invocable que calcule los valores de la clave. Por ejemplo:

// Utiliza la columna «slug» como valores de la clave
$provider = new ActiveDataProvider([
 'query' => Post::find(),
 'key' => 'slug',
]);

// Utiliza el resultado de md5(id) como valores de la clave
$provider = new ActiveDataProvider([
 'query' => Post::find(),
 'key' => function ($model) {
 return md5($model->id);
 }
]);

Creación de un proveedor de datos personalizado

Para crear su propio proveedor de datos personalizado, debe implementar
[[yii\data\DataProviderInterface]].
Una manera más fácil es extender [[yii\data\BaseDataProvider]], que le permite centrarse
en la lógica central del proveedor de datos. En particular, esencialmente necesita
implementar los siguientes métodos:

	[[yii\data\BaseDataProvider::prepareModels()|prepareModels()]]: prepara los modelos
de datos que estarán disponibles en la página actual y los devuelve como un array.

	[[yii\data\BaseDataProvider::prepareKeys()|prepareKeys()]]: acepta un array de
modelos de datos disponibles actualmente y devuelve las claves asociadas a ellos.

	[[yii\data\BaseDataProvider::prepareTotalCount()|prepareTotalCount]]: devuelve un valor
que indica el número total de modelos de datos en el proveedor de datos.

Debajo se muestra un ejemplo de un proveedor de datos que lee datos CSV eficientemente:

<?php
use yii\data\BaseDataProvider;

class CsvDataProvider extends BaseDataProvider
{
 /**
 * @var string nombre del fichero CSV a leer
 */
 public $filename;

 /**
 * @var string|callable nombre de la columna clave o un invocable que la devuelva
 */
 public $key;

 /**
 * @var SplFileObject
 */
 protected $fileObject; // SplFileObject es muy práctico para buscar una línea concreta en un fichero

 /**
 * {@inheritdoc}
 */
 public function init()
 {
 parent::init();

 // Abrir el fichero
 $this->fileObject = new SplFileObject($this->filename);
 }

 /**
 * {@inheritdoc}
 */
 protected function prepareModels()
 {
 $models = [];
 $pagination = $this->getPagination();

 if ($pagination === false) {
 // En caso de que no haya paginación, leer todas las líneas
 while (!$this->fileObject->eof()) {
 $models[] = $this->fileObject->fgetcsv();
 $this->fileObject->next();
 }
 } else {
 // En caso de que haya paginación, leer sólo una única página
 $pagination->totalCount = $this->getTotalCount();
 $this->fileObject->seek($pagination->getOffset());
 $limit = $pagination->getLimit();

 for ($count = 0; $count < $limit; ++$count) {
 $models[] = $this->fileObject->fgetcsv();
 $this->fileObject->next();
 }
 }

 return $models;
 }

 /**
 * {@inheritdoc}
 */
 protected function prepareKeys($models)
 {
 if ($this->key !== null) {
 $keys = [];

 foreach ($models as $model) {
 if (is_string($this->key)) {
 $keys[] = $model[$this->key];
 } else {
 $keys[] = call_user_func($this->key, $model);
 }
 }

 return $keys;
 }

 return array_keys($models);
 }

 /**
 * {@inheritdoc}
 */
 protected function prepareTotalCount()
 {
 $count = 0;

 while (!$this->fileObject->eof()) {
 $this->fileObject->next();
 ++$count;
 }

 return $count;
 }
}

Filtrar proveedores de datos usando filtros de datos

Si bien puede construir condiciones para un proveedor de datos activo manualmente tal
y como se describe en las secciones Filtering Data
y Separate Filter Form de la guía de
widgets de datos, Yii tiene filtros de datos que son muy útiles si necesita
condiciones de filtro flexibles. Los filtros de datos se pueden usar así:

$filter = new ActiveDataFilter([
 'searchModel' => 'app\models\PostSearch'
]);

$filterCondition = null;

// Puede cargar los filtros de datos de cualquier fuente.
// Por ejemplo, si prefiere JSON en el cuerpo de la petición,
// use Yii::$app->request->getBodyParams() aquí abajo:
if ($filter->load(\Yii::$app->request->get())) {
 $filterCondition = $filter->build();
 if ($filterCondition === false) {
 // Serializer recibiría errores
 return $filter;
 }
}

$query = Post::find();
if ($filterCondition !== null) {
 $query->andWhere($filterCondition);
}

return new ActiveDataProvider([
 'query' => $query,
]);

El propósito del modelo PostSearch es definir por qué propiedades y valores se permite filtrar:

use yii\base\Model;

class PostSearch extends Model
{
 public $id;
 public $title;

 public function rules()
 {
 return [
 ['id', 'integer'],
 ['title', 'string', 'min' => 2, 'max' => 200],
];
 }
}

Los filtros de datos son bastante flexibles. Puede personalizar cómo se construyen
las condiciones y qué operadores se permiten.
Para más detalles consulte la documentación de la API en [[\yii\data\DataFilter]].

 Widgets de datos

Widgets de datos

Yii proporciona un conjunto de widgets que se pueden usar para mostrar datos.
Mientras que el widget DetailView se puede usar para mostrar los datos de un único
registro, ListView y GridView se pueden usar para mostrar una lista o
tabla de registros de datos proporcionando funcionalidades como paginación, ordenación y filtro.

DetailView

El widget [[yii\widgets\DetailView|DetailView]] muestra los detalles de un único
[[yii\widgets\DetailView::$model|modelo]] de datos.

Se recomienda su uso para mostrar un modelo en un formato estándar (por ejemplo, cada atributo del
modelo se muestra como una fila en una tabla). El modelo puede ser tanto una instancia o subclase
de [[\yii\base\Model]] como un active record o un array asociativo.

DetailView usa la propiedad [[yii\widgets\DetailView::$attributes|$attributes]] para determinar
qué atributos del modelo se deben mostrar y cómo se deben formatear.
En la sección sobre formateadores se pueden ver las opciones de formato
disponibles.

Un uso típico de DetailView sería así:

echo DetailView::widget([
 'model' => $model,
 'attributes' => [
 'title', // atributo title (en texto plano)
 'description:html', // atributo description formateado como HTML
 [// nombre del propietario del modelo
 'label' => 'Owner',
 'value' => $model->owner->name,
 'contentOptions' => ['class' => 'bg-red'], // atributos HTML para personalizar el valor
 'captionOptions' => ['tooltip' => 'Tooltip'], // atributos HTML para personalizar la etiqueta
],
 'created_at:datetime', // fecha de creación formateada como datetime
],
]);

Recuerde que a diferencia de [[yii\widgets\GridView|GridView]], que procesa un conjunto de modelos,
[[yii\widgets\DetailView|DetailView]] sólo procesa uno. Así que la mayoría de las veces no hay
necesidad de usar funciones anónimas ya que $model es el único modelo a mostrar y está disponible
en la vista como una variable.

Sin embargo, en algunos casos el uso de una función anónima puede ser útil. Por ejemplo cuando
visible está especificado y se desea impedir el cálculo de value en case de que evalúe a false:

echo DetailView::widget([
 'model' => $model,
 'attributes' => [
 [
 'attribute' => 'owner',
 'value' => function ($model) {
 return $model->owner->name;
 },
 'visible' => \Yii::$app->user->can('posts.owner.view'),
],
],
]);

ListView

El widget [[yii\widgets\ListView|ListView]] se usa para mostrar datos de un
proveedor de datos.
Cada modelo de datos se representa usando el [[yii\widgets\ListView::$itemView|fichero de vista]]
indicado.
Como proporciona de serie funcionalidades tales como paginación, ordenación y filtro,
es útil tanto para mostrar información al usuario final como para crear una interfaz
de usuario de gestión de datos.

Un uso típico es el siguiente:

use yii\widgets\ListView;
use yii\data\ActiveDataProvider;

$dataProvider = new ActiveDataProvider([
 'query' => Post::find(),
 'pagination' => [
 'pageSize' => 20,
],
]);

echo ListView::widget([
 'dataProvider' => $dataProvider,
 'itemView' => '_post',
]);

El fichero de vista _post podría contener lo siguiente:

<?php
use yii\helpers\Html;
use yii\helpers\HtmlPurifier;
?>
<div class="tarea">
 <h2><?= Html::encode($model->title) ?></h2>

 <?= HtmlPurifier::process($model->text) ?>
</div>

En el fichero de vista anterior, el modelo de datos actual está disponible como $model.
Además están disponibles las siguientes variables:

	$key: mixto, el valor de la clave asociada a este elemento de datos.

	$index: entero, el índice empezando por cero del elemento de datos en el array de elementos devuelto por el proveedor de datos.

	$widget: ListView, esta instancia del widget.

Si se necesita pasar datos adicionales a cada vista, se puede usar la propiedad
[[yii\widgets\ListView::$viewParams|$viewParams]] para pasar parejas clave-valor como las siguientes:

echo ListView::widget([
 'dataProvider' => $dataProvider,
 'itemView' => '_post',
 'viewParams' => [
 'fullView' => true,
 'context' => 'main-page',
 // ...
],
]);

Entonces éstas también estarán disponibles en la vista como variables.

GridView

La cuadrícula de datos o [[yii\grid\GridView|GridView]] es uno de los widgets de Yii
más potentes. Es extremadamente útil si necesita construir rápidamente la sección de
administración del sistema. Recibe los datos de un proveedor de datos
y representa cada fila usando un conjunto de [[yii\grid\GridView::columns|columnas]]
que presentan los datos en forma de tabla.

Cada fila de la tabla representa los datos de un único elemento de datos, y una columna
normalmente representa un atributo del elemento (algunas columnas pueden corresponder a
expresiones complejas de los atributos o a un texto estático).

El mínimo código necesario para usar GridView es como sigue:

use yii\grid\GridView;
use yii\data\ActiveDataProvider;

$dataProvider = new ActiveDataProvider([
 'query' => Post::find(),
 'pagination' => [
 'pageSize' => 20,
],
]);
echo GridView::widget([
 'dataProvider' => $dataProvider,
]);

El código anterior primero crea un proveedor de datos y a continuación usa GridView
para mostrar cada atributo en cada fila tomados del proveedor de datos. La tabla
mostrada está equipada de serie con las funcionalidades de ordenación y paginación.

Columnas de la cuadrícula

Las columnas de la tabla se configuran en términos de clase [[yii\grid\Column]], que
se configuran en la propiedad [[yii\grid\GridView::columns|columns]] de la configuración
del GridView.
Dependiendo del tipo y ajustes de las columnas éstas pueden presentar los datos de
diferentes maneras.
La clase predefinida es [[yii\grid\DataColumn]], que representa un atributo del modelo
por el que se puede ordenar y filtrar.

echo GridView::widget([
 'dataProvider' => $dataProvider,
 'columns' => [
 ['class' => 'yii\grid\SerialColumn'],
 // Columnas sencillas definidas por los datos contenidos en $dataProvider.
 // Se usarán los datos de la columna del modelo.
 'id',
 'username',
 // Un ejemplo más complejo.
 [
 'class' => 'yii\grid\DataColumn', // Se puede omitir, ya que es la predefinida.
 'value' => function ($data) {
 return $data->name; // $data['name'] para datos de un array, por ejemplo al usar SqlDataProvider.
 },
],
],
]);

Observe que si no se especifica la parte [[yii\grid\GridView::columns|columns]] de la
configuración, Yii intenta mostrar todas las columnas posibles del modelo del proveedor
de datos.

Clases de columna

Las columnas de la cuadrícula se pueden personalizar usando diferentes clases de columna:

echo GridView::widget([
 'dataProvider' => $dataProvider,
 'columns' => [
 [
 'class' => 'yii\grid\SerialColumn', // <-- aquí
 // puede configurar propiedades adicionales aquí
],

Además de las clases de columna proporcionadas por Yii que se revisarán más abajo,
puede crear sus propias clases de columna.

Cada clase de columna extiende [[yii\grid\Column]] de modo que hay algunas opciones
comunes que puede establecer al configurar las columnas de una cuadrícula.

	[[yii\grid\Column::header|header]] permite establecer el contenida para la fila cabecera

	[[yii\grid\Column::footer|footer]] permite establece el contenido de la fila al pie

	[[yii\grid\Column::visible|visible]] define si la columna debería ser visible.

	[[yii\grid\Column::content|content]] le permite pasar una función PHP válida que devuelva datos para una fila. El formato es el siguiente:

function ($model, $key, $index, $column) {
 return 'una cadena';
}

Puede indicar varias opciones HTML del contenedor pasando arrays a:

	[[yii\grid\Column::headerOptions|headerOptions]]

	[[yii\grid\Column::footerOptions|footerOptions]]

	[[yii\grid\Column::filterOptions|filterOptions]]

	[[yii\grid\Column::contentOptions|contentOptions]]

 Paginación

Paginación

Cuando hay muchos datos a mostrar en una sola página, una estrategia común es mostrarlos en varias
páginas y en cada una de ellas mostrar sólo una pequeña porción de datos. Esta estrategia es conocida como paginación.

Yii utiliza el objeto [[yii\data\Pagination]] para representar la información acerca del esquema de paginación. En particular,

	[[yii\data\Pagination::$totalCount|cuenta total]] especifica el número total de ítems de datos. Ten en cuenta que
este es normalmente un número mucho mayor que el número de ítems necesarios a mostrar en una simple página.

	[[yii\data\Pagination::$pageSize|tamaño de página]] especifica cuántos ítems de datos contiene cada página. El valor
por defecto es 20.

	[[yii\data\Pagination::$page|página actual]] da el número de la página actual (comenzando desde 0). El valor
por defecto es 0, lo que sería la primera página.

Con un objeto [[yii\data\Pagination]] totalmente especificado, puedes obtener y mostrar datos en partes. Por ejemplo,
si estás recuperando datos de una base de datos, puedes especificar las cláusulas OFFSET y LIMIT de la consulta a la BD
correspondientes a los valores provistos por la paginación. A continuación hay un ejemplo,

use yii\data\Pagination;

// construye una consulta a la BD para obtener todos los artículos con status = 1
$query = Article::find()->where(['status' => 1]);

// obtiene el número total de artículos (pero no recupera los datos de los artículos todavía)
$count = $query->count();

// crea un objeto paginación con dicho total
$pagination = new Pagination(['totalCount' => $count]);

// limita la consulta utilizando la paginación y recupera los artículos
$articles = $query->offset($pagination->offset)
 ->limit($pagination->limit)
 ->all();

¿Qué página de artículos devolverá el ejemplo de arriba? Depende de si se le es pasado un parámetro llamado page.
Por defecto, la paginación intentará definir la [[yii\data\Pagination::$page|página actual]] con
el valor del parámetro page. Si el parámetro no es provisto, entonces tomará por defecto el valor 0.

Para facilitar la construcción de elementos UI que soporten paginación, Yii provee el widget [[yii\widgets\LinkPager]],
que muestra una lista de botones de navegación que el usuario puede presionar para indicar qué página de datos debería mostrarse.
El widget toma un objeto de paginación y tal manera conoce cuál es la página actual y cuántos botones
debe mostrar. Por ejemplo,

use yii\widgets\LinkPager;

echo LinkPager::widget([
 'pagination' => $pagination,
]);

Si quieres construir los elementos de UI manualmente, puedes utilizar [[yii\data\Pagination::createUrl()]] para generar URLs que
dirigirán a las distintas páginas. El método requiere un parámetro de página y generará una URL apropiadamente formada
contieniendo el parámetro de página. Por ejemplo,

// especifica la ruta que la URL generada debería utilizar
// Si no lo especificas, se utilizará la ruta de la petición actual
$pagination->route = 'article/index';

// muestra: /index.php?r=article%2Findex&page=100
echo $pagination->createUrl(100);

// muestra: /index.php?r=article%2Findex&page=101
echo $pagination->createUrl(101);

Tip: puedes personalizar el parámetro page de la consulta configurando
la propiedad [[yii\data\Pagination::pageParam|pageParam]] al crear el objeto de la paginación.

 Temas

Temas

Note: Esta sección está en desarrollo.

Un tema (theme) es un directorio de archivos y de vistas (views) y layouts. Cada archivo de este directorio
sobrescribe el archivo correspondiente de una aplicación cuando se renderiza. Una única aplicación puede usar
múltiples temas para que pueden proporcionar experiencias totalmente diferentes. Solo se puede haber un único tema
activo.

Note: Los temas no están destinados a ser redistribuidos ya que están demasiado ligados a la aplicación. Si se
quiere redistribuir una apariencia personalizada, se puede considerar la opción de
asset bundles de archivos CSS y Javascript.

Configuración de un Tema

La configuración de un tema se especifica a través del componente view de la aplicación. Para establecer que un tema
trabaje con vistas de aplicación básicas, la configuración de la aplicación debe contener lo siguiente:

'components' => [
 'view' => [
 'theme' => [
 'pathMap' => ['@app/views' => '@app/themes/basic'],
 'baseUrl' => '@web/themes/basic',
],
],
],

En el ejemplo anterior, el pathMap define un mapa (map) de las rutas a las que se aplicará el tema mientras que
baseUrl define la URL base para los recursos a los que hacen referencia los archivos del tema.

En nuestro caso pathMap es ['@app/views' => '@app/themes/basic']. Esto significa que cada vista de @app/views
primero se buscará en @app/themes/basic y si existe, se usará la vista del directorio del tema en lugar de la vista
original.

Por ejemplo, con la configuración anterior, la versión del tema para la vista @app/views/site/index.php será
@app/themes/basic/site/index.php. Básicamente se reemplaza @app/views en @app/views/site/index.php por
@app/themes/basic.

Temas para Módulos

Para utilizar temas en los módulos, el pathMap debe ser similar al siguiente:

'components' => [
 'view' => [
 'theme' => [
 'pathMap' => [
 '@app/views' => '@app/themes/basic',
 '@app/modules' => '@app/themes/basic/modules', // <-- !!!
],
],
],
],

Esto permite aplicar el tema a @app/modules/blog/views/comment/index.php con la vista
@app/themes/basic/modules/blog/views/comment/index.php.

Temas para Widgets

Para utilizar un tema en una vista que se encuentre en @app/widgets/currency/views/index.php, se debe aplicar la
siguiente configuración para el componente vista, tema:

'components' => [
 'view' => [
 'theme' => [
 'pathMap' => ['@app/widgets' => '@app/themes/basic/widgets'],
],
],
],

Con la configuración anterior, se puede crear una versión de la vista @app/widgets/currency/index.php para que se
aplique el tema en @app/themes/basic/widgets/currency/views/index.php.

Uso de Multiples Rutas

Es posible mapear una única ruta a múltiples rutas de temas. Por ejemplo:

'pathMap' => [
 '@app/views' => [
 '@app/themes/christmas',
 '@app/themes/basic',
],
]

En este caso, primero se buscara la vista en @app/themes/christmas/site/index.php, si no se encuentra, se intentará
en @app/themes/basic/site/index.php. Si la vista no se encuentra en ninguna de rutas especificadas, se usará la
vista de aplicación.

Esta capacidad es especialmente útil si se quieren sobrescribir algunas rutas temporal o condicionalmente.

 Autenticación

Autenticación

A diferencia de las aplicaciones Web, las API RESTful son usualmente sin estado (stateless), lo que permite que las sesiones o las cookies
no sean usadas. Por lo tanto, cada petición debe llevar alguna suerte de credenciales de autenticación,
porque la autenticación del usuario no puede ser mantenida por las sesiones o las cookies. Una práctica común
es enviar una pieza (token) secreta de acceso con cada petición para autenticar al usuario. Dado que una pieza de autenticación
puede ser usada para identificar y autenticar solamente a un usuario, **la API de peticiones tiene que ser siempre enviado
vía HTTPS para prevenir ataques tipo “man-in-the-middle” (MitM) **.

Hay muchas maneras de enviar una token (pieza) de acceso:

	Autenticación Básica HTTP [https://es.wikipedia.org/wiki/Autenticaci%C3%B3n_de_acceso_b%C3%A1sica]: la pieza de acceso
es enviada como nombre de usuario. Esto sólo debe de ser usado cuando la pieza de acceso puede ser guardada
de forma segura en la parte del API del consumidor. Por ejemplo, el API del consumidor es un programa ejecutándose en un servidor.

	Parámetro de la consulta: la pieza de acceso es enviada como un parámetro de la consulta en la URL de la API, p.e.,
https://example.com/users?access-token=xxxxxxxx. Debido que muchos servidores dejan los parámetros de consulta en los logs del servidor,
esta aproximación suele ser usada principalmente para servir peticiones JSONP
que no usen las cabeceras HTTP para enviar piezas de acceso.

	OAuth 2 [http://oauth.net/2/]: la pieza de acceso es obtenida por el consumidor por medio de una autorización del servidor
y enviada al API del servidor según el protocolo
OAuth 2 tokens HTTP del portador [http://tools.ietf.org/html/rfc6750].

Yii soporta todos los métodos anteriores de autenticación. Puedes crear nuevos métodos de autenticación de una forma fácil.

Para activar la autenticación para tus APIs, sigue los pasos siguientes:

	Configura el componente user de la aplicación:

	Define la propiedad [[yii\web\User::enableSession|enableSession]] como false.

	Define la propiedad [[yii\web\User::loginUrl|loginUrl]] como null para mostrar un error HTTP 403 en vez de redireccionar a la pantalla de login.

	Especifica cuál método de autenticación planeas usar configurando el comportamiento (behavior) authenticator en tus
clases de controladores REST.

	Implementa [[yii\web\IdentityInterface::findIdentityByAccessToken()]] en tu [[yii\web\User::identityClass|clase de identidad de usuarios]].

El paso 1 no es necesario pero sí recomendable para las APIs RESTful, pues son sin estado (stateless).
Cuando [[yii\web\User::enableSession|enableSession]] es false, el estado de autenticación del usuario puede NO persistir entre peticiones usando sesiones.
Si embargo, la autenticación será realizada para cada petición, lo que se consigue en los pasos 2 y 3.

Tip:Puedes configurar [[yii\web\User::enableSession|enableSession]] del componente de la aplicación user en la configuración
de las aplicaciones si estás desarrollando APIs RESTful en términos de un aplicación. Si desarrollas un módulo de las APIs RESTful,
puedes poner la siguiente línea en el método del módulo init(), tal y como sigue:

public function init()
{
 parent::init();
 \Yii::$app->user->enableSession = false;
}

Por ejemplo, para usar HTTP Basic Auth, puedes configurar el comportamiento (behavior) authenticator como sigue,

use yii\filters\auth\HttpBasicAuth;

public function behaviors()
{
 $behaviors = parent::behaviors();
 $behaviors['authenticator'] = [
 'class' => HttpBasicAuth::className(),
];
 return $behaviors;
}

Si quieres implementar los tres métodos de autenticación explicados antes, puedes usar CompositeAuth de la siguiente manera,

use yii\filters\auth\CompositeAuth;
use yii\filters\auth\HttpBasicAuth;
use yii\filters\auth\HttpBearerAuth;
use yii\filters\auth\QueryParamAuth;

public function behaviors()
{
 $behaviors = parent::behaviors();
 $behaviors['authenticator'] = [
 'class' => CompositeAuth::className(),
 'authMethods' => [
 HttpBasicAuth::className(),
 HttpBearerAuth::className(),
 QueryParamAuth::className(),
],
];
 return $behaviors;
}

Cada elemento en authMethods debe de ser el nombre de una clase de método de autenticación o un array de configuración.

La implementación de findIdentityByAccessToken() es específico de la aplicación. Por ejemplo, en escenarios simples
cuando cada usuario sólo puede tener un token de acceso, puedes almacenar este token en la columna access_token
en la tabla de usuario. El método debe de ser inmediatamente implementado en la clase User como sigue,

use yii\db\ActiveRecord;
use yii\web\IdentityInterface;

class User extends ActiveRecord implements IdentityInterface
{
 public static function findIdentityByAccessToken($token, $type = null)
 {
 return static::findOne(['access_token' => $token]);
 }
}

Después que la autenticación es activada, tal y como se describe arriba, para cada petición de la API, el controlador solicitado
puede intentar autenticar al usuario en su evento beforeAction().

Si la autenticación tiene éxito, el controlador realizará otras comprobaciones (como son límite del ratio, autorización)
y entonces ejecutar la acción. La identidad del usuario autenticado puede ser recuperada via Yii::$app->user->identity.

Si la autenticación falla, una respuesta con estado HTTP 401 será devuelta junto con otras cabeceras apropiadas
(tal como la cabecera para autenticación básica HTTP WWW-Authenticate).

Autorización

Después de que un usuario se ha autenticado, probablementer querrás comprobar si él o ella tiene los permisos para realizar
la acción solicitada. Este proceso es llamado autorización (authorization) y está cubierto en detalle
en la Sección de Autorización.

Si tus controladores extienden de [[yii\rest\ActiveController]], puedes sobreescribir
el método [[yii\rest\ActiveController::checkAccess()|checkAccess()]] para realizar la comprobación de la autorización.
El método será llamado por las acciones contenidas en [[yii\rest\ActiveController]].

 Controladores

Controladores

Después de crear las clases de recursos y especificar cómo debe ser el formato de datos de recursos, el siguiente paso
es crear acciones del controlador para exponer los recursos a los usuarios finales a través de las APIs RESTful.

Yii ofrece dos clases controlador base para simplificar tu trabajo de crear acciones REST:
[[yii\rest\Controller]] y [[yii\rest\ActiveController]]. La diferencia entre estos dos controladores
es que este último proporciona un conjunto predeterminado de acciones que están específicamente diseñado para trabajar con
los recursos representados como Active Record. Así que si estás utilizando Active Record
y te sientes cómodo con las acciones integradas provistas, podrías considerar extender tus controladores
de [[yii\rest\ActiveController]], lo que te permitirá crear potentes APIs RESTful con un mínimo de código.

Ambos [[yii\rest\Controller]] y [[yii\rest\ActiveController]] proporcionan las siguientes características,
algunas de las cuales se describen en detalle en las siguientes secciones:

	Método de Validación HTTP;

	Negociación de contenido y formato de datos;

	Autenticación;

	Límite de Rango.

[[yii\rest\ActiveController]] además provee de las siguientes características:

	Un conjunto de acciones comunes necesarias: index, view, create, update, delete, options;

	La autorización del usuario de acuerdo a la acción y recurso solicitado.

Creando Clases de Controlador

Al crear una nueva clase de controlador, una convención para nombrar la clase del controlador es utilizar
el nombre del tipo de recurso en singular. Por ejemplo, para servir información de usuario,
el controlador puede ser nombrado como UserController.

Crear una nueva acción es similar a crear una acción para una aplicación Web. La única diferencia
es que en lugar de renderizar el resultado utilizando una vista llamando al método render(), para las acciones REST
regresas directamente los datos. El [[yii\rest\Controller::serializer|serializer]] y el
[[yii\web\Response|response object]] se encargarán de la conversión de los datos originales
al formato solicitado. Por ejemplo,

public function actionView($id)
{
 return User::findOne($id);
}

Filtros

La mayoría de las características API REST son proporcionadas por [[yii\rest\Controller]] son implementadas en los términos de filtros.
En particular, los siguientes filtros se ejecutarán en el orden en que aparecen:

	[[yii\filters\ContentNegotiator|contentNegotiator]]: soporta la negociación de contenido, que se explica en
la sección Formateo de respuestas;

	[[yii\filters\VerbFilter|verbFilter]]: soporta métodos de validación HTTP;

	[[yii\filters\auth\AuthMethod|authenticator]]: soporta la autenticación de usuarios, que se explica en
la sección Autenticación;

	[[yii\filters\RateLimiter|rateLimiter]]: soporta la limitación de rango, que se explica en
la sección Límite de Rango.

Estos filtros se declaran nombrándolos en el método [[yii\rest\Controller::behaviors()|behaviors()]].
Puede sobrescribir este método para configurar filtros individuales, desactivar algunos de ellos, o añadir los tuyos.
Por ejemplo, si sólo deseas utilizar la autenticación básica HTTP, puede escribir el siguiente código:

use yii\filters\auth\HttpBasicAuth;

public function behaviors()
{
 $behaviors = parent::behaviors();
 $behaviors['authenticator'] = [
 'class' => HttpBasicAuth::className(),
];
 return $behaviors;
}

Extendiendo ActiveController

Si tu clase controlador extiende de [[yii\rest\ActiveController]], debe establecer
su propiedad [[yii\rest\ActiveController::modelClass|modelClass]] con el nombre de la clase del recurso
que planeas servir a través de este controlador. La clase debe extender de [[yii\db\ActiveRecord]].

Personalizando Acciones

Por defecto, [[yii\rest\ActiveController]] provee de las siguientes acciones:

	[[yii\rest\IndexAction|index]]: listar recursos página por página;

	[[yii\rest\ViewAction|view]]: devolver el detalle de un recurso específico;

	[[yii\rest\CreateAction|create]]: crear un nuevo recurso;

	[[yii\rest\UpdateAction|update]]: actualizar un recurso existente;

	[[yii\rest\DeleteAction|delete]]: eliminar un recurso específico;

	[[yii\rest\OptionsAction|options]]: devolver los métodos HTTP soportados.

Todas esta acciones se declaran a través de método [[yii\rest\ActiveController::actions()|actions()]].
Puedes configurar estas acciones o desactivar alguna de ellas sobrescribiendo el método actions(), como se muestra a continuación,

public function actions()
{
 $actions = parent::actions();

 // disable the "delete" and "create" actions
 unset($actions['delete'], $actions['create']);

 // customize the data provider preparation with the "prepareDataProvider()" method
 $actions['index']['prepareDataProvider'] = [$this, 'prepareDataProvider'];

 return $actions;
}

public function prepareDataProvider()
{
 // prepare and return a data provider for the "index" action
}

Por favor, consulta las referencias de clases de acciones individuales para aprender las opciones de configuración disponibles para cada una.

Realizando Comprobación de Acceso

Al exponer los recursos a través de RESTful APIs, a menudo es necesario comprobar si el usuario actual tiene permiso
para acceder y manipular el/los recurso solicitado/s. Con [[yii\rest\ActiveController]], esto puede lograrse
sobrescribiendo el método [[yii\rest\ActiveController::checkAccess()|checkAccess()]] como a continuación,

/**
 * Checks the privilege of the current user.
 *
 * This method should be overridden to check whether the current user has the privilege
 * to run the specified action against the specified data model.
 * If the user does not have access, a [[ForbiddenHttpException]] should be thrown.
 *
 * @param string $action the ID of the action to be executed
 * @param \yii\base\Model $model the model to be accessed. If `null`, it means no specific model is being accessed.
 * @param array $params additional parameters
 * @throws ForbiddenHttpException if the user does not have access
 */
public function checkAccess($action, $model = null, $params = [])
{
 // check if the user can access $action and $model
 // throw ForbiddenHttpException if access should be denied
 if ($action === 'update' || $action === 'delete') {
 if ($model->author_id !== \Yii::$app->user->id)
 throw new \yii\web\ForbiddenHttpException(sprintf('You can only %s articles that you\'ve created.', $action));
 }
}

El método checkAccess() será llamado por defecto en las acciones predeterminadas de [[yii\rest\ActiveController]]. Si creas
nuevas acciones y también deseas llevar a cabo la comprobación de acceso, debe llamar a este método de forma explícita en las nuevas acciones.

Tip: Puedes implementar checkAccess() mediante el uso del Componente Role-Based Access Control (RBAC).

 Manejo de errores

Manejo de errores

Cuando se maneja una petición de API RESTful, si ocurre un error en la petición del usuario o si algo inesperado
ocurre en el servidor, simplemente puedes lanzar una excepción para notificar al usuario que algo erróneo ocurrió.
Si puedes identificar la causa del error (p.e., el recurso solicitado no existe), debes considerar lanzar una excepción
con el código HTTP de estado apropiado (p.e., [[yii\web\NotFoundHttpException]] representa un código de estado 404).
Yii enviará la respuesta a continuación con el correspondiente código de estado HTTP y el texto. Yii puede incluir también
la representación serializada de la excepción en el cuerpo de la respuesta.
Por ejemplo:

HTTP/1.1 404 Not Found
Date: Sun, 02 Mar 2014 05:31:43 GMT
Server: Apache/2.2.26 (Unix) DAV/2 PHP/5.4.20 mod_ssl/2.2.26 OpenSSL/0.9.8y
Transfer-Encoding: chunked
Content-Type: application/json; charset=UTF-8

{
 "name": "Not Found Exception",
 "message": "The requested resource was not found.",
 "code": 0,
 "status": 404
}

La siguiente lista sumariza los códigos de estado HTTP que son usados por el framework REST:

	200: OK. Todo ha funcionado como se esperaba.

	201: El recurso ha creado con éxito en respuesta a la petición POST. La cabecera de situación Location
contiene la URL apuntando al nuevo recurso creado.

	204: La petición ha sido manejada con éxito y el cuerpo de la respuesta no tiene contenido (como una petición DELETE).

	304: El recurso no ha sido modificado. Puede usar la versión en caché.

	400: Petición errónea. Esto puede estar causado por varias acciones de el usuario, como proveer un JSON no válido
en el cuerpo de la petición, proveyendo parámetros de acción no válidos, etc.

	401: Autenticación fallida.

	403: El usuario autenticado no tiene permitido acceder a la API final.

	404: El recurso pedido no existe.

	405: Método no permitido. Por favor comprueba la cabecera Allow por los métodos HTTP permitidos.

	415: Tipo de medio no soportado. El tipo de contenido pedido o el número de versión no es válido.

	422: La validación de datos ha fallado (en respuesta a una petición POST , por ejemplo). Por favor, comprueba en el cuerpo de la respuesta el mensaje detallado.

	429: Demasiadas peticiones. La petición ha sido rechazada debido a un limitación de rango.

	500: Error interno del servidor. Esto puede estar causado por errores internos del programa.

Personalizar la Respuesta al Error

A veces puedes querer personalizar el formato de la respuesta del error por defecto . Por ejemplo, en lugar de depender
del uso de diferentes estados HTTP para indicar los diferentes errores, puedes querer usar siempre el estado HTTP 200
y encapsular el código de estado HTTP real como parte de una estructura JSON en la respuesta, como se muestra a continuación,

HTTP/1.1 200 OK
Date: Sun, 02 Mar 2014 05:31:43 GMT
Server: Apache/2.2.26 (Unix) DAV/2 PHP/5.4.20 mod_ssl/2.2.26 OpenSSL/0.9.8y
Transfer-Encoding: chunked
Content-Type: application/json; charset=UTF-8

{
 "success": false,
 "data": {
 "name": "Not Found Exception",
 "message": "The requested resource was not found.",
 "code": 0,
 "status": 404
 }
}

Para lograrlo, puedes responder al evento beforeSend del componente response en la configuración de la aplicación:

return [
 // ...
 'components' => [
 'response' => [
 'class' => 'yii\web\Response',
 'on beforeSend' => function ($event) {
 $response = $event->sender;
 if ($response->data !== null && Yii::$app->request->get('suppress_response_code')) {
 $response->data = [
 'success' => $response->isSuccessful,
 'data' => $response->data,
];
 $response->statusCode = 200;
 }
 },
],
],
];

El anterior código reformateará la respuesta (sea exitosa o fallida) como se explicó cuando
suppress_response_code es pasado como un parámetro GET.

 Guía Breve

Guía Breve

Yii ofrece todo un conjunto de herramientas para simplificar la tarea de implementar un
servicio web APIs RESTful.
En particular, Yii soporta las siguientes características sobre APIs RESTful;

	Prototipado rápido con soporte para APIs comunes para Active Record;

	Formato de respuesta de negocio (soporta JSON y XML por defecto);

	Personalización de objetos serializados con soporte para campos de salida seleccionables;

	Formateo apropiado de colecciones de datos y validación de errores;

	Soporte para HATEOAS [http://en.wikipedia.org/wiki/HATEOAS];

	Eficiente enrutamiento con una adecuada comprobación del verbo(verb) HTTP;

	Incorporado soporte para las OPTIONS y HEAD verbos;

	Autenticación y autorización;

	Cacheo de datos y cacheo HTTP;

	Limitación de rango;

A continuación, utilizamos un ejemplo para ilustrar como se puede construir un conjunto de APIs RESTful con un esfuerzo mínimo de codificación.

Supongamos que deseas exponer los datos de los usuarios vía APIs RESTful. Los datos de usuario son almacenados en la tabla DB user,
y ya tienes creado la clase [[yii\db\ActiveRecord|ActiveRecord]] app\models\User para acceder a los datos del usuario.

Creando un controlador

Primero, crea una clase controladora app\controllers\UserController como la siguiente,

namespace app\controllers;

use yii\rest\ActiveController;

class UserController extends ActiveController
{
 public $modelClass = 'app\models\User';
}

La clase controladora extiende de [[yii\rest\ActiveController]]. Especificado por [[yii\rest\ActiveController::modelClass|modelClass]]
como app\models\User, el controlador sabe que modelo puede ser usado para recoger y manipular sus datos.

Configurando las reglas de las URL

A continuación, modifica la configuración del componente urlManager en la configuración de tu aplicación:

'urlManager' => [
 'enablePrettyUrl' => true,
 'enableStrictParsing' => true,
 'showScriptName' => false,
 'rules' => [
 ['class' => 'yii\rest\UrlRule', 'controller' => 'user'],
],
]

La configuración anterior principalmente añade una regla URL para el controlador user de manera
que los datos de user pueden ser accedidos y manipulados con URLs amigables y verbos HTTP significativos.

Habilitando entradas JSON

Para permitir que la API acepte datos de entrada con formato JSON, configura la propiedad [[yii\web\Request::$parsers|parsers]]
del componente de aplicación request para usar [[yii\web\JsonParser]] para entradas JSON:

'request' => [
 'parsers' => [
 'application/json' => 'yii\web\JsonParser',
]
]

Tip: La configuración anterior es opcional. Sin la configuración anterior, la API sólo reconocería
application/x-www-form-urlencoded y multipart/form-data como formatos de entrada.

Probándolo

Con la mínima cantidad de esfuerzo, tienes ya finalizado tu tarea de crear las APIs RESTful
para acceder a los datos de user. Las APIs que tienes creado incluyen:

	GET /users: una lista de todos los usuarios página por página;

	HEAD /users: muestra la información general de la lista de usuarios;

	POST /users: crea un nuevo usuario;

	GET /users/123: devuelve los detalles del usuario 123;

	HEAD /users/123: muestra la información general del usuario 123;

	PATCH /users/123 y PUT /users/123: actualiza el usuario 123;

	DELETE /users/123: elimina el usuario 123;

	OPTIONS /users: muestra los verbos compatibles respecto al punto final /users;

	OPTIONS /users/123: muestra los verbos compatibles respecto al punto final /users/123.

Info: Yii automáticamente pluraliza los nombres de los controladores para usarlo en los puntos finales.
Puedes configurar esto usando la propiedad [[yii\rest\UrlRule::$pluralize]].

Puedes acceder a tus APIs con el comando curl de la siguiente manera,

$ curl -i -H "Accept:application/json" "http://localhost/users"

HTTP/1.1 200 OK
...
X-Pagination-Total-Count: 1000
X-Pagination-Page-Count: 50
X-Pagination-Current-Page: 1
X-Pagination-Per-Page: 20
Link: <http://localhost/users?page=1>; rel=self,
 <http://localhost/users?page=2>; rel=next,
 <http://localhost/users?page=50>; rel=last
Transfer-Encoding: chunked
Content-Type: application/json; charset=UTF-8

[
 {
 "id": 1,
 ...
 },
 {
 "id": 2,
 ...
 },
 ...
]

Intenta cambiar el tipo de contenido aceptado para ser application/xml, y verá que el resultado
se devuelve en formato XML:

$ curl -i -H "Accept:application/xml" "http://localhost/users"

HTTP/1.1 200 OK
...
X-Pagination-Total-Count: 1000
X-Pagination-Page-Count: 50
X-Pagination-Current-Page: 1
X-Pagination-Per-Page: 20
Link: <http://localhost/users?page=1>; rel=self,
 <http://localhost/users?page=2>; rel=next,
 <http://localhost/users?page=50>; rel=last
Transfer-Encoding: chunked
Content-Type: application/xml

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <item>
 <id>1</id>
 ...
 </item>
 <item>
 <id>2</id>
 ...
 </item>
 ...
</response>

El siguiente comando creará un nuevo usuario mediante el envío de una petición POST con los datos del usuario en formato JSON:

$ curl -i -H "Accept:application/json" -H "Content-Type:application/json" -XPOST "http://localhost/users" -d '{"username": "example", "email": "user@example.com"}'

HTTP/1.1 201 Created
...
Location: http://localhost/users/1
Content-Length: 99
Content-Type: application/json; charset=UTF-8

{"id":1,"username":"example","email":"user@example.com","created_at":1414674789,"updated_at":1414674789}

Tip: También puedes acceder a tus APIs a través del navegador web introduciendo la URL http://localhost/users.
Sin embargo, es posible que necesites algunos plugins para el navegador para enviar cabeceras especificas en la petición.

Como se puede ver, en las cabeceras de la respuesta, hay información sobre la cuenta total, número de páginas, etc.
También hay enlaces que permiten navegar por otras páginas de datos. Por ejemplo, http://localhost/users?page=2
le daría la página siguiente de los datos de usuario.

Utilizando los parámetros fields y expand, puedes también especificar que campos deberían ser incluidos en el resultado.
Por ejemplo, la URL http://localhost/users?fields=id,email sólo devolverá los campos id y email.

Info: Puedes haber notado que el resultado de http://localhost/users incluye algunos campos sensibles,
tal como password_hash, auth_key. Seguramente no quieras que éstos aparecieran en el resultado de tu API.
Puedes y deberías filtrar estos campos como se describe en la sección Response Formatting.

Resumen

Utilizando el framework Yii API RESTful, implementa un punto final API en términos de una acción de un controlador, y utiliza
un controlador para organizar las acciones que implementan los puntos finales para un sólo tipo de recurso.

Los recursos son representados como modelos de datos que extienden de la clase [[yii\base\Model]].
Si estás trabajando con bases de datos (relacionales o NoSQL), es recomendable utilizar [[yii\db\ActiveRecord|ActiveRecord]]
para representar los recursos.

Puedes utilizar [[yii\rest\UrlRule]] para simplificar el enrutamiento de los puntos finales de tu API.

Aunque no es obligatorio, es recomendable que desarrolles tus APIs RESTful como una aplicación separada, diferente de
tu WEB front end y tu back end para facilitar el mantenimiento.

 Limitando el rango (rate)

Limitando el rango (rate)

Para prevenir el abuso, puedes considerar añadir un límitación del rango (rate limiting) para tus APIs. Por ejemplo,
puedes querer limitar el uso del API de cada usuario a un máximo de 100 llamadas al API dentro de un periodo de 10 minutos.
Si se reciben demasiadas peticiones de un usuario dentro del periodo de tiempo declarado, deveríá devolverse una respuesta con código de estado 429 (que significa “Demasiadas peticiones”).

Para activar la limitación de rango, la clase [[yii\web\User::identityClass|user identity class]] debe implementar [[yii\filters\RateLimitInterface]].
Este interface requiere la implementación de tres métodos:

	getRateLimit(): devuelve el número máximo de peticiones permitidas y el periodo de tiempo (p.e., [100, 600] significa que como mucho puede haber 100 llamadas al API dentro de 600 segundos).

	loadAllowance(): devuelve el número de peticiones que quedan permitidas y el tiempo (fecha/hora) UNIX
con el último límite del rango que ha sido comprobado.

	saveAllowance(): guarda ambos, el número restante de peticiones permitidas y el tiempo actual (fecha/hora) UNIX .

Puedes usar dos columnas en la tabla de usuario para guardar la información de lo permitido y la fecha/hora (timestamp). Con ambas definidas,
entonces loadAllowance() y saveAllowance() pueden ser utilizados para leer y guardar los valores de las dos columnas correspondientes al actual usuario autenticado.
Para mejorar el desempeño, también puedes considerar almacenar esas piezas de información en caché o almacenamiento NoSQL.

Una vez que la clase de identidad implementa la interfaz requerida, Yii utilizará automáticamente [[yii\filters\RateLimiter]]
configurado como un filtro de acción para que [[yii\rest\Controller]] compruebe el límite de rango. El limitador de rango
lanzará una excepeción [[yii\web\TooManyRequestsHttpException]] cuando el límite del rango sea excedido.

Puedes configurar el limitador de rango
en tu clase controlador REST como sigue:

public function behaviors()
{
 $behaviors = parent::behaviors();
 $behaviors['rateLimiter']['enableRateLimitHeaders'] = false;
 return $behaviors;
}

Cuando se activa el límite de rango, por defecto todas las respuestas serán enviadas con la siguiente cabecera HTTP conteniendo
información sobre el límite actual de rango:

	X-Rate-Limit-Limit, el máximo número de peticiones permitidas en un periodo de tiempo

	X-Rate-Limit-Remaining, el número de peticiones restantes en el periodo de tiempo actual

	X-Rate-Limit-Reset, el número de segundos a esperar para pedir el máximo número de peticiones permitidas

Puedes desactivar estas cabeceras configurando [[yii\filters\RateLimiter::enableRateLimitHeaders]] a false,
tal y como en el anterior ejemplo.

 Recursos

Recursos

Las APIs RESTful lo son todos para acceder y manipular recursos (resources). Puedes observar los recursos en el paradigma MVC en Modelos (models) .

Mientras que no hay restricción a cómo representar un recurso, en YII usualmente, puedes representar recursos como objetos de la clase [[yii\base\Model]] o sus clases hijas (p.e. [[yii\db\ActiveRecord]]), por las siguientes razones:

	[[yii\base\Model]] implementa el interface [[yii\base\Arrayable]] , el cual te permite personalizar como exponer los datos de los recursos a travès de las APIs RESTful.

	[[yii\base\Model]] soporta Validación de entrada (input validation), lo cual es muy usado en las APIs RESTful para soportar la entrada de datos.

	[[yii\db\ActiveRecord]] provee un poderoso soporte para el acceso a datos en bases de datos y su manipulación, lo que lo le hace servir perfectamente si sus recursos de datos están en bases de datos.

En esta sección, vamos principalmente a describir como la clase con recursos que extiende de [[yii\base\Model]] (o sus clases hijas) puede especificar qué datos puede ser devueltos vía las APIs RESTful. Si la clase de los recursos no extiende de [[yii\base\Model]], entonces todas las variables públicas miembro serán devueltas.

Campos (fields)

Cuando incluimos un recurso en una respuesta de la API RESTful, el recurso necesita ser serializado en una cadena.
Yii divide este proceso en dos pasos. Primero, el recurso es convertido en un array por [[yii\rest\Serializer]].
Segundo, el array es serializado en una cadena en el formato requerido (p.e. JSON, XML) por [[yii\web\ResponseFormatterInterface|response formatters]]. El primer paso es en el que debes de concentrarte principalmente cuando desarrolles una clase de un recurso.

Sobreescribiendo [[yii\base\Model::fields()|fields()]] y/o [[yii\base\Model::extraFields()|extraFields()]],
puedes especificar qué datos, llamados fields, en el recursos, pueden ser colocados en el array que le representa.
La diferencia entre estos dos métodos es que el primero especifica el conjunto de campos por defecto que deben ser incluidos en el array que los representa, mientras que el último especifica campos adicionales que deben de ser incluidos en el array si una petición del usuario final para ellos vía el parámetro de consulta expand. Por ejemplo,

// devuelve todos los campos declarados en fields()
http://localhost/users

// sólo devuelve los campos id y email, provistos por su declaración en fields()
http://localhost/users?fields=id,email

// devuelve todos los campos en fields() y el campo profile siempre y cuando esté declarado en extraFields()
http://localhost/users?expand=profile

// sólo devuelve los campos id, email y profile, siempre y cuando ellos estén declarados en fields() y extraFields()
http://localhost/users?fields=id,email&expand=profile

Sobreescribiendo fields()

Por defecto, [[yii\base\Model::fields()]] devuelve todos los atributos de los modelos como si fueran campos, mientras [[yii\db\ActiveRecord::fields()]] sólo devuelve los atributos que tengan datos en la base de datos.

Puedes sobreescribir fields() para añadir, quitar, renombrar o redefinir campos. El valor de retorno de fields() ha de estar en un array. Las claves del array son los nombres de los campos y los valores del array son las correspondientes definiciones de los campos que pueden ser tanto nombres de propiedades/atributos o funciones anónimas que devuelven los correspondientes valores del los campos. En el caso especial de que el nombre de un campo sea el mismo que su definición puedes omitir la clave en el array. Por ejemplo,

// explícitamente lista cada campo, siendo mejor usarlo cuando quieras asegurarte que los cambios
// en una tabla de la base de datos o en un atributo del modelo no provoque el cambio de tu campo (para mantener la compatibilidad anterior).
public function fields()
{
 return [
 // el nombre de campo es el mismo nombre del atributo
 'id',
 // el nombre del campo es "email", su atributo se denomina "email_address"
 'email' => 'email_address',
 // el nombre del campo es "name", su valor es definido está definido por una función anónima de retrollamada (callback)
 'name' => function () {
 return $this->first_name . ' ' . $this->last_name;
 },
];
}

// el ignorar algunos campos, es mejor usarlo cuando heredas de una implementación padre
// y pones en la lista negra (blacklist) algunos campos sensibles
public function fields()
{
 $fields = parent::fields();

 // quita los campos con información sensible
 unset($fields['auth_key'], $fields['password_hash'], $fields['password_reset_token']);

 return $fields;
}

Warning: Dado que, por defecto, todos los atributos de un modelo pueden ser incluidos en la devolución del API, debes
examinar tus datos para estar seguro de que no contiene información sensible. Si se da este tipo de información,
debes sobreescribir fields() para filtrarlos. En el ejemplo anterior, escogemos
quitar auth_key, password_hash y password_reset_token.

Sobreescribiendo extraFields()

Por defecto, [[yii\base\Model::extraFields()]] no devuelve nada, mientras que [[yii\db\ActiveRecord::extraFields()]] devuelve los nombres de las relaciones que tienen datos (populated) obtenidos de la base de datos.

El formato de devolución de los datos de extraFields() es el mismo que el de fields(). Usualmente, extraFields() es principalmente usado para especificar campos cuyos valores sean objetos. Por ejemplo, dado la siguiente declaración de campo,

public function fields()
{
 return ['id', 'email'];
}

public function extraFields()
{
 return ['profile'];
}

la petición http://localhost/users?fields=id,email&expand=profile puede devolver los siguientes datos en formato JSON :

[
 {
 "id": 100,
 "email": "100@example.com",
 "profile": {
 "id": 100,
 "age": 30,
 }
 },
 ...
]

Enlaces (Links)

HATEOAS [http://en.wikipedia.org/wiki/HATEOAS], es una abreviación de Hipermedia es el Motor del Estado de la Aplicación (Hypermedia as the Engine of Application State), promueve que las APIs RESTfull devuelvan información que permita a los clientes descubrir las acciones que soportan los recursos devueltos. El sentido de HATEOAS es devolver un conjunto de hiperenlaces con relación a la información, cuando los datos de los recursos son servidos por las APIs.

Las clases con recursos pueden soportar HATEOAS implementando el interfaz [[yii\web\Linkable]] . El interfaz contiene sólo un método [[yii\web\Linkable::getLinks()|getLinks()]] el cual debe de de devolver una lista de [[yii\web\Link|links]].
Típicamente, debes devolver al menos un enlace self representando la URL al mismo recurso objeto. Por ejemplo,

use yii\db\ActiveRecord;
use yii\web\Link;
use yii\web\Linkable;
use yii\helpers\Url;

class User extends ActiveRecord implements Linkable
{
 public function getLinks()
 {
 return [
 Link::REL_SELF => Url::to(['user/view', 'id' => $this->id], true),
];
 }
}

Cuando un objeto User es devuelto en una respuesta, puede contener un elemento _links representando los enlaces relacionados con el usuario, por ejemplo,

{
 "id": 100,
 "email": "user@example.com",
 // ...
 "_links" => {
 "self": {
 "href": "https://example.com/users/100"
 }
 }
}

Colecciones

Los objetos de los recursos pueden ser agrupados en collections. Cada colección contiene una lista de recursos objeto del mismo tipo.

Las colecciones pueden ser representadas como arrays pero, es usualmente más deseable representarlas como proveedores de datos (data providers). Esto es así porque los proveedores de datos soportan paginación y ordenación de los recursos, lo cual es comunmente necesario en las colecciones devueltas con las APIs RESTful. Por ejemplo, la siguiente acción devuelve un proveedor de datos sobre los recursos post:

namespace app\controllers;

use yii\rest\Controller;
use yii\data\ActiveDataProvider;
use app\models\Post;

class PostController extends Controller
{
 public function actionIndex()
 {
 return new ActiveDataProvider([
 'query' => Post::find(),
]);
 }
}

Cuando un proveedor de datos está enviando una respuesta con el API RESTful, [[yii\rest\Serializer]] llevará la actual página de los recursos y los serializa como un array de recursos objeto. Adicionalmente, [[yii\rest\Serializer]]
puede incluir también la información de paginación a través de las cabeceras HTTP siguientes:

	X-Pagination-Total-Count: Número total de recursos;

	X-Pagination-Page-Count: Número de páginas;

	X-Pagination-Current-Page: Página actual (iniciando en 1);

	X-Pagination-Per-Page: Número de recursos por página;

	Link: Un conjunto de enlaces de navegación permitiendo al cliente recorrer los recursos página a página.

Un ejemplo se puede ver en la sección Inicio rápido (Quick Start).

 Formato de Respuesta

Formato de Respuesta

Cuando se maneja una petición al API RESTful, una aplicación realiza usualmente los siguientes pasos que están relacionados
con el formato de la respuesta:

	Determinar varios factores que pueden afectar al formato de la respuesta, como son el tipo de medio, lenguaje, versión, etc.
Este proceso es también conocido como negociación de contenido (content negotiation) [http://en.wikipedia.org/wiki/Content_negotiation].

	La conversión de objetos recurso en arrays, como está descrito en la sección Recursos (Resources).
Esto es realizado por la clase [[yii\rest\Serializer]].

	La conversión de arrays en cadenas con el formato determinado por el paso de negociación de contenido. Esto es
realizado por los [[yii\web\ResponseFormatterInterface|formatos de respuesta]] registrados
con la propiedad [[yii\web\Response::formatters|formatters]] del
componente de la aplicación response.

Negociación de contenido (Content Negotiation)

Yii soporta la negociación de contenido a través del filtro [[yii\filters\ContentNegotiator]]. La clase de controlador base
del API RESTful [[yii\rest\Controller]] está equipada con este filtro bajo el nombre contentNegotiator.
El filtro provee tanto un formato de respuesta de negociación como una negociación de lenguaje. Por ejemplo, si la petición API RESTful
contiene la siguiente cabecera,

Accept: application/json; q=1.0, */*; q=0.1

puede obtener una respuesta en formato JSON, como a continuación:

$ curl -i -H "Accept: application/json; q=1.0, */*; q=0.1" "http://localhost/users"

HTTP/1.1 200 OK
Date: Sun, 02 Mar 2014 05:31:43 GMT
Server: Apache/2.2.26 (Unix) DAV/2 PHP/5.4.20 mod_ssl/2.2.26 OpenSSL/0.9.8y
X-Powered-By: PHP/5.4.20
X-Pagination-Total-Count: 1000
X-Pagination-Page-Count: 50
X-Pagination-Current-Page: 1
X-Pagination-Per-Page: 20
Link: <http://localhost/users?page=1>; rel=self,
 <http://localhost/users?page=2>; rel=next,
 <http://localhost/users?page=50>; rel=last
Transfer-Encoding: chunked
Content-Type: application/json; charset=UTF-8

[
 {
 "id": 1,
 ...
 },
 {
 "id": 2,
 ...
 },
 ...
]

Detrás de escena, antes de que sea ejecutada una acción del controlador del API RESTful, el filtro [[yii\filters\ContentNegotiator]]
comprobará la cabecera HTTP Accept de la petición y definirá el [[yii\web\Response::format|response format]]
como 'json'. Después de que la acción sea ejecutada y devuelva el objeto recurso o la colección resultante,
[[yii\rest\Serializer]] convertirá el resultado en un array. Y finalmente, [[yii\web\JsonResponseFormatter]]
serializará el array en una cadena JSON incluyéndola en el cuerpo de la respuesta.

Por defecto, el API RESTful soporta tanto el formato JSON como el XML. Para soportar un nuevo formato, debes configurar
la propiedad [[yii\filters\ContentNegotiator::formats|formats]] del filtro contentNegotiator tal y como sigue,
en las clases del controlador del API:

use yii\web\Response;

public function behaviors()
{
 $behaviors = parent::behaviors();
 $behaviors['contentNegotiator']['formats']['text/html'] = Response::FORMAT_HTML;
 return $behaviors;
}

Las claves de la propiedad formats son los tipos MIME soportados, mientras que los valores son los nombres de formato de respuesta correspondientes,
los cuales deben ser soportados en [[yii\web\Response::formatters]].

Serialización de Datos

Como hemos descrito antes, [[yii\rest\Serializer]] es la pieza central responsable de convertir
objetos recurso o colecciones en arrays. Reconoce objetos tanto implementando [[yii\base\ArrayableInterface]]
como [[yii\data\DataProviderInterface]]. El primer formateador es implementado principalmente para objetos recursos,
mientras que el segundo para recursos collección.

Puedes configurar el serializador definiendo la propiedad [[yii\rest\Controller::serializer]] con un array de configuración.
Por ejemplo, a veces puedes querer ayudar a simplificar el trabajo de desarrollo del cliente incluyendo información de la paginación
directamente en el cuerpo de la respuesta. Para hacer esto, configura la propiedad [[yii\rest\Serializer::collectionEnvelope]]
como sigue:

use yii\rest\ActiveController;

class UserController extends ActiveController
{
 public $modelClass = 'app\models\User';
 public $serializer = [
 'class' => 'yii\rest\Serializer',
 'collectionEnvelope' => 'items',
];
}

Puedes obtener la respuesta que sigue para la petición http://localhost/users:

HTTP/1.1 200 OK
Date: Sun, 02 Mar 2014 05:31:43 GMT
Server: Apache/2.2.26 (Unix) DAV/2 PHP/5.4.20 mod_ssl/2.2.26 OpenSSL/0.9.8y
X-Powered-By: PHP/5.4.20
X-Pagination-Total-Count: 1000
X-Pagination-Page-Count: 50
X-Pagination-Current-Page: 1
X-Pagination-Per-Page: 20
Link: <http://localhost/users?page=1>; rel=self,
 <http://localhost/users?page=2>; rel=next,
 <http://localhost/users?page=50>; rel=last
Transfer-Encoding: chunked
Content-Type: application/json; charset=UTF-8

{
 "items": [
 {
 "id": 1,
 ...
 },
 {
 "id": 2,
 ...
 },
 ...
],
 "_links": {
 "self": {
 "href": "http://localhost/users?page=1"
 },
 "next": {
 "href": "http://localhost/users?page=2"
 },
 "last": {
 "href": "http://localhost/users?page=50"
 }
 },
 "_meta": {
 "totalCount": 1000,
 "pageCount": 50,
 "currentPage": 1,
 "perPage": 20
 }
}

 Enrutamiento

Enrutamiento

Con las clases de controlador y recurso preparadas, puedes acceder a los recursos usando una URL como
http://localhost/index.php?r=user/create, parecida a la que usas con aplicaciones Web normales.

En la práctica, querrás usualmente usar URLs limpias y obtener ventajas de los verbos HTTP.
Por ejemplo, una petición POST /users significaría acceder a la acción user/create.
Esto puede realizarse fácilmente configurando el componente de la aplicación urlManager
como sigue:

'urlManager' => [
 'enablePrettyUrl' => true,
 'enableStrictParsing' => true,
 'showScriptName' => false,
 'rules' => [
 ['class' => 'yii\rest\UrlRule', 'controller' => 'user'],
],
]

En comparación con la gestión de URL en las aplicaciones Web, lo principalmente nuevo de lo anterior es el uso de
[[yii\rest\UrlRule]] para el enrutamiento de las peticiones con el API RESTful. Esta clase especial de regla URL creará
un conjunto completo de reglas URL hijas para soportar el enrutamiento y creación de URL para el/los controlador/es especificados.
Por ejemplo, el código anterior es equivalente a las siguientes reglas:

[
 'PUT,PATCH users/<id>' => 'user/update',
 'DELETE users/<id>' => 'user/delete',
 'GET,HEAD users/<id>' => 'user/view',
 'POST users' => 'user/create',
 'GET,HEAD users' => 'user/index',
 'users/<id>' => 'user/options',
 'users' => 'user/options',
]

Y los siguientes puntos finales del API son mantenidos por esta regla:

	GET /users: lista de todos los usuarios página a página;

	HEAD /users: muestra ĺa información resumen del usuario listado;

	POST /users: crea un nuevo usuario;

	GET /users/123: devuelve los detalles del usuario 123;

	HEAD /users/123: muestra la información resumen del usuario 123;

	PATCH /users/123 y PUT /users/123: actualizan al usuario 123;

	DELETE /users/123: borra el usuario 123;

	OPTIONS /users: muestra los verbos soportados de acuerdo al punto final /users;

	OPTIONS /users/123: muestra los verbos soportados de acuerdo al punto final /users/123.

Puedes configurar las opciones only y except para explícitamente listar cuáles acciones soportar o cuáles
deshabilitar, respectivamente. Por ejemplo,

[
 'class' => 'yii\rest\UrlRule',
 'controller' => 'user',
 'except' => ['delete', 'create', 'update'],
],

También puedes configurar las propiedades patterns o extraPatterns para redefinir patrones existentes o añadir nuevos soportados por esta regla.
Por ejemplo, para soportar una nueva acción search para el punto final GET /users/search, configura la opción extraPatterns como sigue,

[
 'class' => 'yii\rest\UrlRule',
 'controller' => 'user',
 'extraPatterns' => [
 'GET search' => 'search',
],
]

Puedes haber notado que el ID del controlador user aparece en formato plural users en los puntos finales de las URLs.
Esto se debe a que [[yii\rest\UrlRule]] automáticamente pluraliza los IDs de los controladores al crear reglas URL hijas.
Puedes desactivar este comportamiento definiendo la propiedad [[yii\rest\UrlRule::pluralize]] como false.

Info: La pluralización de los IDs de los controladores es realizada por [[yii\helpers\Inflector::pluralize()]]. Este método respeta
reglas especiales de pluralización. Por ejemplo, la palabra box (caja) será pluralizada como boxes en vez de boxs.

En caso de que la pluralización automática no encaje en tus requerimientos, puedes además configurar la propiedad
[[yii\rest\UrlRule::controller]] para especificar explícitamente cómo mapear un nombre utilizado en un punto final URL
a un ID de controlador. Por ejemplo, el siguiente código mapea el nombre u al ID del controlador user.

[
 'class' => 'yii\rest\UrlRule',
 'controller' => ['u' => 'user'],
]

 Versionado

Versionado

Una buena API ha de ser versionada: los cambios y las nuevas características son implementadas en las nuevas versiones del API, en vez de estar continuamente modificando sólo una versión. Al contrario que en las aplicaciones Web, en las cuales tienes total control del código de ambas partes lado del cliente y lado del servidor,
las APIs están destinadas a ser usadas por los clientes fuera de tu control. Por esta razón, compatibilidad hacia atrás (BC Backward compatibility)
de las APIs ha de ser mantenida siempre que sea posible. Si es necesario un cambio que puede romper la BC, debes de introducirla en la nueva versión del API, e incrementar el número de versión. Los clientes que la usan pueden continuar usando la antigua versión de trabajo del API; los nuevos y actualizados clientes pueden obtener la nueva funcionalidad de la nueva versión del API.

Tip: referirse a Semántica del versionado [http://semver.org/]
para más información en el diseño del número de versión del API.

Una manera común de implementar el versionado de la API es embeber el número de versión en las URLs de la API.
Por ejemplo, http://example.com/v1/users se refiere al punto final /users de la versión 1 de la API.

Otro método de versionado de la API,
la cual está ganando predominancia recientemente, es poner el número de versión en las cabeceras de la petición HTTP. Esto se suele hacer típicamente a través la cabecera Accept:

// vía parámetros
Accept: application/json; version=v1
// vía de el tipo de contenido del proveedor
Accept: application/vnd.company.myapp-v1+json

Ambos métodos tienen sus pros y sus contras, y hay gran cantidad de debates sobre cada uno. Debajo puedes ver una estrategia
práctica para el versionado de la API que es una mezcla de estos dos métodos:

	Pon cada versión superior de la implementación de la API en un módulo separado cuyo ID es el número de la versión mayor (p.e. v1, v2).
Naturalmente, las URLs de la API contendrán números de versión mayores.

	Dentro de cada versión mayor (y por lo tanto, dentro del correspondiente módulo), usa la cabecera de HTTP Accept
para determinar el número de la versión menor y escribe código condicional para responder a la menor versión como corresponde.

Para cada módulo sirviendo una versión mayor, el módulo debe incluir las clases de recursos y y controladores
que especifican la versión. Para separar mejor la responsabilidad del código, puedes conservar un conjunto común de
clases base de recursos y controladores, y hacer subclases de ellas en cada versión individual del módulo. Dentro de las subclases,
impementa el código concreto como por ejemplo Model::fields().

Tu código puede estar organizado como lo que sigue:

api/
 common/
 controllers/
 UserController.php
 PostController.php
 models/
 User.php
 Post.php
 modules/
 v1/
 controllers/
 UserController.php
 PostController.php
 models/
 User.php
 Post.php
 v2/
 controllers/
 UserController.php
 PostController.php
 models/
 User.php
 Post.php

La configuración de tu aplicación puede tener este aspecto:

return [
 'modules' => [
 'v1' => [
 'basePath' => '@app/modules/v1',
 'controllerNamespace' => 'app\modules\v1\controllers',
],
 'v2' => [
 'basePath' => '@app/modules/v2',
 'controllerNamespace' => 'app\modules\v2\controllers',
],
],
 'components' => [
 'urlManager' => [
 'enablePrettyUrl' => true,
 'enableStrictParsing' => true,
 'showScriptName' => false,
 'rules' => [
 ['class' => 'yii\rest\UrlRule', 'controller' => ['v1/user', 'v1/post']],
 ['class' => 'yii\rest\UrlRule', 'controller' => ['v2/user', 'v2/post']],
],
],
],
];

Como consecuencia del código anterior, http://example.com/v1/users devolverá la lista de usuarios en la versión 1, mientras
http://example.com/v2/users devolverá la versión 2 de los usuarios.

Gracias a los módulos, el código de las diferentes principales versiones puede ser aislado. Pero los módulos hacen posible
reutilizar el código a través de los módulos vía clases base comunes y otros recursos compartidos.

Para tratar con versiones menores, puedes tomar ventaja de la característica de negociación de contenido
provista por el comportamiento (behavior) [[yii\filters\ContentNegotiator|contentNegotiator]]. El comportamiento contentNegotiator
definirá la propiedad [[yii\web\Response::acceptParams]] cuando determina qué tipo
de contenido soportar.

Por ejemplo, si una petición es enviada con la cabecera HTTP Accept: application/json; version=v1,
después de la negociación de contenido, [[yii\web\Response::acceptParams]] contendrá el valor ['version' => 'v1'].

Basado en la información de versión contenida en acceptParams, puedes escribir código condicional en lugares
como acciones, clases de recursos, serializadores, etc. para proveer la funcionalidad apropiada.

Dado que por definición las versiones menores requireren mantener la compatibilidad hacia atrás, con suerte no tendrás demasiadas
comprobaciones de versión en tu código. De otra manera, probablemente puede ocurrir que necesites crear una versión mayor.

 Bootstrapping

Bootstrapping

El Bootstrapping hace referencia al proceso de preparar el entorno antes de que una aplicación se inicie para resolver y procesar una petición entrante. El se ejecuta en dos lugares: el script de entrada y la aplicación.

En el script de entrada, se registran los cargadores automáticos de clase para diferentes librerías. Esto incluye el cargador automático de Composer a través de su fichero ‘autoload.php’ y del cargador automático de Yii a través del fichero de clase ‘Yii’. El script de entrada después carga la configuración de la aplicación y crea una instancia de la aplicación.

El constructor de la aplicación, ejecuta el siguiente trabajo de bootstrapping:

Llama a [[yii\base\Application::preInit()|preInit()]], que configura algunas propiedades de alta prioridad de la aplicación, como [[yii\base\Application::basePath|basePath]].
Registra el [[yii\base\Application::errorHandler|error handler]].
Inicializa las propiedades de aplicación usando la configuración de la aplicación dada.
Llama a [[yii\base\Application::init()|init()]] que a su vez llama a [[yii\base\Application::bootstrap()|bootstrap()]] para ejecutar componentes de bootstrapping.
Incluye el archivo de manifiesto de extensiones ‘vendor/yiisoft/extensions.php’
Crea y ejecuta componentes de bootstrap declarados por las extensiones.
Crea y ejecuta componentes de aplicación y/o módulos que se declaran en la propiedad bootstrap de la aplicación.

Debido a que el trabajo de bootstrapping se tiene que ejecutar antes de gestionar todas las peticiones, es muy importante mantener este proceso ligero y optimizado lo máximo que sea posible.

Intenta no registrar demasiados componentes de bootstrapping. Un componente de bootstrapping sólo es necesario si tiene que interaccionar en todo el ciclo de vida de la gestión de la petición. Por ejemplo, si un modulo necesita registrar reglas de análisis de URL adicionales, se debe incluirse en la propiedad bootstrap para que la nueva regla de URL tenga efecto antes de que sea utilizada para resolver peticiones.

En modo de producción, hay que habilitar la cache bytecode, así como APC [http://php.net/manual/es/book.apc.php], para minimizar el tiempo necesario para incluir y analizar archivos PHP.

Algunas grandes aplicaciones tienen configuraciones de aplicación muy complejas que están dividida en muchos archivos de configuración más pequeños.

 Gestión de Errores

Gestión de Errores

Yii incluye un [[yii\web\ErrorHandler|error handler]] que permite una gestión de errores mucho más práctica que
anteriormente. En particular, el gestor de errores de Yii hace lo siguiente para mejorar la gestión de errores:

	Todos los errores no fatales (ej. advertencias (warning), avisos (notices)) se convierten en excepciones capturables.

	Las excepciones y los errores fatales de PHP se muestran con una pila de llamadas (call stack) de información
detallada y lineas de código fuente.

	Soporta el uso de acciones de controlador dedicadas para mostrar errores.

	Soporta diferentes formatos de respuesta (response) de errores.

El [[yii\web\ErrorHandler|error handler]] esta habilitado de forma predeterminada. Se puede deshabilitar definiendo la
constante YII_ENABLE_ERROR_HANDLER con valor false en el script de entrada (entry script) de la aplicación.

Uso del Gestor de Errores

El [[yii\web\ErrorHandler|error handler]] se registra como un componente de aplicación llamado errorHandler.
Se puede configurar en la configuración de la aplicación como en el siguiente ejemplo:

return [
 'components' => [
 'errorHandler' => [
 'maxSourceLines' => 20,
],
],
];

Con la anterior configuración, el numero del lineas de código fuente que se mostrará en las páginas de excepciones será como máximo de 20.

Como se ha mencionado, el gestor de errores convierte todos los errores de PHP no fatales en excepciones capturables.
Esto significa que se puede usar el siguiente código para tratar los errores PHP:

use Yii;
use yii\base\ErrorException;

try {
 10/0;
} catch (ErrorException $e) {
 Yii::warning("Division by zero.");
}

// la ejecución continua ...

Si se quiere mostrar una página de error que muestra al usuario que su petición no es válida o no es la esperada, se
puede simplemente lanzar una excepción de tipo [[yii\web\HttpException|HTTP exception]], como podría ser
[[yii\web\NotFoundHttpException]]. El gestor de errores establecerá correctamente el código de estado HTTP de la
respuesta y usará la vista de error apropiada para mostrar el mensaje.

use yii\web\NotFoundHttpException;

throw new NotFoundHttpException();

Personalizar la Visualización de Errores

El [[yii\web\ErrorHandler|error handler]] ajusta la visualización del error conforme al valor de la constante YII_DEBUG.
Cuando YII_DEBUG es true (es decir, en modo depuración (debug)), el gestor de errores mostrara las
excepciones con una pila detallada de información y con lineas de código fuente para ayudar a depurar. Y cuando la variable YII_DEBUG es false,
solo se mostrará el mensaje de error para prevenir la revelación de información sensible de la aplicación.

Info: Si una excepción es descendiente de [[yii\base\UserException]], no se mostrará la pila de llamadas
independientemente del valor de YII_DEBUG. Esto es debido a que se considera que estas excepciones se deben a
errores cometidos por los usuarios y los desarrolladores no necesitan corregirlas.

De forma predeterminada, el [[yii\web\ErrorHandler|error handler]] muestra los errores usando dos vistas:

	@yii/views/errorHandler/error.php: se usa cuando deben mostrarse los errores SIN la información de la pila de
llamadas. Cuando YII_DEBUG es falos, este es el único error que se mostrara.

	@yii/views/errorHandler/exception.php: se usa cuando los errores deben mostrarse CON la información de la pila de llamadas.

Se pueden configurar las propiedades [[yii\web\ErrorHandler::errorView|errorView]] y [[yii\web\ErrorHandler::exceptionView|exceptionView]]
el gestor de errores para usar nuestros propias vistas para personalizar la visualización de los errores.

Uso de Acciones de Error

Una mejor manera de personalizar la visualización de errores es usar un acción de error
dedicada. Para hacerlo, primero se debe configurar la propiedad [[yii\web\ErrorHandler::errorAction|errorAction]] del
componente errorHandler como en el siguiente ejemplo:

return [
 'components' => [
 'errorHandler' => [
 'errorAction' => 'site/error',
],
]
];

La propiedad [[yii\web\ErrorHandler::errorAction|errorAction]] vincula una ruta a
una acción. La configuración anterior declara que cuando un error tiene que mostrarse sin la pila de información de
llamadas, se debe ejecutar la acción site/error.

Se puede crear una acción site/error como se hace a continuación,

namespace app\controllers;

use Yii;
use yii\web\Controller;

class SiteController extends Controller
{
 public function actions()
 {
 return [
 'error' => [
 'class' => 'yii\web\ErrorAction',
],
];
 }
}

El código anterior define la acción error usando la clase [[yii\web\ErrorAction]] que renderiza un error usando la
vista llamada error.

Además, usando [[yii\web\ErrorAction]], también se puede definir la acción error usando un método de acción como en el siguiente ejemplo,

public function actionError()
{
 $exception = Yii::$app->errorHandler->exception;
 if ($exception !== null) {
 return $this->render('error', ['exception' => $exception]);
 }
}

Ahora se debe crear un archivo de vista ubicado en views/sites/error.php. En este archivo de vista, se puede acceder
a las siguientes variables si se define el error como un [[yii\web\ErrorAction]]:

	name: el nombre del error;

	message: el mensaje del error;

	exception: el objeto de excepción a través del cual se puede obtener más información útil, tal como el código de
estado HTTP, el código de error, la pila de llamadas del error, etc.

Info: Tanto la plantilla de aplicación básica como la plantilla de aplicación avanzada,
ya incorporan la acción de error y la vista de error.

Note: Si necesitas redireccionar en un gestor de error, hazlo de la siguiente manera:

Yii::$app->getResponse()->redirect($url)->send();
return;

Personalizar el Formato de Respuesta de Error

El gestor de errores muestra los errores de siguiente la configuración del formato de las
respuestas. Si el [[yii\web\Response::format response format]] es html, se usará la vista de
error o excepción para mostrar los errores tal y como se ha descrito en la anterior subsección. Para otros tipos de
formatos de respuesta, el gestor de errores asignara la representación del array de la excepción a la propiedad
[[yii\web\Response::data]] que posteriormente podrá convertirse al formato deseado. Por ejemplo, si el formato de
respuesta es json, obtendremos la siguiente respuesta:

HTTP/1.1 404 Not Found
Date: Sun, 02 Mar 2014 05:31:43 GMT
Server: Apache/2.2.26 (Unix) DAV/2 PHP/5.4.20 mod_ssl/2.2.26 OpenSSL/0.9.8y
Transfer-Encoding: chunked
Content-Type: application/json; charset=UTF-8

{
 "name": "Not Found Exception",
 "message": "The requested resource was not found.",
 "code": 0,
 "status": 404
}

Se puede personalizar el formato de respuestas de error respondiendo al evento beforeSend del componente response
en la configuración de la aplicación:

return [
 // ...
 'components' => [
 'response' => [
 'class' => 'yii\web\Response',
 'on beforeSend' => function ($event) {
 $response = $event->sender;
 if ($response->data !== null) {
 $response->data = [
 'success' => $response->isSuccessful,
 'data' => $response->data,
];
 $response->statusCode = 200;
 }
 },
],
],
];

El código anterior reformateará la respuesta de error como en el siguiente ejemplo:

HTTP/1.1 200 OK
Date: Sun, 02 Mar 2014 05:31:43 GMT
Server: Apache/2.2.26 (Unix) DAV/2 PHP/5.4.20 mod_ssl/2.2.26 OpenSSL/0.9.8y
Transfer-Encoding: chunked
Content-Type: application/json; charset=UTF-8

{
 "success": false,
 "data": {
 "name": "Not Found Exception",
 "message": "The requested resource was not found.",
 "code": 0,
 "status": 404
 }
}

 Registro de anotaciones

Registro de anotaciones

Yii proporciona un poderoso framework dedicado al registro de anotaciones (logging) que es altamente personalizable y
extensible. Usando este framework se pueden guardar fácilmente anotaciones (logs) de varios tipos de mensajes,
filtrarlos, y unificarlos en diferentes destinos que pueden ser archivos, bases de datos o emails.

Usar el framework de registro de anotaciones de Yii involucra los siguientes pasos:

	Registrar mensajes de las anotaciones en distintos lugares del código;

	Configurar los destinos de las anotaciones en la configuración de la aplicación para filtrar y
exportar los mensajes de las anotaciones;

	Examinar los mensajes filtrados de los las anotaciones exportadas para diferentes destinos
(ej. Yii debugger).

En esta sección, se describirán principalmente los dos primeros pasos.

Anotación de Messages

Registrar mensajes de anotación es tan simple como llamar a uno de los siguientes métodos de registro de anotaciones.

	[[Yii::debug()]]: registra un mensaje para trazar el funcionamiento de una sección de código. Se usa principalmente
para tareas de desarrollo.

	[[Yii::info()]]: registra un mensaje que transmite información útil.

	[[Yii::warning()]]: registra un mensaje de advertencia que indica que ha sucedido algo inesperado.

	[[Yii::error()]]: registra un error fatal que debe ser investigado tan pronto como sea posible.

Estos métodos registran mensajes de varios niveles de severidad y categorías. Comparten el mismo registro de
función function ($message, $category = 'application'), donde $message representa el mensaje del registro que
tiene que ser registrado, mientras que $category es la categoría del registro de mensaje. El código del siguiente
ejemplo registra la huella del mensaje para la categoría application:

Yii::debug('start calculating average revenue');

Info: Los mensajes de registro pueden ser tanto cadenas de texto como datos complejos, como arrays u objetos.
Es responsabilidad de los destinos de registros tratar los mensajes de registro de manera apropiada.
De forma predeterminada, si un mensaje de registro no es una cadena de texto, se exporta como si fuera un string
llamando a [[yii\helpers\VarDumper::export()]].

Para organizar mejor y filtrar los mensajes de registro, se recomienda especificar una categoría apropiada para cada
mensaje de registro. Se puede elegir un sistema de nombres jerárquicos por categorías que facilite a los
destino de registros el filtrado de mensajes basándose en categorías. Una manera simple pero
efectiva de organizarlos es usar la constante predefinida (magic constant) de PHP __METHOD__ como nombre de
categoría. Además este es el enfoque que se usa en el código del núcleo (core) del framework Yii. Por ejemplo,

Yii::debug('start calculating average revenue', __METHOD__);

La constante __METHOD__ equivale al nombre del método (con el prefijo del nombre completo del nombre de clase) donde
se encuentra la constante. Por ejemplo, es igual a la cadena 'app\controllers\RevenueController::calculate' si la
linea anterior de código se llamara dentro de este método.

Info: Los métodos de registro de anotaciones descritos anteriormente en realidad son accesos directos al
método [[yii\log\Logger::log()|log()]] del [[yii\log\Logger|logger object]] que es un singleton accesible a través
de la expresión Yii::getLogger(). Cuando se hayan registrado suficientes mensajes o cuando la aplicación haya
finalizado, el objeto de registro llamará [[yii\log\Dispatcher|message dispatcher]] para enviar los mensajes de
registro registrados a los destiinos de registros.

Destino de Registros

Un destino de registro es una instancia de la clase [[yii\log\Target]] o de una clase hija. Este filtra los
mensajes de registro por sus niveles de severidad y sus categorías y después los exporta a algún medio. Por ejemplo,
un [[yii\log\DbTarget|database target]] exporta los mensajes de registro filtrados a una tabla de base de datos,
mientras que un [[yii\log\EmailTarget|email target]] exporta los mensajes de registro a una dirección de correo
electrónico específica.

Se pueden registrar múltiples destinos de registros en una aplicación configurándolos en la
aplicación de componente log dentro de la configuración de aplicación, como
en el siguiente ejemplo:

return [
 // el componente log tiene que cargarse durante el proceso de bootstrapping
 'bootstrap' => ['log'],

 'components' => [
 'log' => [
 'targets' => [
 [
 'class' => 'yii\log\DbTarget',
 'levels' => ['error', 'warning'],
],
 [
 'class' => 'yii\log\EmailTarget',
 'levels' => ['error'],
 'categories' => ['yii\db*'],
 'message' => [
 'from' => ['log@example.com'],
 'to' => ['admin@example.com', 'developer@example.com'],
 'subject' => 'Database errors at example.com',
],
],
],
],
],
];

Note: El componente log debe cargarse durante el proceso de bootstrapping para que
pueda enviar los mensajes de registro a los destinos inmediatamente. Este es el motivo por el que se lista en el
array bootstrap como se muestra más arriba.

En el anterior código, se registran dos destinos de registros en la propiedad [[yii\log\Dispatcher::targets]]

	el primer destino gestiona los errores y las advertencias y las guarda en una tabla de la base de datos;

	el segundo destino gestiona mensajes los mensajes de error de las categorías cuyos nombres empiecen por
yii\db\ y los envía por email a las direcciones admin@example.com y developer@example.com.

Yii incluye los siguientes destinos. En la API de documentación se pueden referencias a estas clases e
información de configuración y uso.

	[[yii\log\DbTarget]]: almacena los mensajes de registro en una tabla de la base de datos.

	[[yii\log\EmailTarget]]: envía los mensajes de registro a direcciones de correo preestablecidas.

	[[yii\log\FileTarget]]: guarda los menajes de registro en archivos.

	[[yii\log\SyslogTarget]]: guarda los mensajes de registro en el syslog llamando a la función PHP syslog().

A continuación, se describirá las características más comunes de todos los destinos de registros.

Filtrado de Mensajes

Se pueden configurar las propiedades [[yii\log\Target::levels|levels]] y [[yii\log\Target::categories|categories]]
para cada destino de registros, con estas se especifican los niveles de severidad y las categorías de mensajes que
deberán procesar sus destinos.

La propiedad [[yii\log\Target::levels|levels]] es un array que consta de uno o varios de los siguientes valores:

	error: correspondiente a los mensajes registrados por [[Yii::error()]].

	warning: correspondiente a los mensajes registrados por [[Yii::warning()]].

	info: correspondiente a los mensajes registrados por [[Yii::info()]].

	trace: correspondiente a los mensajes registrados por [[Yii::debug()]].

	profile: correspondiente a los mensajes registrados por [[Yii::beginProfile()]] y [[Yii::endProfile()]], que se
explicará más detalladamente en la subsección Perfiles.

Si no se especifica la propiedad [[yii\log\Target::levels|levels]], significa que el destino procesará los
mensajes de cualquier nivel de severidad.

La propiedad [[yii\log\Target::categories|categories]] es un array que consta de categorías de mensaje o patrones. El
destino sólo procesará mensajes de las categorías que se puedan encontrar o si coinciden con algún patrón listado
en el array. Un patrón de categoría es un nombre de categoría al que se le añade un asterisco * al final. Un nombre
de categoría coincide con un patrón si empieza por el mismo prefijo que el patrón. Por ejemplo,
yii\db\Command::execute y yii\db\Command::query que se usan como nombres de categoría para los mensajes
registrados en la clase [[yii\db\Command]], coinciden con el patrón yii\db*.

Si no se especifica la propiedad [[yii\log\Target::categories|categories]], significa que el destino procesará
los mensajes de todas las categorías.

Además añadiendo las categorías en listas blancas (whitelisting) mediante la propiedad
[[yii\log\Target::categories|categories]], también se pueden añadir ciertas categorías en listas negras (blacklist)
configurando la propiedad [[yii\log\Target::except|except]]. Si se encuentra la categoría de un mensaje o coincide
algún patrón con esta propiedad, NO será procesada por el destino.

La siguiente configuración de destinos especifica que el destino solo debe procesar los mensajes de error y
de advertencia de las categorías que coincidan con alguno de los siguientes patrones yii\db* o
yii\web\HttpException:*, pero no con yii\web\HttpException:404.

[
 'class' => 'yii\log\FileTarget',
 'levels' => ['error', 'warning'],
 'categories' => [
 'yii\db*',
 'yii\web\HttpException:*',
],
 'except' => [
 'yii\web\HttpException:404',
],
]

Info: Cuando se captura una excepción de tipo HTTP por el gestor de errores, se
registrará un mensaje de error con el nombre de categoría con formato yii\web\HttpException:ErrorCode. Por
ejemplo, la excepción [[yii\web\NotFoundHttpException]] causará un mensaje de error del tipo
yii\web\HttpException:404.

Formato de los Mensajes

Los destinos exportan los mensajes de registro filtrados en cierto formato. Por ejemplo, is se instala un
destino de registros de la calse [[yii\log\FileTarget]], encontraremos un registro similar en el archivo de
registro runtime/log/app.log:

2014-10-04 18:10:15 [::1][][-][trace][yii\base\Module::getModule] Loading module: debug

De forma predeterminada los mensajes de registro se formatearan por [[yii\log\Target::formatMessage()]] como en el
siguiente ejemplo:

Timestamp [IP address][User ID][Session ID][Severity Level][Category] Message Text

Se puede personalizar el formato configurando la propiedad [[yii\log\Target::prefix]] que es un PHP ejecutable y
devuelve un prefijo de mensaje personalizado. Por ejemplo, el siguiente código configura un destino de registro
anteponiendo a cada mensaje de registro el ID de usuario (se eliminan la dirección IP y el ID por razones de
privacidad).

[
 'class' => 'yii\log\FileTarget',
 'prefix' => function ($message) {
 $user = Yii::$app->has('user', true) ? Yii::$app->get('user') : null;
 $userID = $user ? $user->getId(false) : '-';
 return "[$userID]";
 }
]

Además de prefijos de mensaje, destinos de registros también añaden alguna información de contexto en cada lote
de mensajes de registro. De forma predeterminada, se incluyen los valores de las siguientes variables globales de
PHP: $_GET, $_POST, $_FILES, $_COOKIE, $_SESSION y $_SERVER. Se puede ajustar el comportamiento
configurando la propiedad [[yii\log\Target::logVars]] con los nombres de las variables globales que se quieran incluir
con el destino del registro. Por ejemplo, la siguiente configuración de destino de registros especifica que
sólo se añadirá al mensaje de registro el valor de la variable $_SERVER.

[
 'class' => 'yii\log\FileTarget',
 'logVars' => ['_SERVER'],
]

Se puede configurar logVars para que sea un array vacío para deshabilitar totalmente la inclusión de información de
contexto. O si se desea implementar un método propio de proporcionar información de contexto se puede sobrescribir el
método [[yii\log\Target::getContextMessage()]].

Nivel de Seguimiento de Mensajes

Durante el desarrollo, a veces se quiere visualizar de donde proviene cada mensaje de registro. Se puede lograr
configurando la propiedad [[yii\log\Dispatcher::traceLevel|traceLevel]] del componente log como en el siguiente
ejemplo:

return [
 'bootstrap' => ['log'],
 'components' => [
 'log' => [
 'traceLevel' => YII_DEBUG ? 3 : 0,
 'targets' => [...],
],
],
];

La configuración de aplicación anterior establece el [[yii\log\Dispatcher::traceLevel|traceLevel]] para que sea 3 si
YII_DEBUG esta habilitado y 0 si esta deshabilitado. Esto significa que si YII_DEBUG esta habilitado, a cada
mensaje de registro se le añadirán como mucho 3 niveles de la pila de llamadas del mensaje que se este registrando; y
si YII_DEBUG está deshabilitado, no se incluirá información de la pila de llamadas.

Info: Obtener información de la pila de llamadas no es trivial. Por lo tanto, sólo se debe usar esta
característica durante el desarrollo o cuando se depura la aplicación.

Liberación (Flushing) y Exportación de Mensajes

Como se ha comentado anteriormente, los mensajes de registro se mantienen en un array por el
[[yii\log\Logger|logger object]]. Para limitar el consumo de memoria de este array, el componente encargado del
registro de mensajes enviará los mensajes registrados a los destinos de registros cada vez que el
array acumule un cierto número de mensajes de registro. Se puede personalizar el número configurando la propiedad
[[yii\log\Dispatcher::flushInterval|flushInterval]] del componente log:

return [
 'bootstrap' => ['log'],
 'components' => [
 'log' => [
 'flushInterval' => 100, // el valor predeterminado es 1000
 'targets' => [...],
],
],
];

Info: También se produce la liberación de mensajes cuando la aplicación finaliza, esto asegura que los
destinos de los registros reciban los mensajes de registro.

Cuando el [[yii\log\Logger|logger object]] libera los mensajes de registro enviándolos a los
destinos de registros, estos no se exportan inmediatamente. La exportación de mensajes solo se
produce cuando un destino de registros acumula un cierto número de mensajes filtrados. Se puede personalizar este
número configurando la propiedad [[yii\log\Target::exportInterval|exportInterval]] de un
destinos de registros individual, como se muestra a continuación,

[
 'class' => 'yii\log\FileTarget',
 'exportInterval' => 100, // el valor predeterminado es 1000
]

Debido al nivel de configuración de la liberación y exportación de mensajes, de forma predeterminada cuando se llama a
Yii::debug() o cualquier otro método de registro de mensajes, NO veremos el registro de mensaje inmediatamente en
los destinos de registros. Esto podría ser un problema para algunas aplicaciones de consola de ejecución
prolongada (long-running). Para hacer que los mensajes de registro aparezcan inmediatamente en los destinos de
registro se deben establecer [[yii\log\Dispatcher::flushInterval|flushInterval]] y
[[yii\log\Target::exportInterval|exportInterval]] para que tengan valor 1 como se muestra a continuación:

return [
 'bootstrap' => ['log'],
 'components' => [
 'log' => [
 'flushInterval' => 1,
 'targets' => [
 [
 'class' => 'yii\log\FileTarget',
 'exportInterval' => 1,
],
],
],
],
];

Note: El uso frecuente de liberación y exportación puede degradar el rendimiento de la aplicación.

Conmutación de Destinos de Registros

Se puede habilitar o deshabilitar un destino de registro configuración su propiedad
[[yii\log\Target::enabled|enabled]]. Esto se puede llevar a cabo a mediante la configuración del destino de
registros o con la siguiente declaración PHP de código:

Yii::$app->log->targets['file']->enabled = false;

El código anterior requiere que se asocie un destino como file, como se muestra a continuación usando las
claves de texto en el array targets:

return [
 'bootstrap' => ['log'],
 'components' => [
 'log' => [
 'targets' => [
 'file' => [
 'class' => 'yii\log\FileTarget',
],
 'db' => [
 'class' => 'yii\log\DbTarget',
],
],
],
],
];

Creación de Nuevos Destinos

La creación de nuevas clases de destinos de registro es muy simple. Se necesita implementar el método
[[yii\log\Target::export()]] enviando el contenido del array [[yii\log\Target::messages]] al medio designado. Se puede
llamar al método [[yii\log\Target::formatMessage()]] para formatear los mensajes. Se pueden encontrar más detalles de
destinos de registros en las clases incluidas en la distribución de Yii.

Perfilado de Rendimiento

El Perfilado de rendimiento es un tipo especial de registro de mensajes que se usa para medir el tiempo que tardan en
ejecutarse ciertos bloques de código y encontrar donde están los cuellos de botella de rendimiento. Por ejemplo, la
clase [[yii\db\Command]] utiliza el perfilado de rendimiento para encontrar conocer el tiempo que tarda cada consulta
a la base de datos.

Para usar el perfilado de rendimiento, primero debemos identificar los bloques de código que tienen que ser
perfilados, para poder enmarcar su contenido como en el siguiente ejemplo:

\Yii::beginProfile('myBenchmark');

... Empieza el perfilado del bloque de código ...

\Yii::endProfile('myBenchmark');

Donde myBenchmark representa un token único para identificar el bloque de código. Después cuando se examine el
resulte del perfilado, se podrá usar este token para encontrar el tiempo que ha necesitado el correspondiente bloque
de código.

Es importante asegurarse de que los pares de beginProfile y endProfile estén bien anidados. Por ejemplo,

\Yii::beginProfile('block1');

 // código que será perfilado

 \Yii::beginProfile('block2');
 // más código para perfilar
 \Yii::endProfile('block2');

\Yii::endProfile('block1');

Si nos dejamos el \Yii::endProfile('block1') o lo intercambiamos \Yii::endProfile('block1') con
\Yii::endProfile('block2'), el perfilado de rendimiento no funcionará.

Se registra un mensaje de registro con el nivel de severidad profile para cada bloque de código que se haya
perfilado. Se puede configurar el destino del registro para reunir todos los mensajes y exportarlos.
El depurador de Yii incluye un panel de perfilado de rendimiento que muestra los resultados de
perfilado.

 Información General

Información General

Cada vez que una aplicación Yii gestiona una petición, se somete a un flujo de trabajo similar.

	Un usuario hace una petición al script de entrada ‘web/index.php’.

	El script de entrada carga la configuración y crea una instancia de la
aplicación para gestionar la petición.

	La aplicación resuelve la ruta solicitada con la ayuda del componente
petición de la aplicación.

	La aplicación crea una instancia del controlador para gestionar la petición.

	El controlador crea una instancia de la acción y ejecuta los filtros para la acción.

	Si algún filtro falla, se cancela la acción.

	Si pasa todos los filtros, se ejecuta la acción.

	La acción carga un modelo de datos, posiblemente de la base de datos.

	La acción renderiza una vista, proporcionándole el modelo de datos.

	El resultado renderizado se devuelve al componente respuesta de la aplicación.

	El componente respuesta envía el resultado renderizado al navegador del usuario.

El siguiente diagrama muestra como una aplicación gestiona una petición.

[image: Request Lifecycle]

En esta sección, se describirá en detalle cómo funcionan algunos de estos pasos.

 Peticiones

Peticiones

Las peticiones (requests) hechas a una aplicación son representadas como objetos [[yii\web\Request]] que proporcionan
información como parámetros de la petición, cabeceras HTTP, cookies, etc. Dada una petición, se puede acceder al
objeto request correspondiente a través del componente de aplicación request
que, por defecto, es una instancia de [[yii\web\Request]]. En esta sección se describirá como hacer uso de este
componente en las aplicaciones.

Parámetros de Request

Para obtener los parámetros de la petición, se puede llamar a los métodos [[yii\web\Request::get()|get()]] y
[[yii\web\Request::post()|post()]] del componente request. Estos devuelven los valores de $_GET y $_POST,
respectivamente. Por ejemplo:

$request = Yii::$app->request;

$get = $request->get();
// equivalente a: $get = $_GET;

$id = $request->get('id');
// equivalente a: $id = isset($_GET['id']) ? $_GET['id'] : null;

$id = $request->get('id', 1);
// equivalente a: $id = isset($_GET['id']) ? $_GET['id'] : 1;

$post = $request->post();
// equivalente a: $post = $_POST;

$name = $request->post('name');
// equivalente a: $name = isset($_POST['name']) ? $_POST['name'] : null;

$name = $request->post('name', '');
// equivalente a: $name = isset($_POST['name']) ? $_POST['name'] : '';

Info: En lugar de acceder directamente a $_GET y $_POST para obtener los parámetros de la petición, es
recomendable que se obtengan mediante el componente request como en el ejemplo anterior. Esto facilitará la
creación de tests ya que se puede simular una componente de request con datos de peticiones personalizados.

Cuando se implementan APIs RESTful, a menudo se necesita obtener parámetros enviados desde el
formulario a través de PUT, PATCH u otros métodos de request. Se pueden obtener
estos parámetros llamando a los métodos [[yii\web\Request::getBodyParam()]]. Por ejemplo:

$request = Yii::$app->request;

// devuelve todos los parámetros
$params = $request->bodyParams;

// devuelve el parámetro "id"
$param = $request->getBodyParam('id');

Info: A diferencia de los parámetros GET, los parámetros enviados desde el formulario a través de POST,
PUT, PATCH, etc. se envían en el cuerpo de la petición. El componente request convierte los parámetros cuando
se acceda a él a través de los métodos descritos anteriormente. Se puede personalizar la manera en como los
parámetros se convierten configurando la propiedad [[yii\web\Request::parsers]].

Métodos de Request

Se puede obtener el método HTTP usado por la petición actual a través de la expresión Yii::$app->request->method. Se
proporcionan un conjunto de propiedades booleanas para comprobar si el método actual es de un cierto tipo. Por ejemplo:

$request = Yii::$app->request;

if ($request->isAjax) { // la request es una request AJAX }
if ($request->isGet) { // el método de la request es GET }
if ($request->isPost) { // el método de la request es POST }
if ($request->isPut) { // el método de la request es PUT }

URLs de Request

El componente request proporciona muchas maneras de inspeccionar la URL solicitada actualmente.

Asumiendo que la URL que se está solicitando es http://example.com/admin/index.php/product?id=100, se pueden obtener
varias partes de la URL explicadas en los siguientes puntos:

	[[yii\web\Request::url|url]]: devuelve /admin/index.php/product?id=100, que es la URL sin la parte de información
del host.

	[[yii\web\Request::absoluteUrl|absoluteUrl]]: devuelve http://example.com/admin/index.php/product?id=100, que es
la URL entera, incluyendo la parte de información del host.

	[[yii\web\Request::hostInfo|hostInfo]]: devuelve http://example.com, que es la parte de información del host
dentro de la URL.

	[[yii\web\Request::pathInfo|pathInfo]]: devuelve /product, que es la parte posterior al script de entrada y
anterior al interrogante (query string)

	[[yii\web\Request::queryString|queryString]]: devuelve id=100, que es la parte posterior al interrogante.

	[[yii\web\Request::baseUrl|baseUrl]]: devuelve /admin, que es la parte posterior a la información del host y
anterior al nombre de script de entrada.

	[[yii\web\Request::scriptUrl|scriptUrl]]: devuelve /admin/index.php, que es la URL sin la información del la ruta
ni la query string.

	[[yii\web\Request::serverName|serverName]]: devuelve example.com, que es el nombre del host dentro de la URL.

	[[yii\web\Request::serverPort|serverPort]]: devuelve 80, que es el puerto que usa el servidor web.

Cabeceras HTTP

Se pueden obtener la información de las cabeceras HTTP a través de [[yii\web\HeaderCollection|header collection]]
devueltas por la propiedad [[yii\web\Request::headers]]. Por ejemplo:

// $headers es un objeto de yii\web\HeaderCollection
$headers = Yii::$app->request->headers;

// devuelve el valor Accept de la cabecera
$accept = $headers->get('Accept');

if ($headers->has('User-Agent')) { // la cabecera contiene un User-Agent }

El componente request también proporciona soporte para acceder rápidamente a las cabeceras usadas más comúnmente,
incluyendo:

	[[yii\web\Request::userAgent|userAgent]]: devuelve el valor de la cabecera User-Agen.

	[[yii\web\Request::contentType|contentType]]: devuelve el valor de la cabecera Content-Type que indica el tipo
MIME de los datos del cuerpo de la petición.

	[[yii\web\Request::acceptableContentTypes|acceptableContentTypes]]: devuelve los tipos de contenido MIME aceptado
por los usuarios, ordenados por puntuación de calidad. Los que tienen mejor puntuación, se devolverán primero.

	[[yii\web\Request::acceptableLanguages|acceptableLanguages]]: devuelve los idiomas aceptados por el usuario. Los
idiomas devueltos son ordenados según su orden de preferencia. El primer elemento representa el idioma preferido.

Si la aplicación soporta múltiples idiomas y se quiere mostrar las páginas en el idioma preferido por el usuario, se
puede usar el método de negociación de idioma [[yii\web\Request::getPreferredLanguage()]]. Este método obtiene una
lista de idiomas soportados por la aplicación, comparados con
[[yii\web\Request::acceptableLanguages|acceptableLanguages]], y devuelve el idioma más apropiado.

Tip: También se puede usar el filtro [[yii\filters\ContentNegotiator|ContentNegotiator]] para determinar
diatónicamente el content type y el idioma que debe usarse en la respuesta. El filtro implementa la negociación de
contenido en la parte superior de las propiedades y métodos descritos anteriormente.

Información del cliente

Se puede obtener el nombre del host y la dirección IP de la máquina cliente a través de
[[yii\web\Request::userHost|userHost]] y [[yii\web\Request::userIP|userIP]], respectivamente. Por ejemplo:

$userHost = Yii::$app->request->userHost;
$userIP = Yii::$app->request->userIP;

 Respuestas

Respuestas

Cuando una aplicación finaliza la gestión de una petición (request), genera un objeto
[[yii\web\Response|response]] y lo envía al usuario final. El objeto response contiene información tal como el código
de estado (status code) HTTP, las cabeceras (headers) HTTP y el cuerpo (body). El objetivo final del desarrollo de una
aplicación Web es esencialmente construir objetos response para varias peticiones.

En la mayoría de casos principalmente se debe tratar con
componentes de aplicación de tipo response que, por defecto, son una
instancia de [[yii\web\Response]]. Sin embargo, Yii permite crear sus propios objetos response y enviarlos al
usuario final tal y como se explica a continuación.

En esta sección, se describirá como generar y enviar respuestas a usuarios finales.

Códigos de Estado

Una de las primeras cosas que debería hacerse cuando se genera una respuesta es indicar si la petición se ha
gestionado correctamente. Esto se indica asignando la propiedad [[yii\web\Response::statusCode]] a la que se le puede
asignar cualquier valor válido dentro de los
códigos de estado HTTP [https://tools.ietf.org/html/rfc2616#section-10]. Por ejemplo, para indicar que la
petición se ha gestionado correctamente, se puede asignar el código de estado a 200, como en el siguiente ejemplo:

Yii::$app->response->statusCode = 200;

Sin embargo, en la mayoría de casos nos es necesario asignar explícitamente el código de estado. Esto se debe a que el
valor por defecto de [[yii\web\Response::statusCode]] es 200. Y si se quiere indicar que la petición ha fallado, se
puede lanzar una excepción HTTP apropiada como en el siguiente ejemplo:

throw new \yii\web\NotFoundHttpException;

Cuando el error handler captura una excepción, obtendrá el código de estado de la
excepción y lo asignará a la respuesta. En el caso anterior, la excepción [[yii\web\NotFoundHttpException]] está
asociada al estado HTTP 404. En Yii existen las siguientes excepciones predefinidas.

	[[yii\web\BadRequestHttpException]]: código de estado 400.

	[[yii\web\ConflictHttpException]]: código de estado 409.

	[[yii\web\ForbiddenHttpException]]: código de estado 403.

	[[yii\web\GoneHttpException]]: código de estado 410.

	[[yii\web\MethodNotAllowedHttpException]]: código de estado 405.

	[[yii\web\NotAcceptableHttpException]]: código de estado 406.

	[[yii\web\NotFoundHttpException]]: código de estado 404.

	[[yii\web\ServerErrorHttpException]]: código de estado 500.

	[[yii\web\TooManyRequestsHttpException]]: código de estado 429.

	[[yii\web\UnauthorizedHttpException]]: código de estado 401.

	[[yii\web\UnsupportedMediaTypeHttpException]]: código de estado 415.

Si la excepción que se quiere lanzar no se encuentra en la lista anterior, se puede crear una extendiendo
[[yii\web\HttpException]], o directamente lanzando un código de estado, por ejemplo:

throw new \yii\web\HttpException(402);

Cabeceras HTTP

Se puede enviar cabeceras HTTP modificando el [[yii\web\Response::headers|header collection]] en el componente
response. Por ejemplo:

$headers = Yii::$app->response->headers;

// añade una cabecera Pragma. Las cabeceras Pragma existentes NO se sobrescribirán.
$headers->add('Pragma', 'no-cache');

// asigna una cabecera Pragma. Cualquier cabecera Pragma existente será descartada.
$headers->set('Pragma', 'no-cache');

// Elimina las cabeceras Pragma y devuelve los valores de las eliminadas en un array
$values = $headers->remove('Pragma');

Info: Los nombres de las cabeceras case insensitive, es decir, no discriminan entre mayúsculas y minúsculas.
Además, las nuevas cabeceras registradas no se enviarán al usuario hasta que se llame al método
[[yii\web\Response::send()]].

Cuerpo de la Respuesta

La mayoría de las respuestas deben tener un cuerpo que contenga el contenido que se quiere mostrar a los usuarios
finales.

Si ya se tiene un texto de cuerpo con formato, se puede asignar a la propiedad [[yii\web\Response::content]] del
response. Por ejemplo:

Yii::$app->response->content = 'hello world!';

Si se tiene que dar formato a los datos antes de enviarlo al usuario final, se deben asignar las propiedades
[[yii\web\Response::format|format]] y [[yii\web\Response::data|data]]. La propiedad [[yii\web\Response::format|format]]
especifica que formato debe tener [[yii\web\Response::data|data]]. Por ejemplo:

$response = Yii::$app->response;
$response->format = \yii\web\Response::FORMAT_JSON;
$response->data = ['message' => 'hello world'];

Yii soporta a los siguientes formatos de forma predeterminada, cada uno de ellos implementado por una clase
[[yii\web\ResponseFormatterInterface|formatter]]. Se pueden personalizar los formatos o añadir nuevos sobrescribiendo
la propiedad [[yii\web\Response::formatters]].

	[[yii\web\Response::FORMAT_HTML|HTML]]: implementado por [[yii\web\HtmlResponseFormatter]].

	[[yii\web\Response::FORMAT_XML|XML]]: implementado por [[yii\web\XmlResponseFormatter]].

	[[yii\web\Response::FORMAT_JSON|JSON]]: implementado por [[yii\web\JsonResponseFormatter]].

	[[yii\web\Response::FORMAT_JSONP|JSONP]]: implementado por [[yii\web\JsonResponseFormatter]].

Mientras el cuerpo de la respuesta puede ser mostrado de forma explicita como se muestra a en el anterior ejemplo, en
la mayoría de casos se puede asignar implícitamente por el valor de retorno de los métodos de
acción. El siguiente, es un ejemplo de uso común:

public function actionIndex()
{
 return $this->render('index');
}

La acción index anterior, devuelve el resultado renderizado de la vista index. El valor devuelto será recogido por
el componente response, se le aplicará formato y se enviará al usuario final.

Por defecto, el formato de respuesta es [[yii\web\Response::FORMAT_HTML|HTML]], sólo se debe devolver un string en un
método de acción. Si se quiere usar un formato de respuesta diferente, se debe asignar antes de devolver los datos.
Por ejemplo:

public function actionInfo()
{
 \Yii::$app->response->format = \yii\web\Response::FORMAT_JSON;
 return [
 'message' => 'hello world',
 'code' => 100,
];
}

Como se ha mencionado, además de usar el componente de aplicación response predeterminado, también se pueden crear
objetos response propios y enviarlos a los usuarios finales. Se puede hacer retornando un objeto en el método de
acción, como en el siguiente ejemplo:

public function actionInfo()
{
 return \Yii::createObject([
 'class' => 'yii\web\Response',
 'format' => \yii\web\Response::FORMAT_JSON,
 'data' => [
 'message' => 'hello world',
 'code' => 100,
],
]);
}

Note: Si se crea un objeto response propio, no se podrán aprovechar las configuraciones asignadas para el componente
response en la configuración de la aplicación. Sin embargo, se puede usar la
inyección de dependencias para aplicar la configuración común al nuevo objeto response.

Redirección del Navegador

La redirección del navegador se basa en el envío de la cabecera HTTP Location. Debido a que esta característica se
usa comúnmente, Yii proporciona soporte especial para ello.

Se puede redirigir el navegador a una URL llamando al método [[yii\web\Response::redirect()]]. El método asigna la
cabecera de Location apropiada con la URL proporcionada y devuelve el objeto response él mismo. En un método de
acción, se puede acceder a él mediante el acceso directo [[yii\web\Controller::redirect()]] como en el siguiente
ejemplo:

public function actionOld()
{
 return $this->redirect('http://example.com/new', 301);
}

En el ejemplo anterior, el método de acción devuelve el resultado del método redirect(). Como se ha explicado antes,
el objeto response devuelto por el método de acción se usará como respuesta enviándola al usuario final.

En otros sitios que no sean los métodos de acción, se puede llamar a [[yii\web\Response::redirect()]] directamente
seguido por una llamada al método [[yii\web\Response::send()]] para asegurar que no habrá contenido extra en la
respuesta.

\Yii::$app->response->redirect('http://example.com/new', 301)->send();

Info: De forma predeterminada, el método [[yii\web\Response::redirect()]] asigna el estado de respuesta al
código de estado 302 que indica al navegador que recurso solicitado está temporalmente alojado en una URI diferente.
Se puede enviar un código de estado 301 para expresar que el recurso se ha movido de forma permanente.

Cuando la petición actual es de una petición AJAX, el hecho de enviar una cabecera Location no causará una
redirección del navegador automática. Para resolver este problema, el método [[yii\web\Response::redirect()]] asigna
una cabecera X-Redirect con el valor de la URL de redirección. En el lado del cliente se puede escribir código
JavaScript para leer la esta cabecera y redireccionar el navegador como corresponda.

Info: Yii contiene el archivo JavaScript yii.js que proporciona un conjunto de utilidades comunes de
JavaScript, incluyendo la redirección de navegador basada en la cabecera X-Redirect. Por tanto, si se usa este
fichero JavaScript (registrándolo asset bundle [[yii\web\YiiAsset]]), no se necesitará escribir nada más para tener
soporte en redirecciones AJAX.

Enviar Archivos

Igual que con la redirección, el envío de archivos es otra característica que se basa en cabeceras HTTP especificas.
Yii proporciona un conjunto de métodos para dar soporte a varias necesidades del envío de ficheros. Todos ellos
incorporan soporte para el rango de cabeceras HTTP.

	[[yii\web\Response::sendFile()]]: envía un fichero existente al cliente.

	[[yii\web\Response::sendContentAsFile()]]: envía un string al cliente como si fuera un archivo.

	[[yii\web\Response::sendStreamAsFile()]]: envía un file stream existente al cliente como si fuera un archivo.

Estos métodos tienen la misma firma de método con el objeto response como valor de retorno. Si el archivo que se envía
es muy grande, se debe considerar usar [[yii\web\Response::sendStreamAsFile()]] porque es más efectivo en términos de
memoria. El siguiente ejemplo muestra como enviar un archivo en una acción de controlador.

public function actionDownload()
{
 return \Yii::$app->response->sendFile('ruta/del/fichero.txt');
}

Si se llama al método de envío de ficheros fuera de un método de acción, también se debe llamar al método
[[yii\web\Response::send()]] después para asegurar que no se añada contenido extra a la respuesta.

\Yii::$app->response->sendFile('ruta/del/fichero.txt')->send();

Algunos servidores Web tienen un soporte especial para enviar ficheros llamado X-Sendfile. La idea es redireccionar
la petición para un fichero a un servidor Web que servirá el fichero directamente. Como resultado, la aplicación Web
puede terminar antes mientras el servidor Web envía el fichero. Para usar esta funcionalidad, se puede llamar a
[[yii\web\Response::xSendFile()]]. La siguiente lista resume como habilitar la característica X-Sendfile para
algunos servidores Web populares.

	Apache: X-Sendfile [http://tn123.org/mod_xsendfile]

	Lighttpd v1.4: X-LIGHTTPD-send-file [http://redmine.lighttpd.net/projects/lighttpd/wiki/X-LIGHTTPD-send-file]

	Lighttpd v1.5: X-Sendfile [http://redmine.lighttpd.net/projects/lighttpd/wiki/X-LIGHTTPD-send-file]

	Nginx: X-Accel-Redirect [http://wiki.nginx.org/XSendfile]

	Cherokee: X-Sendfile and X-Accel-Redirect [http://www.cherokee-project.com/doc/other_goodies.html#x-sendfile]

Enviar la Respuesta

El contenido en una respuesta no se envía al usuario hasta que se llama al método [[yii\web\Response::send()]]. De
forma predeterminada, se llama a este método automáticamente al final de [[yii\base\Application::run()]]. Sin embargo,
se puede llamar explícitamente a este método forzando el envío de la respuesta inmediatamente.

El método [[yii\web\Response::send()]] sigue los siguientes pasos para enviar una respuesta:

	Lanza el evento [[yii\web\Response::EVENT_BEFORE_SEND]].

	Llama a [[yii\web\Response::prepare()]] para convertir el [[yii\web\Response::data|response data]] en
[[yii\web\Response::content|response content]].

	Lanza el evento [[yii\web\Response::EVENT_AFTER_PREPARE]].

	Llama a [[yii\web\Response::sendHeaders()]] para enviar las cabeceras HTTP registradas.

	Llama a [[yii\web\Response::sendContent()]] para enviar el contenido del cuerpo de la respuesta.

	Lanza el evento [[yii\web\Response::EVENT_AFTER_SEND]].

Después de llamar a [[yii\web\Response::send()]] por primera vez, cualquier llamada a este método será ignorada. Esto
significa que una vez se envíe una respuesta, no se le podrá añadir más contenido.

Como se puede observar, el método [[yii\web\Response::send()]] lanza varios eventos útiles. Al responder a estos
eventos, es posible ajustar o decorar la respuesta.

 Enrutamiento y Creación de URLS

Enrutamiento y Creación de URLS

Cuando una aplicación Yii empieza a procesar una URL solicitada, lo primero que hace es convertir la URL en una
ruta. Luego se usa la ruta para instanciar la
acción de controlador correspondiente para gestionar la petición. A este proceso se
le llama enrutamiento.

El proceso inverso se llama creación de URLs, y crea una URL a partir de una ruta dada y unos parámetros de consulta (query) asociados. Cuando posteriormente se solicita la URL creada, el proceso de enrutamiento puede resolverla y
convertirla en la ruta original con los parámetros asociados.

La principal pieza encargada del enrutamiento y de la creación de URLs es [[yii\web\UrlManager|URL manager]], que se
registra como el componente de aplicación urlManager. El [[yii\web\UrlManager|URL manager]] proporciona el método
[[yii\web\UrlManager::parseRequest()|parseRequest()]] para convertir una petición entrante en una ruta y sus
parámetros asociados y el método [[yii\web\UrlManager::createUrl()|createUrl()]] para crear una URL a partir de una
ruta dada y sus parámetros asociados.

Configurando el componente urlManager en la configuración de la aplicación, se puede dotar a la aplicación de
reconocimiento arbitrario de formatos de URL sin modificar el código de la aplicación existente. Por ejemplo, se
puede usar el siguiente código para crear una URL para la acción post/view:

use yii\helpers\Url;

// Url::to() llama a UrlManager::createUrl() para crear una URL
$url = Url::to(['post/view', 'id' => 100]);

Dependiendo de la configuración de urlManager, la URL generada puede asemejarse a alguno de los siguientes (u otro)
formato. Y si la URL creada se solicita posteriormente, se seguirá convirtiendo en la ruta original y los valores de
los parámetros.

/index.php?r=post/view&id=100
/index.php/post/100
/posts/100

Formatos de URL

El [[yii\web\UrlManager|URL manager]] soporta dos formatos de URL: el formato predeterminado de URL y el formato URL
amigable (pretty URL).

El formato de URL predeterminado utiliza un parámetro de consulta llamado r para representar la ruta y los
parámetros normales de la petición para representar los parámetros asociados con la ruta. Por ejemplo, la URL
/index.php?r=post/view&id=100 representa la ruta post/view y 100 es el valor del parámetro id de la consulta.
El formato predeterminado de URL no requiere ningún tipo de configuración para [[yii\web\UrlManager|URL manager]] y
funciona en cualquier configuración de servidor Web.

El formato de URL amigable utiliza la ruta adicional a continuación del nombre del script de entrada (entry script)
para representar la ruta y los parámetros de consulta. Por ejemplo, La ruta en la URL /index.php/post/100 es
/post/100 que puede representar la ruta post/view y el parámetro de consulta id 100 con una
[[yii\web\UrlManager::rules|URL rule]] apropiada. Para poder utilizar el formato de URL amigable, se tendrán que
diseñar una serie de [[yii\web\UrlManager::rules|URL rules]] de acuerdo con el requerimiento actual acerca de como
deben mostrarse las URLs.

Se puede cambiar entre los dos formatos de URL conmutando la propiedad
[[yii\web\UrlManager::enablePrettyUrl|enablePrettyUrl]] del [[yii\web\UrlManager|URL manager]] sin cambiar ningún
otro código de aplicación.

Enrutamiento

El Enrutamiento involucra dos pasos. El primero, la petición (request) entrante se convierte en una ruta y sus
parámetros de consulta asociados. En el segundo paso, se crea la correspondiente
acción de controlador para la ruta convertida para que gestione la petición.

Cuando se usa el formato predefinido de URL, convertir una petición en una ruta es tan simple como obtener los valores
del parámetro de consulta GET llamado r.

Cuando se usa el formato de URL amigable, el [[yii\web\UrlManager|URL manager]] examinará las
[[yii\web\UrlManager::rules|URL rules]] registradas para encontrar alguna que pueda convertir la petición en una ruta.
Si no se encuentra tal regla, se lanzará una excepción de tipo [[yii\web\NotFoundHttpException]].

Una vez que la petición se ha convertido en una ruta, es el momento de crear la acción de controlador identificada
por la ruta. La ruta se desglosa en múltiples partes a partir de las barras que contenga. Por ejemplo, site/index
será desglosado en site e index. Cada parte is un ID que puede hacer referencia a un modulo, un controlador o una
acción. Empezando por la primera parte de la ruta, la aplicación, sigue los siguientes pasos para generar
(si los hay), controladores y acciones:

	Establece la aplicación como el modulo actual.

	Comprueba si el [[yii\base\Module::controllerMap|controller map]] del modulo actual contiene un ID actual. Si lo
tiene, se creará un objeto controlador de acuerdo con la configuración del controlador encontrado en el mapa, y
se seguirá el Paso 5 para gestionar la parte restante de la ruta.

	Comprueba si el ID hace referencia a un modulo listado en la propiedad [[yii\base\Module::modules|modules]] del
módulo actual. Si está listado, se crea un modulo de acuerdo con la configuración encontrada en el listado de
módulos, y se seguirá el Paso 2 para gestionar la siguiente parte de la ruta bajo el contexto de la creación de un
nuevo módulo.

	Trata el ID como si se tratara de un ID de controlador y crea un objeto controlador. Sigue el siguiente paso con la parte restante de la ruta.

	El controlador busca el ID en su [[yii\base\Controller::actions()|action map]]. Si lo encuentra, crea una acción de acuerdo con la configuración encontrada en el mapa. De otra forma, el controlador intenta crear una acción en linea definida por un método de acción correspondiente al ID actual.

Si ocurre algún error entre alguno de los pasos anteriores, se lanzará una excepción de tipo
[[yii\web\NotFoundHttpException]], indicando el fallo de proceso de enrutamiento.

Ruta Predeterminada

Cuando una petición se convierte en una ruta vacía, se usa la llamada ruta predeterminada. Por defecto, la ruta
predeterminada es site/index, que hace referencia a la acción index del controlador site. Se puede personalizar
configurando la propiedad [[yii\web\Application::defaultRoute|defaultRoute]] de la aplicación en la configuración de
aplicación como en el siguiente ejemplo:

[
 // ...
 'defaultRoute' => 'main/index',
];

Ruta catchAll

A veces, se puede querer poner la aplicación Web en modo de mantenimiento temporalmente y mostrar la misma pagina de
información para todas las peticiones. Hay varias maneras de lograr este objetivo. Pero una de las maneras más simples
es configurando la propiedad [[yii\web\Application::catchAll]] como en el siguiente ejemplo de configuración de
aplicación:

[
 // ...
 'catchAll' => ['site/offline'],
];

Con la anterior configuración, se usar la acción site/offline para gestionar todas las peticiones entrantes.

La propiedad catchAll debe tener un array cuyo primer elemento especifique una ruta, y el resto de elementos
(pares nombre-valor) especifiquen los parámetros ligados a la acción.

Creación de URLs

Yii proporciona un método auxiliar (helper method) [[yii\helpers\Url::to()]] para crear varios tipos de URLs a partir
de las rutas dadas y sus parámetros de consulta asociados. Por ejemplo,

use yii\helpers\Url;

// crea una URL para la ruta: /index.php?r=post/index
echo Url::to(['post/index']);

// crea una URL para la ruta con parámetros: /index.php?r=post/view&id=100
echo Url::to(['post/view', 'id' => 100]);

// crea una URL interna: /index.php?r=post/view&id=100#contentecho
Url::to(['post/view', 'id' => 100, '#' => 'content']);

// crea una URL absoluta: http://www.example.com/index.php?r=post/index
echo Url::to(['post/index'], true);

// crea una URL absoluta usando el esquema https: https://www.example.com/index.php?r=post/index
echo Url::to(['post/index'], 'https');

Hay que tener en cuenta que en el anterior ejemplo, asumimos que se está usando el formato de URL predeterminado.
Si habilita el formato de URL amigable, las URLs creadas serán diferentes, de acuerdo con las
[[yii\web\UrlManager::rules|URL rules]] que se usen.

La ruta que se pasa al método [[yii\helpers\Url::to()]] es context sensitive. Esto quiere decir que puede ser una ruta
relativa o una ruta absoluta que serán tipificadas de acuerdo con las siguientes reglas:

	Si una ruta es una cadena vacía, se usará la [[yii\web\Controller::route|route]] solicitada actualmente.

	Si la ruta no contiene ninguna barra /, se considerará que se trata de un ID de acción del controlador actual y se
le antepondrá el valor [[\yii\web\Controller::uniqueId|uniqueId]] del controlador actual.

	Si la ruta no tiene barra inicial, se considerará que se trata de una ruta relativa al modulo actual y se le
antepondrá el valor [[\yii\base\Module::uniqueId|uniqueId]] del modulo actual.

Por ejemplo, asumiendo que el modulo actual es admin y el controlador actual es post,

use yii\helpers\Url;

// la ruta solicitada: /index.php?r=admin/post/index
echo Url::to(['']);

// una ruta relativa solo con ID de acción: /index.php?r=admin/post/index
echo Url::to(['index']);

// una ruta relativa: /index.php?r=admin/post/index
echo Url::to(['post/index']);

// una ruta absoluta: /index.php?r=post/index
echo Url::to(['/post/index']);

El método [[yii\helpers\Url::to()]] se implementa llamando a los métodos
[[yii\web\UrlManager::createUrl()|createUrl()]] y [[yii\web\UrlManager::createAbsoluteUrl()|createAbsoluteUrl()]] del
[[yii\web\UrlManager|URL manager]]. En las próximas sub-secciones, explicaremos como configurar el
[[yii\web\UrlManager|URL manager]] para personalizar el formato de las URLs generadas.

El método [[yii\helpers\Url::to()]] también soporta la creación de URLs NO relacionadas con rutas particulares.
En lugar de pasar un array como su primer paramento, se debe pasar una cadena de texto. Por ejemplo,

use yii\helpers\Url;

// la URL solicitada actualmente: /index.php?r=admin/post/index
echo Url::to();

// una URL con alias: http://example.comYii::setAlias('@example', 'http://example.com/');
echo Url::to('@example');

// una URL absoluta: http://example.com/images/logo.gif
echo Url::to('/images/logo.gif', true);```

Además del método to(), la clase auxiliar [[yii\helpers\Url]] también proporciona algunos otros métodos de creación
de URLs. Por ejemplo,

use yii\helpers\Url;

// URL de la página inicial: /index.php?r=site/index
echo Url::home();

// la URL base, útil si la aplicación se desarrolla en una sub-carpeta de la carpeta raíz (root) Web
echo Url::base();

// la URL canónica de la actual URL solicitada// visitar https://en.wikipedia.org/wiki/Canonical_link_element
echo Url::canonical();

// recuerda la actual URL solicitada y la recupera más tarde requestsUrl::remember();
echo Url::previous();

Uso de URLs Amigables

Para utilizar URLs amigables, hay que configurar el componente ulrManager en la configuración de la aplicación como
en el siguiente ejemplo:

[
 'components' => [
 'urlManager' => [
 'enablePrettyUrl' => true,
 'showScriptName' => false,
 'enableStrictParsing' => true,
 'rules' => [
 // ...
],
],
],
]

La propiedad [[yii\web\UrlManager::enablePrettyUrl|enablePrettyUrl]] es obligatoria ya que alterna el formato de URL
amigable. El resto de propiedades son opcionales. Sin embargo, la anterior configuración es la más común.

	[[yii\web\UrlManager::showScriptName|showScriptName]]: esta propiedad determina si el script de entrada debe ser
incluido en las URLs generadas. Por ejemplo, en lugar de crear una URL /index.php/post/100, estableciendo la
propiedad con valor true, la URL que se generará sera /post/100.

	[[yii\web\UrlManager::enableStrictParsing|enableStrictParsing]]: esta propiedad determina si se habilita la
conversión de petición estricta, si se habilita, la URL solicitada tiene que encajar al menos con uno de las
[[yii\web\UrlManager::rules|rules]] para poder ser tratada como una petición valida, o se lanzará una
[[yii\web\NotFoundHttpException]]. Si la conversión estricta esta deshabilitada, cuando ninguna de las
[[yii\web\UrlManager::rules|rules]] coincida con la URL solicitada, la parte de información de la URL se tratará
como si fuera la ruta solicitada.

	[[yii\web\UrlManager::rules|rules]]: esta propiedad contiene una lista de las reglas que especifican como convertir
y crear URLs. Esta es la propiedad principal con la que se debe trabajar para crear URLs que satisfagan el formato
de un requerimiento particular de la aplicación.

Note: Para ocultar el nombre del script de entrada en las URLs generadas, además de establecer el
[[yii\web\UrlManager::showScriptName|showScriptName]] a falso, puede ser necesaria la configuración del servidor Web
para que identifique correctamente que script PHP debe ejecutarse cuando se solicita una URL que no lo especifique.
Si se usa el servidor Web Apache, se puede utilizar la configuración recomendada descrita en la sección de
Instalación.

Reglas de URL

Una regla de URL es una instancia de [[yii\web\UrlRule]] o de una clase hija. Cada URL consiste en un patrón utilizado
para cotejar la parte de información de ruta de las URLs, una ruta, y algunos parámetros de consulta. Una URL puede
usarse para convertir una petición si su patrón coincide con la URL solicitada y una regla de URL pude usarse para
crear una URL si su ruta y sus nombres de parámetros coinciden con los que se hayan dado.

Cuando el formato de URL amigables está habilitado, el [[yii\web\UrlManager|URL manager]] utiliza las reglas de URL
declaradas en su propiedad [[yii\web\UrlManager::rules|rules]] para convertir las peticiones entrantes y crear URLs.
En particular, para convertir una petición entrante, el [[yii\web\UrlManager|URL manager]] examina las reglas en el
orden que se han declarado y busca la primera regla que coincida con la URL solicitada. La regla que coincide es la
que se usa para convertir la URL en una ruta y sus parámetros asociados. De igual modo, para crear una URL, el
[[yii\web\UrlManager|URL manager]] busca la primera regla que coincida con la ruta dad y los parámetros y la utiliza
para crear una URL.

Se pueden configurar las [[yii\web\UrlManager::rules]] como un array con claves, siendo los patrones y las reglas sus
correspondientes rutas. Cada pareja patrón-ruta construye una regla de URL. Por ejemplo, la siguiente configuración de
configuración de [[yii\web\UrlManager::rules|rules]] declara dos reglas de URL. La primera regla coincide con una URL
posts y la mapea a la ruta post/index. La segunda regla coincide con una URL que coincida con la expresión regular
post/(\d+) y la mapea a la ruta post/view y el parámetro llamado id.

[
 'posts' => 'post/index',
 'post/<id:\d+>' => 'post/view',
]

Información; El patrón en una regla se usa para encontrar coincidencias en la parte de información de la URL.
Por ejemplo, la parte de información de la ruta /index.php/post/100?source=ad es post/100
(la primera barra y la ultima son ignoradas) que coincide con el patrón post/(\d+).

Entre la declaración de reglas de URL como pares de patrón-ruta, también se pueden declarar como arrays de
configuración. Cada array de configuración se usa para configurar un único objeto de tipo regla de URL. Este proceso
se necesita a menudo cuando se quieren configurar otras propiedades de la regla de URL. Por ejemplo,

[
 // ... otras reglas de URL ...

 [
 'pattern' => 'posts',
 'route' => 'post/index',
 'suffix' => '.json',
],
]

De forma predeterminada si no se especifica la opción class en la configuración de una regla, se utilizará la clase
predeterminada [[yii\web\UrlRule]].

Parameters Asociativos

Una regla de URL puede asociarse a una determinado grupo de parámetros de consulta que se hayan sido especificados en
el patrón con el formato <ParamName:RegExp>, donde ParamName especifica el nombre del parámetro y RegExp es una
expresión regular opcional que se usa para encontrar los valores de los parámetros. Si no se especifica RegExp
significa que el parámetro debe ser una cadena de texto sin ninguna barra.

Note: Solo se pueden especificar expresiones regulares para los parámetros. La parte restante del patrón se
considera texto plano.

Cuando se usa una regla para convertir una URL, esta rellenara los parámetros asociados con los valores que coincidan
con las partes correspondientes de la URL, y estos parámetros serán accesibles posteriormente mediante $_GET por el
componente de aplicación request. Cuando se usa una regla para crear una URL, esta obtendrá los valores de los
parámetros proporcionados y los insertara donde se hayan declarado los parámetros.

Vamos a utilizar algunos ejemplos para ilustrar como funcionan los parámetros asociativos. Asumiendo que hemos
declarado las siguientes tres URLs:

[
 'posts' => 'post/index',
 'post/<id:\d+>' => 'post/view',
 'posts/<year:\d{4}>/<category>' => 'post/index',
]

Cuando se usen las reglas para convertir URLs:

	/index.php/posts se convierte en la ruta post/index usando la primera regla;

	/index.php/posts/2014/php se convierte en la ruta post/index, el parámetro year cuyo valor es 2014 y el
parámetro category cuyo valor es php usando la tercera regla;

	/index.php/post/100 se convierte en la ruta post/view y el parámetro id cuyo valor es 100 usando la segunda
regla;

	/index.php/posts/php provocara una [[yii\web\NotFoundHttpException]] cuando
[[yii\web\UrlManager::enableStrictParsing]] sea true, ya que no coincide ninguno de los parámetros . Si
[[yii\web\UrlManager::enableStrictParsing]] es false (valor predeterminado), se devolverá como ruta la parte de
información posts/php.

Y cuando las se usen las reglas para crear URLs:

	Url::to(['post/index']) genera /index.php/posts usando la primera regla;

	Url::to(['post/index', 'year' => 2014, 'category' => 'php']) genera /index.php/posts/2014/php usando la tercera
regla;

	Url::to(['post/view', 'id' => 100]) genera /index.php/post/100 usando la segunda regla;

	Url::to(['post/view', 'id' => 100, 'source' => 'ad']) genera /index.php/post/100?source=ad usando la segunda
regla. Debido a que el parámetro source no se especifica en la regla, se añade como un parámetro de consulta en
la URL generada.

	Url::to(['post/index', 'category' => 'php']) genera /index.php/post/index?category=php no usa ninguna de las
reglas. Hay que tener en cuenta que si no se aplica ninguna de las reglas, la URL se genera simplemente añadiendo
la parte de información de la ruta y todos los parámetros como parte de la consulta.

Parametrización de Rutas

Se pueden incrustar nombres de parámetros en la ruta de una regla de URL. Esto permite a la regla de URL poder ser
usada para que coincida con varias rutas. Por ejemplo, la siguiente regla incrusta los parámetros controller y
action en las rutas.

[
 '<controller:(post|comment)>/<id:\d+>/<action:(create|update|delete)>' => '<controller>/<action>',
 '<controller:(post|comment)>/<id:\d+>' => '<controller>/view',
 '<controller:(post|comment)>s' => '<controller>/index',
]

Para convertir una URL index.php/comment/100/create, se aplicará la primera regla, que establece el parámetro
controller a comment y el parámetro action a create. Por lo tanto la ruta <controller>/<action> se resuelve
como comment/create.

Del mismo modo, para crear una URL para una ruta comment/index, se aplicará la tercera regla, que crea una URL
/index.php/comments.

Info: Mediante la parametrización de rutas es posible reducir el numero de reglas de URL e incrementar
significativamente el rendimiento del [[yii\web\UrlManager|URL manager]].

De forma predeterminada, todos los parámetros declarados en una regla son requeridos. Si una URL solicitada no
contiene un parámetro en particular, o si se esta creando una URL sin un parámetro en particular, la regla no se
aplicará. Para establecer algunos parámetros como opcionales, se puede configurar la propiedad de
[[yii\web\UrlRule::defaults|defaults]] de una regla. Los parámetros listados en esta propiedad son opcionales y se
usarán los parámetros especificados cuando estos no se proporcionen.

En la siguiente declaración de reglas, los parámetros page y tag son opcionales y cuando no se proporcionen, se
usarán los valores 1 y cadena vacía respectivamente.

[
 // ... otras reglas ...
 [
 'pattern' => 'posts/<page:\d+>/<tag>',
 'route' => 'post/index',
 'defaults' => ['page' => 1, 'tag' => ''],
],
]

La regla anterior puede usarse para convertir o crear cualquiera de las siguientes URLs:

	/index.php/posts: page es 1, tag es ‘’.

	/index.php/posts/2: page es 2, tag es ‘’.

	/index.php/posts/2/news: page es 2, tag es 'news'.

	/index.php/posts/news: page es 1, tag es 'news'.

Sin usar ningún parámetro opcional, se tendrían que crear 4 reglas para lograr el mismo resultado.

Reglas con Nombres de Servidor

Es posible incluir nombres de servidores Web en los parámetros de las URLs. Esto es practico principalmente cuando una
aplicación debe tener distintos comportamientos paro diferentes nombres de servidores Web. Por ejemplo, las siguientes
reglas convertirán la URL http://admin.example.com/login en la ruta admin/user/login y
http://www.example.com/login en site/login.

[
 'http://admin.example.com/login' => 'admin/user/login',
 'http://www.example.com/login' => 'site/login',
]

También se pueden incrustar parámetros en los nombres de servidor para extraer información dinámica de ellas. Por
ejemplo, la siguiente regla convertirá la URL http://en.example.com/posts en la ruta post/index y el parámetro
language=en.

[
 'http://<language:\w+>.example.com/posts' => 'post/index',
]

Note: Las reglas con nombres de servidor NO deben incluir el subdirectorio del script de entrada (entry script) en
sus patrones. Por ejemplo, is la aplicación se encuentra en http://www.example.com/sandbox/blog, entonces se debe
usar el patrón http://www.example.com/posts en lugar de http://www.example.com/sandbox/blog/posts. Esto
permitirá que la aplicación se pueda desarrollar en cualquier directorio sin la necesidad de cambiar el código de la
aplicación.

Sufijos de URL

Se puede querer añadir sufijos a las URLs para varios propósitos. Por ejemplo, se puede añadir .htmla las URLs para
que parezcan URLs para paginas HTML estáticas; también se puede querer añadir .json a las URLs para indicar el tipo
de contenido que se espera encontrar en una respuesta (response). Se puede lograr este objetivo configurando la
propiedad [[yii\web\UrlManager::suffix]] como en el siguiente ejemplo de configuración de aplicación:

[
 'components' => [
 'urlManager' => [
 'enablePrettyUrl' => true,
 'showScriptName' => false,
 'enableStrictParsing' => true,
 'suffix' => '.html',
 'rules' => [
 // ...
],
],
],
]

La configuración anterior permitirá al [[yii\web\UrlManager|URL manager]] reconocer las URLs solicitadas y a su vez
crear URLs con el sufijo .html.

Tip: Se puede establecer / como el prefijo de URL para que las URLs finalicen con una barra.

Note: Cuando se configura un sufijo de URL, si una URL solicitada no tiene el sufijo, se considerará como una URL
desconocida. Esta es una practica recomendada para SEO (optimización en motores de búsqueda).

A veces, se pueden querer usar sufijos diferentes para URLs diferentes. Esto se puede conseguir configurando la
propiedad [[yii\web\UrlRule::suffix|suffix]] de una regla de URL individual. Cuando una regla de URL tiene la
propiedad establecida, anulará el sufijo estableciendo a nivel de [[yii\web\UrlManager|URL manager]]. Por ejemplo, la
siguiente configuración contiene una regla de URL personalizada que usa el sufijo .json en lugar del sufijo global
.html.

[
 'components' => [
 'urlManager' => [
 'enablePrettyUrl' => true,
 'showScriptName' => false,
 'enableStrictParsing' => true,
 'suffix' => '.html',
 'rules' => [
 // ...
 [
 'pattern' => 'posts',
 'route' => 'post/index',
 'suffix' => '.json',
],
],
],
],
]

Métodos HTTP

Cuando se implementan APIs RESTful, normalmente se necesita que ciertas URLs se conviertan en otras de acuerdo con el
método HTTP que se esté usando. Esto se puede hacer fácilmente prefijando los métodos HTTP soportados como los
patrones de las reglas. Si una regla soporta múltiples métodos HTTP, hay que separar los nombres de los métodos con
comas. Por ejemplo, la siguiente regla usa el mismo patrón post/<id:\d+> para dar soporte a diferentes métodos HTTP.
Una petición para PUT post/100 se convertirá en post/create, mientras que una petición GET post/100 se
convertirá en post/view.

[
 'PUT,POST post/<id:\d+>' => 'post/create',
 'DELETE post/<id:\d+>' => 'post/delete',
 'post/<id:\d+>' => 'post/view',
]

Note: Si una regla de URL contiene algún método HTTP en su patrón, la regla solo se usará para aplicar conversiones.
Se omitirá cuando se llame a [[yii\web\UrlManager|URL manager]] para crear URLs.

Tip: Para simplificar el enrutamiento en APIs RESTful, Yii proporciona una clase de reglas de URL
[[yii\rest\UrlRule]] especial que es bastante eficiente y soporta ciertas características como pluralización de IDs
de controladores. Para conocer más detalles, se puede visitar la sección Enrutamiento acerca de
el desarrollo de APIs RESTful.

Personalización de Reglas

En los anteriores ejemplos, las reglas de URL se han declarado principalmente en términos de pares de patrón-ruta.
Este es un método de acceso directo que se usa a menudo. En algunos escenarios, se puede querer personalizar la regla
de URL configurando sus otras propiedades, tales como [[yii\web\UrlRule::suffix]]. Esto se puede hacer usando una
array completo de configuración para especificar una regla. El siguiente ejemplo se ha extraído de la subsección
Sufijos de URL.

[
 // ... otras reglas de URL ...

 [
 'pattern' => 'posts',
 'route' => 'post/index',
 'suffix' => '.json',
],
]

Info: De forma predeterminada si no se especifica una opción class para una configuración de regla, se
usará la clase predeterminada [[yii\web\UrlRule]].

Adición de Reglas Dinámicamente

Las reglas de URL se pueden añadir dinámicamente en el [[yii\web\UrlManager|URL manager]]. A menudo se necesita por
módulos redistribubles que se encargan de gestionar sus propias reglas de URL. Para que las
reglas añadidas dinámicamente tenga efecto durante el proceso de enrutamiento, se deben añadir durante la etapa
bootstrapping. Para los módulos, esto significa que deben implementar
[[yii\base\BootstrapInterface]] y añadir las reglas en el método
[[yii\base\BootstrapInterface::bootstrap()|bootstrap()]] como en el siguiente ejemplo:

public function bootstrap($app)
{
 $app->getUrlManager()->addRules([
 // declaraciones de reglas aquí
], false);
}

Hay que tener en cuenta se deben añadir estos módulos en [[yii\web\Application::bootstrap]] para que puedan participar
en el proceso de bootstrapping

Creación de Clases de Reglas

A pesar del hecho de que de forma predeterminada la clase [[yii\web\UrlRule]] lo suficientemente flexible para la
mayoría de proyectos, hay situaciones en las que se tiene que crear una clase de reglas propia. Por ejemplo, en un
sitio Web de un concesionario de coches, se puede querer dar soporte a las URL con el siguiente formato
/Manufacturer/Model, donde tanto Manufacturer como Model tengan que coincidir con algún dato almacenado una
tabla de la base de datos. De forma predeterminada, la clase regla no puede gestionar estas reglas ya que se base en
patrones estáticos declarados.

Podemos crear la siguiente clase de reglas de URL para solucionar el problema.

namespace app\components;

use yii\web\UrlRuleInterface;
use yii\base\BaseObject;

class CarUrlRule extends BaseObject implements UrlRuleInterface
{

 public function createUrl($manager, $route, $params)
 {
 if ($route === 'car/index') {
 if (isset($params['manufacturer'], $params['model'])) {
 return $params['manufacturer'] . '/' . $params['model'];
 } elseif (isset($params['manufacturer'])) {
 return $params['manufacturer'];
 }
 }
 return false; // no se aplica esta regla
 }

 public function parseRequest($manager, $request)
 {
 $pathInfo = $request->getPathInfo();
 if (preg_match('%^(\w+)(/(\w+))?$%', $pathInfo, $matches)) {
 // comprueba $matches[1] y $matches[3] para ver
 // si coincide con un *manufacturer* y un *model* en la base de datos
 // Si coinciden, establece $params['manufacturer'] y/o $params['model']
 // y devuelve ['car/index', $params]
 }
 return false; // no se aplica la regla
 }
}

Y usa la nueva clase de regla en la configuración de [[yii\web\UrlManager::rules]]:

[
 // ... otras reglas ...

 [
 'class' => 'app\components\CarUrlRule',
 // ... configura otras propiedades ...
],
]

Consideración del Rendimiento

Cuando se desarrolla una aplicación Web compleja, es importante optimizar las reglas de URL para que tarden el mínimo
tiempo posible en convertir las peticiones y crear URLs.

Usando rutas parametrizadas se puede reducir el numero de reglas de URL que a su vez significa una mejor en el
rendimiento.

Cuando se convierten o crean URLs, el [[yii\web\UrlManager|URL manager]] examina las reglas de URL en el orden en que
han sido declaradas. Por lo tanto, se debe tener en cuenta el orden de las reglas de URL y anteponer las reglas más
especificas y/o las que se usen más a menudo.

Si algunas URLs comparten el mismo prefijo en sus patrones o rutas, se puede considerar usar [[yii\web\GroupUrlRule]]
ya que puede ser más eficiente al ser examinado por [[yii\web\UrlManager|URL manager]] como un grupo. Este suele ser
el caso cuando una aplicación se compone por módulos, y cada uno tiene su propio conjunto de reglas con un ID de
módulo para sus prefijos más comunes.

 Sesiones (Sessions) y Cookies

Sesiones (Sessions) y Cookies

Las sesiones y las cookies permiten la persistencia de datos a través de múltiples peticiones de usuario. En PHP plano, debes acceder a ellos a través de las variables globales $_SESSION y $_COOKIE, respectivamente. Yii encapsula las sesiones y las cookies como objetos y por lo tanto te permite acceder a ellos de manera orientada a objetos con estupendas mejoras adicionales.

Sesiones

Como las peticiones y las respuestas, puedes acceder a las sesiones vía el componente de la aplicación session el cual es una instancia de [[yii\web\Session]], por defecto.

Abriendo y cerrando sesiones

Para abrir y cerrar una sesión, puedes hacer lo siguiente:

$session = Yii::$app->session;

// comprueba si una sesión está ya abierta
if ($session->isActive) ...

// abre una sesión
$session->open();

// cierra una sesión
$session->close();

// destruye todos los datos registrados por la sesión.
$session->destroy();

Puedes llamar a [[yii\web\Session::open()|open()]] y [[yii\web\Session::close()|close()]] múltiples veces sin causar errores. Esto ocurre porque internamente los métodos verificarán primero si la sesión está ya abierta.

Accediendo a los datos de sesión

Para acceder a los datos almacenados en sesión, puedes hacer lo siguiente:

$session = Yii::$app->session;

// devuelve una variable de sesión. Los siguientes usos son equivalentes:
$language = $session->get('language');
$language = $session['language'];
$language = isset($_SESSION['language']) ? $_SESSION['language'] : null;

// inicializa una variable de sesión. Los siguientes usos son equivalentes:
$session->set('language', 'en-US');
$session['language'] = 'en-US';
$_SESSION['language'] = 'en-US';

// remueve la variable de sesión. Los siguientes usos son equivalentes:
$session->remove('language');
unset($session['language']);
unset($_SESSION['language']);

// comprueba si una variable de sesión existe. Los siguientes usos son equivalentes:
if ($session->has('language')) ...
if (isset($session['language'])) ...
if (isset($_SESSION['language'])) ...

// recorre todas las variables de sesión. Los siguientes usos son equivalentes:
foreach ($session as $name => $value) ...
foreach ($_SESSION as $name => $value) ...

Info: Cuando accedas a los datos de sesión a través del componente session, una sesión será automáticamente abierta si no lo estaba antes. Esto es diferente accediendo a los datos de sesión a través de $_SESSION, el cual requiere llamar explícitamente a session_start().

Cuando trabajas con datos de sesiones que son arrays, el componte session tiene una limitación que te previene directamente de modificar un elemento del array. Por ejemplo,

$session = Yii::$app->session;

// el siguiente código no funciona
$session['captcha']['number'] = 5;
$session['captcha']['lifetime'] = 3600;

// el siguiente código funciona:
$session['captcha'] = [
 'number' => 5,
 'lifetime' => 3600,
];

// el siguiente código también funciona:
echo $session['captcha']['lifetime'];

Puedes usar las siguientes soluciones para arreglar este problema:

$session = Yii::$app->session;

// directamente usando $_SESSION (asegura te de que Yii::$app->session->open() ha sido llamado)
$_SESSION['captcha']['number'] = 5;
$_SESSION['captcha']['lifetime'] = 3600;

// devuelve el valor del array, lo modifica y a continuación lo guarda
$captcha = $session['captcha'];
$captcha['number'] = 5;
$captcha['lifetime'] = 3600;
$session['captcha'] = $captcha;

// usa un ArrayObject en vez de un array
$session['captcha'] = new \ArrayObject;
...
$session['captcha']['number'] = 5;
$session['captcha']['lifetime'] = 3600;

// almacena los datos en un array con un prefijo común para las claves
$session['captcha.number'] = 5;
$session['captcha.lifetime'] = 3600;

Para un mejor rendimiento y legibilidad del código, recomendamos la última solución. Es decir, en vez de almacenar un array como una única variable de sesión, almacena cada elemento del array como una variable de sesión que comparta el mismo prefijo clave con otros elementos del array.

Personalizar el almacenamiento de sesión

Por defecto la clase [[yii\web\Session]] almacena los datos de sesión como ficheros en el servidor. Yii también provee de las siguientes clases de sesión que implementan diferentes almacenamientos de sesión:

	[[yii\web\DbSession]]: almacena los datos de sesión en una tabla en la base de datos.

	[[yii\web\CacheSession]]: almacena los datos de sesión en una caché con la ayuda de la configuración del componente caché.

	[[yii\redis\Session]]: almacena los datos de sesión usando redis [http://redis.io/] como medio de almacenamiento.

	[[yii\mongodb\Session]]: almacena los datos de sesión en MongoDB [http://www.mongodb.org/].

Todas estas clases de sesión soportan los mismos métodos de la API. Como consecuencia, puedes cambiar el uso de diferentes almacenamientos de sesión sin la necesidad de modificar el código de tu aplicación que usa sesiones.

Note: si quieres acceder a los datos de sesión vía $_SESSION mientras estás usando un almacenamiento de sesión personalizado, debes asegurar te que la sesión está ya empezada por [[yii\web\Session::open()]]. Esto ocurre porque los manipuladores de almacenamiento de sesión personalizado son registrados sin este método.

Para aprender como configurar y usar estas clases de componentes, por favor consulte la documentación de la API. Abajo está un ejemplo que muestra como configurar [[yii\web\DbSession]] en la configuración de la aplicación para usar una tabla en la base de datos como almacenamiento de sesión:

return [
 'components' => [
 'session' => [
 'class' => 'yii\web\DbSession',
 // 'db' => 'mydb', // el identificador del componente de aplicación DB connection. Por defecto'db'.
 // 'sessionTable' => 'my_session', // nombre de la tabla de sesión. Por defecto 'session'.
],
],
];

También es necesario crear la siguiente tabla de la base de datos para almacenar los datos de sesión:

CREATE TABLE session
(
 id CHAR(40) NOT NULL PRIMARY KEY,
 expire INTEGER,
 data BLOB
)

donde ‘BLOB’ se refiere al BLOB-type de tu DBMS preferida. Abajo está el tipo BLOB que puedes usar para algunos DBMS populares:

	MySQL: LONGBLOB

	PostgreSQL: BYTEA

	MSSQL: BLOB

Note: De acuerdo con la configuración de php.ini session.hash_function, puedes necesitar ajustar el tamaño de la columna id. Por ejemplo, si session.hash_function=sha256, deberías usar el tamaño 64 en vez de 40.

Flash Data

Flash data es una clase especial de datos de sesión que, una vez se inicialice en la primera petición, estará sólo disponible durante la siguiente petición y automáticamente se borrará después. Flash data es comúnmente usado para implementar mensajes que deberían ser mostrados una vez a usuarios finales, tal como mostrar un mensaje de confirmación después de que un usuario envíe un formulario con éxito.

Puedes inicializar y acceder a flash data a través del componente de aplicación session. Por ejemplo,

$session = Yii::$app->session;

// Petición #1
// inicializa el mensaje flash nombrado como "postDeleted"
$session->setFlash('postDeleted', 'You have successfully deleted your post.');

// Petición #2
// muestra el mensaje flash nombrado "postDeleted"
echo $session->getFlash('postDeleted');

// Petición #3
// $result será `false` ya que el mensaje flash ha sido borrado automáticamente
$result = $session->hasFlash('postDeleted');

Al igual que los datos de sesión regulares, puede almacenar datos arbitrarios como flash data.

Cuando llamas a [[yii\web\Session::setFlash()]], sobrescribirá cualquier Flash data que tenga el mismo nombre.
Para añadir un nuevo flash data a el/los existes con el mismo nombre, puedes llamar a [[yii\web\Session::addFlash()]].
Por ejemplo:

$session = Yii::$app->session;

// Petición #1
// añade un pequeño mensaje flash bajo el nombre de "alerts"
$session->addFlash('alerts', 'You have successfully deleted your post.');
$session->addFlash('alerts', 'You have successfully added a new friend.');
$session->addFlash('alerts', 'You are promoted.');

// Petición #2
// $alerts es un array de mensajes flash bajo el nombre de "alerts"
$alerts = $session->getFlash('alerts');

Note: Intenta no usar a la vez [[yii\web\Session::setFlash()]] con [[yii\web\Session::addFlash()]] para flash data
del mismo nombre. Esto ocurre porque el último método elimina el flash data dentro del array así que puedes añadir un nuevo flash data con el mismo nombre. Como resultado, cuando llamas a [[yii\web\Session::getFlash()]], puedes encontrarte algunas veces que te está devolviendo un array mientras que otras veces te está devolviendo un string, esto depende del orden que invoques a estos dos métodos.

Cookies

Yii representa cada cookie como un objeto de [[yii\web\Cookie]]. Tanto [[yii\web\Request]] como [[yii\web\Response]]
mantienen una colección de cookies vía la propiedad de llamada cookies. La colección de cookie en la antigua representación son enviadas en una petición, mientras la colección de cookie en esta última representa las cookies que van a ser enviadas al usuario.

Leyendo Cookies

Puedes recuperar las cookies en la petición actual usando el siguiente código:

// devuelve la colección de cookie (yii\web\CookieCollection) del componente "request"
$cookies = Yii::$app->request->cookies;

// devuelve el valor "language" de la cookie. Si la cookie no existe, retorna "en" como valor por defecto.
$language = $cookies->getValue('language', 'en');

// una manera alternativa de devolver el valor "language" de la cookie
if (($cookie = $cookies->get('language')) !== null) {
 $language = $cookie->value;
}

// puedes también usar $cookies como un array
if (isset($cookies['language'])) {
 $language = $cookies['language']->value;
}

// comprueba si hay una cookie con el valor "language"
if ($cookies->has('language')) ...
if (isset($cookies['language'])) ...

Enviando Cookies

Puedes enviar cookies a usuarios finales usando el siguiente código:

// devuelve la colección de cookie (yii\web\CookieCollection) del componente "response"
$cookies = Yii::$app->response->cookies;

// añade una nueva cookie a la respuesta que se enviará
$cookies->add(new \yii\web\Cookie([
 'name' => 'language',
 'value' => 'zh-CN',
]));

// remueve una cookie
$cookies->remove('language');
// equivalente a lo siguiente
unset($cookies['language']);

Además de [[yii\web\Cookie::name|name]], [[yii\web\Cookie::value|value]] las propiedades que se muestran en los anteriores ejemplos, la clase [[yii\web\Cookie]] también define otras propiedades para representar toda la información posible de las cookies, tal como [[yii\web\Cookie::domain|domain]], [[yii\web\Cookie::expire|expire]]. Puedes configurar estas propiedades según sea necesario para preparar una cookie y luego añadirlo a la colección de cookies de la respuesta.

Note: Para mayor seguridad, el valor por defecto de [[yii\web\Cookie::httpOnly]] es true. Esto ayuda a mitigar el riesgo del acceso a la cookie protegida por script desde el lado del cliente (si el navegador lo soporta). Puedes leer el httpOnly wiki article [https://www.owasp.org/index.php/HttpOnly] para más detalles.

Validación de la Cookie

Cuando estás leyendo y enviando cookies a través de los componentes request y response como mostramos en las dos últimas subsecciones, cuentas con el añadido de seguridad de la validación de cookies el cual protege las cookies de ser modificadas en el lado del cliente. Esto se consigue con la firma de cada cookie con una cadena hash, el cual permite a la aplicación saber si una cookie ha sido modificada en el lado del cliente o no. Si es así, la cookie no será accesible a través de [[yii\web\Request::cookies|cookie collection]] del componente request.

Info: Si falla la validación de una cookie, aún puedes acceder a la misma a través de $_COOKIE. Esto sucede porque librerías de terceros pueden manipular de forma propia las cookies, lo cual no implica la validación de las mismas.

La validación de cookies es habilitada por defecto. Puedes desactivar lo ajustando la propiedad [[yii\web\Request::enableCookieValidation]] a false, aunque se recomienda encarecidamente que no lo haga.

Note: Las cookies que son directamente leídas/enviadas vía $_COOKIE y setcookie() no serán validadas.

Cuando estás usando la validación de cookie, puedes especificar una [[yii\web\Request::cookieValidationKey]] el cual se usará para generar los strings hash mencionados anteriormente. Puedes hacerlo mediante la configuración del componente request en la configuración de la aplicación:

return [
 'components' => [
 'request' => [
 'cookieValidationKey' => 'fill in a secret key here',
],
],
];

Info: [[yii\web\Request::cookieValidationKey|cookieValidationKey]] es crítico para la seguridad de tu aplicación.
Sólo debería ser conocido por personas de confianza. No lo guardes en sistemas de control de versiones.

 Autorización

Autorización

Autorización esl el proceso de verificación de que un usuario tenga sugifientes permisos para realizar algo. Yii provee
dos métodos de autorización: Filtro de Control de Acceso y Control Basado en Roles (ACF y RBAC por sus siglas en inglés).

Filtro de Control de Acceso

Filtro de Control de Acceso (ACF) es un único método de autorización implementado como [[yii\filters\AccessControl]], el cual
es mejor utilizado por aplicaciones que sólo requieran un control de acceso simple. Como su nombre lo indica, ACF es
un filtro de acción que puede ser utilizado en un controlador o en un módulo. Cuando un usuario solicita
la ejecución de una acción, ACF comprobará una lista de [[yii\filters\AccessControl::rules|reglas de acceso]]
para determinar si el usuario tiene permitido acceder a dicha acción.

El siguiente código muestra cómo utilizar ACF en el controlador site:

use yii\web\Controller;
use yii\filters\AccessControl;

class SiteController extends Controller
{
 public function behaviors()
 {
 return [
 'access' => [
 'class' => AccessControl::className(),
 'only' => ['login', 'logout', 'signup'],
 'rules' => [
 [
 'allow' => true,
 'actions' => ['login', 'signup'],
 'roles' => ['?'],
],
 [
 'allow' => true,
 'actions' => ['logout'],
 'roles' => ['@'],
],
],
],
];
 }
 // ...
}

En el código anterior, ACF es adjuntado al controlador site en forma de behavior (comportamiento). Esta es la forma típica de utilizar
un filtro de acción. La opción only especifica que el ACF debe ser aplicado solamente a las acciones login, logout y signup.
Las acciones restantes en el controlador site no están sujetas al control de acceso. La opción rules lista
las [[yii\filters\AccessRule|reglas de acceso]], y se lee como a continuación:

	Permite a todos los usuarios invitados (sin autenticar) acceder a las acciones login y signup. La opción roles
contiene el signo de interrogación ?, que es un código especial para representar a los “invitados”.

	Permite a los usuarios autenticados acceder a la acción logout. El signo @ es otro código especial que representa
a los “usuarios autenticados”.

ACF ejecuta la comprobación de autorización examinando las reglas de acceso una a una desde arriba hacia abajo hasta que encuentra
una regla que aplique al contexto de ejecución actual. El valor allow de la regla que coincida será entonces utilizado
para juzgar si el usuario está autorizado o no. Si ninguna de las reglas coincide, significa que el usuario NO está autorizado,
y el ACF detendrá la ejecución de la acción.

Cuando el ACF determina que un usuario no está autorizado a acceder a la acción actual, toma las siguientes medidas por defecto:

	Si el usuario es un invitado, llamará a [[yii\web\User::loginRequired()]] para redireccionar el navegador a la pantalla de login.

	Si el usuario está autenticado, lanzará una excepeción [[yii\web\ForbiddenHttpException]].

Puedes personalizar este comportamiento configurando la propiedad [[yii\filters\AccessControl::denyCallback]] como a continuación:

[
 'class' => AccessControl::className(),
 ...
 'denyCallback' => function ($rule, $action) {
 throw new \Exception('No tienes los suficientes permisos para acceder a esta página');
 }
]

Las [[yii\filters\AccessRule|Reglas de Acceso]] soportan varias opciones. Abajo hay un resumen de las mismas.
También puedes extender de [[yii\filters\AccessRule]] para crear tus propias clases de reglas de acceso personalizadas.

	[[yii\filters\AccessRule::allow|allow]]: especifica si la regla es de tipo “allow” (permitir) o “deny” (denegar).

	[[yii\filters\AccessRule::actions|actions]]: especifica con qué acciones coinciden con esta regla. Esta debería ser
un array de IDs de acciones. La comparación es sensible a mayúsculas. Si la opción está vacía o no definida,
significa que la regla se aplica a todas las acciones.

	[[yii\filters\AccessRule::controllers|controllers]]: especifica con qué controladores coincide
esta regla. Esta debería ser un array de IDs de controladores. Cada ID de controlador es prefijado con el ID del módulo (si existe).
La comparación es sensible a mayúsculas. Si la opción está vacía o no definida, significa que la regla se aplica a todos los controladores.

	[[yii\filters\AccessRule::roles|roles]]: especifica con qué roles de usuarios coincide esta regla.
Son reconocidos dos roles especiales, y son comprobados vía [[yii\web\User::isGuest]]:

	?: coincide con el usuario invitado (sin autenticar)

	@: coincide con el usuario autenticado

El utilizar otro nombre de rol invocará una llamada a [[yii\web\User::can()]], que requiere habilitar RBAC
(a ser descrito en la próxima subsección). Si la opción está vacía o no definida, significa que la regla se aplica a todos los roles.

	[[yii\filters\AccessRule::ips|ips]]: especifica con qué [[yii\web\Request::userIP|dirección IP del cliente]] coincide esta regla.
Una dirección IP puede contener el caracter especial * al final de manera que coincidan todas las IPs que comiencen igual.
Por ejemplo, ‘192.168.*’ coincide con las direcciones IP en el segmento ‘192.168.’. Si la opción está vacía o no definida,
significa que la regla se aplica a todas las direcciones IP.

	[[yii\filters\AccessRule::verbs|verbs]]: especifica con qué método de la solicitud (por ej. GET, POST) coincide esta regla.
La comparación no distingue minúsculas de mayúsculas.

	[[yii\filters\AccessRule::matchCallback|matchCallback]]: especifica una función PHP invocable que debe ser llamada para determinar
si la regla debe ser aplicada.

	[[yii\filters\AccessRule::denyCallback|denyCallback]]: especifica una función PHP invocable que debe ser llamada cuando esta regla
deniegue el acceso.

Debajo hay un ejemplo que muestra cómo utilizar la opción matchCallback, que te permite escribir lógica de comprabación de acceso
arbitraria:

use yii\filters\AccessControl;

class SiteController extends Controller
{
 public function behaviors()
 {
 return [
 'access' => [
 'class' => AccessControl::className(),
 'only' => ['special-callback'],
 'rules' => [
 [
 'actions' => ['special-callback'],
 'allow' => true,
 'matchCallback' => function ($rule, $action) {
 return date('d-m') === '31-10';
 }
],
],
],
];
 }

 // Callback coincidente llamado! Esta página sólo puede ser accedida cada 31 de Octubre
 public function actionSpecialCallback()
 {
 return $this->render('happy-halloween');
 }
}

Control de Acceso Basado en Roles (RBAC)

El Control de Acceso Basado en Roles (RBAC) provee una simple pero poderosa manera centralizada de control de acceso. Por favos consulta
la Wikipedia [http://en.wikipedia.org/wiki/Role-based_access_control] para más detalles sobre comparar RBAC
con otros mecanismos de control de acceso más tradicionales.

Yii implementa una Jerarquía General RBAC, siguiendo el modelo NIST RBAC [http://csrc.nist.gov/rbac/sandhu-ferraiolo-kuhn-00.pdf].
Esto provee la funcionalidad RBAC a través de componente de la aplicación [[yii\rbac\ManagerInterface|authManager]].

Utilizar RBAC envuelve dos cosas. La primera es construir los datos de autorización RBAC, y la segunda
es utilizar esos datos de autorización para comprobar el acceso en los lugares donde se necesite.

Para facilitar la próxima descripción, necesitamos primero instroducir algunos conceptos RBAC básicos.

Conceptos Básicos

Un rol representa una colección de permisos (por ej. crear posts, actualizar posts). Un rol puede ser asignado
a uno o varios usuarios. Para comprobar que un usuario cuenta con determinado permiso, podemos comprobar si el usuario tiene asignado
un rol que cuente con dicho permiso.

Asociado a cada rol o permiso, puede puede haber una regla. Una regla representa una porción de código que será
ejecutada durante la comprobación de acceso para determinar si el rol o permiso correspondiente aplica al usuario actual.
Por ejemplo, el permiso “actualizar post” puede tener una regla que compruebe que el usuario actual es el autor del post.
Durante la comprobación de acceso, si el usuario NO es el autor del post, se considerará que el/ella no cuenta con el permiso “actualizar post”.

Tanto los roles como los permisos pueden ser organizados en una jerarquía. En particular, un rol puede consistir en otros roles o permisos;
y un permiso puede consistir en otros permisos. Yii implementa una jerarquía de orden parcial, que incluye
una jerarquía de árbol especial. Mientras que un rol puede contener un permiso, esto no sucede al revés.

Configurar RBAC

Antes de definir todos los datos de autorización y ejecutar la comprobación de acceso, necesitamos configurar el
componente de la aplicación [[yii\base\Application::authManager|authManager]]. Yii provee dos tipos de administradores de autorización:
[[yii\rbac\PhpManager]] y [[yii\rbac\DbManager]]. El primero utiliza un archivo PHP para almacenar los datos
de autorización, mientras que el segundo almacena dichos datos en una base de datos. Puedes considerar utilizar el primero si tu aplicación
no requiere una administración de permisos y roles muy dinámica.

Utilizar PhpManager

El siguiente código muestra cómo configurar authManager en la configuración de nuestra aplicación utilizando la clase [[yii\rbac\PhpManager]]:

return [
 // ...
 'components' => [
 'authManager' => [
 'class' => 'yii\rbac\PhpManager',
],
 // ...
],
];

El authManager ahora puede ser accedido vía \Yii::$app->authManager.

Por defecto, [[yii\rbac\PhpManager]] almacena datos RBAC en archivos bajo el directorio @app/rbac. Asegúrate de que el directorio
y todos sus archivos son tienen permiso de escritura para el proceso del servidor Web si la jerarquía de permisos necesita ser modoficada en línea.

Utilizar DbManager

El sigiente código muestra cómo configurar authManager en la configuración de la aplicación utilizando la clase [[yii\rbac\DbManager]]:

return [
 // ...
 'components' => [
 'authManager' => [
 'class' => 'yii\rbac\DbManager',
],
 // ...
],
];

Note: si estás utilizando el template yii2-basic-app, existe el archivo de configuración config/console.php donde
necesita declararse authManager adicionalmente a config/web.php.
En el caso de yii2-advanced-app, authManager sólo debe declararse en common/config/main.php.

DbManager utiliza cuatro tablas de la BD para almacenar los datos:

	[[yii\rbac\DbManager::$itemTable|itemTable]]: la tabla para almacenar los ítems de autorización. Por defecto “auth_item”.

	[[yii\rbac\DbManager::$itemChildTable|itemChildTable]]: la tabla para almacentar la jerarquía de los ítems de autorización. Por defecto “auth_item_child”.

	[[yii\rbac\DbManager::$assignmentTable|assignmentTable]]: la tabla para almacenar las asignaciones de los ítems de autorización. Por defecto “auth_assignment”.

	[[yii\rbac\DbManager::$ruleTable|ruleTable]]: la tabla para almacenar las reglas. Por defecto “auth_rule”.

Antes de continuar, necesitas crear las tablas respectivas en la base de datos. Para hacerlo, puedes utilizar las migraciones contenidas en @yii/rbac/migrations:

yii migrate --migrationPath=@yii/rbac/migrations

El authManager puede ahora ser accedido vía \Yii::$app->authManager.

Construir los Datos de Autorización

Construir los datos de autorización implica las siguientes tareas:

	definir roles y permisos;

	establecer relaciones entre roles y permisos;

	definir reglas;

	asociar reglas con roles y permisos;

	asignar roles a usuarios.

Dependiendo de los requerimientos de flexibilidad en la autorización, las tareas se pueden lograr de diferentes maneras.

Si la jerarquía de permisos no cambia en absoluto y tienes un número fijo de usuarios puede crear un
comando de consola que va a inicializar los datos de autorización una vez a través de las API que ofrece por authManager:

<?php
namespace app\commands;

use Yii;
use yii\console\Controller;

class RbacController extends Controller
{
 public function actionInit()
 {
 $auth = Yii::$app->authManager;

 // agrega el permiso "createPost"
 $createPost = $auth->createPermission('createPost');
 $createPost->description = 'Create a post';
 $auth->add($createPost);

 // agrega el permiso "updatePost"
 $updatePost = $auth->createPermission('updatePost');
 $updatePost->description = 'Update post';
 $auth->add($updatePost);

 // agrega el rol "author" y le asigna el permiso "createPost"
 $author = $auth->createRole('author');
 $auth->add($author);
 $auth->addChild($author, $createPost);

 // agrega el rol "admin" y le asigna el permiso "updatePost"
 // más los permisos del rol "author"
 $admin = $auth->createRole('admin');
 $auth->add($admin);
 $auth->addChild($admin, $updatePost);
 $auth->addChild($admin, $author);

 // asigna roles a usuarios. 1 y 2 son IDs devueltos por IdentityInterface::getId()
 // usualmente implementado en tu modelo User.
 $auth->assign($author, 2);
 $auth->assign($admin, 1);
 }
}

Note: Si estas utilizando el template avanzado, necesitas poner tu RbacController dentro del directorio console/controllers
y cambiar el espacio de nombres a console\controllers.

Después de ejecutar el comando yii rbac/init, obtendremos la siguiente jerarquía:

[image: Simple RBAC hierarchy]

“Author” puede crear un post, “admin” puede actualizar posts y hacer todo lo que puede hacer “author”.

Si tu aplicación permite el registro de usuarios, necesitas asignar los roles necesarios para cada usuario nuevo. Por ejemplo, para que todos
los usuarios registrados tengan el rol “author”, en el template de aplicación avanzada debes modificar frontend\models\SignupForm::signup()
como a continuación:

public function signup()
{
 if ($this->validate()) {
 $user = new User();
 $user->username = $this->username;
 $user->email = $this->email;
 $user->setPassword($this->password);
 $user->generateAuthKey();
 $user->save(false);

 // las siguientes tres líneas fueron agregadas
 $auth = Yii::$app->authManager;
 $authorRole = $auth->getRole('author');
 $auth->assign($authorRole, $user->getId());

 return $user;
 }

 return null;
}

Para aplicaciones que requieren un control de acceso complejo con una actualización constante en los datos de autorización, puede ser necesario
desarrollar una interfaz especial (por ej. un panel de administración) utilizando las APIs ofrecidas por authManager.

Utilizar Reglas

Como se había mencionado, las reglas agregan restricciones adicionales a los roles y permisos. Una regla es una clase extendida
de [[yii\rbac\Rule]]. Debe implementar al método [[yii\rbac\Rule::execute()|execute()]]. En la jerarquía que creamos
previamente, “author” no puede editar su propio post. Vamos a arreglarlo. Primero necesitamos una regla para comprobar que el usuario actual es el autor del post:

namespace app\rbac;

use yii\rbac\Rule;

/**
 * Comprueba si authorID coincide con el usuario pasado como parámetro
 */
class AuthorRule extends Rule
{
 public $name = 'isAuthor';

 /**
 * @param string|int $user el ID de usuario.
 * @param Item $item el rol o permiso asociado a la regla
 * @param array $params parámetros pasados a ManagerInterface::checkAccess().
 * @return bool un valor indicando si la regla permite al rol o permiso con el que está asociado.
 */
 public function execute($user, $item, $params)
 {
 return isset($params['post']) ? $params['post']->createdBy == $user : false;
 }
}

La regla anterior comprueba si el post fue creado por $user. Crearemos un permiso especial, updateOwnPost, en el comando que hemos utilizado
anteriormente:

$auth = Yii::$app->authManager;

// agrega la regla
$rule = new \app\rbac\AuthorRule;
$auth->add($rule);

// agrega el permiso "updateOwnPost" y le asocia la regla.
$updateOwnPost = $auth->createPermission('updateOwnPost');
$updateOwnPost->description = 'Update own post';
$updateOwnPost->ruleName = $rule->name;
$auth->add($updateOwnPost);

// "updateOwnPost" será utilizado desde "updatePost"
$auth->addChild($updateOwnPost, $updatePost);

// permite a "author" editar sus propios posts
$auth->addChild($author, $updateOwnPost);

Ahora tenemos la siguiente jerarquía:

[image: RBAC hierarchy with a rule]

Comprobación de Acceso

Con los datos de autorización listos, la comprobación de acceso se hace con una simple llamada al método [[yii\rbac\ManagerInterface::checkAccess()]].
Dado que la mayoría de la comprobación de acceso se hace sobre el usuario actual, para mayor comodidad Yii proporciona el atajo
[[yii\web\User::can()]], que puede ser utilizado como a continuación:

if (\Yii::$app->user->can('createPost')) {
 // crear el post
}

Si el usuario actual es Jane con ID=1, comenzamos desde createPost y tratamos de alcanzar a Jane:

[image: Access check]

Con el fin de comprobar si un usuario puede actualizar un post, necesitamos pasarle un parámetro adicional requerido por AuthorRule, descrito antes:

if (\Yii::$app->user->can('updatePost', ['post' => $post])) {
 // actualizar post
}

Aquí es lo que sucede si el usuario actual es John:

[image: Access check]

Comenzamos desde updatePost y pasamos por updateOwnPost. Con el fin de pasar la comprobación de acceso, AuthorRule
debe devolver true desde su método execute(). El método recive $params desde la llamada al método can(), cuyo valor es
['post' => $post]. Si todo está bien, vamos a obtener author, el cual es asignado a John.

En caso de Jane es un poco más simple, ya que ella es un “admin”:

[image: Access check]

Utilizar Roles por Defecto

Un rol por defecto es un rol que esta asignado implícitamente a todos los usuarios. La llamada a [[yii\rbac\ManagerInterface::assign()]]
no es necesaria, y los datos de autorización no contienen su información de asignación.

Un rol por defecto es usualmente asociado con una regla que determina si el rol aplica al usuario siendo verificado.

Los roles por defecto se utilizan a menudo en aplicaciones que ya tienen algún tipo de asignación de roles. Por ejemplo, una aplicación
puede tener una columna “grupo” en su tabla de usuario para representar a qué grupo de privilegio pertenece cada usuario.
Si cada grupo privilegio puede ser conectado a un rol de RBAC, se puede utilizar la función de rol por defecto para asignar
cada usuario a un rol RBAC automáticamente. Usemos un ejemplo para mostrar cómo se puede hacer esto.

Suponga que en la tabla de usuario, usted tiene una columna group que utiliza 1 para representar el grupo administrador y 2 al grupo autor.
Planeas tener dos roles RBAC, admin y author, para representar los permisos de estos dos grupos, respectivamente.
Puede configurar los datos RBAC de la siguiente manera,

namespace app\rbac;

use Yii;
use yii\rbac\Rule;

/**
 * Comprueba si el grupo coincide
 */
class UserGroupRule extends Rule
{
 public $name = 'userGroup';

 public function execute($user, $item, $params)
 {
 if (!Yii::$app->user->isGuest) {
 $group = Yii::$app->user->identity->group;
 if ($item->name === 'admin') {
 return $group == 1;
 } elseif ($item->name === 'author') {
 return $group == 1 || $group == 2;
 }
 }
 return false;
 }
}

$auth = Yii::$app->authManager;

$rule = new \app\rbac\UserGroupRule;
$auth->add($rule);

$author = $auth->createRole('author');
$author->ruleName = $rule->name;
$auth->add($author);
// ... agrega permisos hijos a $author ...

$admin = $auth->createRole('admin');
$admin->ruleName = $rule->name;
$auth->add($admin);
$auth->addChild($admin, $author);
// ... agrega permisos hijos a $admin ...

Tenga en cuenta que en el ejemplo anterior, dado que “author” es agregado como hijo de “admin”, cuando implementes el método execute()
de la clase de la regla, necesitas respetar esta jerarquía. Esto se debe a que cuando el nombre del rol es “author”,
el método execute() devolverá true si el grupo de usuario es tanto 1 como 2 (lo que significa que el usuario se encuentra en
cualquiera de los dos grupos, “admin” o “author”).

Luego, configura authManager enumerando los dos roles en [[yii\rbac\BaseManager::$defaultRoles]]:

return [
 // ...
 'components' => [
 'authManager' => [
 'class' => 'yii\rbac\PhpManager',
 'defaultRoles' => ['admin', 'author'],
],
 // ...
],
];

Ahora si realizas una comprobación de acceso, tanto el rol admin y como el rol author serán comprobados evaluando
las reglas asociadas con ellos. Si la regla devuelve true, significa que la regla aplica al usuario actual.
Basado en la implementación de la regla anterior, esto significa que si el valor group en un usuario es 1, el rol admin
se aplicaría al usuario; y si el valor de group es 2, se le aplicaría el rol author.

 Trabajar con Passwords

Trabajar con Passwords

La mayoría de los desarrolladores saben que los passwords no deben ser guardados en texto plano, pero muchos desarrolladores aún creen
que es seguro aplicar a los passowrds hash md5 o sha1. Hubo un tiempo cuando utilizar esos algoritmos de hash mencionados era suficiente,
pero el hardware moderno hace posible que ese tipo de hash e incluso más fuertes, puedan revertirse rápidamente utilizando ataques de fuerza bruta.

Para poder proveer de una seguridad mayor para los passwords de los usuarios, incluso en el peor de los escenarios (tu aplicación sufre una brecha de seguridad),
necesitas utilizar un algoritmo que resista los ataques de fuerza bruta. La mejor elección actualmente es bcrypt.
En PHP, puedes generar un hash bcrypt utilizando la función crypt [http://php.net/manual/en/function.crypt.php]. Yii provee
dos funciones auxiliares que hacen que crypt genere y verifique los hash más fácilmente.

Cuando un usuario provee un password por primera vez (por ej., en la registración), dicho password necesita ser pasado por un hash:

$hash = Yii::$app->getSecurity()->generatePasswordHash($password);

El hash puede estar asociado con el atributo del model correspondiente, de manera que pueda ser almacenado en la base de datos para uso posterior.

Cuando un usuario intenta ingresar al sistema, el password enviado debe ser verificado con el password con hash almacenado previamente:

if (Yii::$app->getSecurity()->validatePassword($password, $hash)) {
 // todo en orden, dejar ingresar al usuario
} else {
 // password erróneo
}

 Trabajar con Bases de Datos

Trabajar con Bases de Datos

En esta sección, explicaremos cómo crear una nueva página para mostrar datos de países traídos de una tabla de la
base de datos llamada country. Para lograr este objetivo, configurarás una conexión a la base de datos,
crearás una clase Active Record, una acción
y una vista.

A lo largo de este tutorial, aprenderás a

	configurar una conexión a la base de datos;

	definir una clase Active Record;

	realizar consultas a la base de datos utilizando la clase Active Record;

	mostrar datos en una vista con paginación incluida.

Ten en cuenta que para finalizar esta sección, deberás tener al menos conocimientos básicos y experiencia con bases de datos.
En particular, deberás ser capaz de crear una base de datos y saber ejecutar consultas SQL usando alguna herramienta de cliente de base de datos.

Preparar una Base de Datos

Para empezar, crea una base de datos llamada yii2basic de la cual tomarás los datos en la aplicación.
Puedes elegir entre una base de datos SQLite, MySQL, PostgreSQL, MSSQL u Oracle, dado que Yii incluye soporte para varios motores. Por simplicidad, usaremos MySQL en la siguiente descripción.

A continuación, crea una tabla llamada country e inserta algunos datos de ejemplo. Puedes utilizar las siguientes declaraciones SQL.

CREATE TABLE `country` (
 `code` CHAR(2) NOT NULL PRIMARY KEY,
 `name` CHAR(52) NOT NULL,
 `population` INT(11) NOT NULL DEFAULT '0'
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

INSERT INTO `country` VALUES ('AU','Australia',24016400);
INSERT INTO `country` VALUES ('BR','Brazil',205722000);
INSERT INTO `country` VALUES ('CA','Canada',35985751);
INSERT INTO `country` VALUES ('CN','China',1375210000);
INSERT INTO `country` VALUES ('DE','Germany',81459000);
INSERT INTO `country` VALUES ('FR','France',64513242);
INSERT INTO `country` VALUES ('GB','United Kingdom',65097000);
INSERT INTO `country` VALUES ('IN','India',1285400000);
INSERT INTO `country` VALUES ('RU','Russia',146519759);
INSERT INTO `country` VALUES ('US','United States',322976000);

Al final, tendrás una base de datos llamada yii2basic, y dentro de esta, una tabla llamada country con diez registros en ella.

Configurar una conexión a la Base de Datos

Asegúrate de tener instalado la extensión de PHP PDO [http://www.php.net/manual/es/book.pdo.php] y el driver
de PDO para el motor que estés utilizando (ej. pdo_mysql para MySQL). Este es un requisito básico si tu aplicación
va a utilizar bases de datos relacionales.

Abre el archivo config/db.php y ajusta el contenido dependiendo de la configuración a tu base de datos. Por defecto,
el archivo contiene el siguiente contenido:

<?php

return [
 'class' => 'yii\db\Connection',
 'dsn' => 'mysql:host=localhost;dbname=yii2basic',
 'username' => 'root',
 'password' => '',
 'charset' => 'utf8',
];

El archivo config/db.php representa la típica configuración basada en archivos. Este archivo de configuración en particular
especifica los parámetros necesarios para crear e inicializar una instancia de [[yii\db\Connection]] a través de la cual puedes realizar
consultas SQL contra la base de datos subyacente.

La conexión a la base de datos realizada anteriormente puede ser accedida mediante Yii::$app->db.

Info: El archivo config/db.php será incluido en el archivo principal de configuración config/web.php,
el cual especifica cómo la instancia de la aplicación debe ser inicializada.
Para más información, consulta la sección Configuraciones.

Si necesitas trabajar con bases de datos cuyo soporte no está incluído en Yii, revisa las siguientes extensiones:

	Informix [https://github.com/edgardmessias/yii2-informix]

	IBM DB2 [https://github.com/edgardmessias/yii2-ibm-db2]

	Firebird [https://github.com/edgardmessias/yii2-firebird]

Crear un Active Record

Para representar y extraer datos de la tabla country, crea una clase Active Record
llamada Country y guárdala en el archivo models/Country.php.

<?php

namespace app\models;

use yii\db\ActiveRecord;

class Country extends ActiveRecord
{
}

La clase Country extiende de [[yii\db\ActiveRecord]]. No necesitas escribir ningún código dentro de ella! Con tan sólo el código de arriba,
Yii adivinará la tabla correspondiente a la clase desde su nombre.

Info: Si no se puede realizar un emparejamiento entre el nombre de la clase y la tabla, puedes
sobrescribir el método [[yii\db\ActiveRecord::tableName()]] para especificar explícitamente el nombre de la tabla asiciada.

Utilizando la clase Country, puedes manipular los datos de la tabla country fácilmente, como se muestra en los siguiente ejemplos:

use app\models\Country;

// obtiene todos los registros de la tabla country ordenándolos por "name"
$countries = Country::find()->orderBy('name')->all();

// obtiene el registro cuya clave primaria es "US"
$country = Country::findOne('US');

// muestra "United States"
echo $country->name;

// cambia el nombre del país a "U.S.A." y lo guarda en la base de datos
$country->name = 'U.S.A.';
$country->save();

Info: Active Record es una potente forma de acceder y manipular datos de una base de datos de una manera orientada a objetos.
Puedes encontrar información más detallada acerca de Active Record. Además de Active Record, puedes utilizar un método de acceso de bajo nivel llamado Data Access Objects.

Crear una Acción

Para mostrar el país a los usuarios, necesitas crear una acción. En vez de hacerlo en el controlador site
como lo hiciste en las secciones previas, tiene más sentido crear un nuevo controlador que englobe todas las
acciones de manipulación de datos de la tabla country. Llama a este nuevo controlador CountryController y define
una acción index en él, como se muestra a continuación:

<?php

namespace app\controllers;

use yii\web\Controller;
use yii\data\Pagination;
use app\models\Country;

class CountryController extends Controller
{
 public function actionIndex()
 {
 $query = Country::find();

 $pagination = new Pagination([
 'defaultPageSize' => 5,
 'totalCount' => $query->count(),
]);

 $countries = $query->orderBy('name')
 ->offset($pagination->offset)
 ->limit($pagination->limit)
 ->all();

 return $this->render('index', [
 'countries' => $countries,
 'pagination' => $pagination,
]);
 }
}

Guarda el código anterior en el archivo controllers/CountryController.php.

La acción index llama a Country::find() para generar una consulta a la base de datos y traer todos los datos de la tabla country.
Para limitar la cantidad de registros traídos en cada petición, la consulta es paginada con la ayuda de un objeto
[[yii\data\Pagination]]. El objeto Pagination sirve para dos propósitos:

	Define las cláusulas offset y limit de la consulta SQL para así sólo devolver una sola página de datos
(5 registros por página como máximo).

	Es utilizado en la vista para mostrar un paginador que consiste en una lista de botones que representan a cada página,
tal como será explicado en la siguiente sub-sección.

Al final, la acción index renderiza una vista llamada index y le pasa los datos de países así como la información
de paginación relacionada.

Crear una Vista

Bajo el directorio views, crea primero un sub-directorio llamado country. Este será usado para contener
todas las vistas renderizadas por el controlador country.
Dentro del directorio views/country, crea un archivo llamado index.php con el siguiente contenido:

<?php
use yii\helpers\Html;
use yii\widgets\LinkPager;
?>
<h1>Países</h1>

<?php foreach ($countries as $country): ?>

 <?= Html::encode("{$country->name} ({$country->code})") ?>:
 <?= $country->population ?>

<?php endforeach; ?>

<?= LinkPager::widget(['pagination' => $pagination]) ?>

La vista consiste en dos partes. En la primera, los datos de países son recorridos y renderizados como una lista HTML.
En la segunda parte, un widget [[yii\widgets\LinkPager]] es renderizado usando la información de paginación pasada desde la acción.
El widget LinkPager muestra una lista de botones que representan las páginas disponibles. Haciendo click en cualquiera
de ellas mostrará los datos de países de la página correspondiente.

Probándolo

Para ver cómo funciona, utiliza a la siguiente URL en tu navegador:

http://hostname/index.php?r=country%2Findex

[image: Lista de Países]

Verás una página que muestra cinco países. Y debajo de todos los países, verás un paginador con cuatro botones.
Si haces click en el botón “2”, verás que la página muestra otros cinco países de la base de datos.
Observa más cuidadosamente y verás que la URL en el navegador cambia a

http://hostname/index.php?r=country%2Findex&page=2

Entre bastidores, [[yii\data\Pagination|Pagination]] está realizando su magia.

	Inicialmente, [[yii\data\Pagination|Pagination]] representa la primera página, que agrega a la consulta SQL
a la base de datos con la cláusula LIMIT 5 OFFSET 0. Como resultado, los primeros cinco países serán traídos y mostrados.

	El widget [[yii\widgets\LinkPager|LinkPager]] renderiza los botones de páginas usando las URLs
creadas por [[yii\data\Pagination::createUrl()|Pagination]]. Las URLs contendrán el parámetro page
representando los números de páginas.

	Si haces click en el botón “2”, se lanza y maneja una nueva petición a la ruta country/index.
[[yii\data\Pagination|Pagination]] lee el parámetro page y define el número de página actual como “2”.
Por consiguiente, la consulta a la base de datos tendrá la cláusula LIMIT 5 OFFSET 5 y devolverá los
siguientes cinco países para mostrar.

Resumen

En esta sección has aprendido cómo trabajar con una base de datos. También has aprendido cómo traer y mostrar
datos paginados con la ayuda de [[yii\data\Pagination]] y [[yii\widgets\LinkPager]].

En la siguiente sección, aprenderás a utilizar la poderosa herramienta de generación de código llamada Gii,
para ayudarte a implementar rápidamente algunas características comunes, como crear operaciones de Alta-Baja-Modificación
(ABM, o CRUD en inglés) de los datos guardados en la base de datos. De hecho, el código que acabas de escribir fue
generado automáticamente a través de esta herramienta.

 Trabajando con Formularios

Trabajando con Formularios

En esta sección, describiremos como crear una nueva página para solicitar información de los usuarios.
La página mostrará un formulario con un campo de input para el nombre y un campo de input para el email.
Después de recibir estos datos del usuario, la página le mostrará la información de vuelta al usuario para la confirmación.

Para lograr este objetivo, además de crear una acción y
dos vistas, también crearás un modelo.

A través de este tutorial, aprenderás

	Cómo crear un modelo para representar los datos ingresados por un usuario;

	Cómo declarar reglas para validar los datos ingresado por los usuarios;

	Cómo construir un formulario HTML en una vista.

Creando un Modelo

Para representar los datos ingresados por un usuario, crea una clase modelo EntryForm cómo se muestra abajo y
guarda la clase en el archivo models/EntryForm.php. Por favor, visita la sección Autocargando Clases
para obtener más detalles acerca de la convención de nombres de los archivos de clase.

<?php

namespace app\models;

use yii\base\Model;

class EntryForm extends Model
{
 public $name;
 public $email;

 public function rules()
 {
 return [
 [['name', 'email'], 'required'],
 ['email', 'email'],
];
 }
}

La clase se extiende a partir de [[yii\base\Model]], que es una clase base que provee Yii y es comúnmente utilizada
para representar datos de formularios.

La clase contiene dos miembros públicos, name y email, que son utilizas para mantener
los datos ingresados por el usuario. También contiene el método llamado rules() que regresa un conjunto
de reglas utilizadas para validar los datos. Las reglas de validación declaradas arriba indican que

	ambos datos, tanto el name como el email, son requeridos;

	el dato email debe ser una dirección de correo válida.

Si tienes un objeto EntryForm llenado con los datos ingresados por el usuario, puedes llamar
su [[yii\base\Model::validate()|validate()]] para disparar (trigger) la validación de los datos. Un fallo en la validación
de los datos se mostrará en la propiedad [[yii\base\Model::hasErrors|hasErrors]], y a través de
[[yii\base\Model::getErrors|errors]] puedes aprender cuales son los errores de validación que tiene el modelo.

Creando una Acción

Luego, crea una acción entry en el controlador site, como lo hiciste en la sección anterior.

<?php

namespace app\controllers;

use Yii;
use yii\web\Controller;
use app\models\EntryForm;

class SiteController extends Controller
{
 // ...código existente...

 public function actionEntry()
 {
 $model = new EntryForm;

 if ($model->load(Yii::$app->request->post()) && $model->validate()) {
 // validar los datos recibidos en el modelo

 // aquí haz algo significativo con el modelo ...

 return $this->render('entry-confirm', ['model' => $model]);
 } else {
 // la página es mostrada inicialmente o hay algún error de validación
 return $this->render('entry', ['model' => $model]);
 }
 }
}

La acción primero crea un objeto EntryForm. Luego intenta poblar el modelo
con los datos del $_POST que es proporcionado por Yii a través de [[yii\web\Request::post()]].
Si el modelo es llenado satisfactoriamente (ej., el usuario ha enviado el formulario HTML),
llamará a [[yii\base\Model::validate()|validate()]] para asegurarse que los datos ingresados
son válidos.

Si todo está bien, la acción mostrará una vista llamada entry-confirm para confirmar
con el usuario que acepta los datos que ha ingresado. De otra manera, la vista entry será
mostrada, y mostrará el formulario HTML junto con los mensajes de error de validación (si es que hay alguno).

Info: La expresión Yii::$app representa la instancia de la aplicación
que es un singleton globalmente accesible. También es un service locator (localizador de servicio)
que provee los componentes, tales como request, response, db, etc. para soportar funcionalidades específicas.
En el código de arriba, el componente request es utilizado para acceder los datos $_POST.

Creando Vistas

Finalmente, crea dos vistas llamadas entry-confirm y entry que sean mostradas por la acción entry,
tal y como fue descrito en la última sub-sección.

La vista entry-confirm simplemente muestra los datos de name y email. Ésta debe ser guardada como el archivo views/site/entry-confirm.php.

<?php
use yii\helpers\Html;
?>
<p>You have entered the following information:</p>

 <label>Name</label>: <?= Html::encode($model->name) ?>
 <label>Email</label>: <?= Html::encode($model->email) ?>

La vista entry muestra un formulario HTML. Debe ser guardado como el archivo views/site/entry.php.

<?php
use yii\helpers\Html;
use yii\widgets\ActiveForm;
?>
<?php $form = ActiveForm::begin(); ?>

 <?= $form->field($model, 'name') ?>

 <?= $form->field($model, 'email') ?>

 <div class="form-group">
 <?= Html::submitButton('Submit', ['class' => 'btn btn-primary']) ?>
 </div>

<?php ActiveForm::end(); ?>

La vista utiliza un poderoso widget llamado [[yii\widgets\ActiveForm|ActiveForm]] para
construir el formulario HTML. Los métodos begin() y end() del widget muestran, respectivamente, las etiquetas de
apertura y cierre del formulario. Entre las llamadas de los dos métodos, los campos de input son creados por el
método [[yii\widgets\ActiveForm::field()|field()]]. El primer campo input es del dato “name”,
y el segundo del dato “email”. Después de los campos de input, el método [[yii\helpers\Html::submitButton()]]
es llamado para general el botón de submit (enviar).

Probándolo

Para ver cómo funciona, utiliza tu navegador para ir al siguiente URL:

http://hostname/index.php?r=site/entry

Verás una página que muestra un formulario con dos campos de input. Adelante de cada campo de input, será mostrada también
una etiqueta indicando que dato necesitas ingresar. Si haces click en el botón de envío (Submit) sin ingresar nada,
o si ingresas una dirección de correo inválida, verás un mensaje de error que se mostrará al lado del campo que tiene problemas.

[image: Formulario con Errores de Validación]

Después de ingresar un nombre y dirección de correo válidos y haciendo click en el botón de envío (Submit), verás una nueva página
mostrando los datos que acabas de ingresar.

[image: Confirmación de los Datos de Entrada]

Magia Explicada

Te estarás preguntando cómo funciona toda esa automatización del formulario HTML, porque parece casi mágico que pueda
mostrar una etiqueta para cada campo de input y mostrar los mensajes de error si no ingresas los datos correctamente
sin recargar la página.

Si, la validación de los datos se realiza en el lado del cliente utilizando JavaScript así como también en el lado del servidor.
[[yii\widgets\ActiveForm]] es lo suficientemente inteligente como para extraer las reglas de validación que has declarado en EntryForm,
convertirlas en código Javascript, y utilizar el JavaScript para realizar la validación de los datos. En caso de que hayas deshabilitado
JavaScript en tu navegador, la validación se realizará igualmente en el lado del servidor, como se muestra en
el método actionEntry(). Esto garantiza la validez de los datos en cualquier circunstancias.

Las etiquetas de los campos de input son generados por el método field() basado en los nombres de las propiedades del modelo.
Por ejemplo, la etiqueta Name será generada de la propiedad name. Puedes personalizar una etiqueta con
el siguiente código:

<?= $form->field($model, 'name')->label('Tu Nombre') ?>
<?= $form->field($model, 'email')->label('Tu Email') ?>

Info: Yii provee muchos widgets para ayudarte a construir rápidamente vistas complejas y dinámicas.
Como aprenderás más adelante, escribir un nuevo widget es extremadamente fácil. Puedes convertir mucho del
código de tus vistas en widgets reutilizables para simplificar el desarrollo de las vistas en un futuro.

Resumen

En esta sección, has tocado cada parte del patrón de diseño MVC. Ahora has aprendido
a crear una clase modelo para representar los datos del usuario y validarlos.

También has aprendido como obtener datos de los usuarios y como mostrarlos de vuelta. Esta es una tarea que
puede tomarte mucho tiempo cuando estás desarrollando una aplicación. Yii provee poderosos widgets
para hacer muy fácil esta tarea.

En la próxima sección, aprenderás como trabajar con bases de datos que son necesarias en casi cualquier aplicación.

 Generando Código con Gii

Generando Código con Gii

En esta sección, explicaremos cómo utilizar Gii para generar código que automáticamente
implementa algunas de las características más comunes de una aplicación. Para lograrlo, todo lo que tienes que hacer es
ingresar la información de acuerdo a las instrucciones mostradas en la páginas web de Gii.

A lo largo de este tutorial, aprenderás

	Cómo activar Gii en tu aplicación;

	Cómo utilizar Gii para generar una clase Active Record;

	Cómo utilizar Gii para generar el código que implementa las operaciones ABM de una tabla de la base de datos.

	Cómo personalizar el código generado por Gii.

Comenzando con Gii

Gii está provisto por Yii en forma de módulo. Puedes habilitar Gii
configurándolo en la propiedad [[yii\base\Application::modules|modules]] de la aplicación. Dependiendo de cómo hayas creado tu aplicación, podrás encontrar que el siguiente código ha sido ya incluido en el archivo de configuración config/web.php:

$config = [...];

if (YII_ENV_DEV) {
 $config['bootstrap'][] = 'gii';
 $config['modules']['gii'] = [
 'class' => 'yii\gii\Module',
];
}

La configuración dice que al estar en el entorno de desarrollo,
la aplicación debe incluir el módulo llamado gii, cuya clase es [[yii\gii\Module]].

Si chequeas el script de entrada web/index.php de tu aplicación, encontrarás la línea
que esencialmente define la constante YII_ENV_DEV como verdadera -true.

defined('YII_ENV') or define('YII_ENV', 'dev');

De esta manera, tu aplicación habrá habilitado Gii, y puedes acceder al módulo a través de la siguiente URL:

http://hostname/index.php?r=gii

[image: Gii]

Generando una Clase Active Record

Para poder generar una clase Active Record con Gii, selecciona “Model Generator” (haciendo click en el vínculo que existe en la página inicial del modulo Gii). Después, completa el formulario de la siguiente manera,

	Table Name: country

	Model Class: Country

[image: Model Generator]

Haz click el el botón “Preview”. Verás que models/Country.php está mostrado listado como la clase resultante que ha de ser creada. Puedes hacer click en el nombre de la clase para previsualizar su contenido.

Al utilizar Gii, si habías creado previamente el mismo archivo y puede ser sobrescrito, si haces click
en el botón diff cercano al nombre del archivo, verás las diferencias entre el código a ser generado
y la versión existente del mismo.

[image: Previsualización del Model Generator]

Para sobrescribir un archivo existente, marca el checkbox que se encuentra al lado de “overwrite” y posteriormente haz click en el botón “Generate”.

Después, verás una página de confirmación indicando que el código ha sido generado correctamente y tu archivo models/Country.php
ha sido sobrescrito con el nuevo código generado.

Generando código de ABM (CRUD en inglés)

En computación, CRUD es el acrónimo de Crear, Obtener, Actualizar y Borrar (del inglés: Create, Read, Update y Delete)
representando la cuatro funciones con datos más comunes en la mayoría de sitios Web.
El acrónimo ABM es Altas, Bajas y Modificaciones. Para generar un ABM, selecciona “CRUD Generator” y completa el formulario de esta manera:

	Model Class: app\models\Country

	Search Model Class: app\models\CountrySearch

	Controller Class: app\controllers\CountryController

[image: Generador de ABM]

Al hacer click en el botón “Preview” verás la lista de archivos a ser generados.

Si has creado previamente los archivos controllers/CountryController.php y
views/country/index.php (en la sección sobre bases de datos de esta guía), asegúrate de seleccionar el checkbox “overwrite” para reemplazarlos. (Las versiones anteriores no disponían de un soporte ABM (CRUD) completo.)

Probándolo

Para ver cómo funciona, accede desde tu navegador a la siguiente URL:

http://hostname/index.php?r=country/index

Verás una grilla de datos mostrando los países de la base de datos. Puedes ordenar la grilla
o filtrar los resultados escribiendo alguna condición en los encabezados de las columnas.

Por cada país mostrado en la grilla, puedes elegir entre visualizar el registro, actualizarlo o eliminarlo.
Puedes incluso hacer click en el botón “Create Country” que se encuentra sobre la grilla y así cargar
un nuevo país en la base de datos.

[image: Grilla de Países]

[image: Actualizando un País]

La siguiente es la lista de archivos generados por Gii, en el caso de que quieras inspeccionar cómo el ABM ha sido generado,
o por si desearas personalizarlos:

	Controlador: controllers/CountryController.php

	Modelos: models/Country.php y models/CountrySearch.php

	Vistas: views/country/*.php

Info: Gii está diseñado para ser una herramienta altamente configurable. Utilizándola con sabiduría
puede acelerar enormemente la velocidad de desarrollo de tu aplicación. Para más detalles, consulta la
sección Gii.

Resumen

En esta sección, has aprendido a utilizar Gii para generar el código que implementa completamente las características
de un ABM de acuerdo a una determinada tabla de la base de datos.

 Diciendo Hola

Diciendo Hola

Esta sección describe cómo crear la típica página “Hola Mundo” (Hello World en inglés) en tu aplicación.
Para lograr este objetivo, vas a crear una acción y
una vista:

	La aplicación enviará la petición de la página a la acción

	y la acción regresará el render de la vista que muestra la palabra “Hola” al usuario final.

A lo largo de este tutorial, aprenderás tres cosas:

	Cómo crear una acción para responder peticiones (request),

	Cómo crear una vista para armar el contenido de la respuesta, y

	Cómo una aplicación envía peticiones a las acciones.

Creando una Acción

Para la tarea “Hola”, crearás una acción say que lee
un parámetro message de la petición y muestra este mensaje de vuelta al usuario. Si la petición
no provee un parámetro message, la acción mostrará el mensaje por defecto “Hola”.

Info: Las acciones son objetos que los usuarios finales pueden utilizar directamente para
su ejecución. Las acciones están agrupadas por controladores (controllers). El resultado de la ejecución de
una acción es la respuesta que el usuario final recibirá.

Las acciones deben ser declaradas en controladores. Para simplificar, puedes
declarar la acción say en el controlador SiteController existente. Este controlador está definido
en el archivo de clase controllers/SiteController.php. Aquí está el inicio de la nueva acción:

<?php

namespace app\controllers;

use yii\web\Controller;

class SiteController extends Controller
{
 // ...código existente...

 public function actionSay($message = 'Hola')
 {
 return $this->render('say', ['message' => $message]);
 }
}

En el código de arriba, la acción say está definida por un método llamado actionSay en la clase SiteController.
Yii utiliza el prefijo action para diferenciar los métodos de acciones de otros métodos en las clases de los controladores.
El nombre que le sigue al prefijo action se mapea al ID de la acción.

Cuando se trata de nombrar las acciones, debes entender como Yii trata los ID de las acciones. Los ID de las acciones siempre son
referenciados en minúscula. Si un ID de acción requiere múltiples palabras, estas serán concatenadas con guiones
(ej., crear-comentario). Los nombres de los métodos de las acciones son mapeados a los ID de las acciones
removiendo los guiones, colocando en mayúscula la primera letra de cada palabra, y colocando el prefijo action al resultado. Por ejemplo,
el ID de la acción crear-comentario corresponde al nombre de método de acción actionCrearComentario.

El método de acción en nuestro ejemplo toma un parámetro $message, el cual tiene como valor por defecto "Hola" (de la misma manera
que se coloca un valor por defecto a un argumento en cualquier función o método en PHP). Cuando una aplicación
recibe una petición y determina que la acción say es responsable de manejar dicha petición, la aplicación llenará
el parámetro con el parámetro que tenga el mismo nombre en la petición. En otras palabras, si la petición incluye un
parámetro message con el valor de "Adios", la variable $message dentro de la acción será sustituida por este valor.

Dentro del método de acción, [[yii\web\Controller::render()|render()]] es llamado para hacer render (mostrar o visualizar) un
archivo vista (template) llamado say. El parámetro message tambien es pasado al view para que pueda ser utilizado ahí.
El resultado es devuelto al método de la acción. Ese resultado será recibido por la aplicación y mostrado al usuario final en el
navegador (como parte de una página HTML completa).

Creando una Vista

Las vistas son scripts que escribes para generar una respuesta de contenido.
Para la tarea “Hola”, vas a crear una vista say que imprime el parámetro message recibido desde el método action, y pasado por la acción a la vista:

<?php
use yii\helpers\Html;
?>
<?= Html::encode($message) ?>

La vista say debe ser guardada en el archivo views/site/say.php. Cuando el método [[yii\web\Controller::render()|render()]]
es llamado en una acción, buscará un archivo PHP llamado views/ControllerID/NombreVista.php.

Nota que en el código de arriba, el parámetro message es procesado por [[yii\helpers\Html::encode()|HTML-encoded]]
antes de ser impreso. Esto es necesario ya que el parámetro viene de un usuario final, haciéndolo vulnerable a
ataques cross-site scripting (XSS) [http://es.wikipedia.org/wiki/Cross-site_scripting] pudiendo inyectar código de Javascript malicioso dentro del parámetro.

Naturalmente, puedes colocar mas contenido en la vista say. El contenido puede consistir de etiquetas HTML, texto plano, e inclusive código PHP.
De hecho, la vista say es sólo un script PHP que es ejecutado por el método [[yii\web\Controller::render()|render()]].
El contenido impreso por el script de la vista será regresado a la aplicación como la respuesta del resultado. La aplicación a cambio mostrará el resultado al usuario final.

Probándolo

Después de crear la acción y la vista, puedes acceder a la nueva página abriendo el siguiente URL:

http://hostname/index.php?r=site%2Fsay&message=Hello+World

[image: Hello World]

Esta URL resultará en una página mostrando “Hello World”. La página comparte el mismo encabezado y pie de página de las otras páginas de la aplicación.

Si omites el parámetro message en el URL, verás que la página muestra sólo “Hola”. Esto es porque message es pasado como un parámetro al método actionSay(),
y cuando es omitido, el valor por defecto "Hola" será utilizado.

Info: La nueva página comparte el mismo encabezado y pie de página que otras páginas porque el método [[yii\web\Controller::render()|render()]]
automáticamente inyectará el resultado de la vista say en el layout, que en este
caso está localizada en views/layouts/main.php.

El parámetro r en el URL de arriba requiere más explicación. Se refierea a route (ruta), y es el ID amplio y único de una aplicación
que refiere a una acción. El formato de las rutas es ControllerID/ActionID. Cuando la aplicación recibe una petición, revisará este parámetro,
utilizando la parte del ControllerID para determinar cual clase de controlador será inicializado para manejar la petición. Entonces, el controlador utilizará
la parte ActionID para determinar cual acción debe ser inizializada para hacer realmente el trabajo.
En este ejemplo, la ruta site/say será respondida por la clase controlador SiteController y la acción say. Como resultado,
el método SiteController::actionSay() será llamado para manejar el requerimiento.

Info: Al igual que las acciones, los controladores tambien tienen ID únicos que los identifican en una aplicación.
Los ID de los Controladores utilizan las mismas reglas de nombrado que los ID de las acciones. Los nombres de las clases de los controladores son derivados de los ID de los controladores removiendo los guiones de los ID, colocando la primera letra en mayúscula en cada palabra, y colocando el sufijo Controller al resultado. Por ejemplo, el ID del controlador post-comentario corresponde
al nombre de clase del controlador PostComentarioController.

Resumen

En esta sección, has tocado las partes del controlador y la vista del patrón de diseño MVC.
Has creado una acción como parte de un controlador para manejar una petición específica. Y también has creado una vista para armar el contenido de la respuesta.
En este simple ejemplo, ningún modelo ha sido involucrado ya que el único dato que fue utilizado fue el parámetro message.

También has aprendido acerca de las rutas en Yii, que actúan como puentes entre la petición del usuario y las acciones del controlador.

En la próxima sección, aprenderás como crear un modelo, y agregar una nueva página que contenga un formulario HTML.

 Instalar Yii

Instalar Yii

Puedes instalar Yii de dos maneras, utilizando el administrador de paquetes Composer [https://getcomposer.org/] o descargando un archivo comprimido.
La forma recomendada es la primera, ya que te permite instalar nuevas extensions o actualizar Yii con sólo ejecutar un comando.

La instalación estándar de Yii cuenta tanto con el framework como un template de proyecto instalados.
Un template de proyecto es un proyecto Yii funcional que implementa algunas características básicas como: login, formulario de contacto, etc.
El código está organizado de una forma recomendada. Por lo tanto, puede servir como un buen punto de partida para tus proyectos.

En esta y en las próximas secciones, describiremos cómo instalar Yii con el llamado Template de Proyecto Básico
y cómo implementar nuevas características por encima del template. Yii también provee otro template llamado
Template de Proyecto Avanzado [https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/README.md] qué es mejor para desarrollar aplicaciones con varios niveles
en el entorno de un equipo de desarrollo.

Info: El Template de Proyecto Básico es adecuado para desarrollar el 90 porciento de las aplicaciones Web. Difiere del
Template de Proyecto Avanzado principalmente en cómo está organizado el código. Si eres nuevo en Yii, te recomendamos
utilizar el Template de Proyecto Básico por su simplicidad pero funcionalidad suficiente.

Instalando via Composer

Si aún no tienes Composer instalado, puedes hacerlo siguiendo las instrucciones que se encuentran en
getcomposer.org [https://getcomposer.org/download/]. En Linux y Mac OS X, se ejecutan los siguientes comandos:

curl -sS https://getcomposer.org/installer | php
mv composer.phar /usr/local/bin/composer

En Windows, tendrás que descargar y ejecutar Composer-Setup.exe [https://getcomposer.org/Composer-Setup.exe].

Por favor, consulta la Documentación de Composer [https://getcomposer.org/doc/] si encuentras algún problema
o deseas obtener un conocimiento más profundo sobre su utilización.

Si ya tienes composer instalado, asegúrate de tener una versión actualizada. Puedes actualizar Composer
ejecutando el comando composer self-update

Teniendo Composer instalado, puedes instalar Yii ejecutando los siguientes comandos en un directorio accesible vía Web:

composer global require "fxp/composer-asset-plugin:^1.4.1"
composer create-project --prefer-dist yiisoft/yii2-app-basic basic

El primer comando instala composer asset plugin [https://github.com/francoispluchino/composer-asset-plugin/],
que permite administrar dependencias de paquetes bower y npm a través de Composer. Sólo necesitas ejecutar este comando
una vez. El segundo comando instala Yii en un directorio llamado basic. Puedes elegir un nombre de directorio diferente si así lo deseas.

Note: Durante la instalación, Composer puede preguntar por tus credenciales de acceso de Github. Esto es normal ya que Composer
necesita obtener suficiente límite de acceso de la API para traer la información de dependencias de Github. Para más detalles,
consulta la documentación de Composer [https://getcomposer.org/doc/articles/troubleshooting.md#api-rate-limit-and-oauth-tokens].

Tip: Si quieres instalar la última versión de desarrollo de Yii, puedes utilizar uno de los siguientes comandos,
que agregan una opción de estabilidad [https://getcomposer.org/doc/04-schema.md#minimum-stability]:

composer create-project --prefer-dist --stability=dev yiisoft/yii2-app-basic basic

Ten en cuenta que la versión de desarrollo de Yii no debería ser utilizada en producción ya que podría romper tu código actual.

Instalar desde un Archivo Comprimido

Instalar Yii desde un archivo comprimido involucra tres pasos:

	Descargar el archivo desde yiiframework.com [http://www.yiiframework.com/download/yii2-basic].

	Descomprimirlo en un directorio accesible vía Web.

	Modificar el archivo config/web.php introduciendo una clave secreta para el ítem de configuración cookieValidationKey
(esto se realiza automáticamente si estás instalando Yii a través de Composer):

// !!! insert a secret key in the following (if it is empty) - this is required by cookie validation
'cookieValidationKey' => 'enter your secret key here',

Otras Opciones de Instalación

Las instrucciones anteriores muestran cómo instalar Yii, lo que también crea una aplicación Web lista para ser usada.
Este es un buen punto de partida para la mayoría de proyectos, tanto grandes como pequeños. Es especialmente adecuado si recién
estás aprendiendo a utilizar Yii.

Pero también hay otras opciones de instalación disponibles:

	Si sólo quieres instalar el núcleo del framework y entonces crear una nueva aplicación desde cero,
puedes seguir las instrucciones explicadas en Generando una Aplicación desde Cero.

	Si quisieras comenzar con una aplicación más avanzada, más adecuada para un entorno de desarrollo de equipo,
deberías considerar instalar el Template de Aplicación Avanzada.

Verificando las Instalación

Una vez finalizada la instalación, o bien configura tu servidor web (mira la sección siguiente) o utiliza
el servidor web incluido en PHP [https://secure.php.net/manual/en/features.commandline.webserver.php] ejecutando el siguiente
comando de consola estando parado en el directorio web de la aplicación:

php yii serve

Note: Por defecto el servidor HTTP escuchará en el puerto 8080. De cualquier modo, si el puerto está en uso o deseas
servir varias aplicaciones de esta manera, podrías querer especificar qué puerto utilizar. Sólo agrega el argumento –port:

php yii serve --port=8888

Puedes utilizar tu navegador para acceder a la aplicación instalada de Yii en la siguiente URL:

http://localhost:8080/.

![Instalación Correcta de Yii](images/start-app-installed.png)

Deberías ver la página mostrando "Congratulations!" en tu navegador. Si no ocurriera, por favor chequea que la instalación
de PHP satisfaga los requerimientos de Yii. Esto puedes hacerlo usando cualquiera de los siguientes procedimientos:

* Copiando `/requirements.php` a `/web/requirements.php` y visitando la URL `http://localhost/basic/requirements.php` en tu navegador
* Corriendo los siguientes comandos:

  ```bash
  cd basic
  php requirements.php





Deberías configurar tu instalación de PHP para que satisfaga los requisitos mínimos de Yii. Lo que es más importante,
debes tener PHP 5.4 o mayor. También deberías instalar la Extensión de PHP PDO [http://www.php.net/manual/es/pdo.installation.php]
y el correspondiente driver de base de datos (como pdo_mysql para bases de datos MySQL), si tu aplicación lo necesitara.




Configurar Servidores Web 


Info: Puedes saltear esta sección por ahora si sólo estás probando Yii sin intención
de poner la aplicación en un servidor de producción.




La aplicación instalada siguiendo las instrucciones mencionadas debería estar lista para usar tanto
con un servidor HTTP Apache [http://httpd.apache.org/] como con un servidor HTTP Nginx [http://nginx.org/],
en Windows, Mac OS X, o Linux utilizando PHP 5.4 o mayor. Yii 2.0 también es compatible con HHVM [http://hhvm.com/]
de Facebook. De todos modos, hay algunos casos donde HHVM se comporta diferente del
PHP oficial, por lo que tendrás que tener cuidados extra al utilizarlo.

En un servidor de producción, podrías querer configurar el servidor Web para que la aplicación sea accedida
a través de la URL http://www.example.com/index.php en vez de http://www.example.com/basic/web/index.php. Tal configuración
require apuntar el document root de tu servidor Web a la carpeta basic/web. También podrías
querer ocultar index.php de la URL, como se describe en la sección Parseo y Generación de URLs.
En esta sub-sección, aprenderás a configurar tu servidor Apache o Nginx para alcanzar estos objetivos.


Info: Al definir basic/web como document root, también previenes que los usuarios finales accedan
al código privado o archivos con información sensible de tu aplicación que están incluidos en los directorios del mismo nivel
que basic/web. Denegando el acceso es una importante mejora en la seguridad.





Info: En caso de que tu aplicación corra en un entorno de hosting compartido donde no tienes permisos para modificar
la configuración del servidor Web, aún puedes ajustar la estructura de la aplicación para mayor seguridad. Por favor consulta
la sección Entorno de Hosting Compartido para más detalles.





Configuración Recomendada de Apache 

Utiliza la siguiente configuración del archivo httpd.conf de Apache dentro de la configuración del virtual host. Ten en cuenta
que deberás reemplazar path/to/basic/web con la ruta real a basic/web.

# Definir el document root como "basic/web"
DocumentRoot "path/to/basic/web"

<Directory "path/to/basic/web">
    # utiliza mod_rewrite para soporte de URLs amigables
    RewriteEngine on
    # Si el directorio o archivo existe, utiliza la petición directamente
    RewriteCond %{REQUEST_FILENAME} !-f
    RewriteCond %{REQUEST_FILENAME} !-d
    # Sino, redirige la petición a index.php
    RewriteRule . index.php

    # ...otras configuraciones...
</Directory>








Configuración Recomendada de Nginx 

Para utilizar Nginx [http://wiki.nginx.org/], debes instalar PHP como un FPM SAPI [http://php.net/install.fpm].
Utiliza la siguiente configuración de Nginx, reemplazando path/to/basic/web con la ruta real a
basic/web y mysite.test con el hostname real a servir.

server {
    charset utf-8;
    client_max_body_size 128M;

    listen 80; ## listen for ipv4
    #listen [::]:80 default_server ipv6only=on; ## listen for ipv6

    server_name mysite.test;
    root        /path/to/basic/web;
    index       index.php;

    access_log  /path/to/basic/log/access.log;
    error_log   /path/to/basic/log/error.log;

    location / {
        # Redireccionar a index.php todo lo que no sea un archivo real
        try_files $uri $uri/ /index.php$is_args$args;
    }

    # descomentar para evitar el procesamiento de llamadas de Yii a archivos estáticos no existente
    #location ~ \.(js|css|png|jpg|gif|swf|ico|pdf|mov|fla|zip|rar)$ {
    #    try_files $uri =404;
    #}
    #error_page 404 /404.html;

    location ~ \.php$ {
        include fastcgi_params;
        fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name;
        fastcgi_pass   127.0.0.1:9000;
        #fastcgi_pass unix:/var/run/php5-fpm.sock;
        try_files $uri =404;
    }

    location ~ /\.(ht|svn|git) {
        deny all;
    }
}





Al utilizar esta configuración, también deberías definir cgi.fix_pathinfo=0 en el archivo php.ini, y así
evitar muchas llamadas innecesarias del sistema a stat().

Ten en cuenta también que al correr un servidor HTTPS, deberás agregar fastcgi_param HTTPS on; así Yii puede
detectar propiamente si la conexión es segura.









          

      

      

    

  

  
    
    Mirando Hacia Adelante
    

    
 
  

    
      
          
            
  
Mirando Hacia Adelante

Si has leído el capítulo “Comenzando con Yii” completo, has creado una aplicación completa en Yii. En el proceso, has aprendido cómo implementar algunas
características comúnmente necesitadas, tales como obtener datos del usuario a través de formularios HTML, traer datos desde la base de datos,
y mostrar datos utilizando paginación. También has aprendido a utilizar Gii [https://github.com/yiisoft/yii2-gii/blob/master/docs/guide/README.md] para generar
código automáticamente. Utilizar Gii para la generación de código transforma la carga en el proceso de tu desarrollo Web en una tarea tan simple como solamente completar unos formularios.

Esta sección resumirá los recursos disponibles de Yii que te ayudarán a ser más productivo al utilizar el framework.


	Documentación


	La Guía Definitiva [http://www.yiiframework.com/doc-2.0/guide-README.html]:
Como su nombre lo indica, la guía define precisamente cómo debería trabajar Yii y provee guías generales
acerca de su utilización. Es el tutorial más importante de Yii, y el que deberías leer
antes de escribir cualquier código en Yii.


	La Referencia de Clases [http://www.yiiframework.com/doc-2.0/index.html]:
Esta especifica el uso de cada clase provista por Yii. Debería ser utilizada principalmente cuando estás escribiendo
código y deseas entender el uso de una clase, método o propiedad en particular. El uso de la referencia de clases es mejor luego de un entendimiento contextual del framework.


	Los Artículos de la Wiki [http://www.yiiframework.com/wiki/?tag=yii2]:
Los artículos de la wiki son escritos por usuarios de Yii basados en sus propias experiencias. La mayoría de ellos están escritos
como recetas de cocina, y muestran cómo resolver problemas particulares utilizando Yii. Si bien la calidad de estos
puede no ser tan buena como la de la Guía Definitiva, son útiles ya que cubren un espectro muy amplio
de temas y puede proveer a menudo soluciones listas para usar.


	Libros [http://www.yiiframework.com/doc/]






	Extensiones [http://www.yiiframework.com/extensions/]:
Yii puede hacer alarde de una librería de miles de extensiones contribuidas por usuarios, que pueden fácilmente conectadas a tu aplicación, haciendo que el desarrollo de la misma sea todavía más fácil y rápido.


	Comunidad


	Foro: http://www.yiiframework.com/forum/


	Chat IRC: El canal #yii en la red freenode (irc://irc.freenode.net/yii)


	Chat Gitter: https://gitter.im/yiisoft/yii2


	GitHub: https://github.com/yiisoft/yii2


	Facebook: https://www.facebook.com/groups/yiitalk/


	Twitter: https://twitter.com/yiiframework


	LinkedIn: https://www.linkedin.com/groups/yii-framework-1483367


	Stackoverflow: http://stackoverflow.com/questions/tagged/yii2












          

      

      

    

  

  
    
    Qué necesita saber
    

    
 
  

    
      
          
            
  
Qué necesita saber

La curva de aprendizaje de Yii no es tan empinada como en otros frameworks en PHP,
pero todavía hay algunas cosas que debería aprender antes de empezar con Yii.


PHP

Yii es un framework (base estructurada de desarrollo) en PHP, así que asegúrese de
leer y comprender la referencia del lenguaje [http://php.net/manual/es/langref.php].
Al desarrollar con Yii deberá escribir código de manera orientada a objetos, así que
asegúrese de estar familiarizado con
clases y objetos [https://secure.php.net/manual/es/language.oop5.basic.php] así como con
espacios de nombres [https://secure.php.net/manual/es/language.namespaces.php].




Programación orientada a objetos

Se requiere una comprensión básica de la programación orientada a objetos.  Si no está
familiarizado con ella, diríjase a alguno d elos muchos tutoriales disponibles, como
el de tuts+ [https://code.tutsplus.com/tutorials/object-oriented-php-for-beginners--net-12762].

Observe que cuanto más complicada sea su aplicación, más conceptos avanzados de la
POO deberá aprender para gestionar con éxito esa complejidad.




Línea de órdenes y composer

Yii usa profusamente el gestor de paquetes de facto de PHP, Composer [https://getcomposer.org/],
así que asegúrese de leer y comprender su guía [https://getcomposer.org/doc/01-basic-usage.md].
Si no está familiarizado con el uso de la línea de órdenes, es hora de empezar a probarla.
Una vez que aprenda los fundamentos, nunca querrá trabajar sin ella.







          

      

      

    

  

  
    
    Corriendo Aplicaciones
    

    
 
  

    
      
          
            
  
Corriendo Aplicaciones

Después de haber instalado Yii, tienes una aplicación totalmente funcional a la que se puede acceder a través de
la URL http://hostname/basic/web/index.php o http://hostname/index.php, dependiendo de tu configuración.
Esta sección será una introducción a la funcionalidad incluida de la aplicación, cómo se organiza el código,
y cómo la aplicación maneja los requests en general.


Info: Por simplicidad, en el transcurso de este tutorial “Para Empezar”, se asume que has definido basic/web
como el document root de tu servidor Web, y configurado la URL de acceso a tu aplicación para que sea http://hostname/index.php
o similar.
Dependiendo de tus necesidades, por favor ajusta dichas URLs.




Ten en cuenta que a diferencia del framework en sí, después de que el template de proyecto es instalado, este es todo tuyo. Eres libre de agregar o eliminar
código modificar todo según tu necesidad.


Funcionalidad 

La aplicación básica contiene 4 páginas:


	página principal, mostrada cuando se accede a la URL http://hostname/index.php,


	página “Acerca de (About)”,


	la página “Contacto (Contact)”, que muestra un formulario de contacto que permite a los usuarios finales contactarse vía email,


	y la página “Login”, que muestra un formulario para loguearse que puede usarse para autenticar usuarios.
Intenta loguearte con “admin/admin”, y verás que el elemento “Login” del menú principal cambiará a “Logout”.




Estas páginas comparten un encabezado y un pie. El encabezado contiene una barra con el menú principal que permite
la navegación entre las diferentes páginas.

También deberías ver una barra en la parte inferior de la ventana del navegador.
Esta es la útil herramienta de depuración provista por Yii para registrar y mostrar mucha información de depuración, tal como los mensajes de log, response status, las consultas ejecutadas a la base de datos, y más.

Adicionalmente a la aplicación web, hay un script de consola llamado yii, localizado en el directorio base de la aplicación.
El script puede ser utilizado para ejecutar tareas de fondo y tareas de mantenimiento de la aplicación, las cuales son descritas
en la Sección de Aplicación de Consola.




Estructura de la aplicación 

Los archivos y directorios más importantes en tu aplicación son (asumiendo que la raíz de la aplicación es basic):

basic/                  base path de la aplicación
    composer.json       archivo utilizado por Composer, describe información de sus paquetes y librerías
    config/             contiene la configuración de las aplicaciones (y otras)
        console.php     configuración de la aplicación de consola
        web.php         configuración de la aplicación web
    commands/           contiene las clases de comandos de consola
    controllers/        contiene las clases de los controladores
    models/             contienes las clases del modelo
    runtime/            contiene archivos generados por Yii en tiempo de ejecución, como archivos de log y cache
    vendor/             contiene los paquetes y librerías instalados por Composer, incluyendo el propio núcleo de Yii
    views/              contiene los archivos de vistas (templates)
    web/                raíz web de la aplicación, contiene los archivos accesibles vía Web
        assets/         contiene los assets publicados (javascript y css) por Yii
        index.php       el script de entrada (o bootstrap) de la aplicación
    yii                 el script de ejecución de los comandos de consola de Yii





En general, los archivos de la aplicación pueden ser divididos en dos: aquellos bajo basic/web y aquellos bajo otros directorios.
Los primeros pueden accederse directo por HTTP (ej., en un navegador), mientras que los últimos no pueden ni deben ser accedidos así.

Yii implementa el patrón de diseño modelo-vista-controlador (MVC) [http://wikipedia.org/wiki/Model-view-controller],
que es reflejado en la estructura de directorios utilizada. El directorio models contiene todas las clases del modelo,
el directorio views contiene todas las vistas (templates), y el directorio controllers contiene
todas las clases de controladores.

El siguiente diagrama muestra la estructura estática de una aplicación.

[image: Estructura Estática de una Aplicación]

Cada aplicación tiene un script de entrada web/index.php que es el único script PHP accesible vía web.
El script de entrada toma una petición (request) entrante y crea una instancia de una aplicación para manejarlo.
La aplicación resuelve la petición (request) con la ayuda de sus componentes,
y la envía al resto de los elementos MVC. Los widgets son usados en las vistas
para ayudar a construir elementos de interfaz complejos y dinámicos.




Ciclo de Vida de una Petición (Request) 

El siguiente diagrama muestra cómo una aplicación maneja una petición.

[image: Ciclo de Vida de un Request]


	Un usuario realiza una petición al script de entrada web/index.php.


	El script de entrada carga la configuración de la aplicación y crea
una instancia de la aplicación para manejar la consulta.


	La aplicación resuelve la ruta solicitada con la ayuda del
componente request de la aplicación.


	La aplicación crea una instancia de un controlador para manejar la petición.


	El controlador crea una instancia de una acción y ejecuta los filtros de dicha acción.


	Si alguno de los filtros falla, la acción es cancelada.


	Si todos los filtros pasan, la acción es ejecutada.


	La acción carga datos del modelo, posiblemente de la base de datos.


	La acción renderiza una vista, pasándole los datos del modelo cargado.


	El resultado de la renderización es pasado al componente response de la aplicación.


	El componente response envía el resultado de la renderización al navegador del usuario.










          

      

      

    

  

  
    
    Componentes de la Aplicación
    

    
 
  

    
      
          
            
  
Componentes de la Aplicación

Las aplicaciones son service locators (localizadores de servicios). Ellas albergan
un grupo de los llamados componentes de aplicación que proveen diferentes servicios para procesar el request (petición).
Por ejemplo, el componente urlManager es responsable por rutear Web requests (peticiones) a los controladores apropiados;
el componente db provee servicios relacionados a base de datos; y así sucesivamente.

Cada componente de la aplicación tiene un ID que lo identifica de forma inequívoca de otros en la misma aplicación.
Puedes acceder a un componente de la aplicación con la siguiente expresión:

\Yii::$app->ComponentID





Por ejemplo, puedes utilizar \Yii::$app->db para obtener la [[yii\db\Connection|conexión a la base de datos]],
y \Yii::$app->cache para obtener el [[yii\caching\Cache|cache primario]] registrado con la aplicación.

Estos componentes pueden ser cualquier objeto. Puedes registrarlos configurando la propiedad [[yii\base\Application::components]]
en las configuraciones de la aplicación.
Por ejemplo:

[
    'components' => [
        // registra el componente "cache" utilizando el nombre de clase
        'cache' => 'yii\caching\ApcCache',

        // registra el componente "db" utilizando un array de configuración
        'db' => [
            'class' => 'yii\db\Connection',
            'dsn' => 'mysql:host=localhost;dbname=demo',
            'username' => 'root',
            'password' => '',
        ],

        // registra el componente "search" utilizando una función anónima
        'search' => function () {
            return new app\components\SolrService;
        },
    ],
]






Info: A pesar de que puedes registrar tantos componentes como desees, deberías hacerlo con criterio.
Los componente de la aplicación son como variables globales. Abusando demasiado de ellos puede resultar en
un código más difícil de mantener y testear. En muchos casos, puedes simplemente crear un componente local
y utilizarlo únicamente cuando sea necesario.





Componentes del Núcleo de la Aplicación 

Yii define un grupo de componentes del núcleo con IDs fijos y configuraciones por defecto. Por ejemplo,
el componente [[yii\web\Application::request|request]] es utilizado para recolectar información acerca
del request del usuario y resolverlo en una ruta; el componente [[yii\base\Application::db|db]]
representa una conexión a la base de datos a través del cual realizar consultas a la misma.
Es con ayuda de estos componentes del núcleo que Yii puede manejar los request del usuario.

A continuación, hay una lista de componentes predefinidos en el núcleo. Puedes configurarlos y personalizarlos
como lo haces con componentes normales de la aplicación. Cuando configuras un componente del núcleo,
si no especificas su nombre de clase, la clase por defecto será utilizada.


	[[yii\web\AssetManager|assetManager]]: maneja los assets bundles y su publicación.
Consulta la sección Menajando Assets para más detalles.


	[[yii\db\Connection|db]]: representa una conexión a la base de datos a través de la cual puedes realizar consultas a la misma.
Ten en cuenta que cuando configuras este componente, debes especificar el nombre de clase así como otras
propiedades requeridas por el mismo, como [[yii\db\Connection::dsn]].
Por favor consulta la sección Data Access Objects para más detalles.


	[[yii\base\Application::errorHandler|errorHandler]]: maneja errores y excepciones de PHP.
Por favor consulta la sección Handling Errors para más detalles.


	[[yii\base\Formatter|formatter]]: da formato a los datos cuando son mostrados a los usuarios. Por ejemplo, un número
puede ser mostrado usando un separador de miles, una fecha en una forma extensa.
Por favor consulta la sección Formato de Datos para más detalles.


	[[yii\i18n\I18N|i18n]]: soporta traducción y formato de mensajes.
Por favor consulta la sección Internacionalización para más detalles.


	[[yii\log\Dispatcher|log]]: maneja a dónde dirigir los logs.
Por favor consulta la sección Logging para más detalles.


	[[yii\swiftmailer\Mailer|mail]]: soporta construcción y envío de emails.
Por favor consulta la sección Enviando Emails para más detalles.


	[[yii\base\Application::response|response]]: representa la respuesta enviada a los usuarios.
Por favor consulta la sección Responses para más detalles.


	[[yii\base\Application::request|request]]: representa el request recibido de los usuarios.
Por favor consulta la sección Requests para más detalles.


	[[yii\web\Session|session]]: representa la información de sesión. Este componente sólo está disponible
en [[yii\web\Application|alpicaciones Web]].
Por favor consulta la sección Sessions and Cookies para más detalles.


	[[yii\web\UrlManager|urlManager]]: soporta el parseo y generación de URLs.
Por favor consulta la sección URL Parsing and Generation para más detalles.


	[[yii\web\User|user]]: representa la información e autenticación del usuario. Este componente sólo está disponible
en [[yii\web\Application|aplicaciones Web]]
Por favor consulta la sección Autenticación para más detalles.


	[[yii\web\View|view]]: soporta el renderizado de las vistas.
Por favor consulta la sección Vistas para más detalles.










          

      

      

    

  

  
    
    Aplicaciones
    

    
 
  

    
      
          
            
  
Aplicaciones

Las Applications (aplicaciones) son objetos que gobiernan la estructura total y el ciclo de vida de las aplicaciones
hechas en Yii.
Cada aplicación Yii contiene un objeto Application que es creado en el script de entrada
y es globalmente accesible a través de la expresión \Yii::$app.


Info: Dependiendo del contexto, cuando decimos “una aplicación”, puede significar tanto un objeto Application
o un sistema desarrollado en Yii.




Hay dos tipos de aplicaciones: [[yii\web\Application|aplicaciones Web]] y
[[yii\console\Application|aplicaciones de consola]]. Como el nombre lo indica, la primera maneja principalmente
Web requests mientras que la última maneja requests (peticiones) de la línea de comandos.


Configuraciones de las Aplicaciones 

Cuando un script de entrada crea una aplicación, cargará
una configuración y la aplicará a la aplicación, como se muestra a continuación:

require __DIR__ . '/../vendor/autoload.php';
require __DIR__ . '/../vendor/yiisoft/yii2/Yii.php';

// carga la configuración de la aplicación
$config = require __DIR__ . '/../config/web.php';

// instancia y configura la aplicación
(new yii\web\Application($config))->run();





Principalmente, las configuraciones de una aplicación especifican
como inicializar las propiedades de un objeto application. Debido a que estas configuraciones
suelen ser complejas, son usualmente guardadas en archivos de configuración,
como en el archivo web.php del ejemplo anterior.




Propiedades de la Aplicación 

Hay muchas propiedades importantes en la aplicación que deberían configurarse en en la configuración de la aplicación.
Estas propiedades suelen describir el entorno en el cual la aplicación está corriendo.
Por ejemplo, las aplicaciones necesitan saber cómo cargar controladores,
dónde guardar archivos temporales, etc. A continuación, resumiremos esas propiedades.


Propiedades Requeridas 

En cualquier aplicación, debes configurar al menos dos propiedades: [[yii\base\Application::id|id]]
y [[yii\base\Application::basePath|basePath]].


[[yii\base\Application::id|id]] 

La propiedad [[yii\base\Application::id|id]] especifica un ID único que diferencia una aplicación de otras.
Es mayormente utilizada a nivel programación. A pesar de que no es un requerimiento, para una mejor interoperabilidad,
se recomienda utilizar sólo caracteres alfanuméricos.




[[yii\base\Application::basePath|basePath]] 

La propiedad [[yii\base\Application::basePath|basePath]] especifica el directorio raíz de una aplicación.
Es el directorio que alberga todos los archivos protegidos de un sistema. Bajo este directorio,
tendrás normalmente sub-directorios como models, views, controllers, que contienen el código fuente
correspondiente al patrón MVC.

Puedes configurar la propiedad [[yii\base\Application::basePath|basePath]] usando la ruta a un directorio
o un alias. En ambas formas, el directorio debe existir, o se lanzará una excepción.
La ruta será normalizada utilizando la función realpath().

La propiedad [[yii\base\Application::basePath|basePath]] es utilizada a menudo derivando otras rutas
(ej. la ruta runtime). Por esta razón, un alias llamado @app está predefinido para representar esta ruta.
Rutas derivadas pueden ser entonces creadas a partir de este alias (ej. @app/runtime para referirse al directorio runtime).






Propiedades Importantes 

Las propiedades descritas en esta subsección a menudo necesita ser configurada porque difieren entre las
diferentes aplicaciones.


[[yii\base\Application::aliases|aliases]] 

Esta propiedad te permite definir un grupo de alias en términos de un array (matriz).
Las claves del array son los nombres de los alias, y los valores su correspondiente definición.
Por ejemplo:

[
    'aliases' => [
        '@name1' => 'path/to/path1',
        '@name2' => 'path/to/path2',
    ],
]





Esta propiedad está provista de tal manera que puedas definir alias en términos de configuraciones de la aplicación
en vez de llamadas al método [[Yii::setAlias()]].




[[yii\base\Application::bootstrap|bootstrap]] 

Esta es una propiedad importante. Te permite definir un array de los componentes que deben ejecutarse
durante el [[yii\base\Application::bootstrap()|proceso de bootstrapping]] de la aplicación.
Por ejemplo, si quieres personalizar las reglas de URL de un módulo,
podrías listar su ID como un elemento de este array.

Cada componente listado en esta propiedad puede ser especificado en cualquiera de los siguientes formatos:


	el ID de un componente como está especificado vía components.


	el ID de un módulo como está especificado vía modules.


	un nombre de clase.


	un array de configuración.




Por ejemplo:

[
    'bootstrap' => [
        // un ID de componente o de módulo
        'demo',

        // un nombre de clase
        'app\components\TrafficMonitor',

        // un array de configuración
        [
            'class' => 'app\components\Profiler',
            'level' => 3,
        ]
    ],
]





Durante el proceso de bootstrapping, cada componente será instanciado. Si la clase del componente
implementa [[yii\base\BootstrapInterface]], también se llamará a su método [[yii\base\BootstrapInterface::bootstrap()|bootstrap()]].

Otro ejemplo práctico se encuentra en la configuración del Template de Aplicación Básica,
donde los módulos debug y gii son configurados como componentes bootstrap cuando la aplicación está
corriendo en un entorno de desarrollo,

if (YII_ENV_DEV) {
    // ajustes en la configuración del entorno 'dev' (desarrollo)
    $config['bootstrap'][] = 'debug';
    $config['modules']['debug'] = 'yii\debug\Module';

    $config['bootstrap'][] = 'gii';
    $config['modules']['gii'] = 'yii\gii\Module';
}






Note: Agregar demasiados componentes bootstrap degradará la performance de tu aplicación debido a que
por cada request, se necesita correr el mismo grupo de componentes. Por lo tanto, utiliza componentes bootstrap con criterio.







[[yii\web\Application::catchAll|catchAll]] 

Esta propiedad está solamente soportada por [[yii\web\Application|aplicaciones Web]]. Especifica
la acción de controlador que debería manejar todos los requests (peticiones) del usuario.
Es mayormente utilizada cuando una aplicación está en “modo de mantenimiento” y necesita que todas las peticiones
sean capturadas por una sola acción.

La configuración es un array cuyo primer elemento especifica la ruta de la acción.
El resto de los elementos del array (pares clave-valor) especifica los parámetros a ser enviados a la acción.
Por ejemplo:

[
    'catchAll' => [
        'offline/notice',
        'param1' => 'value1',
        'param2' => 'value2',
    ],
]








[[yii\base\Application::components|components]] 

Esta es la propiedad más importante. Te permite registrar una lista de componentes llamados componentes de aplicación
que puedes utilizar en otras partes de tu aplicación. Por ejemplo:

[
    'components' => [
        'cache' => [
            'class' => 'yii\caching\FileCache',
        ],
        'user' => [
            'identityClass' => 'app\models\User',
            'enableAutoLogin' => true,
        ],
    ],
]





Cada componente de la aplicación es un par clave-valor del array. La clave representa el ID del componente,
mientras que el valor representa el nombre de la clase del componente o una configuración.

Puedes registrar cualquier componente en una aplicación, y el componente puede ser globalmente accedido utilizando
la expresión \Yii::$app->ComponentID.

Por favor, lee la sección Componentes de la Aplicación para mayor detalle.




[[yii\base\Application::controllerMap|controllerMap]] 

Esta propiedad te permite mapear un ID de controlador a una clase de controlador arbitraria. Por defecto, Yii mapea
ID de controladores a clases de controladores basado en una convención (ej. el ID post será mapeado
a app\controllers\PostController). Configurando esta propiedad, puedes saltear esa convención
para controladores específicos. En el siguiente ejemplo, account será mapeado a
app\controllers\UserController, mientras que article será mapeado a app\controllers\PostController.

[
    'controllerMap' => [
        'account' => 'app\controllers\UserController',
        'article' => [
            'class' => 'app\controllers\PostController',
            'enableCsrfValidation' => false,
        ],
    ],
]





Las claves de este array representan los ID de los controladores, mientras que los valores representan
los nombres de clase de dichos controladores o una configuración.




[[yii\base\Application::controllerNamespace|controllerNamespace]] 

Esta propiedad especifica el namespace bajo el cual las clases de los controladores deben ser ubicados. Por defecto es
app\controllers. Si el ID es post, por convención el controlador correspondiente (sin
namespace) será PostController, y el nombre completo (cualificado) de la clase app\controllers\PostController.

Las clases de controladores pueden ser ubicados también en sub-directorios del directorio correspondiente a este namespace.
Por ejemplo, dado el ID de controlador admin/post, el nombre completo de la clase sería app\controllers\admin\PostController.

Es importante que el nombre completo de la clase del controlador sea auto-cargable
y el namespace actual de la clase coincida con este valor. De otro modo, recibirás
un error “Page Not Found” (“Página no Encontrada”) cuando accedas a la aplicación.

En caso de que quieras romper con la convención cómo se comenta arriba, puedes configurar la propiedad controllerMap.




[[yii\base\Application::language|language]] 

Esta propiedad especifica el idioma en el cual la aplicación debería mostrar el contenido a los usuarios.
El valor por defecto de esta propiedad es en, referido a English. Deberías configurar esta propiedad
si tu aplicación necesita soporte multi-idioma.

El valor de esta propiedad determina varios aspectos de la internacionalización,
incluido la traducción de mensajes, formato de fecha y números, etc. Por ejemplo, el widget [[yii\jui\DatePicker]]
utilizará el valor de esta propiedad para determinar en qué idioma el calendario debe ser mostrado y cómo dar formato
a la fecha.

Se recomienda que especifiques el idioma en términos de una Código de idioma IETF [http://es.wikipedia.org/wiki/Código_de_idioma_IETF].
Por ejemplo, en se refiere a English, mientras que en-US se refiere a English (United States).

Se pueden encontrar más detalles de este aspecto en la sección Internacionalización.




[[yii\base\Application::modules|modules]] 

Esta propiedad especifica los módulos que contiene la aplicación.

Esta propiedad toma un array con los nombre de clases de los módulos o configuraciones con las claves siendo
los IDs de los módulos. Por ejemplo:

[
    'modules' => [
        // módulo "booking" especificado con la clase del módulo
        'booking' => 'app\modules\booking\BookingModule',

        // módulo "comment" especificado usando un array de configuración
        'comment' => [
            'class' => 'app\modules\comment\CommentModule',
            'db' => 'db',
        ],
    ],
]





Por favor consulta la sección Módulos para más detalles.




[[yii\base\Application::name|name]] 

Esta propiedad especifica el nombre de la aplicación que será mostrado a los usuarios. Al contrario de
[[yii\base\Application::id|id]], que debe tomar un valor único, el valor de esta propiedad existe principalmente
para propósito de visualización y no tiene porqué ser única.

No siempre necesitas configurar esta propiedad si en tu aplicación no va a ser utilizada.




[[yii\base\Application::params|params]] 

Esta propiedad especifica un array con parámetros accesibles desde cualquier lugar de tu aplicación.
En vez de usar números y cadenas fijas por todos lados en tu código, es una buena práctica definirlos como
parámetros de la aplicación en un solo lugar y luego utilizarlos donde los necesites. Por ejemplo, podrías definir el tamaño
de las imágenes en miniatura de la siguiente manera:

[
    'params' => [
        'thumbnail.size' => [128, 128],
    ],
]





Entonces, cuando necesites acceder a esa configuración en tu aplicación, podrías hacerlo utilizando el código siguiente:

$size = \Yii::$app->params['thumbnail.size'];
$width = \Yii::$app->params['thumbnail.size'][0];





Más adelante, si decides cambiar el tamaño de las miniaturas, sólo necesitas modificarlo en la configuración de la aplicación
sin necesidad de tocar el código que lo utiliza.




[[yii\base\Application::sourceLanguage|sourceLanguage]] 

Esta propiedad especifica el idioma en el cual la aplicación está escrita. El valor por defecto es 'en-US',
referido a English (United States). Deberías configurar esta propiedad si el contenido de texto en tu código no está en inglés.

Como la propiedad language, deberías configurar esta propiedad siguiendo el Código de idioma IETF [http://es.wikipedia.org/wiki/Código_de_idioma_IETF].
Por ejemplo, en se refiere a English, mientras que en-US se refiere a English (United States).

Puedes encontrar más detalles de esta propiedad en la sección Internacionalización.




[[yii\base\Application::timeZone|timeZone]] 

Esta propiedad es provista como una forma alternativa de definir el time zone de PHP por defecto en tiempo de ejecución.
Configurando esta propiedad, escencialmente estás llamando a la función de PHP date_default_timezone_set() [http://php.net/manual/es/function.date-default-timezone-set.php].
Por ejemplo:

[
    'timeZone' => 'America/Los_Angeles',
]








[[yii\base\Application::version|version]] 

Esta propiedad especifica la versión de la aplicación. Es por defecto '1.0'. No hay total necesidad de configurarla
si tu no la usarás en tu código.






Propiedades Útiles 

Las propiedades especificadas en esta sub-sección no son configuradas normalmente ya que sus valores por defecto
estipulan convenciones comunes. De cualquier modo, aún puedes configurarlas en caso de que quieras romper con la convención.


[[yii\base\Application::charset|charset]] 

Esta propiedad especifica el charset que la aplicación utiliza. El valor por defecto es 'UTF-8', que debería ser mantenido
tal cual para la mayoría de las aplicaciones a menos que estés trabajando con sistemas legados que utilizan muchos datos no-unicode.




[[yii\base\Application::defaultRoute|defaultRoute]] 

Esta propiedad especifica la ruta que una aplicación debería utilizar si el request
no especifica una. La ruta puede consistir el ID de un sub-módulo, el ID de un controlador, y/o el ID de una acción.
Por ejemplo, help, post/create, admin/post/create. Si el ID de la acción no se especifica, tomará el valor por defecto
especificado en [[yii\base\Controller::defaultAction]].

Para [[yii\web\Application|aplicaciones Web]], el valor por defecto de esta propiedad es 'site', lo que significa que el
controlador SiteController y su acción por defecto serán usados. Como resultado, si accedes a la aplicación sin
especificar una ruta, mostrará el resultado de app\controllers\SiteController::actionIndex().

Para [[yii\console\Application|aplicaciones de consola]], el valor por defecto es 'help', lo que significa que el comando
[[yii\console\controllers\HelpController::actionIndex()]] debería ser utilizado. Como resultado, si corres el comando yii
sin proveer ningún argumento, mostrará la información de ayuda.




[[yii\base\Application::extensions|extensions]] 

Esta propiedad especifica la lista de extensiones que se encuentran instaladas y son utilizadas
por la aplicación.
Por defecto, tomará el array devuelto por el archivo @vendor/yiisoft/extensions.php. El archivo extensions.php
es generado y mantenido automáticamente cuando utilizas Composer [https://getcomposer.org] para instalar extensiones.
Por lo tanto, en la mayoría de los casos no necesitas configurarla.

En el caso especial de que quieras mantener las extensiones a mano, puedes configurar la propiedad como se muestra a continuación:

[
    'extensions' => [
        [
            'name' => 'nombre de la extensión',
            'version' => 'número de versión',
            'bootstrap' => 'BootstrapClassName',  // opcional, puede ser también un array de configuración
            'alias' => [  // opcional
                '@alias1' => 'to/path1',
                '@alias2' => 'to/path2',
            ],
        ],

        // ... más extensiones como las de arriba ...

    ],
]





Como puedes ver, la propiedad toma un array de especificaciones de extensiones. Cada extensión es especificada mediante un array
que consiste en los elementos name y version. Si una extensión necesita ser ejecutada durante el proceso de bootstrap,
un elemento bootstrap puede ser especificado con un nombre de clase o un array de configuración.
Una extensión también puede definir algunos alias.




[[yii\base\Application::layout|layout]] 

Esta propiedad especifica el valor del layout por defecto que será utilizado al renderizar una vista.
El valor por defecto es 'main', y se refiere al archivo main.php bajo el layout path definido.
Si tanto el layout path y el view path están utilizando los valores por defecto,
el archivo layout puede ser representado con el alias @app/views/layouts/main.php.

Puedes configurar esta propiedad con el valor false si quieres desactivar el layout por defecto, aunque esto sería un
caso muy raro.




[[yii\base\Application::layoutPath|layoutPath]] 

Esta propiedad especifica el lugar por defecto donde deben buscarse los archivos layout. El valor por defecto
es el sub-directorio layouts bajo el view path. Si el view path usa su valor por defecto,
el layout path puede ser representado con el alias @app/views/layouts.

Puedes configurarlo como un directorio o utilizar un alias.




[[yii\base\Application::runtimePath|runtimePath]] 

Esta propiedad especifica dónde serán guardados los archivos temporales, como archivos de log y de cache, pueden ser generados.
El valor por defecto de esta propiedad es el alias @app/runtime.

Puedes configurarlo como un directorio o utilizar un alias. Ten en cuenta que el
directorio debe tener permisos de escritura por el proceso que corre la aplicación. También este directorio debe estar protegido
de ser accedido por usuarios finales, ya que los archivos generados pueden tener información sensible.

Para simplificar el acceso a este directorio, Yii trae predefinido el alias @runtime para él.




[[yii\base\Application::viewPath|viewPath]] 

Esta propiedad especifica dónde están ubicados los archivos de la vista. El valor por defecto de esta propiedad está
representado por el alias @app/views. Puedes configurarlo como un directorio o utilizar un alias.




[[yii\base\Application::vendorPath|vendorPath]] 

Esta propiedad especifica el directorio vendor que maneja Composer [https://getcomposer.org]. Contiene
todas las librerías de terceros utilizadas por tu aplicación, incluyendo el núcleo de Yii. Su valor por defecto
está representado por el alias @app/vendor.

Puedes configurarlo como un directorio o utilizar un alias. Cuando modificas esta propiedad,
asegúrate de ajustar la configuración de Composer en concordancia.

Para simplificar el acceso a esta ruta, Yii trae predefinido el alias @vendor.




[[yii\console\Application::enableCoreCommands|enableCoreCommands]] 

Esta propiedad está sólo soportada por [[yii\console\Application|aplicaciones de consola]].
Especifica si los comandos de consola incluidos en Yii deberían estar habilitados o no.
Por defecto está definido como true.








Eventos de la Aplicación 

Una aplicación dispara varios eventos durante su ciclo de vida al manejar un request. Puedes conectar
manejadores a dichos eventos en la configuración de la aplicación como se muestra a continuación:

[
    'on beforeRequest' => function ($event) {
        // ...
    },
]





El uso de la sintáxis on nombreEvento es descrita en la sección Configuraciones.

Alternativamente, puedes conectar manejadores de eventos durante el proceso de bootstrapping
después de que la instancia de la aplicación es creada. Por ejemplo:

\Yii::$app->on(\yii\base\Application::EVENT_BEFORE_REQUEST, function ($event) {
    // ...
});






[[yii\base\Application::EVENT_BEFORE_REQUEST|EVENT_BEFORE_REQUEST]] 

Este evento es disparado before (antes) de que la aplicación maneje el request. El nombre del evento es beforeRequest.

Cuando este evento es disparado, la instancia de la aplicación ha sido configurada e inicializada. Por lo tanto es un
buen lugar para insertar código personalizado vía el mecanismo de eventos para interceptar dicho manejo del request.
Por ejemplo, en el manejador del evento, podrías definir dinámicamente la propiedad [[yii\base\Application::language]]
basada en algunos parámetros.




[[yii\base\Application::EVENT_BEFORE_REQUEST|EVENT_AFTER_REQUEST]] 

Este evento es disparado after (después) de que una aplicación finaliza el manejo de un request pero before (antes) de enviar el response (respuesta).
El nombre del evento es afterRequest.

Cuando este evento es disparado, el manejo del request está finalizado y puedes aprovechar para realizar algún
post-proceso del mismo o personalizar el response (respuesta).

Ten en cuenta que el componente [[yii\web\Response|response]] también dispara algunos eventos mientras está enviando el contenido
a los usuarios finales. Estos eventos son disparados after (después) de este evento.




[[yii\base\Application::EVENT_BEFORE_REQUEST|EVENT_BEFORE_ACTION]] 

Este evento es disparado before (antes) de ejecutar cualquier acción de controlador.
El nombre de este evento es beforeAction.

El parámetro evento es una instancia de [[yii\base\ActionEvent]]. Un manejador de eventos puede definir
la propiedad [[yii\base\ActionEvent::isValid]] como false para detener la ejecución de una acción.
Por ejemplo:

[
    'on beforeAction' => function ($event) {
        if (..alguna condición..) {
            $event->isValid = false;
        } else {
        }
    },
]





Ten en cuenta que el mismo evento beforeAction también es disparado por módulos
y [controladores)(structure-controllers.md). Los objectos aplicación son los primeros en disparar este evento,
seguidos por módulos (si los hubiera), y finalmente controladores. Si un manejador de eventos define [[yii\base\ActionEvent::isValid]]
como false, todos los eventos siguientes NO serán disparados.




[[yii\base\Application::EVENT_BEFORE_REQUEST|EVENT_AFTER_ACTION]] 

Este evento es disparado after (después) de ejecutar cualquier acción de controlador.
El nombre de este evento es afterAction.

El parámetro evento es una instancia de [[yii\base\ActionEvent]]. A través de la
propiedad [[yii\base\ActionEvent::result]], un manejador de eventos puede acceder o modificar el resultado de una acción.
Por ejemplo:

[
    'on afterAction' => function ($event) {
        if (..alguna condición...) {
            // modificar $event->result
        } else {
        }
    },
]





Ten en cuenta que el mismo evento afterAction también es disparado por módulo
y [controladores)(structure-controllers.md). Estos objetos disparan el evento en orden inverso
que los de beforeAction. Esto quiere decir que los controladores son los primeros en dispararlo,
seguido por módulos (si los hubiera), y finalmente aplicaciones.






Ciclo de Vida de una Aplicación 

Cuando un script de entrada está siendo ejecutado para manejar un request,
una aplicación experimenta el siguiente ciclo de vida:


	El script de entrada carga el array de configuración de la aplicación.


	El script de entrada crea una nueva instancia de la aplicación:





	Se llama a [[yii\base\Application::preInit()|preInit()]], que configura algunas propiedades
de alta prioridad de la aplicación, como [[yii\base\Application::basePath|basePath]].


	Registra el [[yii\base\Application::errorHandler|manejador de errores]].


	Configura las propiedades de la aplicación.


	Se llama a [[yii\base\Application::init()|init()]] con la subsiguiente llamada a
[[yii\base\Application::bootstrap()|bootstrap()]] para correr componentes bootstrap.





	El script de entrada llama a [[yii\base\Application::run()]] para correr la aplicación:





	Dispara el evento [[yii\base\Application::EVENT_BEFORE_REQUEST|EVENT_BEFORE_REQUEST]].


	Maneja el request: lo resuelve en una route (ruta) con los parámetros asociados;
crea el módulo, controlador y objetos acción como se especifica en dicha ruta; y entonces ejecuta la acción.


	Dispara el evento [[yii\base\Application::EVENT_AFTER_REQUEST|EVENT_AFTER_REQUEST]].


	Envía el response (respuesta) al usuario.





	El script de entrada recibe el estado de salida de la aplicación y completa el proceso del request.










          

      

      

    

  

  
    
    Assets
    

    
 
  

    
      
          
            
  
Assets

Un asset en Yii es un archivo al que se puede hacer referencia en una página Web. Puede ser un archivo CSS, un archivo
JavaScript, una imagen o un archivo de video, etc. Los assets se encuentran en los directorios públicos de la web y se
sirven directamente por los servidores Web.

A menudo es preferible gestionar los assets mediante programación. Por ejemplo, cuando se usa el widget
[[yii\jui\DatePicker]] en una página, éste incluirá automáticamente los archivos CSS y JavaScript requeridos, en vez
de tener que buscar los archivos e incluirlos manualmente. Y cuando se actualice el widget a una nueva versión, ésta
usará de forma automática la nueva versión de los archivos asset.
En este tutorial, se describirá la poderosa capacidad que proporciona la gestión de assets en Yii.


Asset Bundles 

Yii gestiona los assets en unidades de asset bundle. Un asset bundle es simplemente un conjunto de assets
localizados en un directorio. Cuando se registra un asset bundle en una vista, éste incluirá los
archivos CSS y JavaScript del bundle en la página Web renderizada.




Definición de Asset Bundles 

Los asset bundles son descritos como clases PHP que extienden a [[yii\web\AssetBundle]]. El nombre del bundle es
simplemente su correspondiente nombre de la classe PHP que debe ser autocargable. En una
clase asset bundle, lo más habitual es especificar donde se encuentran los archivos asset, que archivos CSS y
JavaScript contiene el bundle, y como depende este bundle de otros bundles.

El siguiente código define el asset bundle principal que se usa en
la plantilla de aplicación básica:

<?php

namespace app\assets;

use yii\web\AssetBundle;

class AppAsset extends AssetBundle
{
    public $basePath = '@webroot';
    public $baseUrl = '@web';
    public $css = [
        'css/site.css',
    ];
    public $js = [
    ];
    public $depends = [
        'yii\web\YiiAsset',
        'yii\bootstrap\BootstrapAsset',
    ];
}





La anterior clase AppAsset especifica que los archivos asset se encuentran en el directorio @webroot que
corresponde a la URL @web; el bundle contiene un único archivo CSS css/site.css y ningún archivo JavaScript;
el bundle depende de otros dos bundles: [[yii\web\YiiAsset]] y [[yii\bootstrap\BootstrapAsset]].
A continuación se explicarán más detalladamente las propiedades del [[yii\web\AssetBundle]]:


	[[yii\web\AssetBundle::sourcePath|sourcePath]]: especifica el directorio raíz que contiene los archivos asset en el
bundle.  Si no, se deben especificar las propiedades [[yii\web\AssetBundle::basePath|basePath]] y
[[yii\web\AssetBundle::baseUrl|baseUrl]], en su lugar. Se pueden usar alias de ruta.


	[[yii\web\AssetBundle::basePath|basePath]]: especifica el directorio Web público que contiene los archivos assets de
este bundle. Cuando se especifica la propiedad [[yii\web\AssetBundle::sourcePath|sourcePath]], el gestor de
assets publicará los assets de este bundle en un directorio  Web público  y sobrescribirá la
propiedad en consecuencia. Se debe establecer esta propiedad si los archivos asset ya se encuentran en un directorio
Web público y no necesitan ser publicados. Se pueden usar alias de ruta.


	[[yii\web\AssetBundle::baseUrl|baseUrl]]: especifica la URL correspondiente al directorio
[[yii\web\AssetBundle::basePath|basePath]]. Como en [[yii\web\AssetBundle::basePath|basePath]], si se especifica la
propiedad [[yii\web\AssetBundle::sourcePath|sourcePath]], el gestor de assets publicara los assets
y sobrescribirá esta propiedad en consecuencia. Se pueden usar alias de ruta.


	[[yii\web\AssetBundle::js|js]]: un array lista los archivos JavaScript que contiene este bundle. Tenga en cuenta que
solo deben usarse las barras invertidas “/” como separadores de directorios. Cada archivo Javascript se puede
especificar en uno de los siguientes formatos:


	una ruta relativa que represente un archivo local JavaScript (ej. js/main.js). La ruta actual del fichero
se puede determinar anteponiendo [[yii\web\AssetManager::basePath]] a la ruta relativa, y la URL actual de un
archivo puede ser determinada anteponiendo [[yii\web\AssetManager::baseUrl]] a la ruta relativa.


	una URL absoluta que represente un archivo JavaScript externo. Por ejemplo,
http://ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js o
//ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js.






	[[yii\web\AssetBundle::css|css]]: un array que lista los archivos CSS que contiene este bundle. El formato de este
array es el mismo que el de [[yii\web\AssetBundle::js|js]].


	[[yii\web\AssetBundle::depends|depends]]: un array que lista los nombres de los asset bundles de los que depende este
asset bundle (para explicarlo brevemente).


	[[yii\web\AssetBundle::jsOptions|jsOptions]]: especifica las opciones que se enviarán al método
[[yii\web\View::registerJsFile()]] cuando se le llame para registrar todos los archivos JavaScript de este bundle.


	[[yii\web\AssetBundle::cssOptions|cssOptions]]: especifica las opciones que se enviarán al método
[[yii\web\View::registerCssFile()]] cuando se le llame para registrar todos los archivos CSS de este bundle.


	[[yii\web\AssetBundle::publishOptions|publishOptions]]: especifica las opciones que se enviarán al método
[[yii\web\AssetManager::publish()]] cuando se le llame para publicar los archivos de los assets fuente a un
directorio Web.
Solo se usa si se especifica la propiedad [[yii\web\AssetBundle::sourcePath|sourcePath]].





Ubicación de los Assets 

Según la localización de los assets, se pueden clasificar como:


	assets fuente (source assets): los assets se encuentran junto con el código fuente PHP, al que no se puede acceder
directamente a través de la Web. Para usar los assets fuente en una página, deben ser copiados en un directorio
público y transformados en los llamados assets publicados. El proceso se llama publicación de assets que será
descrito a continuación.


	assets publicados (published assets): los archivos assets se encuentran en el directorio Web y son accesibles vía Web.


	assets externos (external assets): los archivos assets se encuentran en un servidor Web diferente al de la aplicación.




Cuando se define una clase asset bundle, si se especifica la propiedad [[yii\web\AssetBundle::sourcePath|sourcePath]],
significa que cualquier asset listado que use rutas relativas será considerado como un asset fuente. Si no se
especifica la propiedad, significa que los assets son assets publicados (se deben especificar
[[yii\web\AssetBundle::basePath|basePath]] y
[[yii\web\AssetBundle::baseUrl|baseUrl]] para hacerle saber a Yii dónde se encuentran.)

Se recomienda ubicar los assets que correspondan a la aplicación en un directorio Web para evitar publicaciones de
assets innecesarias. Por esto en el anterior ejemplo AppAsset especifica [[yii\web\AssetBundle::basePath|basePath]]
en vez de [[yii\web\AssetBundle::sourcePath|sourcePath]].

Para las extensiones, por el hecho de que sus assets se encuentran junto con el código
fuente, en directorios que no son accesibles para la Web, se tiene que especificar la propiedad
[[yii\web\AssetBundle::sourcePath|sourcePath]] cuando se definan clases asset bundle para ellas.


Note: No se debe usar @webroot/assets como [[yii\web\AssetBundle::sourcePath|source path]]. Este directorio se usa
por defecto por el [[yii\web\AssetManager|asset manager]] para guardar los archivos asset publicados temporalmente y
pueden ser eliminados.







Dependencias de los Asset 

Cuando se incluyen múltiples archivos CSS o JavaScript en una página Web, tienen que cumplir ciertas órdenes para
evitar problemas de sobrescritura. Por ejemplo, si se usa un widget jQuery UI en una página Web, tenemos que
asegurarnos de que el archivo JavaScript jQuery se incluya antes que el archivo JavaScript jQuery UI. A esto se le
llama ordenar las dependencias entre archivos.

Las dependencias de los assets se especifican principalmente a través de la propiedad [[yii\AssetBundle::depends]].
En el ejemplo AppAsset, el asset bundle depende de otros dos asset bundles [[yii\web\YiiAsset]] y
[[yii\bootstrap\BootstrapAsset]], que significa que los archivos CSS y JavaScript en AppAsset se incluirán después
que los archivos de los dos bundles dependientes.

Las dependencias son transitivas. Esto significa, que si un bundle A depende de un bundle B que depende de C, A
dependerá de C, también.




Opciones de los Assets 

Se pueden especificar las propiedades [[yii\web\AssetBundle::cssOptions|cssOptions]] y
[[yii\web\AssetBundle::jsOptions|jsOptions]] para personalizar la forma en que los archivos CSS y JavaScript serán
incluidos en una página. Los valores de estas propiedades serán enviadas a los métodos
[[yii\web\View::registerCssFile()]] y [[yii\web\View::registerJsFile()]], respectivamente cuando las
vistas los llamen para incluir los archivos CSS y JavaScript.


Note: Las opciones que se especifican en una clase bundle se aplican a todos los archivos CSS/JavaScript de un
bundle. Si se quiere usar diferentes opciones para diferentes archivos, se deben crear assets bundles separados y
usar un conjunto de opciones para cada bundle.




Por ejemplo, para incluir una archivo CSS condicionalmente para navegadores que como IE9 o anteriores, se puede usar la
siguiente opción:

public $cssOptions = ['condition' => 'lte IE9'];





Esto provoca que un archivo CSS dentro de un bundle sea incluido usando los siguientes tags HTML:

<!--[if lte IE9]>
<link rel="stylesheet" href="path/to/foo.css">
<![endif]-->





Para envolver el tag del enlace con <noscript> se puede usar el siguiente código:

public $cssOptions = ['noscript' => true];





Para incluir un archivo JavaScript en la sección cabecera (head) de una página (por defecto, los archivos JavaScript se
incluyen al final de la sección cuerpo(body)), se puede usar el siguiente código:

public $jsOptions = ['position' => \yii\web\View::POS_HEAD];





Por defecto, cuando un asset bundle está siendo publicado, todos los contenidos del directorio especificado por [[yii\web\AssetBundle::sourcePath]]
serán publicados. Puedes personalizar este comportamiento configurando la propiedad [[yii\web\AssetBundle::publishOptions|publishOptions]]. Por
ejemplo, públicar solo uno o unos pocos subdirectorios de [[yii\web\AssetBundle::sourcePath]], puedes hacerlo de la siguiente manera en la clase
asset bundle:

<?php
namespace app\assets;

use yii\web\AssetBundle;

class FontAwesomeAsset extends AssetBundle
{
    public $sourcePath = '@bower/font-awesome';
    public $css = [
        'css/font-awesome.min.css',
    ];

    public function init()
    {
        parent::init();
        $this->publishOptions['beforeCopy'] = function ($from, $to) {
            $dirname = basename(dirname($from));
            return $dirname === 'fonts' || $dirname === 'css';
        };
    }
}





El ejemplo anterior define un asset bundle para el “fontawesome” package [http://fontawesome.io/]. Especificando
la opción de publicación beforeCopy, solo los subdirectorios fonts y css serán publicados.




Bower y NPM Assets 

La mayoría de paquetes JavaScript/CSS se gestionan con Bower [http://bower.io/] y/o NPM [https://www.npmjs.org/].
Si tu aplicación o extensión usa estos paquetes, se recomienda seguir los siguientes pasos para gestionar los assets en
la librería:


	Modificar el archivo composer.json de tu aplicación o extensión e introducir el paquete en la lista require.
Se debe usar bower-asset/PackageName (para paquetes Bower) o npm-asset/PackageName (para paquetes NPM) para
referenciar la librería.


	Crear una clase asset bundle y listar los archivos JavaScript/CSS que se planea usar en la aplicación o extensión.
Se debe especificar la propiedad [[yii\web\AssetBundle::sourcePath|sourcePath]] como @bower\PackageName o
@npm\PackageName. Esto se debe a que Composer instalará el paquete Bower o NPM en el correspondiente directorio de
este alias.





Note: Algunos paquetes pueden distribuir sus archivos en subdirectorios. Si es el caso, se debe especificar el
subdirectorio como valor del [[yii\web\AssetBundle::sourcePath|sourcePath]]. Por ejemplo, [[yii\web\JqueryAsset]]
usa @bower/jquery/dist en vez de @bower/jquery.









Uso de Asset Bundles 

Para usar un asset bundle, debe registrarse con una vista llamando al método
[[yii\web\AssetBundle::register()]]. Por ejemplo, en plantilla de vista se puede registrar un asset bundle como en el
siguiente ejemplo:

use app\assets\AppAsset;
AppAsset::register($this);  // $this representa el objeto vista






Info: El método [[yii\web\AssetBundle::register()]] devuelve un objeto asset bundle que contiene la
información acerca de los assets publicados, tales como [[yii\web\AssetBundle::basePath|basePath]] o
[[yii\web\AssetBundle::baseUrl|baseUrl]].




Si se registra un asset bundle en otro lugar, se debe proporcionar la vista necesaria al objeto. Por ejemplo, para
registrar un asset bundle en una clase widget, se puede obtener el objeto vista mediante
$this->view.

Cuando se registra un asset bundle con una vista, por detrás, Yii registrará todos sus asset bundles dependientes.
Y si un asset bundle se encuentra en un directorio inaccesible por la Web, éste será publicado a un directorio Web
público. Después cuando la vista renderice una página, se generarán las etiquetas (tags) <link> y <script>  para
los archivos CSS y JavaScript listados en los bundles registrados. El orden de estas etiquetas será determinado por
las dependencias entre los bundles registrados y los otros assets listados en las propiedades
[[yii\web\AssetBundle::css]] y [[yii\web\AssetBundle::js]].


Personalización de Asset Bundles 

Yii gestiona los asset bundles a través de un componente de aplicación llamado assetManager que está implementado
por [[yii\web\AssetManager]]. Configurando la propiedad [[yii\web\AssetManager::bundles]], se puede personalizar el
comportamiento (behavior) de un asset bundle. Por ejemplo, de forma predeterminada, el asset bundle [[yii\web\Jquery]]
, utiliza el archivo jquery.js desde el paquete Bower instalado. Para mejorar la disponibilidad y el rendimiento se
puede querer usar la versión alojada por Google. Ésta puede ser obtenida configurando assetManager en la
configuración de la aplicación como en el siguiente ejemplo:

return [
    // ...
    'components' => [
        'assetManager' => [
            'bundles' => [
                'yii\web\JqueryAsset' => [
                    'sourcePath' => null,   // no publicar el bundle
                    'js' => [
                        '//ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js',
                    ]
                ],
            ],
        ],
    ],
];





Del mismo modo, se pueden configurar múltiples asset bundles a través de [[yii\web\AssetManager::bundles]]. Las claves
del array deben ser los nombres de clase (sin la primera barra invertida) de los asset bundles, y los valores del array
deben ser las correspondientes configuraciones de arrays.


Tip: Se puede elegir condicionalmente que assets se van a usar en un asset bundle. El siguiente ejemplo
muestra como usar jquery.js en el entorno de desarrollo y jquery.min.js en los otros casos:

'yii\web\JqueryAsset' => [
    'js' => [
        YII_ENV_DEV ? 'jquery.js' : 'jquery.min.js'
    ]
],








Se puede deshabilitar uno o más asset bundles asociando false a los nombres de los asset bundles que se quieran
deshabilitar. Cuando se registra un asset bundle deshabilitado con una vista, ninguno de sus bundles dependientes será
registrado, y la vista tampoco incluirá ningún asset del bundle en la página que se renderice.
Por ejemplo, para deshabilitar [[yii\web\JqueryAsset]], se puede usar la siguiente configuración:

return [
    // ...
    'components' => [
        'assetManager' => [
            'bundles' => [
                'yii\web\JqueryAsset' => false,
            ],
        ],
    ],
];





Además se pueden deshabilitar todos los asset bundles asignando false a [[yii\web\AssetManager::bundles]].




Mapeo de Assets (Asset Mapping) 

A veces se puede querer “arreglar” rutas de archivos incorrectos/incompatibles usadas en múltiples asset bundles.
Por ejemplo, el bundle A usa jquery.min.js con versión 1.11.1, y el bundle B usa jquery.js con versión 2.11.1.
Mientras que se puede solucionar el problema personalizando cada bundle, una forma más fácil, es usar la
característica asset map para mapear los assets incorrectos a los deseados. Para hacerlo, se tiene que configurar la
propiedad [[yii\web\AssetManager::assetMap]] como en el siguiente ejemplo:

return [
    // ...
    'components' => [
        'assetManager' => [
            'assetMap' => [
                'jquery.js' => '//ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js',
            ],
        ],
    ],
];





Las claves de [[yii\web\AssetManager::assetMap|assetmMap]] son los nombres de los assets que se quieren corregir,
y los valores son las rutas de los assets deseados. Cuando se registra un asset bundle con una vista, cada archivo de
asset relativo de [[yii\web\AssetBundle::css|css]] y [[yii\web\AssetBundle::js|js]] serán contrastados con este mapa.
Si se detecta que alguna de estas claves es la última parte de un archivo asset (prefijado con
[[yii\web\AssetBundle::sourcePath]], si esta disponible), el correspondiente valor reemplazará el asset y será
registrado con la vista.
Por ejemplo, un archivo asset mi/ruta/a/jquery.js concuerda con la clave jquery.js.


Note: Sólo los assets especificados usando rutas relativas están sujetos al mapeo de assets. Y las rutas de los
assets destino deben ser tanto URLs absolutas o rutas relativas a [[yii\web\AssetManager::basePath]].







Publicación de Asset 

Como se ha comentado anteriormente, si un asset bundle se encuentra en un directorio que no es accesible por la Web,
este asset será copiado a un directorio Web cuando se registre el bundle con una vista. Este proceso se llama
publicación de assets, y se efectúa automáticamente por el [[yii\web\AssetManager|asset manager]].

De forma predeterminada, los assets se publican en el directorio @webroot/assets cuando corresponden a la URL
@web\assets. Se puede personalizar esta ubicación configurando las propiedades
[[yii\web\AssetManager::basePath|basePath]] y [[yii\web\AssetManager::baseUrl|baseUrl]].

En lugar de publicar los assets copiando archivos, se puede considerar usar enlaces simbólicos, si tu
SO (sistema operativo) y servidor Web lo permiten. Esta característica se puede habilitar estableciendo el valor de
[[yii\web\AssetManager::linkAssets|linkAssets]] en true.

return [
    // ...
    'components' => [
        'assetManager' => [
            'linkAssets' => true,
        ],
    ],
];





Con la anterior configuración, el gestor de assets creará un enlace simbólico a la ruta de origen del asset bundle
cuando éste sea publicado. Esto es más rápido que copiar archivos y también asegura que siempre estén actualizados.






Los Asset Bundles más Comunes 

El código del núcleo de Yii tiene definidos varios asset bundles. Entre ellos, los siguientes bundles son los más
usados y pueden referenciarse en códigos de aplicaciones o extensiones.


	[[yii\web\YiiAsset]]: Principalmente incluye el archivo yii.js que implementa un mecanismo de organización de
código JavaScript en los módulos. También proporciona soporte especial para los atributos data-method y
data-confirm y otras característica útiles.


	[[yii\web\JqueryAsset]]: Incluye el archivo jquery.js desde el paquete Bower jQuery.


	[[yii\bootstrap\BootstrapAsset]]: Incluye el archivo CSS desde el framework Twitter Bootstrap.


	[[yii\bootstrap\BootstrapPluginAsset]]: Incluye el archivo JavaScript desde el framework Twitter Bootstrap para dar
soporte a los plugins JavaScript de Bootstrap.


	[[yii\jui\JuiAsset]]: Incluye los archivos CSS y JavaScript desde la librería jQuery UI.




Si el código depende de jQuery, jQuery UI o Bootstrap, se pueden usar estos asset bundles predefinidos en lugar de
crear versiones propias. Si la configuración predeterminada de estos bundles no satisface las necesidades, se puede
personalizar como se describe en la subsección Personalización de Asset Bundles.




Conversión de Assets 

En lugar de escribir código CSS y/o JavaScript directamente, los desarrolladores a menudo escriben código usando una
sintaxis extendida y usan herramientas especiales para convertirlos en CSS/JavaScript. Por ejemplo, para código CSS se
puede usar LESS [http://lesscss.org] o SCSS [http://sass-lang.com/]; y para JavaScript se puede usar
TypeScript [http://www.typescriptlang.org/].

Se pueden listar los archivos asset con sintaxis extendida (extended syntax) en [[yii\web\AssetBundle::css|css]] y
[[yii\web\AssetBundle::js|js]] en un asset bundle. Por ejemplo:

class AppAsset extends AssetBundle
{
    public $basePath = '@webroot';
    public $baseUrl = '@web';
    public $css = [
        'css/site.less',
    ];
    public $js = [
        'js/site.ts',
    ];
    public $depends = [
        'yii\web\YiiAsset',
        'yii\bootstrap\BootstrapAsset',
    ];
}





Cuando se registra uno de estos asset bundles en una vista, el [[yii\web\AssetManager|asset manager]] ejecutará
automáticamente las herramientas pre-procesadoras para convertir los assets de sintaxis extendidas reconocidas en
CSS/JavaScript. Cuando la vista renderice finalmente una página, se incluirán los archivos CSS/JavaScript
en la página, en lugar de los assets originales en sintaxis extendidas.

Yii usa las extensiones de archivo para identificar que sintaxis extendida se está usando. De forma predeterminada se
reconocen las siguientes sintaxis y extensiones de archivo.


	LESS [http://lesscss.org/]: .less


	SCSS [http://sass-lang.com/]: .scss


	Stylus [http://learnboost.github.io/stylus/]: .styl


	CoffeeScript [http://coffeescript.org/]: .coffee


	TypeScript [http://www.typescriptlang.org/]: .ts




Yii se basa en las herramientas pre-procesadoras instalada para convertir los assets. Por ejemplo, para usar
LESS [http://lesscss.org/] se debe instalar el comando pre-procesador lessc.

Se pueden personalizar los comandos de los pre-procesadores y las sintaxis extendidas soportadas configurando
[[yii\web\AssetManager::converter]] como en el siguiente ejemplo:

return [
    'components' => [
        'assetManager' => [
            'converter' => [
                'class' => 'yii\web\AssetConverter',
                'commands' => [
                    'less' => ['css', 'lessc {from} {to} --no-color'],
                    'ts' => ['js', 'tsc --out {to} {from}'],
                ],
            ],
        ],
    ],
];





En el anterior ejemplo se especifican las sintaxis extendidas soportadas a través de la propiedad
[[yii\web\AssetConverter::commands]]. Las claves del array son los nombres de extensión de archivo (sin el punto), y
los valores del array las extensiones de archivo resultantes y los comandos para realizar la conversión de assets.
Los tokens {from} y {to} en los comandos se reemplazarán por las rutas de origen de los archivos asset y las rutas
de destino de los archivos asset.


Info: Hay otras maneras de trabajar con las assets de sintaxis extendidas, además de la descrita
anteriormente. Por ejemplo, se pueden usar herramientas generadoras tales como grunt [http://gruntjs.com/] para
monitorear y convertir automáticamente los assets de sintaxis extendidas. En este caso, se deben listar los archivos
CSS/JavaScript resultantes en lugar de los archivos de originales.







Combinación y Compresión de Assets 

Una página web puede incluir muchos archivos CSS y/o JavaScript. Para reducir el número de peticiones (requests)
HTTP y el tamaño total de descarga de estos archivos, una práctica común es combinar y comprimir uno o
varios archivos, y después incluir los archivos comprimidos en las páginas Web.


Información: La combinación y compresión de assets es habitualmente necesario cuando una aplicación se encuentra en
modo de producción. En modo de desarrollo, es más conveniente usar los archivos CSS/JavaScript originales por temas
relacionados con el debugging.




En el siguiente ejemplo, se muestra una propuesta para combinar y comprimir archivos asset sin necesidad de modificar
el código de la aplicación.


	Buscar todos los asset bundles en la aplicación que se quieran combinar y comprimir.


	Dividir estos bundles en uno o más grupos. Tenga en cuenta que cada bundle solo puede pertenecer a un único grupo.


	Combina/Comprime los archivos CSS de cada grupo en un único archivo. Hace lo mismo para los archivos JavaScript.


	Define un nuevo asset bundle para cada grupo:


	Establece las propiedades [[yii\web\AssetBundle::css|css]] y [[yii\web\AssetBundle::js|js]] para que sean los
archivos CSS y JavaScript combinados, respectivamente.


	Personaliza los asset bundles en cada grupo configurando sus propiedades [[yii\web\AssetBundle::css|css]] y
[[yii\web\AssetBundle::js|js]] para que sean el nuevo asset bundle creado para el grupo.








Usando este propuesta, cuando se registre un asset bundle en una vista, se genera un registro automático del nuevo
asset bundle para el grupo al que pertenece el bundle original. Y como resultado, los archivos combinados/comprimidos
se incluyen en la página, en lugar de los originales.


Un Example 

Vamos a usar un ejemplo para explicar la propuesta anterior.

Asumiendo que la aplicación tenga dos páginas X e Y. La página X utiliza el asset bundle A, B y C mientras que la
página Y usa los asset bundles B, C y D.

Hay dos maneras de dividir estos asset bundles. Uno es usar un único grupo que incluye todos los asset bundles,
el otro es poner (A, B y C) en el Grupo X, y (B, C, D) en el grupo Y. ¿Cuál es mejor? El primero tiene la ventaja
de que las dos páginas comparten los mismos archivos CSS y JavaScript combinados, que producen una caché HTTP más
efectiva. Por otra parte, por el hecho de que un único grupo contenga todos los bundles, los archivos JavaScript serán
más grandes y por tanto incrementan el tiempo de transmisión del archivo inicial. En este ejemplo, se usará la primera
opción, ej., usar un único grupo que contenga todos los bundles.


Info: Dividiendo los asset bundles en grupos no es una tarea trivial. Normalmente requiere un análisis de los
datos del tráfico real de varios assets en diferentes páginas. Al principio, se puede empezar con un
único grupo para simplificar.




Se pueden usar herramientas existentes (ej. Closure Compiler [https://developers.google.com/closure/compiler/],
YUI Compressor [https://github.com/yui/yuicompressor/]) para combinar y comprimir todos los bundles. Hay que tener en
cuenta que los archivos deben ser combinados en el orden que satisfaga las dependencias entre los bundles.
Por ejemplo, si el Bundle A depende del B que depende a su vez de C y D, entonces, se deben listar los archivos asset
empezando por C y D, seguidos por B y finalmente A.

Después de combinar y comprimir obtendremos un archivo CSS y un archivo JavaScript. Supongamos que se llaman
all-xyz.css y all-xyz.js, donde xyz representa un timestamp o un hash que se usa para generar un nombre de
archivo único para evitar problemas con la caché HTTP.

Ahora estamos en el último paso. Configurar el [[yii\web\AssetManager|asset manager]] como en el siguiente ejemplo en
la configuración de la aplicación:

return [
    'components' => [
        'assetManager' => [
            'bundles' => [
                'all' => [
                    'class' => 'yii\web\AssetBundle',
                    'basePath' => '@webroot/assets',
                    'baseUrl' => '@web/assets',
                    'css' => ['all-xyz.css'],
                    'js' => ['all-xyz.js'],
                ],
                'A' => ['css' => [], 'js' => [], 'depends' => ['all']],
                'B' => ['css' => [], 'js' => [], 'depends' => ['all']],
                'C' => ['css' => [], 'js' => [], 'depends' => ['all']],
                'D' => ['css' => [], 'js' => [], 'depends' => ['all']],
            ],
        ],
    ],
];





Como se ha explicado en la subsección Personalización de Asset Bundles, la anterior
configuración modifica el comportamiento predeterminado de cada bundle. En particular, el Bundle A, B, C y D ya no
tendrán ningún archivo asset. Ahora todos dependen del bundle all que contiene los archivos combinados all-xyz.css
y all-xyz.js. Por consiguiente, para la Página X, en lugar de incluir los archivos originales desde los bundles A, B
y C, solo se incluirán los dos archivos combinados; pasa lo mismo con la Página Y.

Hay un último truco para hacer que el enfoque anterior se adapte mejor. En lugar de modificar directamente el archivo
de configuración de la aplicación, se puede poner el array del personalización del bundle en un archivo separado y que
se incluya condicionalmente este archivo en la configuración de la aplicación. Por ejemplo:

return [
    'components' => [
        'assetManager' => [
            'bundles' => require __DIR__ . '/' . (YII_ENV_PROD ? 'assets-prod.php' : 'assets-dev.php'),
        ],
    ],
];





Es decir, el array de configuración del asset bundle se guarda en asset-prod.php para el modo de producción, y
assets-del.php para los otros modos.




Uso del Comando asset 

Yii proporciona un comando de consola llamado asset para automatizar el enfoque descrito.

Para usar este comando, primero se debe crear un archivo de configuración para describir que asset bundle se deben
combinar y cómo se deben agrupar. Se puede usar el sub-comando asset/template para generar una plantilla primero y
después modificarla para que se adapte a nuestras necesidades.

yii asset/template assets.php





El comando genera un archivo llamado assets.php en el directorio actual. El contenido de este archivo es similar al
siguiente código:

<?php
/**
 * Configuration file for the "yii asset" console command.
 * Note that in the console environment, some path aliases like '@webroot' and '@web' may not exist.
 * Please define these missing path aliases.
 */
return [
    // Ajustar comando/callback para comprimir los ficheros JavaScript:
    'jsCompressor' => 'java -jar compiler.jar --js {from} --js_output_file {to}',
    // Ajustar comando/callback para comprimir los ficheros CSS:
    'cssCompressor' => 'java -jar yuicompressor.jar --type css {from} -o {to}',
    // La lista de assets bundles para comprimir:
    'bundles' => [
        // 'yii\web\YiiAsset',
        // 'yii\web\JqueryAsset',
    ],
    // Asset bundle para la salida de compresión:
    'targets' => [
        'all' => [
            'class' => 'yii\web\AssetBundle',
            'basePath' => '@webroot/assets',
            'baseUrl' => '@web/assets',
            'js' => 'js/all-{hash}.js',
            'css' => 'css/all-{hash}.css',
        ],
    ],
    // Configuración del Asset manager:
    'assetManager' => [
    ],
];





Se debe modificar este archivo para especificar que bundles plantea combinar en la opción bundles. En la opción
targets se debe especificar como se deben dividir entre los grupos. Se puede especificar uno o más grupos,
como se ha comentado.


Note: Debido a que los alias @webroot y @web no están disponibles en la aplicación de consola, se deben definir
explícitamente en la configuración.




Los archivos JavaScript se combinan, comprimen y guardan en js/all-{hash}.js donde {hash} se reemplaza con el hash
del archivo resultante.

Las opciones jsCompressor y cssCompressor especifican los comandos de consola o llamadas PHP (PHP callbacks) para
realizar la combinación/compresión de JavaScript y CSS. De forma predeterminada Yii usa
Closure Compiler [https://developers.google.com/closure/compiler/] para combinar los archivos JavaScript y
YUI Compressor [https://github.com/yui/yuicompressor/] para combinar archivos CSS. Se deben instalar las herramientas
manualmente o ajustar sus configuraciones para usar nuestras favoritas.

Con el archivo de configuración, se puede ejecutar el comando asset para combinar y comprimir los archivos asset y
después generar un nuevo archivo de configuración de asset bundles asset-prod.php:

yii asset assets.php config/assets-prod.php





El archivo de configuración generado se puede incluir en la configuración de la aplicación, como se ha descrito en la
anterior subsección.


Info: Usar el comando asset no es la única opción de automatizar el proceso de combinación y compresión.
Se puede usar la excelente herramienta de ejecución de tareas grunt [http://gruntjs.com/] para lograr el mismo
objetivo.












          

      

      

    

  

  
    
    Controladores
    

    
 
  

    
      
          
            
  
Controladores

Los controladores son parte del patrón o arquitectura MVC [http://es.wikipedia.org/wiki/Modelo%E2%80%93vista%E2%80%93controlador].
Son objetos que extienden de [[yii\base\Controller]] y se encargan de procesar los requests (consultas)
generando responses (respuestas). Particularmente, después de tomar el control desde las aplicaciones,
los controladores analizarán los datos que entran en el request, los pasan a los modelos, inyectan los
modelos resultantes a las vistas, y finalmente generan los responses (respuestas) de salida.


Acciones 

Los Controladores están compuestos por acciones que son las unidades más básicas a las que los usuarios pueden
dirigirse y solicitar ejecución. Un controlador puede tener una o múltiples acciones.

El siguiente ejemplo muestra un controlador post con dos acciones: view y create:

namespace app\controllers;

use Yii;
use app\models\Post;
use yii\web\Controller;
use yii\web\NotFoundHttpException;

class PostController extends Controller
{
    public function actionView($id)
    {
        $model = Post::findOne($id);
        if ($model === null) {
            throw new NotFoundHttpException;
        }

        return $this->render('view', [
            'model' => $model,
        ]);
    }

    public function actionCreate()
    {
        $model = new Post;

        if ($model->load(Yii::$app->request->post()) && $model->save()) {
            return $this->redirect(['view', 'id' => $model->id]);
        } else {
            return $this->render('create', [
                'model' => $model,
            ]);
        }
    }
}





En la acción view (definida en el método actionView()), el código primero carga el modelo
de acuerdo el ID del modelo solicitado; Si el modelo es cargado satisfactoriamente, lo mostrará usando una vista
llamada view. Si no, arrojará una excepción.

En la acción create (definida por el método actionCreate()), el código es similar. Primero intenta poblar
el modelo usando datos del request y guardarlo. Si ambas cosas suceden correctamente, se redireccionará
el navegador a la acción view con el ID del modelo recientemente creado. De otro modo mostrará
la vista create a través de la cual el usuario puede completar los campos necesarios.




Routes 

Los usuarios ejecutan las acciones a través de las llamadas routes (rutas). una ruta es una cadena que consiste en las siguientes partes:


	un ID de módulo: este existe solamente si el controlador pertenece a un módulo que no es de la aplicación;


	un ID de controlador: una cadena que identifica exclusivamente al controlador entre todos los controladores dentro de la misma aplicación
(o el mismo módulo si el controlador pertenece a uno);


	un ID de acción: una cadena que identifica exclusivamente a la acción entre todas las acciones del mismo controlador.




Las rutas pueden usar el siguiente formato:

ControllerID/ActionID





o el siguiente formato si el controlador pertenece a un módulo:

ModuleID/ControllerID/ActionID





Entonces si un usuario solicita la URL http://hostname/index.php?r=site/index, la acción index del controlador site
será ejecutado. Para más detalles acerca de cómo las son resueltas en acciones, por favor consulta
la sección Routing.




Creando Controladores 

En [[yii\web\Application|aplicaciones Web]], los controladores deben extender de [[yii\web\Controller]] o cualquier
clase hija. De forma similar los controladores de [[yii\console\Application|aplicaciones de consola]], deben extender
de [[yii\console\Controller]] o cualquier clase hija de esta. El siguiente código define un controlador site:

namespace app\controllers;

use yii\web\Controller;

class SiteController extends Controller
{
}






IDs de Controladores 

Normalmente, un controlador está diseñado para manejar los requests de acuerdo a un tipo de recurso.
Por esta razón, los IDs de controladores son a menudo sustantivos de los tipos de recurso que están manejando.
Por ejemplo, podrías utilizar article como el ID de un controlador que maneja datos de artículos.

Por defecto, los IDs de controladores deberían contener sólo estos caracteres: letras del Inglés en minúscula, dígitos,
guiones bajos y medios, y barras. Por ejemplo, article, post-comment, admin/post-comment son todos
IDs de controladores válidos, mientras que article?, PostComment, admin\post no lo son.

Los guiones en un ID de controlador son utilizados para separar palabras, mientras que las barras diagonales lo son para
organizar los controladores en sub-directorios.




Nombres de Clases de Controladores 

Los nombres de clases de controladores pueden ser derivados de los IDs de acuerdo a las siguientes reglas:


	Transforma la primera letra de cada palabra separada por guiones en mayúscula. Nota que si el ID del controlador
contiene barras, esta regla sólo aplica a la porción después de la última barra dentro del ID.


	Elimina guiones y reemplaza cualquier barra diagonal por barras invertidas.


	Agrega el sufijo Controller.


	Agrega al principio el [[yii\base\Application::controllerNamespace|controller namespace]].




A continuación mostramos algunos ejemplos, asumiendo que el [[yii\base\Application::controllerNamespace|controller namespace]]
toma el valor por defecto: app\controllers:


	article deriva en app\controllers\ArticleController;


	post-comment deriva en app\controllers\PostCommentController;


	admin/post-comment deriva en app\controllers\admin\PostCommentController.




Las clases de controladores deben ser autocargables. Por esta razón, en los ejemplos anteriores,
la clase del controlador article debe ser guardada en un archivo cuyo alias alias
es @app/controllers/ArticleController.php; mientras que el controlador admin/post-comment debería estar
en @app/controllers/admin/PostCommentController.php.


Info: En el último ejemplo, admin/post-comment, demuestra cómo puedes poner un controlador bajo un sub-directorio
del [[yii\base\Application::controllerNamespace|controller namespace]]. Esto es útil cuando quieres organizar
tus controladores en varias categorías pero sin utilizar módulos.







Controller Map 

Puedes configurar [[yii\base\Application::controllerMap|controller map]] (mapeo de controladores) para superar las restricciones
de los IDs de controladores y sus nombres de clase descritos arriba. Esto es principalmente útil cuando estás utilizando un
controlador de terceros del cual no tienes control alguno sobre sus nombres de clase.

Puedes configurar [[yii\base\Application::controllerMap|controller map]] en la
configuración de la aplicación de la siguiente manera:

[
    'controllerMap' => [
        [
            // declara el controlador "account" usando un nombre de clase
            'account' => 'app\controllers\UserController',

            // declara el controlador "article" utilizando un array de configuración
            'article' => [
                'class' => 'app\controllers\PostController',
                'enableCsrfValidation' => false,
            ],
        ],
    ],
]








Controller por Defecto 

Cada aplicación tiene un controlador por defecto especificado a través de la propiedad [[yii\base\Application::defaultRoute]].
Cuando un request no especifica una ruta, se utilizará la ruta especificada en esta propiedad.
Para [[yii\web\Application|aplicaciones Web]], el valor es 'site', mientras que para [[yii\console\Application|aplicaciones de consola]]
es help. Por lo tanto, si la URL es http://hostname/index.php, significa que el request será manejado por el controlador site.

Puedes cambiar el controlador por defecto con la siguiente configuración de la aplicación:

[
    'defaultRoute' => 'main',
]










Creando Acciones 

Crear acciones puede ser tan simple como definir un llamado método de acción en una clase controlador. Un método de acción es
un método public cuyo nombre comienza con la palabra action. El valor de retorno de uno de estos métodos representa
los datos de respuesta (response) a ser enviado a los usuarios. El siguiente código define dos acciones: index y hello-world:

namespace app\controllers;

use yii\web\Controller;

class SiteController extends Controller
{
    public function actionIndex()
    {
        return $this->render('index');
    }

    public function actionHelloWorld()
    {
        return 'Hola Mundo!';
    }
}






IDs de Acciones 

Una acción está a menudo diseñada para realizar una manipulación particular de un recurso. Por esta razón,
los IDs de acciones son usualmente verbos, como view (ver), update (actualizar), etc.

Por defecto, los IDs de acciones deberían contener estos caracteres solamente: letras en Inglés en minúsculas, dígitos,
guiones bajos y barras. Los guiones en un ID de acción son utilizados para separar palabras. Por ejemplo,
view, update2, comment-post son todos IDs válidos, mientras que view? y Update no lo son.

Puedes crear acciones de dos maneras: acciones en línea (inline) o acciones independientes (standalone). Una acción en línea
es definida como un método en la clase del controlador, mientras que una acción independiente es una clase que extiende
[[yii\base\Action]] o sus clases hijas. Las acciones en línea son más fáciles de crear y por lo tanto preferidas
si no tienes intenciones de volver a utilizarlas. Las acciones independientes, por otro lado, son principalmente
creadas para ser reutilizadas en otros controladores o para ser redistribuidas como extensiones.




Acciones en Línea 

Como acciones en línea nos referimos a acciones que son definidas en términos de métodos como acabamos de describir.

Los nombre de métodos de acciones derivan de los IDs de acuerdo al siguiente criterio:


	Transforma la primera letra de cada palabra del ID de la acción a mayúscula;


	Elimina guiones;


	Prefija la palabra action.




Por ejemplo, index se vuelve actionIndex, y hello-world se vuelve actionHelloWorld.


Note: Los nombres de los métodos de acción son case-sensitive (distinguen entre minúsculas y mayúsculas). Si tienes un
método llamado ActionIndex, no será considerado como un método de acción, y como resultado, solicitar la acción index
resultará en una excepción. También ten en cuenta que los métodos de acción deben ser public. Un método private o protected
NO define un método de acción.




Las acciones en línea son las más comúnmente definidas ya que requieren muy poco esfuerzo de creación. De todos modos,
si planeas reutilizar la misma acción en diferentes lugares, o quieres redistribuir una acción,
deberías considerar definirla como un acción independiente.




Acciones Independientes 

Las acciones independientes son acciones definidas en términos de clases de acción que extienden de [[yii\base\Action]] o cualquiera de sus clases hijas.
Por ejemplo, en Yii se encuentran las clases [[yii\web\ViewAction]] y [[yii\web\ErrorAction]], de las cuales ambas son acciones independientes.

Para utilizar una acción independiente, debes declararla en el action map (mapeo de acciones) sobrescribiendo el método
[[yii\base\Controller::actions()]] en tu controlador de la siguiente manera:

public function actions()
{
    return [
        // declara la acción "error" utilizando un nombre de clase
        'error' => 'yii\web\ErrorAction',

        // declara la acción "view" utilizando un array de configuración
        'view' => [
            'class' => 'yii\web\ViewAction',
            'viewPrefix' => '',
        ],
    ];
}





Como puedes ver, el método actions() debe devolver un array cuyas claves son los IDs de acciones y sus valores los nombres
de clases de acciones o configuraciones. Al contrario de acciones en línea, los IDs de acciones independientes
pueden contener caracteres arbitrarios, mientras sean declarados en el método actions().

Para crear una acción independiente, debes extender de [[yii\base\Action]] o una clase hija, e implementar un
método public llamado run(). El rol del método run() es similar al de un método de acción. Por ejemplo:

<?php
namespace app\components;

use yii\base\Action;

class HelloWorldAction extends Action
{
    public function run()
    {
        return "Hola Mundo!";
    }
}








Resultados de Acción 

El valor de retorno de una método de acción o del método run() de una acción independiente son significativos. Este se refiere
al resultado de la acción correspondiente.

El valor devuelto puede ser un objeto response que será enviado como respuesta a
los usuarios.


	Para [[yii\web\Application|aplicaciones Web]], el valor de retorno pueden ser también datos arbitrarios que serán
asignados a [[yii\web\Response::data]] y más adelante convertidos a una cadena representando el cuerpo de la respuesta.


	Para [[yii\console\Application|aplicaciones de consola]], el valor de retorno puede ser también un entero representando
el [[yii\console\Response::exitStatus|status de salida]] de la ejecución del comando.




En los ejemplos mostrados arriba, los resultados de las acciones son todas cadenas que serán tratadas como el cuerpo de la respuesta
a ser enviado a los usuarios. El siguiente ejemplo demuestra cómo una acción puede redirigir el navegador del usuario a una nueva URL
devolviendo un objeto response (debido a que el método [[yii\web\Controller::redirect()|redirect()]] devuelve
un objeto response):

public function actionForward()
{
    // redirige el navegador del usuario a http://example.com
    return $this->redirect('http://example.com');
}








Parámetros de Acción 

Los métodos de acción para acciones en línea y el método run() de acciones independientes pueden tomar parámetros,
llamados parámetros de acción. Sus valores son obtenidos del request. Para [[yii\web\Application|aplicaciones Web]],
el valor de cada parámetro de acción es tomado desde $_GET usando el nombre del parámetro como su clave;
para [[yii\console\Application|aplicaciones de consola]], estos corresponden a los argumentos de la línea de comandos.

En el siguiente ejemplo, la acción view (una acción en línea) declara dos parámetros: $id y $version.

namespace app\controllers;

use yii\web\Controller;

class PostController extends Controller
{
    public function actionView($id, $version = null)
    {
        // ...
    }
}





Los parámetros de acción serán poblados como se muestra a continuación para distintos requests:


	http://hostname/index.php?r=post/view&id=123: el parámetro $id tomará el valor
'123',  mientras que $version queda como null debido a que no hay un parámetro version en la URL.


	http://hostname/index.php?r=post/view&id=123&version=2: los parámetros $id y $version serán llenados con
'123' y '2', respectivamente.


	http://hostname/index.php?r=post/view: se lanzará una excepción [[yii\web\BadRequestHttpException]]
dado que el parámetro $id es requerido pero no es provisto en el request.


	http://hostname/index.php?r=post/view&id[]=123: una excepción [[yii\web\BadRequestHttpException]] será lanzada
porque el parámetro $id está recibiendo un valor inesperado, el array ['123'].




Si quieres que un parámetro de acción acepte un array como valor, deberías utilizar el type-hinting (especificación de tipo) array,
como a continuación:

public function actionView(array $id, $version = null)
{
    // ...
}





Ahora si el request es http://hostname/index.php?r=post/view&id[]=123, el parámetro $id tomará el valor
de ['123']. Si el request es http://hostname/index.php?r=post/view&id=123, el parámetro $id recibirá aún
el mismo array como valor ya que el valor escalar '123' será convertido automáticamente en array.

Los ejemplos de arriba muestran principalmente como funcionan los parámetros de acción de una aplicación Web. Para aplicaciones de consola,
por favor consulta la sección Comandos de Consola para más detalles.




Acción por Defecto 

Cada controlador tiene una acción por defecto especificada a través de la propiedad [[yii\base\Controller::defaultAction]].
Cuando una ruta contiene sólo el ID del controlador, implica que se está solicitando la acción por defecto
del controlador especificado.

Por defecto, la acción por defecto (valga la redundancia) definida es index. Si quieres cambiar dicho valor, simplemente sobrescribe
esta propiedad en la clase del controlador, como se muestra a continuación:

namespace app\controllers;

use yii\web\Controller;

class SiteController extends Controller
{
    public $defaultAction = 'home';

    public function actionHome()
    {
        return $this->render('home');
    }
}










Ciclo de Vida del Controlador 

Cuando se procesa un request, la aplicación creará un controlador
basado en la ruta solicitada. El controlador entonces irá a través del siguiente ciclo de vida
para completar el request:


	El método [[yii\base\Controller::init()]] es llamado después de que el controlador es creado y configurado.


	El controlador crea un objecto action basado en el ID de acción solicitado:


	Si el ID de la acción no es especificado, el [[yii\base\Controller::defaultAction|ID de la acción por defecto]] será utilizado.


	Si el ID de la acción es encontrado en el [[yii\base\Controller::actions()|mapeo de acciones]], una acción independiente
será creada;


	Si el ID de la acción es coincide con un método de acción, una acción en línea será creada;


	De otra manera, se lanzará una excepción [[yii\base\InvalidRouteException]].






	El controlador llama secuencialmente al método beforeAction() de la aplicación, al del módulo (si el controlador
pertenece a uno) y al del controlador.


	Si alguna de las llamadas devuelve false, el resto de los llamados subsiguientes a beforeAction() serán saltados y
la ejecución de la acción será cancelada.


	Por defecto, cada llamada al método beforeAction() lanzará un evento beforeAction al cual le puedes conectar un manejador.






	El controlador ejecuta la acción:


	Los parámetros de la acción serán analizados y poblados con los datos del request;






	El controlador llama secuencialmente al método afterAction() del controlador, del módulo (si el controlador
pertenece a uno) y de la aplicación.


	Por defecto, cada llamada al método afterAction() lanzará un evento afterAction al cual le puedes conectar un manejador.






	La aplicación tomará el resultado de la acción y lo asignará al response.







Buenas Prácticas 

En una aplicación bien diseñada, los controladores son a menudo muy pequeños con cada acción conteniendo unas pocas líneas de código.
Si tu controlador se torna muy complejo, es usualmente un indicador de que deberías realizar una refactorización y mover algo de
código a otras clases.

En resumen, los controladores


	pueden acceder a los datos del request;


	puede llamar a métodos del modelo y otros componentes con data del request;


	pueden utilizar vistas para componer responses;


	NO debe procesar datos del `request - esto debe ser realizado en los modelos;


	deberían evitar insertar HTML o cualquier código de presentación - para esto están las vistas.










          

      

      

    

  

  
    
    Scripts de Entrada
    

    
 
  

    
      
          
            
  
Scripts de Entrada

Los scripts de entrada son el primer eslabón en el proceso de arranque de la aplicación. Una aplicación (ya sea una
aplicación Web o una aplicación de consola) tiene un único script de entrada. Los usuarios finales hacen peticiones al
script de entrada que instancia instancias de aplicación y remite la petición a estos.

Los scripts de entrada para aplicaciones Web tiene que estar alojado bajo niveles de directorios accesibles para la Web
de manera que puedan ser accesibles para los usuarios finales. Normalmente se nombra como index.php, pero también se
pueden usar cualquier otro nombre, los servidores Web proporcionados pueden localizarlo.

El script de entrada para aplicaciones de consola normalmente está alojado bajo la
ruta base de las aplicaciones y es nombrado como yii (con el sufijo .php). Estos
deberían ser ejecutables para que los usuarios puedan ejecutar las aplicaciones de consola a través del comando
./yii <ruta> [argumentos] [opciones].

El script de entrada principalmente hace los siguientes trabajos:


	Definir las constantes globales;


	Registrar el cargador automático de Composer [https://getcomposer.org/doc/01-basic-usage.md#autoloading];


	Incluir el archivo de clase [[Yii]];


	Cargar la configuración de la aplicación;


	Crear y configurar una instancia de aplicación;


	Llamar a [[yii\base\Application::run()]] para procesar la petición entrante.





Aplicaciones Web 

El siguiente código es el script de entrada para la Plantilla de Aplicación web Básica.

<?php

defined('YII_DEBUG') or define('YII_DEBUG', true);
defined('YII_ENV') or define('YII_ENV', 'dev');

// registrar el cargador automático de Composer
require __DIR__ . '/../vendor/autoload.php';

// incluir el fichero de clase Yii
require __DIR__ . '/../vendor/yiisoft/yii2/Yii.php';

// cargar la configuración de la aplicación
$config = require __DIR__ . '/../config/web.php';

// crear, configurar y ejecutar la aplicación
(new yii\web\Application($config))->run();








Aplicaciones de consola 

De la misma manera, el siguiente código es el script de entrada para la aplicación de consola:

#!/usr/bin/env php
<?php
/**
 * Yii console bootstrap file.
 *
 * @link http://www.yiiframework.com/
 * @copyright Copyright (c) 2008 Yii Software LLC
 * @license http://www.yiiframework.com/license/
 */

defined('YII_DEBUG') or define('YII_DEBUG', true);

// registrar el cargador automático de Composer
require __DIR__ . '/vendor/autoload.php';

// incluir el fichero de clase Yii
require __DIR__ . '/vendor/yiisoft/yii2/Yii.php';

// cargar la configuración de la aplicación
$config = require __DIR__ . '/config/console.php';

$application = new yii\console\Application($config);
$exitCode = $application->run();
exit($exitCode);








Definición de Constantes 

El script de entrada es el mejor lugar para definir constantes globales. Yii soporta las siguientes tres constantes:


	YII_DEBUG: especifica si la aplicación se está ejecutando en modo depuración. Cuando esta en modo depuración, una
aplicación mantendrá más información de registro, y revelará detalladas pilas de errores si se lanza una excepción. Por
esta razón, el modo depuración debería ser usado principalmente durante el desarrollo. El valor por defecto de
‘YII_DEBUG’ es falso.


	YII_ENV: especifica en que entorno se esta ejecutando la aplicación. Se puede encontrar una descripción más
detallada en la sección Configuraciones.
El Valor por defecto de YII_ENV es 'prod', que significa que la aplicación se esta ejecutando en el entorno de
producción.


	YII_ENABLE_ERROR_HANDLER: especifica si se habilita el gestor de errores proporcionado por Yii. El valor
predeterminado de esta constante es verdadero.




Cuando se define una constante, a menudo se usa código como el siguiente:

defined('YII_DEBUG') or define('YII_DEBUG', true);





que es equivalente al siguiente código:

if (!defined('YII_DEBUG')) {
    define('YII_DEBUG', true);
}





Claramente el primero es más breve y fácil de entender.

La definición de constantes debería hacerse al principio del script de entrada para que pueda tener efecto cuando se
incluyan otros archivos PHP.







          

      

      

    

  

  
    
    Extensiones
    

    
 
  

    
      
          
            
  
Extensiones

Las extensiones son paquetes de software redistribuibles diseñados especialmente para ser usados en aplicaciones Yii y
proporcionar características listas para ser usadas. Por ejemplo, la extensión yiisoft/yii2-debug
añade una practica barra de herramientas de depuración (debug toolbar) al final de cada página de la aplicación para
ayudar a comprender más fácilmente como se han generado las páginas. Se pueden usar extensiones para acelerar el
proceso de desarrollo. También se puede empaquetar código propio para compartir nuestro trabajo con otra gente.


Info: Usamos el termino “extensión” para referirnos a los paquetes específicos de software Yii. Para
propósitos generales los paquetes de software pueden usarse sin Yii, nos referiremos a ellos usando los términos
“paquetes” (package) o “librerías” (library).





Uso de Extensiones 

Para usar una extension, primero tenemos que instalarla. La mayoría de extensiones se usan como paquetes
Composer [https://getcomposer.org/] que se pueden instalar mediante los dos simples siguientes pasos:


	modificar el archivo composer.json de la aplicación y especificar que extensiones (paquetes Composer) se quieren
instalar.


	ejecutar composer install para instalar las extensiones especificadas.




Hay que tener en cuenta que es necesaria la instalación de Composer [https://getcomposer.org/] si no la tenemos
instalada.

De forma predeterminada, Composer instala los paquetes registrados en Packagist [https://packagist.org/] que es el
repositorio más grande de paquetes Composer de código abierto (open source). Se pueden buscar extensiones en
Packagist. También se puede crear un repositorio propio [https://getcomposer.org/doc/05-repositories.md#repository] y
configurar Composer para que lo use. Esto es práctico cuando se desarrollan extensiones privadas que se quieran
compartir a través de otros proyectos.

Las extensiones instaladas por Composer se almacenan en el directorio BasePath/vendor, donde BasePath hace
referencia a la ruta base (base path) de la aplicación. Ya que Composer es un
gestor de dependencias, cuando se instala un paquete, también se instalarán todos los paquetes de los que dependa.

Por ejemplo, para instalar la extensión yiisoft/yii2-imagine, modificamos el archivo composer.json como se muestra
a continuación:

{
    // ...

    "require": {
        // ... otras dependencias

        "yiisoft/yii2-imagine": "~2.0.0"
    }
}





Después de la instalación, debemos encontrar el directorio yiisoft/yii2-imagine dentro del directorio
BasePath/vendor. También debemos encontrar el directorio imagine/imagine que contiene sus paquetes dependientes
instalados.


Info: La extensión yiisoft/yii2-imagine es una extensión del núcleo (core) desarrollada y mantenida por el
equipo de desarrollo de Yii. Todas las extensiones del núcleo se hospedan en Packagist [https://packagist.org/] y
son nombradas como yiisoft/yii2-xyz, donde zyz varia según la extensión.




Ahora ya podemos usar las extensiones instaladas como si fueran parte de nuestra aplicación. El siguiente ejemplo
muestra como se puede usar la clase yii\imagine\Image proporcionada por la extensión yiisoft/yii2-imagine:

use Yii;
use yii\imagine\Image;

// genera una miniatura (thumbnail) de la imagen
Image::thumbnail('@webroot/img/test-image.jpg', 120, 120)
    ->save(Yii::getAlias('@runtime/thumb-test-image.jpg'), ['quality' => 50]);






Info: Las clases de extensiones se cargan automáticamente gracias a
autocarga de clases de Yii.





Instalación Manual de Extensiones 

En algunas ocasiones excepcionales es posible que tengamos que instalar alguna o todas las extensiones manualmente, en lugar de utilizar Composer. Para lograrlo, debemos:


	descargar los archivos de la extensión y descomprimirlos en la carpeta vendor.


	instalar la clase de autocarga proporcionada por las extensiones, si existe.


	descargar e instalar todas las extensiones dependientes como siguiendo estas mismas instrucciones.




Si una extensión no proporciona clase de autocarga pero sigue el estándar
PSR-4 [http://www.php-fig.org/psr/psr-4/],  se puede usar la clase de autocarga proporcionada por Yii para cargar
automáticamente las clases de las extensiones. Todo lo que se tiene que hacer es declarar un
alias de raíz (root)  para las extensiones del directorio raíz. Por ejemplo,
asumiendo que tenemos instalada una extensión en el directorio vendor/mycompany/myext, y las clases de extensión se
encuentran en el namespace myext, entonces podemos incluir el siguiente código en nuestra configuración de
aplicación:

[
    'aliases' => [
        '@myext' => '@vendor/mycompany/myext',
    ],
]










Creación de Extensiones 

Podemos considerar la creación de una extensión cuando tengamos la necesidad de compartir nuestro código. Cada
extensión puede contener el código que se desee, puede ser una clase de ayuda (helper class), un widget, un módulo,
etc.

Se recomienda crear una extensión como paquetes de Composer [https://getcomposer.org/] para que sea se pueda
instalarse más fácilmente por los otros usuarios, como se ha descrito en la anterior subsección.

Más adelante se encuentran los pasos básicos que deben seguirse para crear una extensión como paquete Composer.


	Crear un proyecto para la extensión y alojarlo en un repositorio con VCS (Sistema de Control de Versiones), como
puede ser github.com [https://github.com]. El trabajo de desarrollo y el mantenimiento debe efectuarse en este
repositorio.


	En el directorio raíz del repositorio debe encontrarse el archivo composer.json que es requerido por Composer. Se
pueden encontrar más detalles en la siguiente subsección.


	Registrar la extensión en un repositorio de Composer como puede ser Packagist [https://packagist.org/], para que
los otros usuarios puedan encontrarlo e instalarla mediante Composer.





composer.json 

Cada paquete de Composer tiene que tener un archivo composer.json en su directorio raíz. El archivo contiene los
metadatos relacionados con el paquete. Se pueden encontrar especificaciones completas acerca de este fichero en el
Manual de Composer [https://getcomposer.org/doc/01-basic-usage.md#composer-json-project-setup]. El siguiente ejemplo
muestra el archivo composer.json para la extensión yiisoft/yii2-imagine:

{
    // nombre del paquete
    "name": "yiisoft/yii2-imagine",

    // tipo de paquete
    "type": "yii2-extension",

    "description": "The Imagine integration for the Yii framework",
    "keywords": ["yii2", "imagine", "image", "helper"],
    "license": "BSD-3-Clause",
    "support": {
        "issues": "https://github.com/yiisoft/yii2/issues?labels=ext%3Aimagine",
        "forum": "http://www.yiiframework.com/forum/",
        "wiki": "http://www.yiiframework.com/wiki/",
        "irc": "irc://irc.freenode.net/yii",
        "source": "https://github.com/yiisoft/yii2"
    },
    "authors": [
        {
            "name": "Antonio Ramirez",
            "email": "amigo.cobos@gmail.com"
        }
    ],

    // dependencias del paquete
    "require": {
        "yiisoft/yii2": "~2.0.0",
        "imagine/imagine": "v0.5.0"
    },

    // especificaciones de la autocarga de clases
    "autoload": {
        "psr-4": {
            "yii\\imagine\\": ""
        }
    }
}






Nombre del Paquete

Cada paquete Composer debe tener un nombre de paquete que identifique de entre todos los otros paquetes. El formato
del nombre del paquete es nombreProveedor/nombreProyecto. Por ejemplo, el nombre de paquete yiisoft/yii2-imagine,
el nombre del proveedor es yiisoft y el nombre del proyecto es yii2-imagine.

NO se puede usar el nombre de proveedor yiisoft ya que está reservado para el usarse para el código del núcleo
(core) de Yii.

Recomendamos usar el prefijo yii2- al nombre del proyecto para paquetes que representen extensiones de Yii 2, por
ejemplo, minombre/yii2-miwidget. Esto permite ver a los usuarios más fácilmente si un paquete es una extensión de
Yii 2.




Tipo de Paquete 

Es importante que se especifique el tipo del paquete de la extensión como yii2-extension para que el paquete pueda
ser reconocido como una extensión de Yii cuando se esté instalando.

Cuando un usuario ejecuta composer install para instalar una extensión, el archivo vendor/yiisoft/extensions.php
se actualizará automáticamente para incluir la información acerca de la nueva extensión. Desde este archivo, las
aplicaciones Yii pueden saber que extensiones están instaladas. (se puede acceder a esta información mediante
[[yii\base\Application::extensions]]).




Dependencias 

La extensión depende de Yii (por supuesto). Por ello se debe añadir (yiisoft/yii2) a la lista en la entrada
required del archivo composer.json. Si la extensión también depende de otras extensiones o de terceras
(third-party) librerías, también se deberán listar. Debemos asegurarnos de anotar las restricciones de versión
apropiadas (ej. 1.*, @stable) para cada paquete dependiente. Se deben usar dependencias estables en versiones
estables de nuestras extensiones.

La mayoría de paquetes JavaScript/CSS se gestionan usando Bower [http://bower.io/] y/o NPM [https://www.npmjs.org/],
en lugar de Composer. Yii utiliza el Composer asset plugin [https://github.com/francoispluchino/composer-asset-plugin]
para habilitar la gestión de estos tipos de paquetes a través de Composer. Si la extensión depende de un paquete
Bower, se puede, simplemente, añadir la dependencia de el archivo composer.json como se muestra a continuación:

{
    // dependencias del paquete
    "require": {
        "bower-asset/jquery": ">=1.11.*"
    }
}





El código anterior declara que tela extensión depende del paquete Bower jquery. En general, se puede usar
bower-asset/NombrePaquete para referirse al paquete en composer.json, y usar npm-asset/NombrePaquete para
referirse a paquetes NPM. Cuando Composer instala un paquete Bower o NPM, de forma predeterminada los contenidos de
los paquetes se instalarán en @vendor/bower/NombrePaquete y @vendor/npm/Packages respectivamente. Podemos hacer
referencia a estos dos directorios usando los alias @bower/NombrePaquete and @npm/NombrePaquete.

Para obtener más detalles acerca de la gestión de assets, puede hacerse referencia a la sección
Assets.




Autocarga de Clases 

Para que se aplique la autocarga a clases propias mediante la autocarga de clases de Yii o la autocarga de clases de
Composer, debemos especificar la entrada autoload en el archivo composer.json como se puede ver a continuación:

{
    // ....

    "autoload": {
        "psr-4": {
            "yii\\imagine\\": ""
        }
    }
}





Se pueden añadir una o más namespaces raíz y sus correspondientes rutas de archivo.

Cuando se instala la extensión en una aplicación, Yii creara un alias para
todos los namespaces raíz, que harán referencia al directorio correspondiente del namespace. Por ejemplo, la anterior
declaración autoload corresponderá a un alias llamado @yii/imagine.






Prácticas Recomendadas 

Dado que las extensiones están destinadas a ser utilizadas por otras personas, a menudo es necesario hacer un esfuerzo
extra durante el desarrollo. A continuación presentaremos algunas practicas comunes y recomendadas para la creación de
extensiones de alta calidad.


Namespaces 

Para evitar colisiones de nombres y permitir que las clases usen la autocarga en extensiones propias, se deben usar
namespaces y nombres de clase siguiendo el estándar PSR-4 [http://www.php-fig.org/psr/psr-4/] o el
estándar PSR-0 [http://www.php-fig.org/psr/psr-0/].

Los namespaces de clases propias deben empezar por NombreProveedor\NombreExtension donde NombreExtension es
similar al nombre del paquete pero este no debe contener el prefijo yii2-. Por ejemplo, para la extensión
yiisoft/yii2-imagine, usamos yii\imagine como namespace para sus clases.

No se puede usar yii, yii2 o yiisoft como nombre de proveedor. Estos nombres están reservados para usarse en el
código del núcleo de Yii.




Clases de Bootstrapping 

A veces, se puede querer que nuestras extensiones ejecuten algo de código durante el
proceso de bootstrapping de una aplicación. Por ejemplo, queremos que nuestra extensión
responda a un evento beginRequest de la aplicación para ajustar alguna configuración de entorno. Aunque podemos
indicar a los usuarios de la extensión que añadan nuestro gestor de eventos para que capture beginRequest, es mejor
hacerlo automáticamente.

Para llevarlo a cabo, podemos crear una clase de bootstrpping para implementar [[yii\base\BootstrapInterface]]. Por
ejemplo,

namespace myname\mywidget;

use yii\base\BootstrapInterface;
use yii\base\Application;

class MyBootstrapClass implements BootstrapInterface
{
    public function bootstrap($app)
    {
        $app->on(Application::EVENT_BEFORE_REQUEST, function () {
             // do something here
        });
    }
}





Entonces se tiene que añadir esta clase en la lista del archivo composer.json de la extensión propia como se muestra
a continuación,

{
    // ...

    "extra": {
        "bootstrap": "myname\\mywidget\\MyBootstrapClass"
    }
}





Cuando se instala la extensión en la aplicación, Yii automáticamente instancia la clase de bootstrapping y llama a su
método [[yii\base\BootstrapInterface::bootstrap()|bootstrap()]] durante el proceso de bootstrapping para cada petición.




Trabajar con Bases de Datos

Puede darse el caso en que la extensión necesite acceso a bases de datos. No se debe asumir que las aplicaciones que
usen la extensión siempre usarán Yii::$db como conexión de BBDD. Se debe crear una propiedad db para las clases
que requieran acceso a BBDD. La propiedad permitirá a los usuarios de nuestra extensión elegir que conexión quieren
que use nuestra extensión. Como ejemplo, se puede hacer referencia a la clase [[yii\caching\DbCache]] y observar como
declara y utiliza la propiedad db.

Si nuestra extensión necesita crear tablas especificas en la BBDD o hacer cambios en el esquema de la BBDD, debemos:


	proporcionar migraciones para manipular el esquema de la BBDD, en lugar de utilizar archivos con
sentencias SQL;


	intentar hacer las migraciones aplicables a varios Sistemas de Gestión de BBDD;


	evitar usar Active Record en las migraciones.







Uso de Assets 

Si nuestra aplicación es un widget o un módulo, hay posibilidades de que requiera assets para
poder funcionar. Por ejemplo, un modulo puede mostrar algunas páginas de que contengan archivos JavaScript y/o CSS.
Debido a que los archivos de las extensiones se encuentran en la misma ubicación y no son accesibles por la Web cuando
se instalan en una aplicación, hay dos maneras de hacer los assets accesibles vía Web:


	pedir a los usuarios que copien manualmente los archivos assets en un directorio público de la Web.


	declarar un asset bundle dejar que el mecanismo de publicación se encargue automáticamente de
copiar los archivos que se encuentren en el asset bundle a un directorio Web público.




Recomendamos el uso de la segunda propuesta para que la extensión sea más fácil de usar para usuarios. Se puede hacer
referencia a la sección Assets para encontrar más detalles acerca de como trabajar con ellos.




Internacionalización y Localización 

Puede que las extensiones propias se usen en aplicaciones que den soporte a diferentes idiomas! Por ello, si nuestra
extensión muestra contenido a los usuarios finales, se debe intentar internacionalizar y localizar
la extensión. En particular,


	Si la extensión muestra mensajes destinados a usuarios finales, los mensajes deben mostrarse usando Yii::t() para
que puedan ser traducidos. Los mensajes dirigidos a desarrolladores (como mensajes de excepciones internas) no
necesitan ser traducidos.


	Si la extensión muestra números, fechas, etc., deben ser formateados usando [[yii\i18n\Formatter]] siguiendo las
reglas de formato adecuadas.




Se pueden encontrar más detalles en la sección internacionalización.




Testing 

Para conseguir que las aplicaciones propias se ejecuten sin problemas y no causen problemas a otros usuarios, deben
ejecutarse test a las extensiones antes de ser publicadas al público.

Se recomienda crear varios casos de prueba (test cases) para probar el código de nuestra extensión en lugar de
ejecutar pruebas manuales. Cada vez que se vaya a lanzar una nueva versión, simplemente podemos ejecutar estos casos
de prueba para asegurarnos de que todo está correcto. Yii proporciona soporte para testing que puede ayudar a escribir
pruebas unitarias (unit tests), pruebas de aceptación (acceptance tests) y pruebas de funcionalidad
(functionality tests), más fácilmente. Se pueden encontrar más detalles en la sección Testing.




Versiones 

Se debe asignar un número de versión cada vez que se lance una nueva distribución. (ej. 1.0.1). Recomendamos
seguir la práctica Versionamiento Semántico [http://semver.org/lang/es/] para determinar que números se deben usar.




Lanzamientos 

Para dar a conocer nuestra extensión a terceras personas, debemos lanzara al público.

Si es la primera vez que se realiza un lanzamiento de una extensión, debemos registrarla en un repositorio Composer
como puede ser Packagist [https://packagist.org/]. Después de estos, todo lo que tenemos que hacer es crear una
etiqueta (tag) (ej. v1.0.1) en un repositorio con VCS (Sistema de Control de Versiones) y notificarle al
repositorio Composer el nuevo lanzamiento. Entonces la gente podrá encontrar el nuevo lanzamiento y instalar o
actualizar la extensión a mediante el repositorio Composer.

En los lanzamientos de una extensión, además de archivos de código, también se debe considerar la inclusión los puntos
mencionados a continuación para facilitar a otra gente el uso de nuestra extensión:


	Un archivo léame (readme) en el directorio raíz: describe que hace la extensión y como instalarla y utilizarla.
Recomendamos que se escriba en formato Markdown [http://daringfireball.net/projects/markdown/] y llamarlo
readme.md.


	Un archivo de registro de cambios (changelog) en el directorio raíz: enumera que cambios se realizan en cada
lanzamiento. El archivo puede escribirse en formato Markdown y llamarlo changelog.md.


	Un archivo de actualización (upgrade) en el directorio raíz: da instrucciones de como actualizar desde lanzamientos
antiguos de la extensión. El archivo puede escribirse en formato Markdown y llamarlo upgrade.md.


	Tutoriales, demostraciones, capturas de pantalla, etc: son necesarios si nuestra extensión proporciona muchas
características que no pueden ser detalladas completamente en el archivo readme.


	Documentación de API: el código debe documentarse debidamente para que otras personas puedan leerlo y entenderlo
fácilmente. Más información acerca de documentación de código en
archivo de Objetos de clase [https://github.com/yiisoft/yii2/blob/master/framework/base/BaseObject.php]





Info: Los comentarios de código pueden ser escritos en formato Markdown. La extensión yiisoft/yii2-apidoc
proporciona una herramienta para generar buena documentación de API basándose en los comentarios del código.





Info: Aunque no es un requerimiento, se recomienda que la extensión se adhiera a ciertos estilos de
codificación. Se puede hacer referencia a
estilo de código del núcleo del framework [https://github.com/yiisoft/yii2/wiki/Core-framework-code-style] para
obtener más detalles.











Extensiones del Núcleo 

Yii proporciona las siguientes extensiones del núcleo que son desarrolladas y mantenidas por el equipo de desarrollo
de Yii. Todas ellas están registradas en Packagist [https://packagist.org/] y pueden ser instaladas fácilmente como
se describe en la subsección Uso de Extensiones


	yiisoft/yii2-apidoc [https://github.com/yiisoft/yii2-apidoc]:proporciona un generador de documentación de APIs
extensible y de de alto rendimiento.


	yiisoft/yii2-authclient [https://github.com/yiisoft/yii2-authclient]:proporciona un conjunto de clientes de
autorización tales como el cliente OAuth2 de Facebook, el cliente GitHub OAuth2.


	yiisoft/yii2-bootstrap [https://github.com/yiisoft/yii2-bootstrap]: proporciona un conjunto de widgets que
encapsulan los componentes y plugins de Bootstrap [http://getbootstrap.com/].


	yiisoft/yii2-codeception [https://github.com/yiisoft/yii2-codeception]: proporciona soporte de testing basado en
Codeception [http://codeception.com/].


	yiisoft/yii2-debug [https://github.com/yiisoft/yii2-debug]: proporciona soporte de depuración para aplicaciones
Yii. Cuando se usa esta extensión, aparece una barra de herramientas de depuración en la parte inferior de cada
página. La extensión también proporciona un conjunto de páginas para mostrar información detallada de depuración.


	yiisoft/yii2-elasticsearch [https://github.com/yiisoft/yii2-elasticsearch]: proporciona soporte para usar
Elasticsearch [http://www.elasticsearch.org/]. Incluye soporte básico para realizar consultas/búsquedas y también
implementa patrones de Active Record que permiten y permite guardar los active records en
Elasticsearch.


	yiisoft/yii2-faker [https://github.com/yiisoft/yii2-faker]: proporciona soporte para usar
Faker [https://github.com/fzaninotto/Faker] y generar datos automáticamente.


	yiisoft/yii2-gii [https://github.com/yiisoft/yii2-gii]: proporciona un generador de código basado den Web altamente
extensible y que puede usarse para generar modelos, formularios, módulos, CRUD, etc. rápidamente.


	yiisoft/yii2-httpclient [https://github.com/yiisoft/yii2-httpclient]:
provides an HTTP client.


	yiisoft/yii2-imagine [https://github.com/yiisoft/yii2-imagine]: proporciona funciones comunes de manipulación de
imágenes basadas en Imagine [http://imagine.readthedocs.org/].


	yiisoft/yii2-jui [https://github.com/yiisoft/yii2-jui]: proporciona un conjunto de widgets que encapsulan las
iteraciones y widgets de JQuery UI [http://jqueryui.com/].


	yiisoft/yii2-mongodb [https://github.com/yiisoft/yii2-mongodb]: proporciona soporte para utilizar
MongoDB [http://www.mongodb.org/]. incluye características como consultas básicas, Active Record, migraciones,
caching, generación de código, etc.


	yiisoft/yii2-redis [https://github.com/yiisoft/yii2-redis]: proporciona soporte para utilizar
redis [http://redis.io/]. incluye características como consultas básicas, Active Record, caching, etc.


	yiisoft/yii2-smarty [https://github.com/yiisoft/yii2-smarty]: proporciona un motor de plantillas basado en
Smarty [http://www.smarty.net/].


	yiisoft/yii2-sphinx [https://github.com/yiisoft/yii2-sphinx]: proporciona soporte para utilizar
Sphinx [http://sphinxsearch.com]. incluye características como consultas básicas, Active Record, code generation,
etc.


	yiisoft/yii2-swiftmailer [https://github.com/yiisoft/yii2-swiftmailer]: proporciona características de envío de
correos electrónicos basadas en swiftmailer [http://swiftmailer.org/].


	yiisoft/yii2-twig [https://github.com/yiisoft/yii2-twig]: proporciona un motor de plantillas basado en
Twig [http://twig.sensiolabs.org/].










          

      

      

    

  

  
    
    Filtros
    

    
 
  

    
      
          
            
  
Filtros

Los Filtros (filters) son objetos que se ejecutan antes y/o después de las
acciones de controlador. Por ejemplo, un filtro de control de acceso puede
ejecutarse antes de las acciones para asegurar que un usuario final tiene permitido acceder a estas; un filtro de
compresión de contenido puede ejecutarse después de las acciones para comprimir el contenido de la respuesta antes de
ser enviado al usuario final.

Un filtro puede consistir en un pre-filtro (lógica de filtrado aplicada antes de las acciones) y/o un post-filtro
(lógica de filtro aplicada después de las acciones).


Uso de Filtros 

Los filtros son esencialmente un tipo especial de comportamientos (behaviors).
Por lo tanto, usar filtros es lo mismo que uso de comportamientos. Se
pueden declarar los filtros en una clase controlador sobrescribiendo el método
[[yii\base\Controller::behaviors()|behaviors()]] como en el siguiente ejemplo:

public function behaviors()
{
    return [
        [
            'class' => 'yii\filters\HttpCache',
            'only' => ['index', 'view'],
            'lastModified' => function ($action, $params) {
                $q = new \yii\db\Query();
                return $q->from('user')->max('updated_at');
            },
        ],
    ];
}





Por defecto, los filtros declarados en una clase controlador, serán aplicados en todas las acciones de este
controlador. Sin embargo, se puede especificar explícitamente en que acciones serán aplicadas configurando la
propiedad [[yii\base\ActionFilter::only|only]]. En el anterior ejemplo, el filtro ‘HttpCache’ solo se aplica a las
acciones ‘index’ y ‘view’. También se puede configurar la propiedad [[yii\base\ActionFilter::except|except]] para
prevenir que ciertas acciones sean filtradas.

Además de en los controladores, se pueden declarar filtros en módulos o
aplicaciones.
Una vez hecho, los filtros serán aplicados a todas las acciones de controlador que pertenezcan a ese modulo o
aplicación, a menos que las propiedades [[yii\base\ActionFilter::only|only]] y [[yii\base\ActionFilter::except|except]]
sean configuradas como se ha descrito anteriormente.


Note: Cuando se declaran filtros en módulos o aplicaciones, deben usarse rutas en
lugar de IDs de acciones en las propiedades [[yii\base\ActionFilter::only|only]] y
[[yii\base\ActionFilter::except|except]]. Esto es debido a que los IDs de acciones no pueden especificar acciones
dentro del ámbito de un modulo o una aplicación por si mismos.




Cuando se configuran múltiples filtros para una misma acción, se aplican de acuerdo a las siguientes reglas:


	Pre-filtrado


	Aplica filtros declarados en la aplicación en orden de aparición en behaviors().


	Aplica filtros declarados en el modulo en orden de aparición en behaviors().


	Aplica filtros declarados en el controlador en orden de aparición en behaviors().


	Si hay algún filtro que cancele la ejecución de la acción, los filtros(tanto pre-filtros como post-filtros)
posteriores a este no serán aplicados.






	Ejecución de la acción si pasa el pre-filtro.


	Post-filtrado


	Aplica los filtros declarados en el controlador en el controlador en orden inverso al de aparición en
behaviors().


	Aplica los filtros declarados en el modulo en orden inverso al de aparición en behaviors().


	Aplica los filtros declarados en la aplicación en orden inverso al de aparición en behaviors().








##Creación de Filtros 

Para crear un nuevo filtro de acción, hay que extender a [[yii\base\ActionFilter]] y sobrescribir los métodos
[[yii\base\ActionFilter::beforeAction()|beforeAction()]] y/o [[yii\base\ActionFilter::afterAction()|afterAction()]].
El primero será ejecutado antes de la acción mientras que el segundo lo hará una vez ejecutada la acción.
El valor devuelto por [[yii\base\ActionFilter::beforeAction()|beforeAction()]] determina si una acción debe ejecutarse
o no. Si el valor es falso, los filtros posteriores a este serán omitidos y la acción no será ejecutada.

El siguiente ejemplo muestra un filtro que registra el tiempo de ejecución de una acción:

namespace app\components;

use Yii;
use yii\base\ActionFilter;

class ActionTimeFilter extends ActionFilter
{
    private $_startTime;

    public function beforeAction($action)
    {
        $this->_startTime = microtime(true);
        return parent::beforeAction($action);
    }

    public function afterAction($action, $result)
    {
        $time = microtime(true) - $this->_startTime;
        Yii::debug("Action '{$action->uniqueId}' spent $time second.");
        return parent::afterAction($action, $result);
    }
}








Filtros del Núcleo 

Yii proporciona una serie de filtros de uso general, que se encuentran principalmente en yii\filters namespace. En
adelante introduciremos estos filtros brevemente.


[[yii\filters\AccessControl|AccessControl]] 

AccessControl proporciona control de acceso simple basado en un conjunto de [[yii\filters\AccessControl::rules|rules]].
En concreto, antes de ejecutar una acción, AccessControl examinará la lista de reglas y encontrará la primera que
concuerde con las actuales variables de contexto(tales como dirección IP de usuario, estado de inicio de sesión del
usuario, etc.). La regla que concuerde dictara si se permite o deniega la ejecución de la acción solicitada. Si
ninguna regla concuerda, el acceso será denegado.

El siguiente ejemplo muestra como habilitar el acceso a los usuarios autenticados a las acciones ‘create’ y ‘update’
mientras deniega a todos los otros usuarios el acceso a estas dos acciones.

use yii\filters\AccessControl;

public function behaviors()
{
    return [
        'access' => [
            'class' => AccessControl::className(),
            'only' => ['create', 'update'],
            'rules' => [
                // permitido para usuarios autenticados
                [
                    'allow' => true,
                    'roles' => ['@'],
                ],
                // todo lo demás se deniega por defecto
            ],
        ],
    ];
}





Para conocer más detalles acerca del control de acceso en general, refiérase a la sección de
Autorización




Filtros del Método de Autenticación 

Los filtros del método de autenticación se usan para autenticar a un usuario utilizando varios métodos, tales como la
Autenticación de acceso básico HTTP [http://es.wikipedia.org/wiki/Autenticaci%C3%B3n_de_acceso_b%C3%A1sica],
Oauth 2 [http://oauth.net/2/]. Estas clases de filtros se encuentran en el espacio de nombres yii\filters\auth.

El siguiente ejemplo muestra como usar [[yii\filters\auth\HttpBasicAuth]] para autenticar un usuario usando un token
de acceso basado en el método de Autenticación de acceso básico HTTP. Tenga en cuenta que para que esto funcione, la
clase [[yii\web\User::identityClass|user identity class]] debe implementar el método
[[yii\web\IdentityInterface::findIdentityByAccessToken()|findIdentityByAccessToken()]].

use yii\filters\auth\HttpBasicAuth;

public function behaviors()
{
    return [
        'basicAuth' => [
            'class' => HttpBasicAuth::className(),
        ],
    ];
}





Los filtros del método de autenticación se usan a menudo para implementar APIs RESTful. Para más detalles, por favor
refiérase a la sección Autenticación RESTful.

[[yii\filters\ContentNegotiator|ContentNegotiator]]
El filtro ContentNegotiator da soporte a la negociación del formato de respuesta y a la negociación del idioma de la
aplicación. Este determinara el formato de respuesta y/o el idioma examinando los parámetros ‘GET’ y ‘Accept’ del
encabezado HTTP.

En el siguiente ejemplo, el filtro ContentNegotiator se configura para soportar los formatos de respuesta ‘JSON’ y
‘XML’, y los idiomas Ingles(Estados Unidos) y Alemán.

use yii\filters\ContentNegotiator;
use yii\web\Response;

public function behaviors()
{
    return [
        [
            'class' => ContentNegotiator::className(),
            'formats' => [
                'application/json' => Response::FORMAT_JSON,
                'application/xml' => Response::FORMAT_XML,
            ],
            'languages' => [
                'en-US',
                'de',
            ],
        ],
    ];
}





Los formatos de respuesta y los idiomas a menudo precisan ser determinados mucho antes durante el
ciclo de vida de la aplicación. Por esta razón, ContentNegotiator
esta diseñado de tal manera que se pueda usar como componente de bootstrapping
así como de filtro. Por ejemplo, ContentNegotiator se puede configurar en la configuración de la aplicación como en el
siguiente ejemplo:

use yii\filters\ContentNegotiator;
use yii\web\Response;

[
    'bootstrap' => [
        [
            'class' => ContentNegotiator::className(),
            'formats' => [
                'application/json' => Response::FORMAT_JSON,
                'application/xml' => Response::FORMAT_XML,
            ],
            'languages' => [
                'en-US',
                'de',
            ],
        ],
    ],
];






Info: En el caso que el tipo preferido de contenido y el idioma no puedan ser determinados por una petición,
será utilizando el primer elemento de formato e idioma de la lista [[formats]] y [[lenguages]].







[[yii\filters\HttpCache|HttpCache]] 

HttpCache implementa un almacenamiento caché del lado del cliente utilizando las cabeceras HTTP ‘Last-Modified’ y
‘Etag’. Por ejemplo:

use yii\filters\HttpCache;

public function behaviors()
{
    return [
        [
            'class' => HttpCache::className(),
            'only' => ['index'],
            'lastModified' => function ($action, $params) {
                $q = new \yii\db\Query();
                return $q->from('user')->max('updated_at');
            },
        ],
    ];
}





Para conocer más detalles acerca de HttpCache refiérase a la sección almacenamiento caché HTTP.




[[yii\filters\PageCache|PageCache]] 

PageCache implementa una caché por parte del servidor de paginas enteras. En el siguiente ejemplo, se aplica PageCache
a la acción ‘index’ para generar una cache de la pagina entera durante 60 segundos como máximo o hasta que el contador
de entradas de la tabla ‘post’ varíe. También se encarga de almacenar diferentes versiones de la pagina dependiendo
del idioma de la aplicación seleccionado.

use yii\filters\PageCache;
use yii\caching\DbDependency;

public function behaviors()
{
    return [
        'pageCache' => [
            'class' => PageCache::className(),
            'only' => ['index'],
            'duration' => 60,
            'dependency' => [
                'class' => DbDependency::className(),
                'sql' => 'SELECT COUNT(*) FROM post',
            ],
            'variations' => [
                \Yii::$app->language,
            ]
        ],
    ];
}





Por favor refiérase a Caché de Páginas para obtener más detalles acerca de como usar PageCache.




[[yii\filters\RateLimiter|RateLimiter]] 

RateLimiter implementa un algoritmo de para limitar la tasa de descarga basándose en
leaky bucket algorithm [http://en.wikipedia.org/wiki/Leaky_bucket]. Este se utiliza sobre todo en la implementación
de APIs RESTful. Por favor, refiérase a la sección limite de tasa para obtener más detalles
acerca de el uso de este filtro.




[[yii\filters\VerbFilter|VerbFilter]] 

VerbFilter comprueba que los métodos de las peticiones HTTP estén permitidas para las acciones solicitadas. Si no
están permitidas, lanzara una excepción de tipo HTTP 405. En el siguiente ejemplo, se declara VerbFilter para
especificar el conjunto típico métodos de petición permitidos para acciones CRUD.

use yii\filters\VerbFilter;

public function behaviors()
{
    return [
        'verbs' => [
            'class' => VerbFilter::className(),
            'actions' => [
                'index'  => ['get'],
                'view'   => ['get'],
                'create' => ['get', 'post'],
                'update' => ['get', 'put', 'post'],
                'delete' => ['post', 'delete'],
            ],
        ],
    ];
}








[[yii\filters\Cors|Cors]] 

CORS [https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS] es un mecanismo que permite a diferentes
recursos (por ejemplo: fuentes, JavaScript, etc) de una pagina Web ser solicitados por otro dominio diferente al
dominio que esta haciendo la petición. En particular las llamadas AJAX de JavaScript pueden utilizar el mecanismo
XMLHttpRequest. De otro modo esta petición de dominio cruzado seria prohibida por los navegadores Web, por la misma
pollita de seguridad de origen. CORS establece la manera en que el navegador y el servidor pueden interaccionar para
determinar si se permite o no la petición de dominio cruzado. El filtro [[yii\filters\Cors|Cors filter]] puede ser
definido antes de los filtros Autenticación / Autorización para asegurar que las cabeceras de CORS siempre serán
enviadas.

use yii\filters\Cors;
use yii\helpers\ArrayHelper;

public function behaviors()
{
    return ArrayHelper::merge([
        [
            'class' => Cors::className(),
        ],
    ], parent::behaviors());
}





El filtrado CORS puede ser ajustado utilizando la propiedad ‘cors’.


	cors['Origin']: array utilizado para definir los orígenes permitidos. Puede ser ['*'] (everyone) o
['http://www.myserver.net', 'http://www.myotherserver.com']. Por defecto ['*'].


	cors['Access-Control-Request-Method']: array de los verbos permitidos como ['GET', 'OPTIONS', 'HEAD'].  Por
defecto ['GET', 'POST', 'PUT', 'PATCH', 'DELETE', 'HEAD', 'OPTIONS'].


	cors['Access-Control-Request-Headers']: array de las cabeceras permitidas. Puede ser ['*'] todas las cabeceras o
algunas especificas ['X-Request-With']. Por defecto ['*'].


	cors['Access-Control-Allow-Credentials']: define si la petición actual puede hacer uso de credenciales. Puede ser
true, false o null (not set). Por defecto null.


	cors['Access-Control-Max-Age']: define el tiempo de vida del la petición pref-flight. Por defecto 86400. Por
ejemplo, habilitar CORS para el origen: http://www.myserver.net con métodos GET, HEAD y OPTIONS:




use yii\filters\Cors;
use yii\helpers\ArrayHelper;

public function behaviors()
{
    return ArrayHelper::merge([
        [
            'class' => Cors::className(),
            'cors' => [
                'Origin' => ['http://www.myserver.net'],
                'Access-Control-Request-Method' => ['GET', 'HEAD', 'OPTIONS'],
            ],
        ],
    ], parent::behaviors());
}





Se pueden ajustar las cabeceras de CORS sobrescribiendo los parámetros por defecto de una acción. Por ejemplo añadir
Access-Control-Allow-Credentials a la acción ‘login’, se podría hacer así:

use yii\filters\Cors;
use yii\helpers\ArrayHelper;

public function behaviors()
{
    return ArrayHelper::merge([
        [
            'class' => Cors::className(),
            'cors' => [
                'Origin' => ['http://www.myserver.net'],
                'Access-Control-Request-Method' => ['GET', 'HEAD', 'OPTIONS'],
            ],
            'actions' => [
                'login' => [
                    'Access-Control-Allow-Credentials' => true,
                ]
            ]
        ],
    ], parent::behaviors());
}













          

      

      

    

  

  
    
    Modelos
    

    
 
  

    
      
          
            
  
Modelos

Los modelos forman parte de la arquitectura
MVC [http://es.wikipedia.org/wiki/Modelo%E2%80%93vista%E2%80%93controlador]. Son objetos que representan datos de
negocio, reglas y lógica.

Se pueden crear clases modelo extendiendo a [[yii\base\Model]] o a sus clases hijas. La clase base [[yii\base\Model]]
soporta muchas características útiles:


	Atributos: representan los datos de negocio y se puede acceder a ellos como propiedades normales de
un objeto o como elementos de un array;


	Etiquetas de atributo: especifica la etiqueta a mostrar para los atributos;


	Asignación masiva: soporta la asignación múltiple de atributos en un único paso;


	validación: asegura la validez de los datos de entrada basándose en reglas declaradas;


	Exportación de datos: permite que los datos del modelo sean exportados en términos de arrays con
formatos personalizables.




La clase ‘modelo’ también es una base para modelos más avanzados, tales como Active Records.


Info: No es obligatorio basar las clases modelo en [[yii\base\Model]]. Sin embargo, debido a que hay muchos
componentes de Yii construidos para dar soporte a [[yii\base\Model]], por lo general, es la clase base preferible
para un modelo.





Atributos 

Los modelos representan los datos de negocio en términos de atributos. Cada atributos es como una propiedad
públicamente accesible de un modelo. El método [[yii\base\Model::attributes()]] especifica qué atributos tiene la
clase modelo.

Se puede acceder a un atributo como se accede a una propiedad de un objeto normal.

$model = new \app\models\ContactForm;

// "name" es un atributo de ContactForm
$model->name = 'example';
echo $model->name;





También se puede acceder a los atributos como se accede a los elementos de un array, gracias al soporte para
ArrayAccess [http://php.net/manual/es/class.arrayaccess.php] y
ArrayIterator [http://php.net/manual/es/class.arrayiterator.php] que brinda [[yii\base\Model]]:

$model = new \app\models\ContactForm;

// acceder a atributos como elementos de array
$model['name'] = 'example';
echo $model['name'];

// iterar entre atributos
foreach ($model as $name => $value) {
    echo "$name: $value\n";
}








Definir Atributos 

Por defecto, si un modelo extiende directamente a [[yii\base\Model]], todas sus variables miembro no estáticas son
atributos. Por ejemplo, la siguiente clase modelo ‘ContactForm’ tiene cuatro atributos: ‘name’, ‘email’, ‘subject’,
‘body’. El modelo ‘ContactForm’ se usa para representar los datos de entrada recibidos desde un formulario HTML.

namespace app\models;

use yii\base\Model;

class ContactForm extends Model
{
    public $name;
    public $email;
    public $subject;
    public $body;
}





Se puede sobrescribir [[yii\base\Model::attributes()]] para definir los atributos de diferente manera. El método debe
devolver los nombres de los atributos de un modelo. Por ejemplo [[yii\db\ActiveRecord]] lo hace devolviendo el nombre
de las columnas de la tabla de la base de datos asociada como el nombre de sus atributos. Hay que tener en cuenta que
también puede necesitar sobrescribir los métodos mágicos como __get(), __set() de modo que se puede acceder a los
atributos como a propiedades de objetos normales.




Etiquetas de atributo 

Cuando se muestran valores o se obtienen entradas para atributos, normalmente se necesita mostrar etiquetas asociadas
a los atributos. Por ejemplo, dado un atributo con nombre ‘segundoApellido’, es posible que se quiera mostrar la
etiqueta ‘Segundo Apellido’ ya que es más fácil de interpretar por el usuario final en lugares como campos de
formularios y en mensajes de error.

Se puede obtener la etiqueta de un atributo llamando a [[yii\base\Model::getAttributeLabel()]]. Por ejemplo:

$model = new \app\models\ContactForm;

// muestra "Name"
echo $model->getAttributeLabel('name');





Por defecto, una etiqueta de atributo se genera automáticamente a partir del nombre de atributo. La generación se hace
con el método [[yii\base\Model::generateAttributeLabel()]]. Este convertirá los nombres de variables de tipo
camel-case en múltiples palabras con la primera letra de cada palabra en mayúsculas. Por ejemplo ‘usuario’ se
convertirá en ‘Nombre’, y ‘primerApellido’ se convertirá en ‘Primer Apellido’.
Si no se quieren usar las etiquetas generadas automáticamente, se puede sobrescribir
[[yii\base\Model::attributeLabels()]] a una declaración de etiquetas de atributo especifica. Por ejemplo:

namespace app\models;

use yii\base\Model;

class ContactForm extends Model
{
    public $name;
    public $email;
    public $subject;
    public $body;

    public function attributeLabels()
    {
        return [
            'name' => 'Your name',
            'email' => 'Your email address',
            'subject' => 'Subject',
            'body' => 'Content',
        ];
    }
}





Para aplicaciones con soporte para múltiples idiomas, se puede querer traducir las etiquetas de los atributos. Esto se
puede hacer en el método [[yii\base\Model::attributeLabels()|attributeLabels()]], como en el siguiente ejemplo:

public function attributeLabels()
{
    return [
        'name' => \Yii::t('app', 'Your name'),
        'email' => \Yii::t('app', 'Your email address'),
        'subject' => \Yii::t('app', 'Subject'),
        'body' => \Yii::t('app', 'Content'),
    ];
}





Incluso se puede definir etiquetas de atributo condicionales. Por ejemplo, basándose en el escenario en
que se esta usando el modelo, se pueden devolver diferentes etiquetas para un mismo atributo.


Info: Estrictamente hablando, los atributos son parte de las vistas. Pero declarar las
etiquetas en los modelos, a menudo, es muy conveniente y puede generar a un código muy limpio y reutilizable.







Escenarios 

Un modelo puede usarse en diferentes escenarios. Por ejemplo, un modelo ‘Usuario’, puede ser utilizado para recoger
entradas de inicio de sesión de usuarios, pero también puede usarse para generar usuarios. En diferentes escenarios,
un modelo puede usar diferentes reglas de negocio y lógica. Por ejemplo, un atributo ‘email’ puede ser requerido
durante un registro de usuario, pero no ser necesario durante el inicio de sesión del mismo.

Un modelo utiliza la propiedad [[yii\base\Model::scenario]] para mantener saber en qué escenario se esta usando. Por
defecto, un modelo soporta sólo un escenario llamado ‘default’. El siguiente código muestra dos maneras de establecer
el escenario en un modelo.

// el escenario se establece como una propiedad
$model = new User;
$model->scenario = 'login';

// el escenario se establece mediante configuración
$model = new User(['scenario' => 'login']);





Por defecto, los escenarios soportados por un modelo se determinan por las reglas de validación
declaradas en el modelo. Sin embargo, se puede personalizar este comportamiento sobrescribiendo el método
[[yii\base\Model::scenarios()]], como en el siguiente ejemplo:

namespace app\models;

use yii\db\ActiveRecord;

class User extends ActiveRecord
{
    public function scenarios()
    {
        return [
            'login' => ['username', 'password'],
            'register' => ['username', 'email', 'password'],
        ];
    }
}






Info: En el anterior y en los siguientes ejemplos, las clases modelo extienden a [[yii\db\ActiveRecord]]
porque el uso de múltiples escenarios normalmente sucede con clases de Active Records.




El método ‘scenarios()’ devuelve un array cuyas claves son el nombre de escenario y los valores correspondientes a los
atributos activos. Un atributo activo puede ser asignado masivamente y esta sujeto a
validación. En el anterior ejemplo, los atributos ‘username’ y ‘password’ están activados en el
escenario ‘login’; mientras que en el escenario ‘register’, el atributo ‘email’ esta activado junto con ‘username’ y
‘password’.

La implementación por defecto de los ‘scenarios()’ devolverá todos los escenarios encontrados en el método de
declaración de las reglas de validación [[yii\base\Model::rules()]]. Cuando se sobrescribe ‘scenarios()’, si se quiere
introducir nuevos escenarios además de los predeterminados, se puede hacer como en el siguiente ejemplo:

namespace app\models;

use yii\db\ActiveRecord;

class User extends ActiveRecord
{
    public function scenarios()
    {
        $scenarios = parent::scenarios();
        $scenarios['login'] = ['username', 'password'];
        $scenarios['register'] = ['username', 'email', 'password'];
        return $scenarios;
    }
}





La característica escenario se usa principalmente en las validaciones y por la
asignación masiva de atributos. Aunque también se puede usar para otros propósitos. Por
ejemplo, se pueden declarar etiquetas de atributo diferentes basándose en el escenario actual.




Reglas de Validación 

Cuando un modelo recibe datos del usuario final, estos deben ser validados para asegurar que cumplan ciertas reglas
(llamadas reglas de validación, también conocidas como reglas de negocio). Por ejemplo, dado un modelo
‘ContactForm’, se puede querer asegurar que ningún atributo este vacío y que el atributo ‘email’ contenga una
dirección de correo válida. Si algún valor no cumple con las reglas, se debe mostrar el mensaje de error apropiado
para ayudar al usuario a corregir estos errores.

Se puede llamar a [[yii\base\Model::validate()]] para validar los datos recibidos. El método se usará para validar las
reglas declaradas en [[yii\base\Model::rules()]] para validar cada atributo relevante. Si no se encuentran errores, se
devolverá true. De otro modo, este almacenará los errores en la propiedad [[yii\base\Model::errors]] y devolverá falso.
Por ejemplo:

$model = new \app\models\ContactForm;

// establece los atributos del modelo con la entrada de usuario
$model->attributes = \Yii::$app->request->post('ContactForm');

if ($model->validate()) {
    // todas las entradas validadas
} else {
    // validación fallida: $errors es un array que contiene los mensajes de error
    $errors = $model->errors;
}





Para declarar reglas de validación asociadas a un modelo, se tiene que sobrescribir el método
[[yii\base\Model::rules()]] para que devuelva las reglas que los atributos del modelo deben satisfacer. El siguiente
ejemplo muestra las reglas de validación declaradas para el modelo ‘ContactForm’.

public function rules()
{
    return [
        // name, email, subject y body son atributos requeridos
        [['name', 'email', 'subject', 'body'], 'required'],

        // el atribuido email debe ser una dirección de correo electrónico válida
        ['email', 'email'],
    ];
}





Una regla puede usarse para validar uno o más atributos, y un atributo puede validarse por una o múltiples reglas. Por
favor refiérase a la sección Validación de entrada para obtener más detalles sobre cómo
declarar reglas de validación.

A veces, solamente se quiere aplicar una regla en ciertos escenarios. Para hacerlo, se puede especificar
la propiedad ‘on’ de una regla, como en el siguiente ejemplo:

public function rules()
{
    return [
        // username, email y password son obligatorios en el escenario “register”
        [['username', 'email', 'password'], 'required', 'on' => 'register'],

        // username y password son obligatorios en el escenario “login”
        [['username', 'password'], 'required', 'on' => 'login'],
    ];
}





Si no se especifica la propiedad ‘on’, la regla se aplicará en todos los escenarios. Se llama a una regla
regla activa si esta puede aplicarse en el [[yii\base\Model::scenario|scenario]] actual.

Un atributo será validado si y sólo si es un atributo activo declarado en ‘scenarios()’ y esta asociado con una o más
reglas activas declaradas en ‘rules()’.




Asignación Masiva 

La asignación masiva es una buena forma de rellenar los atributos de un modelo con las entradas de usuario en una
única línea de código. Rellena los atributos de un modelo asignando los datos de entrada directamente a las
propiedades de [[yii\base\Model::$attributes]]. Los siguientes dos ejemplos son equivalentes, ambos intentan asignar
los datos enviados por el usuario final a través de un formulario a los atributos del modelo ‘ContactForm’.
Claramente, el primero, que usa la asignación masiva, es más claro y menos propenso a errores que el segundo:

$model = new \app\models\ContactForm;
$model->attributes = \Yii::$app->request->post('ContactForm');





$model = new \app\models\ContactForm;
$data = \Yii::$app->request->post('ContactForm', []);
$model->name = isset($data['name']) ? $data['name'] : null;
$model->email = isset($data['email']) ? $data['email'] : null;
$model->subject = isset($data['subject']) ? $data['subject'] : null;
$model->body = isset($data['body']) ? $data['body'] : null;






Atributos Seguros 

La asignación masiva sólo se aplica a los llamados atributos seguros qué son los atributos listados en
[[yii\base\Model::scenarios()]] para el actual [[yii\base\Model::scenario|scenario]] del modelo. Por ejemplo, si en el
modelo ‘User’ tenemos la siguiente declaración de escenario, entonces cuando el escenario actual sea ‘login’, sólo los
atributos ‘username’ y ‘password’ podrán ser asignados masivamente. Cualquier otro atributo permanecerá intacto

public function scenarios()
{
    return [
        'login' => ['username', 'password'],
        'register' => ['username', 'email', 'password'],
    ];
}






Info: La razón de que la asignación masiva sólo se aplique a los atributos seguros es debida a que se quiere
controlar qué atributos pueden ser modificados por los datos del usuario final. Por ejemplo, si el modelo ‘User’ tiene
un atributo ‘permission’ que determina los permisos asignados al usuario, se quiere que estos atributos sólo sean
modificados por administradores desde la interfaz backend.




Debido a que la implementación predeterminada de [[yii\base\Model::scenarios()]] devolverá todos los escenarios y
atributos encontrados en [[yii\base\Model::rules()]], si no se sobrescribe este método, significa que un atributo es
seguro mientras aparezca en una de las reglas de validación activas.

Por esta razón, se proporciona un validador especial con alias ‘safe’ con el que se puede declarar un atributo como
seguro sin llegar a validarlo. Por ejemplo, las siguientes reglas declaran que los atributos ‘title’ y ‘description’
son atributos seguros.

public function rules()
{
    return [
        [['title', 'description'], 'safe'],
    ];
}








Atributos Inseguros 

Como se ha descrito anteriormente, el método [[yii\base\Model::scenarios()]] sirve para dos propósitos: determinar qué
atributos deben ser validados y determinar qué atributos son seguros. En situaciones poco comunes, se puede querer
validar un atributo pero sin marcarlo como seguro. Se puede hacer prefijando el signo de exclamación ‘!’ delante del
nombre del atributo cuando se declaran en ‘scenarios()’, como el atributo ‘secret’ del siguiente ejemplo:

public function scenarios()
{
    return [
        'login' => ['username', 'password', '!secret'],
    ];
}





Cuando el modelo esté en el escenario ‘login’, los tres atributos serán validados. Sin embargo, sólo los atributos
‘username’ y ‘password’ se asignarán masivamente. Para asignar un valor de entrada al atribuido ‘secret’, se tendrá
que hacer explícitamente como en el ejemplo:

$model->secret = $secret;










Exportación de Datos 

A menudo necesitamos exportar modelos a diferentes formatos. Por ejemplo, se puede querer convertir un conjunto de
modelos a formato JSON o Excel. El proceso de exportación se puede dividir en dos pasos independientes. En el primer
paso, se convierten los modelos en arrays; en el segundo paso, los arrays se convierten a los formatos deseados. Nos
puede interesar fijarnos en el primer paso, ya que el segundo paso se puede lograr mediante un formateador de datos
genérico, tal como [[yii\web\JsonResponseFormatter]].
La manera más simple de convertir un modelo en un array es usar la propiedad [[yii\base\Model::$attributes]]. Por
ejemplo:

$post = \app\models\Post::findOne(100);
$array = $post->attributes;





Por defecto, la propiedad [[yii\base\Model::$attributes]] devolverá los valores de todos los atributos declarados en
[[yii\base\Model::attributes()]].

Una manera más flexible y potente de convertir un modelo en un array es usar el método [[yii\base\Model::toArray()]].
Su funcionamiento general es el mismo que el de [[yii\base\Model::$attributes]]. Sin embargo, este permite elegir que
elementos de datos, llamados campos, queremos poner en el array resultante y elegir como debe ser formateado. De
hecho, es la manera por defecto de exportar modelos en desarrollo de servicios Web RESTful, tal y como se describe en
Formatos de Respuesta.


Campos 

Un campo es simplemente un elemento nombrado en el array resultante de ejecutar el método [[yii\base\Model::toArray()]]
de un modelo.
Por defecto, los nombres de los campos son equivalentes a los nombres de los atributos. Sin embargo, se puede
modificar este comportamiento sobrescribiendo el método [[yii\base\Model::fields()|fields()]] y/o el método
[[yii\base\Model::extraFields()|extraFields()]]. Ambos métodos deben devolver una lista de las definiciones de los
campos. Los campos definidos mediante ‘fields()’ son los campos por defecto, esto significa que ‘toArray()’ devolverá
estos campos por defecto. El método ‘extraFields()’ define campos adicionalmente disponibles que también pueden
devolverse mediante ‘toArray()’ siempre y cuando se especifiquen a través del parámetro ‘$expand’. Por ejemplo, el
siguiente código devolverá todos los campos definidos en ‘fields()’ y los campos ‘prettyName’ y ‘fullAdress’ si estos
están definidos en ‘extraFields()’.

$array = $model->toArray([], ['prettyName', 'fullAddress']);





Se puede sobrescribir ‘fields()’ para añadir, eliminar, renombrar o redefinir campos. El valor devuelto por ‘fields()’
debe se un array. Las claves del array son los nombres de los campos, y los valores son las correspondientes
definiciones de los campos que pueden ser nombres de propiedades/atributos o funciones anónimas que devuelvan los
correspondientes valores de campo. En el caso especial en que un nombre de un campo es el mismo a su definición de
nombre de atributo, se puede omitir la clave del array. Por ejemplo:

// lista explícitamente cada campo, es mejor usarlo cuando nos queremos asegurar 
// de que los cambios en la tabla de la base de datos o los atributos del modelo 
// no modifiquen los campos(para asegurar compatibilidades para versiones anteriores de API)
public function fields()
{
    return [
        // el nombre del campo es el mismo que el nombre de atributo
        'id',

        // el nombre del campo es “email”, el nombre de atributo correspondiente es “email_address”
        'email' => 'email_address',

        // El nombre del campo es “name”, su valor esta definido por una llamada de retorno PHP
        'name' => function () {
            return $this->first_name . ' ' . $this->last_name;
        },
    ];
}

// filtrar algunos campos, es mejor usarlo cuando se quiere heredar la implementación del padre
// y discriminar algunos campos sensibles.
public function fields()
{
    $fields = parent::fields();

    // elimina campos que contengan información sensible.
    unset($fields['auth_key'], $fields['password_hash'], $fields['password_reset_token']);

    return $fields;
}






Warning: debido a que por defecto todos los atributos de un modelo serán incluidos en el array exportado, se debe
examinar los datos para asegurar que no contienen información sensible. Si existe dicha información, se debe
sobrescribir ‘fields()’ para filtrarla. En el anterior ejemplo, se filtra ‘aut_key’, ‘password_hash’ y
‘password_reset_token’.









Mejores Prácticas 

Los modelos son los lugares centrales para representar datos de negocio, reglas y lógica. Estos a menudo necesitan ser
reutilizados en diferentes lugares. En una aplicación bien diseñada, los modelos normalmente son más grandes que los
controladores.

En resumen, los modelos:


	pueden contener atributos para representar los datos de negocio;


	pueden contener reglas de validación para asegurar la validez e integridad de los datos;


	pueden contener métodos que para implementar la lógica de negocio;


	NO deben acceder directamente a peticiones, sesiones, u otro tipo de datos de entorno. Estos datos deben ser
inyectados por los controladores en los modelos.


	deben evitar embeber HTML u otro código de presentación – esto es mejor hacerlo en las vistas;


	evitar tener demasiados escenarios en un mismo modelo.




Generalmente se puede considerar la última recomendación cuando se estén desarrollando grandes sistemas complejos. En
estos sistemas, los modelos podrían ser muy grandes debido a que podrían ser usados en muchos lugares y por tanto
contener muchos conjuntos de reglas y lógicas de negocio. A menudo esto desemboca en un código muy difícil de mantener
ya que una simple modificación en el código puede afectar a muchos sitios diferentes. Para mantener el código más
fácil de mantener, se puede seguir la siguiente estrategia:


	Definir un conjunto de clases modelo base que sean compartidas por diferentes
aplicaciones o módulos. Estas clases modelo deben contener el
conjunto mínimo de reglas y lógica que sean comunes para todos sus usos.


	En cada aplicación o módulo que use un modelo, definir una
clase modelo concreta que extienda a la correspondiente clase modelo base. La clase modelo concreta debe contener
reglas y lógica que sean específicas para esa aplicación o módulo.




Por ejemplo, en la Plantilla de Aplicación Avanzada, definiendo una clase modelo base
‘common\models\Post’. Después en la aplicación front end, definiendo y usando una clase modelo concreta
‘frontend\models\Post’ que extienda a ‘common\models\Post’. Y de forma similar en la aplicación back end, definiendo
‘backend\models\Post’. Con esta estrategia, nos aseguramos que el código de ‘frontend\models\Post’ es específico para
la aplicación front end, y si se efectúa algún cambio en el, no nos tenemos que preocupar de si el cambio afectará a
la aplicación back end.







          

      

      

    

  

  
    
    Módulos
    

    
 
  

    
      
          
            
  
Módulos

Los módulos son unidades de software independientes que consisten en modelos,
vistas, controladores, y otros componentes de apoyo. Los usuarios
finales pueden acceder a los controladores de un módulo cuando éste está instalado en la
aplicación. Por éstas razones, los módulos a menudo se considerados como
mini-aplicaciones. Los módulos difieren de las aplicaciones en que los módulos no pueden
ser desplegados solos y tienen que residir dentro de aplicaciones.


Creación de Módulos

Un módulo está organizado de tal manera que contiene un directorio llamado [[yii\base\Module::basePath|base path]] del
módulo. Dentro de este directorio, hay subdirectorios tales como ‘controllers’, ‘models’, ‘views’, que contienen
controladores, modelos, vistas y otro código, exactamente como una aplicación. El siguiente ejemplo muestra el
contenido dentro de un módulo:

forum/
    Module.php                   archivo clase módulo
    controllers/                 contiene archivos de la clase controlador
        DefaultController.php    archivo clase controlador por defecto
    models/                      contiene los archivos de clase modelo
    views/                       contiene las vistas de controlador y los archivos de diseño
        layouts/                 contiene los archivos de diseño de las vistas
        default/                 contiene los archivos de vista del DefaultController
            index.php            archivo de vista del index






Clases Módulo 

Cada módulo debe tener una única clase módulo que extiende a [[yii\base\Module]]. La clase debe encontrarse
directamente debajo del [[yii\base\Module::basePath|base path]] y debe ser autocargable.
Cuando se está accediendo a un módulo, se creará una única instancia de la clase módulo correspondiente. Como en las
instancias de aplicación, las instancias de módulo se utilizan para compartir datos y
componentes de código dentro de los módulos.

El siguiente ejemplo muestra como podría ser una clase módulo.

namespace app\modules\forum;

class Module extends \yii\base\Module
{
    public function init()
    {
        parent::init();

        $this->params['foo'] = 'bar';
        // ...  otro código de inicialización ...
    }
}





Si el método ‘init()’ contiene mucho código de inicialización de las propiedades del módulo, también se puede guardar
en términos de configuración y cargarlo con el siguiente código ‘init()’:

public function init()
{
    parent::init();
    // inicializa el módulo con la configuración cargada desde config.php
    \Yii::configure($this, require __DIR__ . '/config.php');
}





donde el archivo de configuración ‘config.php’ puede contener el siguiente contenido, similar al de
configuraciones de aplicación.

<?php
return [
    'components' => [
        // lista de configuraciones de componente
    ],
    'params' => [
        // lista de parámetros
    ],
];








Controladores en Módulos 

Cuando se crean controladores en un modelo, una convención es poner las clases controlador debajo del sub-espacio de
nombres de ‘controllers’ del espacio de nombres de la clase módulo. Esto también significa que los archivos de la
clase controlador deben ponerse en el directorio ‘controllers’ dentro del [[yii\base\Module::basePath|base path]] del
módulo. Por ejemplo, para crear un controlador ‘post’ en el módulo ‘forum’ mostrado en la última subdivisión, se debe
declarar la clase controlador de la siguiente manera:

namespace app\modules\forum\controllers;

use yii\web\Controller;

class PostController extends Controller
{
    // ...
}





Se puede personalizar el espacio de nombres de las clases controlador configurando la propiedad
[[yii\base\Module::controllerNamespace]]. En el caso que alguno de los controladores esté fuera del espacio de
nombres, se puede hacer accesible configurando la propiedad [[yii\base\Module::controllerMap]], similar a
como se hace en una aplicación.




Vistas en Módulos 

Las vistas en un módulo deben alojarse en el directorio ‘views’ dentro del módulo del
[[yii\base\Module::basePath|base path]]. Las vistas renderizadas por un controlador en el módulo, deben alojarse en el
directorio ‘views/ControllerID’, donde el ‘ControllerID’ hace referencia al
ID del controlador. Por ejemplo, si la clase controlador es ‘PostController’, el
directorio sería ‘views/post’ dentro del [[yii\base\Module::basePath|base path]] del módulo.

Un modulo puede especificar un layout que se aplica a las vistas renderizadas por los
controladores del módulo. El layout debe alojarse en el directorio ‘views/layouts’ por defecto, y se puede configurar
la propiedad [[yii\base\Module::layout]] para apuntar al nombre del layout. Si no se configura la propiedad ‘layout’,
se usar el layout de la aplicación.






Uso de los Módulos 

Para usar un módulo en una aplicación, simplemente se tiene que configurar la aplicación añadiendo el módulo en la
propiedad [[yii\base\Application::modules|modules]] de la aplicación. El siguiente ejemplo de la
configuración de la aplicación usa el modelo ‘forum’:

[
    'modules' => [
        'forum' => [
            'class' => 'app\modules\forum\Module',
            // ... otras configuraciones para el módulo ...
        ],
    ],
]





La propiedad [[yii\base\Application::modules|modules]] contiene un array de configuraciones de módulo.  Cada clave del
array representa un ID de módulo que identifica de forma única el módulo de entre todos los módulos de la
aplicación, y el correspondiente valor del array es la configuración para crear el módulo.


Rutas 

De Igual manera que el acceso a los controladores en una aplicación, las rutas se
utiliza para dirigirse a los controladores en un módulo. Una ruta para un controlador dentro de un módulo debe empezar
con el ID del módulo seguido por el ID del controlador y el ID de la acción. Por ejemplo, si una aplicación usa un
módulo llamado ‘forum’, la ruta ‘forum/post/index’ representaría la acción ‘index’ del controlador ‘post’ en el
módulo. Si la ruta sólo contiene el ID del módulo, entonces la propiedad [[yii\base\Module::defaultRoute]] que por
defecto es ‘default’, determinara que controlador/acción debe usarse. Esto significa que la ruta ‘forum’ representaría
el controlador ‘default’ en el módulo ‘forum’.




Acceder a los Módulos 

Dentro de un módulo, se puede necesitar obtener la instancia de la clase módulo para poder acceder
al ID del módulo, componentes del módulo, etc. Se puede hacer usando la siguiente declaración:

$module = MyModuleClass::getInstance();





Dónde ‘MyModuleClass’ hace referencia al nombre de la clase módulo en la que estemos interesados. El método
‘getInstance()’ devolverá la instancia actualmente solicitada de la clase módulo. Si no se solicita el módulo, el
método devolverá nulo. Hay que tener en cuenta que si se crea una nueva instancia del módulo, esta será diferente a la
creada por Yii en respuesta a la solicitud.


Info: Cuando se desarrolla un módulo, no se debe dar por sentado que el módulo usará un ID fijo. Esto se debe
a que un módulo puede asociarse a un ID arbitrario cuando se usa en una aplicación o dentro de otro módulo. Para
obtener el ID del módulo, primero se debe usar el código del anterior ejemplo para obtener la instancia y luego el
ID mediante ‘$modeule->id’.




También se puede acceder a la instancia de un módulo usando las siguientes declaraciones:

// obtiene el modulo hijo cuyo ID es “forum”
$module = \Yii::$app->getModule('forum');

// obtiene el módulo al que pertenece la petición actual
$module = \Yii::$app->controller->module;





El primer ejemplo sólo es útil cuando conocemos el ID del módulo, mientras que el segundo es mejor usarlo cuando
conocemos los controladores que se están solicitando.

Una vez obtenida la instancia del módulo, se puede acceder a parámetros o componentes registrados con el módulo. Por
ejemplo:

$maxPostCount = $module->params['maxPostCount'];








Bootstrapping Módulos 

Puede darse el caso en que necesitemos que un módulo se ejecute en cada petición. El módulo [[yii\debug\Module|debug]]
es un ejemplo. Para hacerlo, tenemos que listar los IDs de los módulos en la propiedad
[[yii\base\Application::bootstrap|bootstrap]] de la aplicación.

Por ejemplo, la siguiente configuración de aplicación se asegura de que el módulo ‘debug’ siempre se cargue:

[
    'bootstrap' => [
        'debug',
    ],

    'modules' => [
        'debug' => 'yii\debug\Module',
    ],
]










Módulos anidados 

Los módulos pueden ser anidados sin límite de niveles. Es decir, un módulo puede contener un módulo y éste a la vez
contener otro módulo. Nombramos padre al primero mientras que al segundo lo nombramos hijo. Los módulos hijo se
tienen que declarar en la propiedad [[yii\base\Module::modules|modules]] de sus módulos padre. Por ejemplo:

namespace app\modules\forum;

class Module extends \yii\base\Module
{
    public function init()
    {
        parent::init();

        $this->modules = [
            'admin' => [
                // debe considerarse usar un nombre de espacios más corto!
                'class' => 'app\modules\forum\modules\admin\Module',
            ],
        ];
    }
}





En un controlador dentro de un módulo anidado, la ruta debe incluir el ID de todos los módulos antecesores. Por
ejemplo, la ruta ‘forum/admin/dashboard/index’ representa la acción ‘index’ del controlador ‘dashboard’ en el módulo
‘admin’ que es el módulo hijo del módulo ‘forum’.


Info: El método [[yii\base\Module::getModule()|getModule()]] sólo devuelve el módulo hijo que pertenece
directamente a su padre. La propiedad [[yii\base\Application::loadedModules]] contiene una lista de los módulos
cargados, incluyendo los hijos directos y los anidados, indexados por sus nombres de clase.







Mejores Prácticas 

Es mejor usar los módulos en grandes aplicaciones en las que sus funcionalidades puedan ser divididas en diferentes
grupos, cada uno compuesto por funcionalidades directamente relacionadas. Cada grupo de funcionalidades se puede
desarrollar como un módulo que puede ser desarrollado y mantenido por un programador o equipo específico.

Los módulos también son una buena manera de reutilizar código a nivel de grupo de funcionalidades. Algunas
funcionalidades de uso común, tales como la gestión de usuarios o la gestión de comentarios, pueden ser desarrollados
como módulos para que puedan ser fácilmente reutilizados en futuros proyectos.







          

      

      

    

  

  
    
    Información general
    

    
 
  

    
      
          
            
  
Información general

Las aplicaciones realizadas con Yii están organizadas de acuerdo al patrón de diseño modelo-vista-controlador (MVC) [http://es.wikipedia.org/wiki/Modelo%E2%80%93vista%E2%80%93controlador]. Los
modelos representan datos, la lógica de negocios y sus reglas; las vistas
son la representación de salida de los modelos; y finalmente, los controladores que toman datos de entrada y los convierten en instrucciones para los modelos y vistas.

Además de MVC, las aplicaciones Yii también tienen las siguientes entidades:


	scripts de entrada: Existen scripts PHP directamente accesibles a los usuarios finales.
Son los responsables de comenzar el ciclo de manejo de una solicitud.


	aplicaciones: Son objetos accesibles globalmente que gestionan y coordinan los componentes
de la aplicación con el fin de atender las diferentes solicitudes.


	componentes de la aplicación: Son los objetos registrados con la aplicación, y
proporcionan varios servicios para cumplir las solicitudes.


	módulos: Son paquetes auto-contenidos los cuales por si solos poseen estructura MVC.
Una aplicación puede estar organizada en términos de múltiples módulos.


	filtros: Representan el código que debe ser invocado antes y despues de la ejecución de cada
solicitud por los controladores.


	widgets: Son objetos que pueden ser embebidos en las Vistas. Pueden
contener lógica del controlador y ser reutilizados en múltiples vistas.




El siguiente esquema muestra la estructura estática de una aplicación:

[image: Estructura estática de una aplicación]





          

      

      

    

  

  
    
    Vistas
    

    
 
  

    
      
          
            
  
Vistas

Las Vistas (views) son una parte de la arquitectura MVC [http://es.wikipedia.org/wiki/Modelo%E2%80%93vista%E2%80%93controlador].
Estas son el código responsable de presentar los datos al usuario final. En una aplicación Web, las vistas son usualmente creadas
en términos de templates que son archivos PHP que contienen principalmente HTML y PHP.
Estas son manejadas por el componente de la aplicación [[yii\web\View|view]], el cual provee los métodos comúnmente utilizados
para facilitar la composición y renderizado. Por simplicidad, a menudo nos referimos a los templates de vistas o archivos de templates
como vistas.


Crear Vistas 

Como fue mencionado, una vista es simplemente un archivo PHP que mezcla código PHP y HTML. La siguiente es una vista
que muestra un formulario de login. Como puedes ver, el código PHP utilizado es para generar contenido dinámico, como el
título de la página y el formulario mismo, mientras que el código HTML organiza estos elementos en una página HTML mostrable.

<?php
use yii\helpers\Html;
use yii\widgets\ActiveForm;

/* @var $this yii\web\View */
/* @var $form yii\widgets\ActiveForm */
/* @var $model app\models\LoginForm */

$this->title = 'Login';
?>
<h1><?= Html::encode($this->title) ?></h1>

<p>Por favor completa los siguientes campos para loguearte:</p>

<?php $form = ActiveForm::begin(); ?>
    <?= $form->field($model, 'username') ?>
    <?= $form->field($model, 'password')->passwordInput() ?>
    <?= Html::submitButton('Login') ?>
<?php ActiveForm::end(); ?>





Dentro de una vista, puedes acceder a la variable $this referida al [[yii\web\View|componente view]]
que maneja y renderiza la vista actual.

Además de $this, puede haber otras variables predefinidas en una vista, como $form y $model en el
ejemplo anterior. Estas variables representan los datos que son inyectados a la vista desde el controlador
o algún otro objeto que dispara la renderización de la vista.


Tip: La lista de variables predefinidas están listadas en un bloque de comentario al principio de la vista así
pueden ser reconocidas por las IDEs. Esto es también una buena manera de documentar tus propias vistas.





Seguridad 

Al crear vistas que generan páginas HTML, es importante que codifiques (encode) y/o filtres los datos
provenientes de los usuarios antes de mostrarlos. De otro modo, tu aplicación puede estar expuesta
a ataques tipo cross-site scripting [http://es.wikipedia.org/wiki/Cross-site_scripting].

Para mostrar un texto plano, codifícalos previamente utilizando [[yii\helpers\Html::encode()]]. Por ejemplo, el siguiente código aplica
una codificación del nombre de usuario antes de mostrarlo:

<?php
use yii\helpers\Html;
?>

<div class="username">
    <?= Html::encode($user->name) ?>
</div>





Para mostrar contenido HTML, utiliza [[yii\helpers\HtmlPurifier]] para filtrarlo antes. Por ejemplo, el siguiente código
filtra el contenido del post antes de mostrarlo en pantalla:

<?php
use yii\helpers\HtmlPurifier;
?>

<div class="post">
    <?= HtmlPurifier::process($post->text) ?>
</div>






Tip: Aunque HTMLPurifier hace un excelente trabajo al hacer la salida más segura, no es rápido. Deberías considerar
el aplicar un caching al resultado de aplicar el filtro si tu aplicación requiere un gran desempeño (performance).







Organizar las Vistas 

Así como en controladores y modelos, existen convenciones para organizar las vistas.


	Para vistas renderizadas por controladores, deberían colocarse en un directorio tipo @app/views/ControllerID por defecto,
donde ControllerID se refiere al ID del controlador. Por ejemplo,
si la clase del controlador es PostController, el directorio sería @app/views/post; Si fuera PostCommentController,
el directorio sería @app/views/post-comment. En caso de que el controlador pertenezca a un módulo,
el directorio sería views/ControllerID bajo el [[yii\base\Module::basePath|directorio del módulo]].


	Para vistas renderizadas por un widget, deberían ser puestas en un directorio
tipo WidgetPath/views por defecto, donde WidgetPath se refiere al directorio que contiene a la clase del widget.


	Para vistas renderizadas por otros objetos, se recomienda seguir una convención similar a la utilizada con los widgets.




Puedes personalizar estos directorios por defecto sobrescribiendo el método [[yii\base\ViewContextInterface::getViewPath()]]
en el controlador o widget necesario.






Renderizando Vistas 

Puedes renderizar vistas desde controllers, widgets, o cualquier otro lugar
llamando a los métodos de renderización de vistas. Estos métodos comparten una firma similar, como se muestra a continuación:

/**
 * @param string $view nombre de la vista o ruta al archivo, dependiendo del método de renderización utilizado
 * @param array $params los datos pasados a la vista
 * @return string el resultado de la renderización
 */
methodName($view, $params = [])






Renderizando en Controladores 

Dentro de los controladores, puedes llamar al siguiente método del controlador para renderizar una vista:


	[[yii\base\Controller::render()|render()]]: renderiza la vista nombrada y aplica un layout
al resultado de la renderización.


	[[yii\base\Controller::renderPartial()|renderPartial()]]: renderiza la vista nombrada sin ningún layout aplicado.


	[[yii\web\Controller::renderAjax()|renderAjax()]]: renderiza la vista nombrada sin layout,
e inyecta todos los scripts y archivos JS/CSS registrados. Esto sucede usualmente en respuestas a peticiones AJAX.


	[[yii\base\Controller::renderFile()|renderFile()]]: renderiza la vista especificada en términos de la ruta al archivo o
alias.


	[[yii\base\Controller::renderContent()|renderContent()]]: renderiza un string fijo, inscrustándolo en
el layout actualmente aplicable. Este método está disponible desde la versión 2.0.1.




Por ejemplo:

namespace app\controllers;

use Yii;
use app\models\Post;
use yii\web\Controller;
use yii\web\NotFoundHttpException;

class PostController extends Controller
{
    public function actionView($id)
    {
        $model = Post::findOne($id);
        if ($model === null) {
            throw new NotFoundHttpException;
        }

        // renderiza una vista llamada "view" y le aplica el layout
        return $this->render('view', [
            'model' => $model,
        ]);
    }
}








Renderizando en Widgets 

Dentro de widgets, puedes llamar a cualquier de los siguientes métodos de widget para renderizar una vista.


	[[yii\base\Widget::render()|render()]]: renderiza la vista nombrada.


	[[yii\base\Widget::renderFile()|renderFile()]]: renderiza la vista especificada en términos de ruta al archivo
o alias.




Por ejemplo:

namespace app\components;

use yii\base\Widget;
use yii\helpers\Html;

class ListWidget extends Widget
{
    public $items = [];

    public function run()
    {
        // renderiza una vista llamada "list"
        return $this->render('list', [
            'items' => $this->items,
        ]);
    }
}








Renderizar en Vistas 

Puedes renderizar una vista dentro de otra vista llamando a algunos de los siguientes métodos provistos por el [[yii\base\View|componente view]]:


	[[yii\base\View::render()|render()]]: renderiza la vista nombrada.


	[[yii\web\View::renderAjax()|renderAjax()]]: renderiza la vista nombrada e inyecta
todos los archivos y scripts JS/CSS. Esto sucede usualmente en respuestas a las peticiones AJAX.


	[[yii\base\View::renderFile()|renderFile()]]: renderiza la vista especificada en términos de ruta al archivo
o alias.




Por ejemplo, el siguiente código en una vista renderiza el template _overview.php encontrado en el mismo directorio
de la vista renderizada actualmente. Recuerda que la variable $this en una vista se refiere al componente [[yii\base\View|view]]:

<?= $this->render('_overview') ?>








Renderizar en Otros Lugares 

En cualquier lugar, puedes tener acceso al componente [[yii\base\View|view]] utilizando la expresión
Yii::$app->view y entonces llamar a los métodos previamente mencionados para renderizar una vista. Por ejemplo:

// muestra el template "@app/views/site/license.php"
echo \Yii::$app->view->renderFile('@app/views/site/license.php');








Vistas Nombradas 

Cuando renderizas una vista, puedes especificar el template utilizando tanto el nombre de la vista o la ruta/alias al archivo. En la mayoría de los casos,
utilizarías la primera porque es más concisa y flexible. Las vistas nombradas son vistas especificadas mediante un nombre en vez de una ruta al archivo o alias.

Un nombre de vista es resuelto a su correspondiente ruta de archivo siguiendo las siguientes reglas:


	Un nombre de vista puede omitir la extensión del archivo. En estos casos se utilizará .php como extensión del archivo. Por ejemplo,
el nombre de vista about corresponde al archivo about.php.


	Si el nombre de la vista comienza con doble barra (//), la ruta al archivo correspondiente será @app/views/ViewName.
Esto quiere decir que la vista es buscada bajo el [[yii\base\Application::viewPath|ruta de vistas de la aplicación]].
Por ejemplo, //site/about será resuelto como @app/views/site/about.php.


	Si el nombre de la vista comienza con una barra simple /, la ruta al archivo de la vista utilizará como prefijo el nombre de la vista
con el [[yii\base\Module::viewPath|view path]] del módulo utilizado actualmente.
Si no hubiera módulo activo se utilizará @app/views/ViewName. Por ejemplo, /user/create será resuelto como
@app/modules/user/views/user/create.php si el módulo activo es user. Si no hubiera módulo activo,
la ruta al archivo será @app/views/user/create.php.


	Si la vista es renderizada con un [[yii\base\View::context|context]] y dicho contexto implementa [[yii\base\ViewContextInterface]],
la ruta al archivo se forma utilizando como prefijo la [[yii\base\ViewContextInterface::getViewPath()|ruta de vistas]] del contexto
de la vista. Esto principalmente aplica a vistas renderizadas en controladores y widgets. Por ejemplo,
about será resuelto como @app/views/site/about.php si el contexto es el controlador SiteController.


	Si la vista es renderizada dentro de otra vista, el directorio que contiene la otra vista será prefijado
al nuevo nombre de la vista para formar la ruta a la vista. Por ejemplo, item sera resuelto como @app/views/post/item
si está siendo renderizado desde la vista @app/views/post/index.php.




De acuerdo a las reglas mencionadas, al llamar a $this->render('view') en el controlador app\controllers\PostController
se renderizará el template @app/views/post/view.php, mientras que llamando a $this->render('_overview') en la vista
renderizará el template @app/views/post/_overview.php.




Acceder a Datos en la Vista 

Hay dos modos posibles de acceder a los datos en la vista: push (inyectar) y pull (traer).

Al pasar los datos como segundo parámetro en algún método de renderización, estás utilizando el modo push.
Los datos deberían ser representados como un array de pares clave-valor. Cuando la vista está siendo renderizada, la función PHP extract()
será llamada sobre este array así se extraen las variables que contiene a la vista actual.
Por ejemplo, el siguiente código de renderización en un controlador inyectará dos variables a la vista report:
$foo = 1 y $bar = 2.

echo $this->render('report', [
    'foo' => 1,
    'bar' => 2,
]);





El modo pull obtiene los datos del [[yii\base\View|componente view]] u otros objetos accesibles
en las vistas (ej. Yii::$app). Utilizando el código anterior como ejemplo, dentro de una vista puedes acceder al objeto del controlador
a través de la expresión $this->context. Como resultado, te es posible acceder a cualquier propiedad o método
del controlador en la vista report, tal como el ID del controlador como se muestra a continuación:

El ID del controlador es: <?= $this->context->id ?>





Para acceder a datos en la vista, normalmente se prefiere el modo push, ya que hace a la vista menos dependiente
de los objetos del contexto. La contra es que tienes que construir el array manualmente cada vez, lo que podría
volverse tedioso y propenso al error si la misma vista es compartida y renderizada desde diferentes lugares.




Compartir Datos Entre las Vistas 

El [[yii\base\View|componente view]] provee la propiedad [[yii\base\View::params|params]] para que puedas compartir datos
entre diferentes vistas.

Por ejemplo, en una vista about, podrías tener el siguiente código que especifica el segmento actual
del breadcrumbs (migas de pan).

$this->params['breadcrumbs'][] = 'Acerca de Nosotros';





Entonces, en el archivo del layout, que es también una vista, puedes mostrar el breadcrumbs utilizando los datos
pasados a través de [[yii\base\View::params|params]]:

<?= yii\widgets\Breadcrumbs::widget([
    'links' => isset($this->params['breadcrumbs']) ? $this->params['breadcrumbs'] : [],
]) ?>










Layouts 

Los layouts son un tipo especial de vista que representan partes comunes de otras múltiples vistas. Por ejemplo, las páginas
de la mayoría de las aplicaciones Web comparten el mismo encabezado y pie de página. Aunque puedes repetirlos en todas y cada una de las vistas,
una mejor forma es hacerlo sólo en el layout e incrustar el resultado de la renderización de la vista
en un lugar apropiado del mismo.


Crear Layouts 

Dado que los layouts son también vistas, pueden ser creados de manera similar a las vistas comunes. Por defecto, los layouts
son guardados en el directorio @app/views/layouts. Para layouts utilizados dentro de un módulo, deberían ser guardados
en el directorio views/layouts bajo el [[yii\base\Module::basePath|directorio del módulo]].
Puedes personalizar el directorio de layouts por defecto configurando la propiedad [[yii\base\Module::layoutPath]]
de la aplicación o módulos.

El siguiente ejemplo muestra cómo debe verse un layout. Ten en cuenta que por motivos ilustrativos, hemos simplificado
bastante el código del layout. En la práctica, probablemente le agregues más contenido, como tags en el head, un menú principal, etc.

<?php
use yii\helpers\Html;

/* @var $this yii\web\View */
/* @var $content string */
?>
<?php $this->beginPage() ?>
<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8"/>
    <?= Html::csrfMetaTags() ?>
    <title><?= Html::encode($this->title) ?></title>
    <?php $this->head() ?>
</head>
<body>
<?php $this->beginBody() ?>
    <header>Mi Compañía</header>
    <?= $content ?>
    <footer>&copy; 2014 - Mi Compañía</footer>
<?php $this->endBody() ?>
</body>
</html>
<?php $this->endPage() ?>





Como puedes ver, el layout genera los tags HTML comunes a todas las páginas. Dentro de la sección <body>,
el layout imprime la variable $content, que representa el resultado de la renderización del contenido de cada vista
y es incrustado dentro del layout cuando se llama al método [[yii\base\Controller::render()]].

La mayoría de layouts deberían llamar a los siguientes métodos (como fue mostrado recién). Estos métodos principalmente disparan eventos
acerca del proceso de renderizado así los scripts y tags registrados en otros lugares pueden ser propiamente inyectados
en los lugares donde los métodos son llamados.


	[[yii\base\View::beginPage()|beginPage()]]: Este método debería ser llamado bien al principio del layout.
Esto dispara el evento [[yii\base\View::EVENT_BEGIN_PAGE|EVENT_BEGIN_PAGE]], el cual indica el comienzo de la página.


	[[yii\base\View::endPage()|endPage()]]: Este método debería ser llamado al final del layout.
Esto dispara el evento [[yii\base\View::EVENT_END_PAGE|EVENT_END_PAGE]], indicando el final de la página.


	[[yii\web\View::head()|head()]]: Este método debería llamarse dentro de la sección <head> de una página HTML.
Esto genera un espacio vacío que será reemplazado con el código del head HTML registrado (ej. link tags, meta tags)
cuando una página finaliza el renderizado.


	[[yii\base\View::beginBody()|beginBody()]]: Este método debería llamarse al principio de la sección <body>.
Esto dispara el evento [[yii\web\View::EVENT_BEGIN_BODY|EVENT_BEGIN_BODY]] y genera un espacio vacío que será reemplazado
con el código HTML registrado (ej. JavaScript) que apunta al principio del body.


	[[yii\base\View::endBody()|endBody()]]: Este método debería llamarse al final de la sección <body>.
Esto dispara el evento [[yii\web\View::EVENT_END_BODY|EVENT_END_BODY]], que genera un espacio vacío a ser reemplazado
por el código HTML registrado (ej. JavaScript) que apunta al final del body.







Acceder a Datos en Layouts 

Dentro de un layout, tienes acceso a dos variables predefinidas: $this y $content. La primera se refiere al componente [[yii\base\View|view]],
como en cualquier vista, mientras que la última contiene el resultado de la renderización del contenido de la vista que está siendo renderizada
al llamar al método [[yii\base\Controller::render()|render()]] en los controladores.

Si quieres acceder a otros datos en los layouts, debes utilizar el modo pull que fue descrito en la sub-sección Accediendo a Datos en la Vista.
Si quieres pasar datos desde al contenido de la vista a un layout, puedes utilizar el método descrito en la
sub-sección Compartiendo Datos Entre las Vistas.




Utilizar Layouts 

Como se describe en la sub-sección Renderizando en Controllers, cuando renderizas una vista
llamando al método [[yii\base\Controller::render()|render()]] en un controlador, al resultado de dicha renderización le será aplicado un layout.
Por defecto, el layout @app/views/layouts/main.php será el utilizado.

Puedes utilizar un layout diferente configurando la propiedad [[yii\base\Application::layout]] o [[yii\base\Controller::layout]]. El primero
se refiere al layout utilizado por todos los controladores, mientras que el último sobrescribe el layout en controladores individuales.
Por ejemplo, el siguiente código hace que el controlador post utilice @app/views/layouts/post.php como layout al renderizar sus vistas.
Otros controladores, asumiendo que su propiedad layout no fue modificada,
utilizarán @app/views/layouts/main.php como layout.

namespace app\controllers;

use yii\web\Controller;

class PostController extends Controller
{
    public $layout = 'post';
    
    // ...
}





Para controladores que pertencen a un módulo, puedes también configurar la propiedad [[yii\base\Module::layout|layout]] y así utilizar un layout
en particular para esos controladores.

Dado que la propiedad layout puede ser configurada en diferentes niveles (controladores, módulos, aplicación), detrás de escena
Yii realiza dos pasos para determinar cuál es el archivo de layout siendo utilizado para un controlador en particular.

En el primer paso, determina el valor del layout y el módulo de contexto:


	Si la propiedad [[yii\base\Controller::layout]] no es null, la utiliza como valor del layout y el [[yii\base\Controller::module|módulo]]
del controlador como el módulo de contexto.


	Si [[yii\base\Controller::layout|layout]] es null, busca a través de todos los módulos ancestros del controlador
y encuentra el primer módulo cuya propiedad [[yii\base\Module::layout|layout]] no es null.
Utiliza ese módulo y su valor de [[yii\base\Module::layout|layout]] como módulo de contexto y como layout seleccionado.
Si tal módulo no puede ser encontrado, significa que no se aplicará ningún layout.




En el segundo paso, se determina el archivo de layout actual de acuerdo al valor de layout y el módulo de contexto determinado en el primer paso.
El valor de layout puede ser:


	un alias de ruta (ej. @app/views/layouts/main).


	una ruta absoluta (ej. /main): el valor del layout comienza con una barra. El archivo de layout actual será buscado
bajo el [[yii\base\Application::layoutPath|layout path]] de la aplicación,
que es por defecto @app/views/layouts.


	una ruta relativa (ej. main): El archivo de layout actual será buscado bajo el [[yii\base\Module::layoutPath|layout path]]
del módulo de contexto, que es por defecto el directorio views/layouts
bajo el [[yii\base\Module::basePath|directorio del módulo]].


	el valor booleano false: no se aplicará ningún layout.




Si el valor de layout no contiene una extensión de tipo de archivo, utilizará por defecto .php.




Layouts Anidados 

A veces podrías querer anidar un layout dentro de otro. Por ejemplo, en diferentes secciones de un sitio Web,
podrías querer utilizar layouts diferentes, mientras que todos esos layouts comparten el mismo layout básico que genera
la estructura general de la página en HTML5. Esto es posible llamando a los métodos
[[yii\base\View::beginContent()|beginContent()]] y [[yii\base\View::endContent()|endContent()]] en los layouts hijos como se muestra a continuación:

<?php $this->beginContent('@app/views/layouts/base.php'); ?>

...contenido del layout hijo aquí...

<?php $this->endContent(); ?>





Como se acaba de mostrar, el contenido del layout hijo debe ser encerrado dentro de [[yii\base\View::beginContent()|beginContent()]]
y [[yii\base\View::endContent()|endContent()]]. El parámetro pasado a [[yii\base\View::beginContent()|beginContent()]]
especifica cuál es el módulo padre. Este puede ser tanto un archivo layout como un alias.

Utilizando la forma recién mencionada, puedes anidar layouts en más de un nivel.




Utilizar Blocks 

Los bloques te permiten especificar el contenido de la vista en un lugar y mostrarlo en otro. Estos son a menudo utilizados junto a
los layouts. Por ejemplo, puedes definir un bloque un una vista de contenido y mostrarla en el layout.

Para definir un bloque, llamas a [[yii\base\View::beginBlock()|beginBlock()]] y [[yii\base\View::endBlock()|endBlock()]].
El bloque puede ser accedido vía $view->blocks[$blockID], donde $blockID se refiere al ID único que le asignas
al bloque cuando lo defines.

El siguiente ejemplo muestra cómo utilizar bloques para personalizar partes especificas del layout in una vista.

Primero, en una vista, define uno o varios bloques:

...

<?php $this->beginBlock('block1'); ?>

...contenido de block1...

<?php $this->endBlock(); ?>

...

<?php $this->beginBlock('block3'); ?>

...contenido de block3...

<?php $this->endBlock(); ?>





Entonces, en la vista del layout, renderiza los bloques si están disponibles, o muestra un contenido por defecto si el bloque
no está definido.

...
<?php if (isset($this->blocks['block1'])): ?>
    <?= $this->blocks['block1'] ?>
<?php else: ?>
    ... contenido por defecto de block1 ...
<?php endif; ?>

...

<?php if (isset($this->blocks['block2'])): ?>
    <?= $this->blocks['block2'] ?>
<?php else: ?>
    ... contenido por defecto de block2 ...
<?php endif; ?>

...

<?php if (isset($this->blocks['block3'])): ?>
    <?= $this->blocks['block3'] ?>
<?php else: ?>
    ... contenido por defecto de block3 ...
<?php endif; ?>
...










Utilizar Componentes de Vista 

Los [[yii\base\View|componentes de vista]] proveen características relacionadas a las vistas. Aunque puedes obtener componentes de vista
creando instancias individuales de [[yii\base\View]] o sus clases hijas, en la mayoría de los casos utilizarías el componente view del a aplicación.
Puedes configurar este componente en la configuración de la aplicación
como a continuación:

[
    // ...
    'components' => [
        'view' => [
            'class' => 'app\components\View',
        ],
        // ...
    ],
]





Los componentes de vista proveen las siguientes características útiles, cada una descrita en mayor detalle en su propia sección:


	temas: te permite desarrollar y cambiar el tema (theme) de tu sitio Web.


	caché de fragmentos: te permite guardar en cache un fragmento de una página Web.


	manejo de scripts del cliente: soporte para registro y renderización de CSS y JavaScript.


	manejo de asset bundle: soporte de registro y renderización de asset bundles.


	motores de template alternativos: te permite utilizar otros motores de templates, como
Twig [http://twig.sensiolabs.org/] o Smarty [http://www.smarty.net/].




Puedes también utilizar frecuentemente el siguiente menor pero útil grupo de características al desarrollar páginas Web.


Definiendo Títulos de Página 

Toda página Web debería tener un título. Normalmente el tag de título es generado en layout. De todos modos, en la práctica
el título es determinado en el contenido de las vistas más que en layouts. Para resolver este problema, [[yii\web\View]] provee
la propiedad [[yii\web\View::title|title]] para que puedas pasar información del título desde el contenido de la vista a los layouts.

Para utilizar esta característica, en cada contenido de la vista, puedes definir el título de la siguiente manera:

<?php
$this->title = 'Título de mi página';
?>





Entonces en el layout, asegúrate de tener el siguiente código en la sección <head> de la página:

<title><?= Html::encode($this->title) ?></title>








Registrar Meta Tags 

Las páginas Web usualmente necesitan generar varios meta tags necesarios para diferentes grupos. Cómo los títulos de página, los meta tags
aparecen en la sección <head> y son usualmente generado en los layouts.

Si quieres especificar cuáles meta tags generar en las vistas, puedes llamar a [[yii\web\View::registerMetaTag()]]
dentro de una de ellas, como se muestra a continuación:

<?php
$this->registerMetaTag(['name' => 'keywords', 'content' => 'yii, framework, php']);
?>





El código anterior registrará el meta tag “keywords” a través del componente view. El meta tag registrado
no se renderiza hasta que finaliza el renderizado del layout. Para entonces, el siguiente código HTML será insertado
en el lugar donde llamas a [[yii\web\View::head()]] en el layout, generando el siguiente HTML:

<meta name="keywords" content="yii, framework, php">





Ten en cuenta que si llamas a [[yii\web\View::registerMetaTag()]] varias veces, esto registrará varios meta tags,
sin tener en cuenta si los meta tags son los mismo o no.

Para asegurarte de que sólo haya una instancia de cierto tipo de meta tag, puedes especificar una clave al llamar al método.
Por ejemplo, el siguiente código registra dos meta tags “description”, aunque sólo el segundo será renderizado.

$this->registerMetaTag(['name' => 'description', 'content' => 'Este es mi sitio Web cool hecho con Yii!'], 'description');
$this->registerMetaTag(['name' => 'description', 'content' => 'Este sitio Web es sobre mapaches graciosos.'], 'description');








Registrar Link Tags 

Tal como los meta tags, los link tags son útiles en muchos casos, como personalizar el ícono (favicon) del sitio,
apuntar a una fuente de RSS o delegar OpenID a otro servidor. Puedes trabajar con link tags, al igual que con meta tags,
utilizando [[yii\web\View::registerLinkTag()]]. Por ejemplo, en el contenido de una vista, puedes registrar un link tag como se muestra a continuación:

$this->registerLinkTag([
    'title' => 'Noticias en Vivo de Yii',
    'rel' => 'alternate',
    'type' => 'application/rss+xml',
    'href' => 'http://www.yiiframework.com/rss.xml/',
]);





El resultado del código es el siguiente:

<link title="Noticias en Vivo de Yii" rel="alternate" type="application/rss+xml" href="http://www.yiiframework.com/rss.xml/">





Al igual que con [[yii\web\View::registerMetaTag()|registerMetaTags()]], puedes especificar una clave al llamar
a [[yii\web\View::registerLinkTag()|registerLinkTag()]] para evitar registrar link tags repetidos.






Eventos de Vistas 

Los [[yii\base\View|componentes de vistas]] disparan varios eventos durante el proceso de renderizado de la vista. Puedes responder
a estos eventos para inyectar contenido a la vista o procesar el resultado de la renderización antes de que sea enviada al usuario final.


	[[yii\base\View::EVENT_BEFORE_RENDER|EVENT_BEFORE_RENDER]]: disparado al principio del renderizado de un archivo
en un controlador. Los manejadores de este evento pueden definir [[yii\base\ViewEvent::isValid]] como false para cancelar el proceso de renderizado.


	[[yii\base\View::EVENT_AFTER_RENDER|EVENT_AFTER_RENDER]]: disparado luego de renderizar un archivo con la llamada de [[yii\base\View::afterRender()]].
Los manejadores de este evento pueden obtener el resultado del renderizado a través de [[yii\base\ViewEvent::output]] y modificar
esta propiedad para cambiar dicho resultado.


	[[yii\base\View::EVENT_BEGIN_PAGE|EVENT_BEGIN_PAGE]]: disparado por la llamada a [[yii\base\View::beginPage()]] en layouts.


	[[yii\base\View::EVENT_END_PAGE|EVENT_END_PAGE]]: disparado por la llamada a [[yii\base\View::endPage()]] en layouts.


	[[yii\web\View::EVENT_BEGIN_BODY|EVENT_BEGIN_BODY]]: disparado por la llamada a [[yii\web\View::beginBody()]] en layouts.


	[[yii\web\View::EVENT_END_BODY|EVENT_END_BODY]]: disparado por la llamada a [[yii\web\View::endBody()]] en layouts.




Por ejemplo, el siguiente código inyecta la fecha actual al final del body de la página:

\Yii::$app->view->on(View::EVENT_END_BODY, function () {
    echo date('Y-m-d');
});








Renderizar Páginas Estáticas 

Con páginas estáticas nos referimos a esas páginas cuyo contenido es mayormente estático y sin necesidad de acceso
a datos dinámicos enviados desde los controladores.

Puedes generar páginas estáticas utilizando un código como el que sigue dentro de un controlador:

public function actionAbout()
{
    return $this->render('about');
}





Si un sitio Web contiene muchas páginas estáticas, resultaría tedioso repetir el mismo código en muchos lados.
Para resolver este problema, puedes introducir una acción independiente
llamada [[yii\web\ViewAction]] en el controlador. Por ejemplo,

namespace app\controllers;

use yii\web\Controller;

class SiteController extends Controller
{
    public function actions()
    {
        return [
            'page' => [
                'class' => 'yii\web\ViewAction',
            ],
        ];
    }
}





Ahora, si creamos una vista llamada about bajo el directorio @app/views/site/pages, serás capáz de mostrarla
en la siguiente URL:

http://localhost/index.php?r=site%2Fpage&view=about





El parámetro GET view le comunica a [[yii\web\ViewAction]] cuál es la vista solicitada. La acción entonces buscará
esta vista dentro de @app/views/site/pages. Puedes configurar la propiedad [[yii\web\ViewAction::viewPrefix]]
para cambiar el directorio en el que se buscarán dichas páginas.




Buenas Prácticas 

Las vistas son responsables de la presentación de modelos en el formato que el usuario final desea. En general, las vistas


	deberían contener principalmente sólo código de presentación, como HTML, y PHP simple para recorrer, dar formato y renderizar datos.


	no deberían contener código que realiza consultas a la base de datos. Ese tipo de código debe ir en los modelos.


	deberían evitar el acceso directo a datos del request, como $_GET y/o $_POST. Esto es una responsabilidad de los controladores.
Si se necesitan datos del request, deben ser inyectados a la vista desde el controlador.


	pueden leer propiedades del modelo, pero no debería modificarlas.




Para hacer las vistas más manejables, evita crear vistas que son demasiado complejas o que contengan código redundante.
Puedes utilizar estas técnicas para alcanzar dicha meta:


	utiliza layouts para representar secciones comunes (ej. encabezado y footer de la página).


	divide una vista compleja en varias más simples. Las vistas pequeñas pueden ser renderizadas y unidas una mayor
utilizando los métodos de renderización antes descritos.


	crea y utiliza widgets como bloques de construcción de la vista.


	crea y utilizar helpers para transformar y dar formato a los datos en la vista.










          

      

      

    

  

  
    
    Widgets
    

    
 
  

    
      
          
            
  
Widgets

Los widgets son bloques de código reutilizables que se usan en las vistas
para crear elementos de interfaz de usuario complejos y configurables, de forma orientada a objetos.
Por ejemplo, un widget de selección de fecha puede generar un selector de fechas bonito que
permita a los usuarios seleccionar una fecha.  Todo lo que hay que hacer es insertar el siguiente
código en una vista:

<?php
use yii\jui\DatePicker;
?>
<?= DatePicker::widget(['name' => 'date']) ?>





Yii incluye un buen número de widgets, tales como
[[yii\widgets\ActiveForm|formulario activo]],
[[yii\widgets\Menu|menú]],
widgets de jQuery UI [https://www.yiiframework.com/extension/yiisoft/yii2-jui], y
widgets de Twitter Bootstrap [https://www.yiiframework.com/extension/yiisoft/yii2-bootstrap].
A continuación presentaremos las nociones básicas de de los widgets.  Por favor, refiérase a la
documentación de la API de clases si quiere aprender más acerca del uso de un widget en particular.


Uso de los widgets 

Los widgets se usan principalmente en las vistas.  Se puede llamar al método
[[yii\base\Widget::widget()]] para usar un widget en una vista.  El método toma un array de
configuración para inicializar el widget y devuelve la representación
resultante del widget.  Por ejemplo, el siguiente código inserta un widget de selección de fecha
configurado para usar el idioma ruso y guardar la selección en el atributo from_date de $model.

<?php
use yii\jui\DatePicker;
?>
<?= DatePicker::widget([
    'model' => $model,
    'attribute' => 'from_date',
    'language' => 'ru',
    'dateFormat' => 'php:Y-m-d',
]) ?>





Algunos widgets pueden coger un bloque de contenido que debería encontrarse entre la invocación de
[[yii\base\Widget::begin()]] y [[yii\base\Widget::end()]].  Por ejemplo, el siguiente código usa el
widget [[yii\widgets\ActiveForm]] para generar un formulario de inicio de sesión.  El widget
generará las etiquetas <form> de apertura y cierre donde se llame a begin() y end()
respectivamente. Cualquier cosa que este en medio se representará tal cual.

<?php
use yii\widgets\ActiveForm;
use yii\helpers\Html;
?>

<?php $form = ActiveForm::begin(['id' => 'login-form']); ?>

    <?= $form->field($model, 'username') ?>

    <?= $form->field($model, 'password')->passwordInput() ?>

    <div class="form-group">
        <?= Html::submitButton('Login') ?>
    </div>

<?php ActiveForm::end(); ?>





Hay que tener en cuenta que, a diferencia de [[yii\base\Widget::widget()]] que devuelve la
representación resultante del widget, el método [[yii\base\Widget::begin()]] devuelve una
instancia del widget, que se puede usar para generar el contenido del widget.


Nota: Algunos widgets utilizan un búfer de salida [http://php.net/manual/es/book.outcontrol.php]
para ajustar el contenido rodeado al invocar [[yii\base\Widget::end()]].  Por este motivo se espera
que las llamadas a [[yii\base\Widget::begin()]] y [[yii\base\Widget::end()]] tengan lugar en el
mismo fichero de vista.
No seguir esta regla puede desembocar en una salida distinta a la esperada.





Configuración de las variables globales predefinidas

Las variables globales predefinidas de un widget se pueden configurar por medio del contenedor
de inyección de dependencias:

\Yii::$container->set('yii\widgets\LinkPager', ['maxButtonCount' => 5]);





Consulte la sección “Uso práctico” de la Guía del contenedor de inyección de dependencias para más detalles.






Creación de widgets 

Para crear un widget, extienda la clase [[yii\base\Widget]] y sobrescriba los métodos
[[yii\base\Widget::init()]] y/o [[yii\base\Widget::run()]].  Normalmente el método init() debería
contener el código que inicializa las propiedades del widget, mientras que el método run()
debería contener el código que genera la representación resultante del widget.  La representación
resultante del método run() puede pasarse directamente a echo o devolverse como una cadena.

En el siguiente ejemplo, HelloWidget codifica en HTML y muestra el contenido asignado a su
propiedad message.  Si la propiedad no está establecida, mostrará «Hello World» por omisión.

namespace app\components;

use yii\base\Widget;
use yii\helpers\Html;

class HelloWidget extends Widget
{
    public $message;

    public function init()
    {
        parent::init();
        if ($this->message === null) {
            $this->message = 'Hello World';
        }
    }

    public function run()
    {
        return Html::encode($this->message);
    }
}





Para usar este widget, simplemente inserte el siguiente código en una vista:

<?php
use app\components\HelloWidget;
?>
<?= HelloWidget::widget(['message' => 'Good morning']) ?>





Abajo se muestra una variante de HelloWidget que toma el contenido insertado entre las llamadas a
begin() y end(), lo codifica en HTML y posteriormente lo muestra.

namespace app\components;

use yii\base\Widget;
use yii\helpers\Html;

class HelloWidget extends Widget
{
    public function init()
    {
        parent::init();
        ob_start();
    }

    public function run()
    {
        $content = ob_get_clean();
        return Html::encode($content);
    }
}





Como se puede observar, el búfer de salida de PHP es iniciado en init() para que toda salida
entre las llamadas de init() y run() puede ser capturada, procesada y devuelta en run().


Info: Cuando llame a [[yii\base\Widget::begin()]], se creará una nueva instancia del widget y se
llamará a su método init() al final del constructor del widget.  Cuando llame a
[[yii\base\Widget::end()]], se invocará el método run() y el resultado que devuelva será pasado
a echo por end().




El siguiente código muestra cómo usar esta nueva variante de HelloWidget:

<?php
use app\components\HelloWidget;
?>
<?php HelloWidget::begin(); ?>

    contenido que puede contener <etiqueta>s

<?php HelloWidget::end(); ?>





A veces, un widget puede necesitar representar un gran bloque de contenido.  Aunque que se
podría incrustar el contenido dentro del método run(), es preferible ponerlo dentro de una
vista y llamar al método [[yii\base\Widget::render()]] para representarlo.
Por ejemplo:

public function run()
{
    return $this->render('hello');
}





Por omisión, las vistas para un widget deberían encontrarse en ficheros dentro del directorio
WidgetPath/views, donde WidgetPath representa el directorio que contiene el fichero de clase
del widget.  Por lo tanto, el ejemplo anterior representará el fichero de vista
@app/components/views/hello.php, suponiendo que la clase del widget se encuentre en
@app/components.  Se puede sobrescribir el método [[yii\base\Widget::getViewPath()]] para
personalizar el directorio que contiene los ficheros de vista del widget.




Buenas prácticas 

Los widgets son una manera orientada a objetos de reutilizar código de las vistas.

Al crear widgets, debería continuar suguiendo el patrón MVC.  En general, se debería mantener la
lógica en las clases del widget y la presentación en las vistas.

Los widgets deberían diseñarse para ser autosuficientes.  Es decir, cuando se use un widget, se
debería poder ponerlo en una vista sin hacer nada más.  Esto puede resultar complicado si un
widget requiere recursos externos, tales como CSS, JavaScript, imágenes, etc.  Afortunadamente
Yii proporciona soporte para paquetes de recursos (asset bundles)
que se pueden utilizar para resolver este problema.

Cuando un widget sólo contiene código de vista, es muy similar a una vista.
De hecho, en este caso, su única diferencia es que un widget es una clase redistribuible, mientras
que una vista es sólo un simple script PHP que prefiere mantener dentro de su aplicación.







          

      

      

    

  

  
    
    Tests de aceptación
    

    
 
  

    
      
          
            
  
Tests de aceptación

Un test de aceptación verifica escenarios desde la perspectiva de un usuario.
Se accede a la aplicación testeada por medio de PhpBrowser o de un navegador de verdad.
En ambos casos los navegadores se comunican vía HTTP así que la aplicación debe ser
servida por un servidor web.

Los tests de aceptación se implementan con ayuda del framework Codeception, que tiene
una buena documentación:


	Codeception para el framework Yii [http://codeception.com/for/yii]


	Tests funcionales de Codeception [http://codeception.com/docs/04-FunctionalTests]





Ejecución de tests en las plantillas básica y avanzada

Si ha empezado con la plantilla avanzada, consulte la guía de testeo [https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/start-testing.md]
para más detalles sobre la ejecución de tests.

Si ha empezado con la plantilla básica, consulte la sección sobre testeo de su README [https://github.com/yiisoft/yii2-app-basic/blob/master/README.md#testing].







          

      

      

    

  

  
    
    Preparación del entorno de pruebas
    

    
 
  

    
      
          
            
  
Preparación del entorno de pruebas

Yii 2 ha mantenido oficialmente integración con el framework de testeo Codeception [https://github.com/Codeception/Codeception],
que le permite crear los siguientes tipos de tests:


	Unitari - verifica que una unidad simple de código funciona como se espera;


	Funcional - verifica escenarios desde la perspectiva de un usuario a través de la emulación de un navegador;


	De aceptación - verifica escenarios desde la perspectiva de un usuario en un navegador.




Yii provee grupos de pruebas listos para utilizar para los tres tipos de test, tanto en la plantilla de proyecto
yii2-basic [https://github.com/yiisoft/yii2-app-basic] como en
yii2-advanced [https://github.com/yiisoft/yii2-app-advanced].

Codeception viene preinstalado tanto en la plantilla de proyecto básica como en la avanzada.
En caso de que no use una de estas plantillas, puede instalar Codeception ejecutando
las siguientes órdenes de consola:

composer require codeception/codeception
composer require codeception/specify
composer require codeception/verify









          

      

      

    

  

  
    
    Fixtures
    

    
 
  

    
      
          
            
  
Fixtures

Los fixtures son una parte importante de los tests. Su propósito principal es el de preparar el entorno en una estado fijado/conocido
de manera que los tests sean repetibles y corran de la manera esperada. Yii provee un framework de fixtures que te permite
dichos fixtures de manera precisa y usarlo de forma simple.

Un concepto clave en el framework de fixtures de Yii es el llamado objeto fixture. Un objeto fixture representa
un aspecto particular de un entorno de pruebas y es una instancia de [[yii\test\Fixture]] o heredada de esta. Por ejemplo,
puedes utilizar UserFixture para asegurarte de que la tabla de usuarios de la BD contiene un grupo de datos fijos. Entonces cargas uno o varios
objetos fixture antes de correr un test y lo descargas cuando el test ha concluido.

Un fixture puede depender de otros fixtures, especificándolo en su propiedad [[yii\test\Fixture::depends]].
Cuando un fixture está siendo cargado, los fixtures de los que depende serán cargados automáticamente ANTES que él;
y cuando el fixture está siendo descargado, los fixtures dependientes serán descargados DESPUÉS de él.


Definir un Fixture

Para definir un fixture, crea una nueva clase que extienda de [[yii\test\Fixture]] o [[yii\test\ActiveFixture]].
El primero es más adecuado para fixtures de propósito general, mientras que el último tiene características mejoradas específicamente
diseñadas para trabajar con base de datos y ActiveRecord.

El siguiente código define un fixture acerca del ActiveRecord User y su correspondiente tabla user.

<?php
namespace app\tests\fixtures;

use yii\test\ActiveFixture;

class UserFixture extends ActiveFixture
{
    public $modelClass = 'app\models\User';
}






Tip: Cada ActiveFixture se encarga de preparar la tabla de la DB para los tests. Puedes especificar la tabla
definiendo tanto la propiedad [[yii\test\ActiveFixture::tableName]] o la propiedad [[yii\test\ActiveFixture::modelClass]].
Haciéndolo como el último, el nombre de la tabla será tomado de la clase ActiveRecord especificada en modelClass.





Note: [[yii\test\ActiveFixture]] es sólo adecualdo para bases de datos SQL. Para bases de datos NoSQL, Yii provee
las siguientes clases ActiveFixture:


	Mongo DB: [[yii\mongodb\ActiveFixture]]


	Elasticsearch: [[yii\elasticsearch\ActiveFixture]] (desde la versión 2.0.2)







Los datos para un fixture ActiveFixture son usualmente provistos en un archivo ubicado en FixturePath/data/TableName.php,
donde FixturePath corresponde al directorio conteniendo el archivo de clase del fixture, y TableName
es el nombre de la tabla asociada al fixture. En el ejemplo anterior, el archivo debería ser
@app/tests/fixtures/data/user.php. El archivo de datos debe devolver un array de registros
a ser insertados en la tabla user. Por ejemplo,

<?php
return [
    'user1' => [
        'username' => 'lmayert',
        'email' => 'strosin.vernice@jerde.com',
        'auth_key' => 'K3nF70it7tzNsHddEiq0BZ0i-OU8S3xV',
        'password' => '$2y$13$WSyE5hHsG1rWN2jV8LRHzubilrCLI5Ev/iK0r3jRuwQEs2ldRu.a2',
    ],
    'user2' => [
        'username' => 'napoleon69',
        'email' => 'aileen.barton@heaneyschumm.com',
        'auth_key' => 'dZlXsVnIDgIzFgX4EduAqkEPuphhOh9q',
        'password' => '$2y$13$kkgpvJ8lnjKo8RuoR30ay.RjDf15bMcHIF7Vz1zz/6viYG5xJExU6',
    ],
];





Puedes dar un alias al registro tal que más tarde en tu test, puedas referirte a ese registra a través de dicho alias. En el ejemplo anterior,
los dos registros tienen como alias user1 y user2, respectivamente.

Además, no necesitas especificar los datos de columnas auto-incrementales. Yii automáticamente llenará esos valores
dentro de los registros cuando el fixture está siendo cargado.


Tip: Puedes personalizar la ubicación del archivo de datos definiendo la propiedad [[yii\test\ActiveFixture::dataFile]].
Puedes también sobrescribir [[yii\test\ActiveFixture::getData()]] para obtener los datos.




Como se describió anteriormente, un fixture puede depender de otros fixtures. Por ejemplo, un UserProfileFixture puede necesitar depender de UserFixture
porque la table de perfiles de usuarios contiene una clave foránea a la tabla user.
La dependencia es especificada vía la propiedad [[yii\test\Fixture::depends]], como a continuación,

namespace app\tests\fixtures;

use yii\test\ActiveFixture;

class UserProfileFixture extends ActiveFixture
{
    public $modelClass = 'app\models\UserProfile';
    public $depends = ['app\tests\fixtures\UserFixture'];
}





La dependencia también asegura que los fixtures son cargados y descargados en un orden bien definido. En el ejemplo UserFixture
será siempre cargado antes de UserProfileFixture para asegurar que todas las referencias de las claves foráneas existan y será siempre descargado después de UserProfileFixture
por la misma razón.

Arriba te mostramos cómo definir un fixture de BD. Para definir un fixture no relacionado a BD
(por ej. un fixture acerca de archivos y directorios), puedes extender de la clase base más general
[[yii\test\Fixture]] y sobrescribir los métodos [[yii\test\Fixture::load()|load()]] y [[yii\test\Fixture::unload()|unload()]].




Utilizar Fixtures

Si estás utilizando Codeception [http://codeception.com/] para hacer tests de tu código, deberías considerar el utilizar
la extensión yii2-codeception, que tiene soporte incorporado para la carga y acceso a fixtures.
En caso de que utilices otros frameworks de testing, puedes usar [[yii\test\FixtureTrait]] en tus casos de tests
para alcanzar el mismo objetivo.

A continuación describiremos cómo escribir una clase de test de unidad UserProfile utilizando yii2-codeception.

En tu clase de test de unidad que extiende de [[yii\codeception\DbTestCase]] o [[yii\codeception\TestCase]],
indica cuáles fixtures quieres utilizar en el método [[yii\test\FixtureTrait::fixtures()|fixtures()]]. Por ejemplo,

namespace app\tests\unit\models;

use yii\codeception\DbTestCase;
use app\tests\fixtures\UserProfileFixture;

class UserProfileTest extends DbTestCase
{
    public function fixtures()
    {
        return [
            'profiles' => UserProfileFixture::className(),
        ];
    }

    // ...métodos de test...
}





Los fixtures listados en el método fixtures() serán automáticamente cargados antes de correr cada método de test
en el caso de test y descargado al finalizar cada uno. También, como describimos antes, cuando un fixture está
siendo cargado, todos sus fixtures dependientes serán cargados primero. En el ejemplo de arriba, debido a que
UserProfileFixture depende de UserFixture, cuando ejecutas cualquier método de test en la clase,
dos fixtures serán cargados secuencialmente: UserFixture y UserProfileFixture.

Al especificar fixtures en fixtures(), puedes utilizar tanto un nombre de clase o un array de configuración para referirte a
un fixture. El array de configuración te permitirá personalizar las propiedades del fixture cuando este es cargado.

Puedes también asignarles alias a los fixtures. En el ejemplo anterior, el UserProfileFixture tiene como alias profiles.
En los métodos de test, puedes acceder a un objeto fixture utilizando su alias. Por ejemplo, $this->profiles
devolverá el objeto UserProfileFixture.

Dado que UserProfileFixture extiende de ActiveFixture, puedes por lo tanto usar la siguiente sintáxis para acceder
a los datos provistos por el fixture:

// devuelve el registro del fixture cuyo alias es 'user1'
$row = $this->profiles['user1'];
// devuelve el modelo UserProfile correspondiente al registro cuyo alias es 'user1'
$profile = $this->profiles('user1');
// recorre cada registro en el fixture
foreach ($this->profiles as $row) ...






Info: $this->profiles es todavía del tipo UserProfileFixture. Las características de acceso mostradas arriba son implementadas
a través de métodos mágicos de PHP.







Definir y Utilizar Fixtures Globales

Los fixtures descritos arriba son principalmente utilizados para casos de tests individuales. En la mayoría de los casos, puedes necesitar algunos
fixtures globales que sean aplicados a TODOS o muchos casos de test. Un ejemplo sería [[yii\test\InitDbFixture]], que hace
dos cosas:


	Realiza alguna tarea de inicialización común al ejectutar un script ubicado en @app/tests/fixtures/initdb.php;


	Deshabilita la comprobación de integridad antes de cargar otros fixtures de BD, y la rehabilita después de que todos los fixtures son descargados.




Utilizar fixtures globales es similar a utilizar los no-globales. La única diferencia es que declaras estos fixtures
en [[yii\codeception\TestCase::globalFixtures()]] en vez de en fixtures(). Cuando un caso de test carga fixtures,
primero carga los globales y luego los no-globales.

Por defecto, [[yii\codeception\DbTestCase]] ya declara InitDbFixture en su método globalFixtures().
Esto significa que sólo necesitas trabajar con @app/tests/fixtures/initdb.php si quieres realizar algún trabajo de inicialización
antes de cada test. Sino puedes simplemente enfocarte en desarrollar cada caso de test individual y sus fixtures correspondientes.




Organizar Clases de Fixtures y Archivos de Datos

Por defecto, las clases de fixtures busca los archivos de datos correspondientes dentro de la carpeta data, que es una subcarpeta
de la carpeta conteniendo los archivos de clases de fixtures. Puedes seguir esta convención al trabajar en proyectos simples.
Para proyectos más grandes, es probable que a menudo necesites intercambiar entre diferentes archivos de datos para la misma clase de fixture
en diferentes tests. Recomendamos que organices los archivos de datos en forma jerárquica similar
a tus espacios de nombre de clases. Por ejemplo,

# bajo la carpeta tests\unit\fixtures

data\
    components\
        fixture_data_file1.php
        fixture_data_file2.php
        ...
        fixture_data_fileN.php
    models\
        fixture_data_file1.php
        fixture_data_file2.php
        ...
        fixture_data_fileN.php
# y así sucesivamente





De esta manera evitarás la colisión de archivos de datos de fixtures entre tests y podrás utlilizarlos como necesites.


Note: En el ejemplo de arriba los archivos de fixtures son nombrados así sólo como ejemplo. En la vida real deberías nombrarlos
de acuerdo a qué clase de fixture extienden tus clases de fixtures. Por ejemplo, si estás extendiendo
de [[yii\test\ActiveFixture]] para fixtures de BD, deberías utilizar nombres de tabla de la BD como nombres de los archivos de fixtures;
Si estás extendiendo de [[yii\mongodb\ActiveFixture]] para fixtures de MongoDB, deberías utilizar nombres de colecciones para los nombres de archivo.




Se puede utilizar una jerarquía similar para organizar archivos de clases de fixtures. En vez de utilizar data como directorio raíz, podrías
querer utilizar fixtures como directorio raíz para evitar conflictos con los archivos de datos.




Resumen


Note: Esta sección se encuentra en desarrollo.




Arriba, definimos cómo definir y utilizar fixtures. Abajo resumiremos el típico flujo de trabajo
de correr tests de unidad relacionados a BD:


	Usa la herramienta yii migrate para actualizar tu base de datos de prueba a la última versión;


	Corre el caso de test:


	Carga los fixtures: limpia las tablas de la BD relevantes y cargala con los datos de los fixtures;


	Realiza el test en sí;


	Descarga los fixtures.






	Repite el Paso 2 hasta que todos los tests terminen.




Lo siguiente, a ser limpiado






Administrar Fixtures


Note: Esta sección está en desarrollo.

todo: este tutorial podría ser unificado con la parte de arriba en test-fixtures.md




Los fixtures son una parte importante del testing. Su principal propósito es el de poblarte con datos necesarios para el test
de diferentes casos. Con estos datos. utilizar tests se vuelve más eficiente y útil.

Yii soporta fixtures a través de la herramienta de línea de comandos yii fixture. Esta herramienta soporta:


	Cargar fixtures a diferentes almacenamientos: RDBMS, NoSQL, etc;


	Descargar fixtures de diferentes maneras (usualmente limpiando el almacenamiento);


	Auto-generar fixtures y poblarlos con datos al azar.





Formato de Fixtures

Los fixtures son objetos con diferentes métodos y configuraciones, inspecciónalos en la documentación oficial [https://github.com/yiisoft/yii2/blob/master/docs/guide-es/test-fixtures.md].
Asumamos que tenemos datos de fixtures a cargar:

#archivo users.php bajo la ruta de los fixtures, por defecto @tests\unit\fixtures\data

return [
    [
        'name' => 'Chase',
        'login' => 'lmayert',
        'email' => 'strosin.vernice@jerde.com',
        'auth_key' => 'K3nF70it7tzNsHddEiq0BZ0i-OU8S3xV',
        'password' => '$2y$13$WSyE5hHsG1rWN2jV8LRHzubilrCLI5Ev/iK0r3jRuwQEs2ldRu.a2',
    ],
    [
        'name' => 'Celestine',
        'login' => 'napoleon69',
        'email' => 'aileen.barton@heaneyschumm.com',
        'auth_key' => 'dZlXsVnIDgIzFgX4EduAqkEPuphhOh9q',
        'password' => '$2y$13$kkgpvJ8lnjKo8RuoR30ay.RjDf15bMcHIF7Vz1zz/6viYG5xJExU6',
    ],
];





Si estamos utilizando un fixture que carga datos en la base de datos, entonces esos registros serán insertados en la tabla users. Si estamos utilizando fixtures no sql, por ejemplo de mongodb,
entonces estos datos serán aplicados a la colección mongodb users. Para aprender cómo implementar varias estrategias de carga y más, visita la documentación oficial [https://github.com/yiisoft/yii2/blob/master/docs/guide-es/test-fixtures.md].
El fixture de ejemplo de arriba fue autogenerado por la extensión yii2-faker, lee más acerca de esto en su sección.
Los nombres de clase de fixtures no deberían ser en plural.




Cargar fixtures

Las clases de fixture deberían tener el prefijo Fixture. Por defecto los fixtures serán buscados bajo el espacio de nombre tests\unit\fixtures, puedes
modificar este comportamiento con opciones de comando o configuración. Puedes excluir algunos fixtures para carga o descarga especificando - antes de su nombre, por ejemplo -User.

Para cargar un fixture, ejecuta el siguiente comando:

yii fixture/load <fixture_name>





El parámetro requerido fixture_name especifica un nombre de fixture cuyos datos serán cargados. Puedes cargar varios fixtures de una sola vez.
Abajo se muestran formatos correctos de este comando:

// carga el fixture `User`
yii fixture/load User

// lo mismo que arriba, dado que la acción por defecto del comando "fixture" es "load"
yii fixture User

// carga varios fixtures
yii fixture "User, UserProfile"

// carga todos los fixtures
yii fixture/load "*"

// lo mismo que arriba
yii fixture "*"

// carga todos los fixtures excepto uno
yii fixture "*, -DoNotLoadThisOne"

// carga fixtures, pero los busca en diferente espacio de nombre. El espacio de nombre por defecto es: tests\unit\fixtures.
yii fixture User --namespace='alias\my\custom\namespace'

// carga el fixture global `some\name\space\CustomFixture` antes de que otros fixtures sean cargados.
// Por defecto está opción se define como `InitDbFixture` para habilitar/deshabilitar la comprobación de integridad. Puedes especificar varios
// fixtures globales separados por coma.
yii fixture User --globalFixtures='some\name\space\Custom'








Descargar fixtures

Para descargar un fixture, ejecuta el siguiente comando:

// descarga el fixture Users, por defecto limpiará el almacenamiento del fixture (por ejemplo la tabla "users", o la colección "users" si es un fixture mongodb).
yii fixture/unload User

// descarga varios fixtures
yii fixture/unload "User, UserProfile"

// descarga todos los fixtures
yii fixture/unload "*"

// descarga todos los fixtures excepto uno
yii fixture/unload "*, -DoNotUnloadThisOne"





Opciones de comando similares como: namespace, globalFixtures también pueden ser aplicadas a este comando.




Configurar el Comando Globalmente

Mientras que las opciones de línea de comandos nos permiten configurar el comando de migración
en el momento, a veces queremos configurar el comando de una vez y para siempre. Por ejemplo puedes configurar
diferentes rutas de migración como a continuación:

'controllerMap' => [
    'fixture' => [
        'class' => 'yii\console\controllers\FixtureController',
        'namespace' => 'myalias\some\custom\namespace',
        'globalFixtures' => [
            'some\name\space\Foo',
            'other\name\space\Bar'
        ],
    ],
]








Autogenerando fixtures

Yii puede también autogenerar fixtures por tí basándose en algún template. Puedes generar tus fixtures con distintos datos en diferentes lenguajes y formatos.
Esta característica es realizada por la librería Faker [https://github.com/fzaninotto/Faker] y la extensión yii2-faker.
Visita la guía de la extensión [https://github.com/yiisoft/yii2-faker] para mayor documentación.







          

      

      

    

  

  
    
    Tests funcionales
    

    
 
  

    
      
          
            
  
Tests funcionales

Los tests funcionales verifican escenarios desde la perspectiva de un usuario.
Son similares a los tests de aceptación pero en lugar de
comunicarse vía HTTP rellena el entorno como parámetros POST y GET y después ejecuta
una instancia de la aplicación directamente desde el código.

Los tests funcionales son generalmente más rápidos que los tests de aceptación y
proporcionan stack traces detalladas en los fallos.
Como regla general, debería preferirlos salvo que tenga una configuración de servidor
web especial o una interfaz de usuario compleja en Javascript.

Las pruebas funcionales se implementan con ayuda del framework Codeception, que tiene
una buena documentación:


	Codeception para el framework Yii [http://codeception.com/for/yii]


	Tests funcionales de Codeception [http://codeception.com/docs/04-FunctionalTests]





Ejecución de tests en las plantillas básica y avanzada

Si ha empezado con la plantilla avanzada, consulte la guía de testeo [https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/start-testing.md]
para más detalles sobre la ejecución de tests.

Si ha empezado con la plantilla básica, consulte la sección sobre testeo de su README [https://github.com/yiisoft/yii2-app-basic/blob/master/README.md#testing].







          

      

      

    

  

  
    
    Tests
    

    
 
  

    
      
          
            
  
Tests

Las pruebas son una parte importante del desarrollo de software.  Seamos conscientes
de ello o no, ralizamos pruebas contínuamente.
Por ejemplo, cuando escribimos una clase en PHP, podemos depurarla paso a paso o
simplemente usar declaraciones echo o die para verificar que la implementación
funciona conforme a nuestro plan inicial.  En el caso de una aplicación web, introducimos
algunos datos de prueba en los formularios para asegurarnos de que la página interactúa
con nosotros como esperábamos.

El proceso de testeo se puede automatizar para que cada vez que necesitemos verificar
algo, solamente necesitemos invocar el código que lo hace por nosotros.  El código que
verifica que el restulado coincide con lo que habíamos planeado se llama test y el proceso
de su creación y posterior ejecución es conocido como testeo automatizado, que es el
principal tema de estos capítulos sobre testeo.


Desarrollo con tests

El Desarrollo Dirigido por Pruebas (Test-Driven Development o TDD) y el Desarrollo
Dirigido por Corpotamientos (Behavior-Driven Development o BDD) son enfoques para
desarrollar software, en los que se describe el comportamiento de un trozo de código
o de toda la funcionalidad como un conjunto de escenarios o pruebas antes de escribir
el código real y sólo entonces crear la implementación que permite pasar esos tests
verificando que se ha logrado el comportamiento pretendido.

El proceso de desarrollo de una funcionalidad es el siguiente:


	Crear un nuevo test que describe una funcionalidad a implementar.


	Ejecutar el nuevo test y asegurarse de que falla.  Esto es lo esperado, dado que todavía no hay ninguna implementación.


	Escribir un código sencillo para superar el nuevo test.


	Ejecutar todos los tests y asegurarse de que se pasan todos.


	Mejorar el código y asegurarse de que los tests siguen superándose.




Una vez hecho, se repite el proceso de neuvo para otra funcionalidad o mejora.
Si se va a cambiar la funcionalidad existente, también hay que cambiar los tests.


Tip: Si siente que está perdiendo tiempo haciendo un montón de iteraciones pequeñas
y simples, intente cubrir más por cada escenario de test, de modo que haga más cosas antes
de ejecutar los tests de nuevo.  Si está depurando demasiado, intente hacer lo contrario.




La razón para crear los tests antes de hacer ninguna implementación es que eso nos permite
centrarnos en lo que queremos alcanzar y sumergirnos totalmente en «cómo hacerlo» después.
Normalmente conduce a mejores abstracciones y a un más fácil mantenimiento de los tests
cuando toque hacer ajustes a las funcionalidades o componentes menos acoplados.

Para resumir, las ventajas de este enfoque son las siguientes:


	Le mantiene centrado en una sola cosa en cada momento, lo que resulta en una mejor planificación e implementación.


	Resulta en más funcionalidades cubiertas por tests, y en mayor detalle.  Es decir, si se superan los tests, lo más problable es que no haya nada roto.




A largo plazo normalmente tiene como efecto un buen ahorro de tiempo.




Qué y cómo probar

Aunque el enfoque de primero los tests descrito arriba tiene sentido para el largo plazo
y proyectos relativamente complejos, sería excesivo para proyectos más simples.
Hay algunas indicaciones de cuándo es apropiado:


	El proyecto ya es grande y complejo.


	Los requisitos del proyecto están empezando a hacerse complejos.  El proyecto crece constantemente.


	El proyecto pretende a ser a largo plazo.


	El coste de fallar es demasiado alto.




No hay nada malo en crear tests que cubran el comportamiento de una implementación existente.


	Es un proyecto legado que se va a renovar gradualmente.


	Le han dado un proyecto sobre el que trabajar y no tiene tests.




En algunos casos cualquier forma de testo automatizado sería exagerada:


	El proyecto es sencillo y no se va a volver más complejo.


	Es un proyecto puntual en el que no se seguirá trabajando.




De todas formas, si dispone de tiempo, es bueno automatizar las pruebas también en esos casos.




Más lecturas


	Test Driven Development: By Example / Kent Beck. ISBN: 0321146530.










          

      

      

    

  

  
    
    Pruebas unitarias
    

    
 
  

    
      
          
            
  
Pruebas unitarias

Un test unitario se encarga de verificar que una unidad simple de código funcione como se espera.
Esto decir, dados diferentes parámetros de entrada, el test verifica que el método
de la clase devuelve el resultado esperado.
Normalmente los tests unitarios son desarrollados por la persona que escribe las clases testeadas.

Los tests unitarios en Yii están construidos en base a PHPUnit y, opcionalmente, Codeception, por lo que se recomienda consultar su respectiva documentación:


	Codeception para el framework Yii [http://codeception.com/for/yii]


	Tests unitarios con Codeception [http://codeception.com/docs/05-UnitTests]


	Documentación de PHPUnit, empezando por el capítulo 2 [http://phpunit.de/manual/current/en/writing-tests-for-phpunit.html]





Ejecución de tests en las plantillas básica y avanzada

Si ha empezado con la plantilla avanzada, consulte la guía de testeo [https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/start-testing.md]
para más detalles sobre la ejecución de tests.

Si ha empezado con la plantilla básica, consulte la sección sobre testeo de su README [https://github.com/yiisoft/yii2-app-basic/blob/master/README.md#testing].

##Tests unitarios del framework

Si desea ejecutar tests unitarios para el framework Yii en sí, consulte
«Comenzando con el desarrollo de Yii 2 [https://github.com/yiisoft/yii2/blob/master/docs/internals/getting-started.md]».







          

      

      

    

  

  
    
    Validadores del framework
    

    
 
  

    
      
          
            
  
Validadores del framework

Yii provee en su núcleo un conjunto de validadores de uso común, que se pueden encontrar principalmente bajo el espacio de nombres (namespace) yii\validators.
En vez de utilizar interminables nombres de clases para los validadores, puedes usar alias para especificar el uso de esos validadores del núcleo. Por ejemplo, puedes usar el alias required para referirte a la clase [[yii\validators\RequiredValidator]] :

public function rules()
{
    return [
        [['email', 'password'], 'required'],
    ];
}





La propiedad [[yii\validators\Validator::builtInValidators]] declara todos los aliases de los validadores soportados.

A continuación, vamos a describir el uso principal y las propiedades de cada validador del núcleo.


[[yii\validators\BooleanValidator|boolean]] 

[
    // comprueba si "selected" es 0 o 1, sin mirar el tipo de dato
    ['selected', 'boolean'],

    // comprueba si "deleted" es del tipo booleano, alguno entre `true` o `false`
    ['deleted', 'boolean', 'trueValue' => true, 'falseValue' => false, 'strict' => true],
]





Este validador comprueba si el valor de la entrada (input) es booleano.


	trueValue: El valor representando true. Valor por defecto a '1'.


	falseValue: El valor representando false. Valor por defecto a '0'.


	strict: Si el tipo del valor de la entrada (input) debe corresponder con trueValue y falseValue. Valor por defecto a false.





Note: Ya que los datos enviados con la entrada, vía formularios HTML,son todos cadenas (strings), usted debe normalmente dejar la propiedad  [[yii\validators\BooleanValidator::strict|strict]] a false.







[[yii\captcha\CaptchaValidator|captcha]] 

[
    ['verificationCode', 'captcha'],
]





Este validador es usualmente usado junto con [[yii\captcha\CaptchaAction]] y [[yii\captcha\Captcha]] para asegurarse que una entrada es la misma que lo es el código de verificación que enseña el widget [[yii\captcha\Captcha|CAPTCHA]].


	caseSensitive: cuando la comparación del código de verificación depende de que sean mayúsculas y minúsculas (case sensitive). Por defecto a false.


	captchaAction: la ruta correspondiente a
[[yii\captcha\CaptchaAction|CAPTCHA action]] que representa (render) la imagen CAPTCHA. Por defecto'site/captcha'.


	skipOnEmpty: cuando la validación puede saltarse si la entrada está vacía. Por defecto a false, lo caul permite que la entrada sea necesaria (required).







[[yii\validators\CompareValidator|compare]] 

[
    // valida si el valor del atributo "password" es igual al  "password_repeat"
    ['password', 'compare'],

    // valida si la edad es mayor que o igual que 30
    ['age', 'compare', 'compareValue' => 30, 'operator' => '>='],
]





Este validador compara el valor especificado por la entrada con otro valor y, se asegura si su relación es la especificada por la propiedad operator.


	compareAttribute: El nombre del valor del atributo con el cual debe compararse. Cuando el validador está siendo usado para validar un atributo, el valor por defecto de esta propiedad debe de ser el nombre de el atributo con el sufijo _repeat. Por  ejemplo, si el atributo a ser validado es password, entonces esta propiedad contiene por defecto password_repeat.


	compareValue: un valor constante con el que el valor de entrada debe ser comparado. Cuando ambos, esta propiedad y compareAttribute son especificados, esta preferencia tiene precedencia.


	operator: el operador de comparación. Por defecto vale ==, permitiendo comprobar si el valor de entrada es igual al de compareAttribute o compareValue. Los siguientes operadores son soportados:


	==: comprueba si dos valores son iguales. La comparación se realiza en modo no estricto.


	===: comprueba si dos valores son iguales. La comparación se realiza en modo estricto.


	!=: comprueba si dos valores NO son iguales. La comparación se realiza en modo no estricto.


	!==: comprueba si dos valores NO son iguales. La comparación se realiza en modo estricto.


	>: comprueba si el valor siendo validado es mayor que el valor con el que se compara.


	>=: comprueba si el valor siendo validado es mayor o igual que el valor con el que se compara


	<: comprueba si el valor siendo validado es menor que el valor con el que se compara


	<=: comprueba si el valor siendo validado es menor o igual que el valor con el que se compara











[[yii\validators\DateValidator|date]] 

[
    [['from', 'to'], 'date'],
]





Este validador comprueba si el valor de entrada es una fecha, tiempo or fecha/tiempo y tiempo en el formato correcto.
Opcionalmente, puede convertir el valor de entrada en una fecha/tiempo UNIX y almacenarla en un atributo especificado vía [[yii\validators\DateValidator::timestampAttribute|timestampAttribute]].


	format: el formato fecha/tiempo en el que debe estar el valor a ser validado.
Esto tiene que ser un patrón fecha/tiempo descrito en manual ICU [http://userguide.icu-project.org/formatparse/datetime#TOC-Date-Time-Format-Syntax].
Alternativamente tiene que ser una cadena con el prefijo php: representando un formato que ha de ser reconocido por la clase Datetime de PHP. Por favor, refiérase a http://php.net/manual/en/datetime.createfromformat.php sobre los formatos soportados.
Si no tiene ningún valor, ha de coger el valor de Yii::$app->formatter->dateFormat.


	timestampAttribute: el nombre del atributo al cual este validador puede asignar el fecha/hora UNIX convertida desde la entrada fecha/hora.







[[yii\validators\DefaultValueValidator|default]] 

[
    // pone el valor de "age" a null si está vacío
    ['age', 'default', 'value' => null],

    // pone el valor de "country" a "USA" si está vacío
    ['country', 'default', 'value' => 'USA'],

    // asigna "from" y "to" con una fecha 3 días y 6 días a partir de hoy, si está vacía
    [['from', 'to'], 'default', 'value' => function ($model, $attribute) {
        return date('Y-m-d', strtotime($attribute === 'to' ? '+3 days' : '+6 days'));
    }],
]





Este validador no valida datos. En cambio, asigna un valor por defecto a los atributos siendo validados, si los atributos están vacíos.


	value: el valor por defecto o un elemento llamable de PHP que devuelva el valor por defecto, el cual, va a ser asignado a los atributos siendo validados, si estos están vacíos. La signatura de la función PHP tiene que ser como sigue,




function foo($model, $attribute) {
    // ... calcula $value ...
    return $value;
}






Info: Cómo determinar si un valor está vacío o no, es un tópico separado cubierto en la sección Valores Vacíos .







[[yii\validators\NumberValidator|double]] 

[
    // comprueba si  "salary" es un número de tipo doble
    ['salary', 'double'],
]





Esta validador comprueba si el valor de entrada es un número de tipo doble. Es equivalente a el validador Número .


	max: el valor límite superior (incluido) de el valor. Si no tiene valor, significa que no se comprueba el valor superior.


	min: el valor límite inferior (incluido) de el valor. Si no tiene valor, significa que no se comprueba el valor inferior.







[[yii\validators\EmailValidator|email]] 

[
    // comprueba si "email" es una dirección válida de email
    ['email', 'email'],
]





Este validador comprueba si el valor de entrada es una dirección válida de email.


	allowName: indica cuando permitir el nombre en la dirección de email (p.e. John Smith <john.smith@example.com>). Por defecto a false.


	checkDNS, comprobar cuando el dominio del email existe y tiene cualquier registro  A o MX.
Es necesario ser consciente que esta comprobación puede fallar debido a problemas temporales de  DNS, incluso si el la dirección es válida actualmente.
Por defecto a false.


	enableIDN, indica cuando el proceso de validación debe tener en cuenta el informe de IDN (internationalized domain names).
Por defecto a false. Dese cuenta que para poder usar la validación de IDN has de instalar y activar la extensión de PHP intl,  o será lanzada una excepción.







[[yii\validators\ExistValidator|exist]] 

[
    // a1 necesita que exista una columna con el atributo "a1" 
    ['a1', 'exist'],

    // a1 necesita existir,pero su valor puede usar a2 para comprobar la existencia
    ['a1', 'exist', 'targetAttribute' => 'a2'],

    // a1 y a2 necesitan existir ambos, y ambos pueden recibir un mensaje de error
    [['a1', 'a2'], 'exist', 'targetAttribute' => ['a1', 'a2']],

    // a1 y a2 necesitan existir ambos, sólo a1 puede recibir el mensaje de error
    ['a1', 'exist', 'targetAttribute' => ['a1', 'a2']],

    // a1 necesita existir comprobando la existencia ambos a2 y a3 (usando el valor a1)
    ['a1', 'exist', 'targetAttribute' => ['a2', 'a1' => 'a3']],

    // a1 necesita existir. Si a1 es un array, cada elemento de él tiene que existir.
    ['a1', 'exist', 'allowArray' => true],
]





Este validador comprueba si el valor de entrada puede ser encontrado en una columna de una tabla. Sólo funciona con los atributos del modelo Registro Activo (Active Record). Soporta validación tanto con una simple columna o múltiples columnas.


	targetClass: el nombre de la clase Registro Activo (Active Record) debe de ser usada para mirar por el valor de entrada siendo validado. Si no tiene valor, la clase del modelo actualmente siendo validado puede ser usada.


	targetAttribute: el nombre del atributo en targetClass que debe de ser usado para validar la existencia del valor de entrada. Si no tiene valor, puede usar el nombra del atributoactualmente siendo validado.
Puede usar una array para validar la existencia de múltiples columnas al mismo tiempo. El array de valores son los atributos que pueden ser usados para validar la existencia, mientras que las claves del array son los atributos a ser validados. Si la clave y el valor son los mismos, solo en ese momento puedes especificar el valor.


	filter: filtro adicional a aplicar a la consulta de la base de datos usado para comprobar la existencia de una valor de entrada.
Esto puede ser una cadena o un array representando la condición de la consulta (referirse a [[yii\db\Query::where()]] sobre el formato de la condición de consulta), o una función anónima con la signatura function ($query), donde $query es el objeto [[yii\db\Query|Query]] que puedes modificar en la función.


	allowArray: indica cuando permitir que el valor de entrada sea un array. Por defecto a false.Si la propiedad es true y la entrada es un array, cada elemento del array debe existir en la columna destino. Nota que esta propiedad no puede ser true si estás validando, por el contrario, múltiple columnas poniendo el valor del atributo targetAttribute como que es un array.







[[yii\validators\FileValidator|file]] 

[
    // comprueba si "primaryImage" es un fichero mde imagen en formato PNG, JPG o GIF.
    // el tamaño del fichero ha de ser menor de 1MB
    ['primaryImage', 'file', 'extensions' => ['png', 'jpg', 'gif'], 'maxSize' => 1024*1024*1024],
]





Este validador comprueba que el fichero subido es el adecuado.


	extensions: una lista de extensiones de ficheros que pueden ser subidos. Esto puede ser tanto un array o una cadena conteniendo nombres de extensiones de ficheros separados por un espacio o coma (p.e. “gif, jpg”).
Los nombres de las extensiones no diferencian mayúsculas de minúsculas (case-insensitive). Por defecto a null, permitiendo todas los nombres de extensiones de fichero.


	mimeTypes: una lista de tipos de ficheros MIME  que están permitidos subir. Esto puede ser tanto un array como una cadena conteniendo tipos de fichero MIME separados por un espacio o una coma (p.e. “image/jpeg, image/png”).
Los tipos Mime no diferencian mayúsculas de minúsculas (case-insensitive). Por defecto a null, permitiendo todos los tipos MIME.


	minSize: el número de bytes mínimo requerido para el fichero subido. El tamaño del fichero ha de ser superior a este valor. Por defecto a null, lo que significa sin límite inferior.


	maxSize: El número máximo de bytes del fichero a subir. El tamaño del fichero ha de ser inferior a este valor. Por defecto a null, significando no tener límite superior.


	maxFiles: el máximo número de ficheros que determinado atributo puede manejar. Por defecto a 1, lo que significa que la entrada debe de ser sólo un fichero. Si es mayor que 1, entonces la entrada tiene que ser un array conteniendo como máximo el número maxFiles de elementos que representan los ficheros a subir.


	checkExtensionByMimeType: cuando comprobar la extensión del fichero por el tipo  MIME. Si la extensión producida por la comprobación del tipo MIME difiere la extensión del fichero subido, el fichero será considerado como no válido. Por defecto a true, significando que realiza este tipo de comprobación.




FileValidator es usado con [[yii\web\UploadedFile]]. Por favor, refiérase a la sección Subida de ficheros para una completa cobertura sobre la subida de ficheros y llevar a cabo la validación de los ficheros subidos.




[[yii\validators\FilterValidator|filter]] 

[
    // recorta (trim) las entradas "username" y "email"
    [['username', 'email'], 'filter', 'filter' => 'trim', 'skipOnArray' => true],

    // normaliza la entrada de  "phone"
    ['phone', 'filter', 'filter' => function ($value) {
        // normaliza la entrada del teléfono aquí
        return $value;
    }],
]





Este validador no valida datos. En su lugar, aplica un filtro sobre el valor de entrada y le asigna de nuevo el atributo siendo validado.


	filter: una retrollamada (callback) de PHP que define un filtro. Tiene que ser un nombre de función global, una función anónima, etc.
La forma de la función ha de ser function ($value) { return $newValue; }. Tiene que contener un valor esta propiedad.


	skipOnArray: cuando evitar el filtro si el valor de la entrada es un array. Por defecto a false.
A tener en cuenta que si el filtro no puede manejar una entrada de un array, debes poner esta propiedad a true. En otro caso algún error PHP puede ocurrir.





Consejo (Tip): Si quieres recortar los valores de entrada, puedes usar directamente el validador Recorte (trim).







[[yii\validators\ImageValidator|image]] 

[
    // comprueba si "primaryImage"  es una imágen vaĺida con el tamaño adecuado
    ['primaryImage', 'image', 'extensions' => 'png, jpg',
        'minWidth' => 100, 'maxWidth' => 1000,
        'minHeight' => 100, 'maxHeight' => 1000,
    ],
]





Este validador comprueba si el valor de entrada representa un fichero de imagen válido. Extiende al validador Fichero (file) y, por lo tanto, hereda todas sus propiedades. Además, soporta las siguientes propiedades adicionales específicas para la validación de imágenes:


	minWidth: el mínimo ancho de la imagen. Por defecto a null, indicando que no hay límite inferior.


	maxWidth: el máximo ancho de la imagen. Por defecto a null, indicando que no hay límite superior.


	minHeight: el mínimo alto de la imagen. Por defecto a null, indicando que no hay límite inferior.


	maxHeight: el máximo alto de la imagen. Por defecto a null, indicando que no hay límite superior.







[[yii\validators\RangeValidator|in]] 

[
    // comprueba si "level" es 1, 2 o 3
    ['level', 'in', 'range' => [1, 2, 3]],
]





Este validador comprueba si el valor de entrada puede encontrarse entre determinada lista de valores.


	range: una lista de determinados valores dentro de los cuales el valor de entrada debe de ser mirado.


	strict: cuando la comparación entre el valor de entrada y los valores determinados debe de ser estricta (ambos el tipo y el valor han de ser iguales). Por defecto a false.


	not: cuando el resultado de la validación debe de ser invertido. Por defecto a false. Cuando esta propiedad está a true, el validador comprueba que el valor de entrada NO ESTÁ en la determinada lista de valores.


	allowArray: si se permite que el valor de entrada sea un array. Cuando es true y el valor de entrada es un array, cada elemento en el array debe de ser encontrado en la lista de valores determinada,o la validación fallará.







[[yii\validators\NumberValidator|integer]] 

[
    // comrpueba si "age" es un entero
    ['age', 'integer'],
]





Esta validador comprueba si el valor de entrada es un entero.


	max: el valor superior  (incluido) . Si no tiene valor, significa que el validador no comprueba el límite superior.


	min: el valor inferior (incluido). Si no tiene valor, significa que el validador no comprueba el límite inferior.







[[yii\validators\RegularExpressionValidator|match]] 

[
    // comprueba si "username" comienza con una letra y contiene solamente caracteres en sus palabras
    ['username', 'match', 'pattern' => '/^[a-z]\w*$/i']
]





Este validador comprueba si el valor de entrada coincide con la expresión regular especificada.


	pattern: la expresión regular conla que el valor de entrada debe coincidir. Esta propiedad no puede estar vacía, o se lanzará una excepción.


	not: indica cuando invertir el resultado de la validación. Por defecto a false, significando que la validación es exitosa solamente si el valor de entrada coincide con el patrón. Si esta propiedad está a true, la validación es exitosa solamente si el valor de entrada NO coincide con el patrón.







[[yii\validators\NumberValidator|number]] 

[
    // comprueba si "salary" es un número
    ['salary', 'number'],
]





Este validador comprueba si el valor de entrada es un número. Es equivalente al validador Doble precisión (double).


	max: el valor superior límite (incluido) . Si no tiene valor, significa que el validador no comprueba el valor límite superior.


	min: el valor inferior límite (incluido) . Si no tiene valor, significa que el validador no comprueba el valor límite inferior.







[[yii\validators\RequiredValidator|required]] 

[
    // comprueba si ambos "username" y "password" no están vacíos
    [['username', 'password'], 'required'],
]





El validador comprueba si el valor de entrada es provisto y no está vacío.


	requiredValue: el valor deseado que la entrada debería tener. Si no tiene valor, significa que la entrada no puede estar vacía.


	strict: indica como comprobar los tipos de los datos al validar un valor. Por defecto a false.
Cuando requiredValue no tiene valor, si esta propiedad es true, el validador comprueba si el valor de entrada no es estrictamente null; si la propiedad es false, el validador puede usar una regla suelta para determinar si el valor está vacío o no.
Cuando requiredValue tiene valor, la comparación entre la entrada y  requiredValue comprobará tambien los tipos de los datos si esta propiedad es true.





Info: Como determinar si un valor está vacío o no es un tópico separado cubierto en la sección Valores vacíos.







[[yii\validators\SafeValidator|safe]] 

[
    // marca  "description" como un atributo seguro
    ['description', 'safe'],
]





Este validador no realiza validación de datos. En lugar de ello, es usado para marcar un atributo como seguro atributos seguros.




[[yii\validators\StringValidator|string]] 

[
    // comprueba si "username" es una cadena cuya longitud está entre 4 Y 24
    ['username', 'string', 'length' => [4, 24]],
]





Este validador comprueba si el valor de entrada es una cadena válida con determinada longitud.


	length: especifica la longitud límite de la cadena de entrada a validar. Esto tiene que ser especificado del las siguientes formas:


	un entero: la longitud exacta que la cadena debe de tener;


	un array de un elemento: la longitud mínima de la cadena de entrada (p.e.[8]). Esto puede sobre escribir min.


	un array de dos elementos: las longitudes mínima y mmáxima de la cadena de entrada (p.e. [8, 128]).
Esto sobreescribe ambos valores de min y max.






	min: el mínimo valor de longitud de la cadena de entrada. Si no tiene valor, significa que no hay límite para longitud mínima.


	max: el máximo valor de longitud de la cadena de entrada. Si no tiene valor, significa que no hay límite para longitud máxima.


	encoding: la codificación de la cadena de entrada a ser validada. Si no tiene valor, usará el valor de la aplicación [[yii\base\Application::charset|charset]]  que por defecto es UTF-8.







[[yii\validators\FilterValidator|trim]] 

[
    // recorta (trim) los espacios en blanco que rodean a "username" y "email"
    [['username', 'email'], 'trim'],
]





Este validador no realiza validación de datos. En cambio, recorta los espacios que rodean el valor de entrada. Nota que si el valor de entrada es un array, se ignorará este validador.




[[yii\validators\UniqueValidator|unique]] 

[
    // a1 necesita ser único en la columna representada por el atributo "a1"
    ['a1', 'unique'],

    // a1 necesita ser único, pero la columna a2 puede ser usado para comprobar la unicidad del valor a1
    ['a1', 'unique', 'targetAttribute' => 'a2'],

    // a1 y a2 necesitan ambos ser únicos, y ambospueden recibir el mensaje de error
    [['a1', 'a2'], 'unique', 'targetAttribute' => ['a1', 'a2']],

    // a1 y a2 necesitan ser unicos ambos, solamente uno recibirá el mensaje de error
    ['a1', 'unique', 'targetAttribute' => ['a1', 'a2']],

    // a1 necesita ser único comprobando la unicidad de ambos a2 y a3 (usando el valor)
    ['a1', 'unique', 'targetAttribute' => ['a2', 'a1' => 'a3']],
]





Este validador comprueba si el valor de entrada es único en una columna de una tabla. Solo funciona con los atributos del modelo Registro Activo (Active Record). Soporta validación contra cualquiera de los casos, una columna o múltiples columnas.


	targetClass: el nombre de la clase Registro Activo (Active Record) que debe de ser usada para mirar por el valor de entrada que está siendo validado. Si no tiene valor, la clase del modelo actualmente validado será usada.


	targetAttribute: el nombre de el atributo en targetClassque debe de ser usado para validar la unicidad de el valor de entrada. Si no tiene valor, puede usar el nombre del atributo actualmente siendo validado.
Puedes usar un array para validar la unicidad de múltiples columnas al mismo tiempo. Los valores del array son atributos que pueden ser usados para validar la unicidad, mientras que las claves del array son los atributos que cuyos valores van a ser validados. Si la clave y el valor son el mismo, entonces puedes especificar el valor.


	filter: filtro adicional puede ser aplicado a la consulta de la base de datos usado para comprobar la unicidad del valor de entrada.
Esto puede ser una cadena o un array representando la condición adicional a la consulta (Referirse a [[yii\db\Query::where()]] para el formato de la condición de la consulta), o una función anónima de la forma  function ($query), donde $query es el objeto [[yii\db\Query|Query]] que puedes modificar en la función.







[[yii\validators\UrlValidator|url]] 

[
    // comprueba si "website" es una URL válida. Prefija con "http://" al atributo  "website"
    // si no tiene un esquema URI
    ['website', 'url', 'defaultScheme' => 'http'],
]





Este validador comprueba si el valor de entrada es una URL válida.


	validSchemes: un array especificando el esquema URI que debe ser considerado válido. Por defecto contiene ['http', 'https'], significando que ambas URLS http y https son consideradas válidas.


	defaultScheme: el esquema de URI a poner como prefijo a la entrada si no tiene la parte del esquema.
Por defecto a null, significando que no modifica el valor de entrada.


	enableIDN: Si el validador debe formar parte del registro IDN (internationalized domain names).
Por defecto a false. Nota que para usar la validación IDN tienes que instalar y activar la extensión PHP intl, en otro caso una excepción será lanzada.










          

      

      

    

  

  
    
    Envío de Emails
    

    
 
  

    
      
          
            
  
Envío de Emails


Note: Esta sección se encuentra en desarrollo.




Yii soporta composición y envío de emails. De cualquier modo, el núcleo del framework provee
sólo la funcionalidad de composición y una interfaz básica. En mecanismo de envío en sí debería
ser provisto por la extensión, dado que diferentes proyectos pueden requerir diferente implementación y esto
usualmente depende de servicios y librerías externas.

Para la mayoría de los casos, puedes utilizar la extensión oficial yii2-swiftmailer [https://github.com/yiisoft/yii2-swiftmailer].


Configuración

La configuración del componente Mail depende de la extensión que hayas elegido.
En general, la configuración de tu aplicación debería verse así:

return [
    //....
    'components' => [
        'mailer' => [
            'class' => 'yii\swiftmailer\Mailer',
        ],
    ],
];








Uso Básico

Una vez configurado el componente ‘mailer’, puedes utilizar el siguiente código para enviar un correo electrónico:

Yii::$app->mailer->compose()
    ->setFrom('from@domain.com')
    ->setTo('to@domain.com')
    ->setSubject('Asunto del mensaje')
    ->setTextBody('Contenido en texto plano')
    ->setHtmlBody('<b>Contenido HTML</b>')
    ->send();





En el ejemplo anterior, el método compose() crea una instancia del mensaje de correo, el cual puede ser llenado y enviado.
En caso de ser necesario, puedes agregar una lógica más compleja en el proceso:

$message = Yii::$app->mailer->compose();
if (Yii::$app->user->isGuest) {
    $message->setFrom('from@domain.com')
} else {
    $message->setFrom(Yii::$app->user->identity->email)
}
$message->setTo(Yii::$app->params['adminEmail'])
    ->setSubject('Asunto del mensaje')
    ->setTextBody('Contenido en texto plano')
    ->send();






Note: cada extensión ‘mailer’ viene en dos grandes clases: ‘Mailer’ y ‘Message’. ‘Mailer’ siempre conoce
el nombre de clase especifico de ‘Message’. No intentes instanciar el objeto ‘Message’ directamente -
siempre utiliza el método compose() para ello.




Puedes también enviar varios mensajes al mismo tiempo:

$messages = [];
foreach ($users as $user) {
    $messages[] = Yii::$app->mailer->compose()
        // ...
        ->setTo($user->email);
}
Yii::$app->mailer->sendMultiple($messages);





Algunas extensiones en particular pueden beneficiarse de este enfoque, utilizando mensaje simple de red, etc.




Componer el contenido del mensaje

Yii permite componer el contenido de los mensajes de correo a través de archivos de vista especiales.
Por defecto, estos archivos deben estar ubicados en la ruta ‘@app/mail’.

Ejemplo de archivo de contenido de correo:

<?php
use yii\helpers\Html;
use yii\helpers\Url;


/* @var $this \yii\web\View instancia del componente view */
/* @var $message \yii\mail\BaseMessage instancia del mensaje de correo recién creado */

?>
<h2>Este mensaje te permite visitar nuestro sitio con un sólo click</h2>
<?= Html::a('Ve a la página principal', Url::home('http')) ?>





Para componer el contenido del mensaje utilizando un archivo, simplemente pasa el nombre de la vista al método compose():

Yii::$app->mailer->compose('home-link') // el resultado del renderizado de la vista se transforma en el cuerpo del mensaje aquí
    ->setFrom('from@domain.com')
    ->setTo('to@domain.com')
    ->setSubject('Asunto del mensaje')
    ->send();





Puedes pasarle parámetros adicionales a la vista en el método compose(), los cuales estarán disponibles dentro de las vistas:

Yii::$app->mailer->compose('greetings', [
    'user' => Yii::$app->user->identity,
    'advertisement' => $adContent,
]);





Puedes especificar diferentes archivos de vista para el contenido del mensaje en HTML y texto plano:

Yii::$app->mailer->compose([
    'html' => 'contact-html',
    'text' => 'contact-text',
]);





Si especificas el nombre de la vista como un string, el resultado de su renderización será utilizado como cuerpo HTML, mientras
que el cuerpo en texto plano será compuesto removiendo todas las entidades HTML del anterior.

El resultado de la renderización de la vista puede ser envuelta en el layout, que puede ser definido utiliazando [[yii\mail\BaseMailer::htmlLayout]]
y [[yii\mail\BaseMailer::textLayout]]. Esto funciona igual a como funcionan los layouts en una aplicación web normal.
El layout puede utilizar estilos CSS u otros contenidos compartidos:

<?php
use yii\helpers\Html;

/* @var $this \yii\web\View instancia del componente view */
/* @var $message \yii\mail\MessageInterface el mensaje siendo compuesto */
/* @var $content string el resultado de la renderización de la vista principal */
?>
<?php $this->beginPage() ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
    <meta http-equiv="Content-Type" content="text/html; charset=<?= Yii::$app->charset ?>" />
    <style type="text/css">
        .heading {...}
        .list {...}
        .footer {...}
    </style>
    <?php $this->head() ?>
</head>
<body>
    <?php $this->beginBody() ?>
    <?= $content ?>
    <div class="footer">Saludos cordiales, el equipo de<?= Yii::$app->name ?></div>
    <?php $this->endBody() ?>
</body>
</html>
<?php $this->endPage() ?>








Adjuntar archivos

Puedes adjuntar archivos al mensaje utilizando los métodos attach() y attachContent():

$message = Yii::$app->mailer->compose();

// Adjunta un archivo del sistema local de archivos:
$message->attach('/path/to/file.pdf');

// Crear adjuntos sobre la marcha
$message->attachContent('Contenido adjunto', ['fileName' => 'attach.txt', 'contentType' => 'text/plain']);








Incrustar imágenes

Puedes incrustar imágenes en el mensaje utilizando el método embed(). Este método devuelve el id del adjunto,
que debería ser utilizado como tag ‘img’.
Este método es fácil de utilizar al componer mensajes a través de un archivo de vista:

Yii::$app->mailer->compose('embed-email', ['imageFileName' => '/path/to/image.jpg'])
    // ...
    ->send();





Entonces, dentro de tu archivo de vista, puedes utilizar el siguiente código:

<img src="<?= $message->embed($imageFileName); ?>">








Testear y depurar

Un desarrollador a menudo necesita comprobar qué emails están siendo enviados por la aplicación, cuál es su contenido y otras cosas.
Yii concede dicha habilidad vía yii\mail\BaseMailer::useFileTransport. Si se habilita, esta opción hace que
los datos del mensaje sean guardados en archivos locales en vez de enviados. Esos archivos serán guardados bajo
yii\mail\BaseMailer::fileTransportPath, que por defecto es ‘@runtime/mail’.


Note: puedes o bien guardar los mensajes en archivos, o enviarlos a sus receptores correspondientes, pero no puedes hacer las dos cosas al mismo tiempo.




Un archivo de mensaje puede ser abierto por un editor de texto común, de modo que puedas ver sus cabeceras, su contenido y demás.
Este mecanismo en sí puede comprobarse al depurar la aplicación o al ejecutar un test de unidad.


Note: el archivo de contenido de mensaje es compuesto vía \yii\mail\MessageInterface::toString(), por lo que depende de la extensión
actual de correo utilizada en tu aplicación.







Crear tu solución personalizada de correo

Para crear tu propia solución de correo, necesitas crear 2 clases: una para ‘Mailer’ y
otra para ‘Message’.
Puedes utilizar yii\mail\BaseMailer y yii\mail\BaseMessage como clases base de tu solución. Estas clases
ya contienen un lógica básica, la cual se describe en esta guía. De cualquier modo, su utilización no es obligatoria, es suficiente
con implementar las interfaces yii\mail\MailerInterface y yii\mail\MessageInterface.
Luego necesitas implementar todos los métodos abstractos para construir tu solución.







          

      

      

    

  

  
    
    Crear tu propia estructura de Aplicación
    

    
 
  

    
      
          
            
  
Crear tu propia estructura de Aplicación


Note: Esta sección se encuentra en desarrollo.




Mientras que los templates de proyectos basic [https://github.com/yiisoft/yii2-app-basic] y advanced [https://github.com/yiisoft/yii2-app-advanced]
son grandiosos para la mayoría de tus necesidades, podrías querer crear tu propio template de proyecto del cual
partir todos tus proyectos.

Los templates de proyectos en Yii son simplemente repositorios conteniendo un archivo composer.json, y registrado como un paquete de Composer.
Cualquier repositorio puede ser identificado como paquete Composer, haciéndolo instalable a través del comando de Composer create-project.

Dado que es un poco demasiado comenzar tu template de proyecto desde cero, es mejor utilizar uno de los
templates incorporados como una base. Utilicemos el template básico aquí.


Clonar el Template Básico

El primer paso es clonar el template básico de Yii desde su repositorio Git:

git clone git@github.com:yiisoft/yii2-app-basic.git





Entonces espera que el repositorio sea descargado a tu computadora. Dado que los cambios realizados al template no serán enviados al repositorio, puedes eliminar el directorio .git
y todo su contenido de la descarga.




Modificar los Archivos

A continuación, querrás modificar el archivo composer.json para que refleje tu template. Cambia los valores de name, description, keywords, homepage, license, y support
de forma que describa tu nuevo template. También ajusta las opciones require, require-dev, suggest, y demás para que encajen con los requerimientos de tu template.


Note: En el archivo composer.json, utiliza el parámetro writable (bajo extra) para especificar
permisos-por-archivo a ser definidos después de que la aplicación es creada a partir del template.




Luego, pasa a modificar la estructura y contenido de la aplicación como te gustaría que sea por defecto. Finalmente, actualiza el archivo README para que sea aplicable a tu template.




Hacer un Paquete

Con el template definido, crea un repositorio Git a partir de él, y sube tus archivos ahí. Si tu template va a ser de código abierto, Github [http://github.com] es el mejor lugar para alojarlo. Si tu intención es que el template no sea colaborativo, cualquier sitio de repositorios Git servirá.

Ahora, necesitas registrar tu paquete para Composer. Para templates públicos, el paquete debe ser registrado en Packagist [https://packagist.org/].
Para templates privados, es un poco más complicado registrarlo. Puedes ver instrucciones para hacerlo en la documentación de Composer [https://getcomposer.org/doc/05-repositories.md#hosting-your-own].




Utilizar el Template

Eso es todo lo que se necesita para crear un nuevo template de proyecto Yii. Ahora puedes crear tus propios proyectos a partir de este template:

composer global require "fxp/composer-asset-plugin:^1.4.1"
composer create-project --prefer-dist --stability=dev mysoft/yii2-app-coolone new-project











          

      

      

    

  

  
    
    Usar motores de plantillas
    

    
 
  

    
      
          
            
  
Usar motores de plantillas

Por defecto, Yii utiliza PHP como su lenguaje de plantilla, pero puedes configurar Yii para que soporte otros motores de renderizado, tal como
Twig [http://twig.sensiolabs.org/] o Smarty [http://www.smarty.net/], disponibles como extensiones.

El componente view es el responsable de renderizar las vistas. Puedes agregar un motor de plantillas personalizado reconfigurando
el comportamiento (behavior) de este componente:

[
    'components' => [
        'view' => [
            'class' => 'yii\web\View',
            'renderers' => [
                'tpl' => [
                    'class' => 'yii\smarty\ViewRenderer',
                    //'cachePath' => '@runtime/Smarty/cache',
                ],
                'twig' => [
                    'class' => 'yii\twig\ViewRenderer',
                    'cachePath' => '@runtime/Twig/cache',
                    // Array de opciones de Twig:
                    'options' => [
                        'auto_reload' => true,
                    ],
                    'globals' => ['html' => '\yii\helpers\Html'],
                    'uses' => ['yii\bootstrap'],
                ],
                // ...
            ],
        ],
    ],
]





En el código de arriba, tanto Smarty como Twig son configurados para ser utilizables por los archivos de vista. Pero para tener ambas extensiones en tu proyecto, también necesitas modificar
tu archivo composer.json para incluirlos:

"yiisoft/yii2-smarty": "~2.0.0",
"yiisoft/yii2-twig": "~2.0.0",





Ese código será agregado a la sección require de composer.json. Después de realizar ese cambio y guardar el archivo, puedes instalar estas extensiones ejecutando composer update --prefer-dist en la línea de comandos.

Para más detalles acerca del uso concreto de cada motor de plantillas, visita su documentación:


	Guía de Twig [https://github.com/yiisoft/yii2-twig/tree/master/docs/guide]


	Guía de Smarty [https://github.com/yiisoft/yii2-smarty/tree/master/docs/guide]








          

      

      

    

  

  
    
    Trabajar con código de terceros
    

    
 
  

    
      
          
            
  
Trabajar con código de terceros

De tiempo en tiempo, puede necesitar usar algún código de terceros en sus aplicaciones Yii. O puedes querer
utilizar Yii como una librería en otros sistemas de terceros. En esta sección, te enseñaremos cómo conseguir estos objetivos.


Utilizar librerías de terceros en Yii 

Para usar una librería en una aplicación Yii, primeramente debes de asegurarte que las clases en la librería
son incluidas adecuadamente o pueden ser cargadas de forma automática.


Usando Paquetes de Composer 

Muchas librerías de terceros son liberadas en términos de paquetes Composer [https://getcomposer.org/].
Puedes instalar este tipo de librerías siguiendo dos sencillos pasos:


	modificar el fichero composer.json de tu aplicación y especificar que paquetes Composer quieres instalar.


	ejecuta composer install para instalar los paquetes especificados.




Las clases en los paquetes Composer instalados pueden ser autocargados usando el cargador automatizado de Composer autoloader.
Asegúrate que el fichero script de entrada de tu aplicación contiene las siguientes líneas
para instalar el cargador automático de Composer:

// instalar el cargador automático de  Composer
require __DIR__ . '/../vendor/autoload.php';

// incluir rl fichero de la clase Yii
require __DIR__ . '/../vendor/yiisoft/yii2/Yii.php';








Usando librerías Descargadas 

Si la librería no es liberada como un paquete de Composer, debes de seguir sus instrucciones de instalación para instalarla.
En muchos casos, puedes necesitar descargar manualmente el fichero de la versión y desempaquetarlo en el directorio BasePath/vendor,
donde BasePath representa el camino base (base path) de tu aplicación.

Si la librería lleva su propio cargador automático (autoloader), puedes instalarlo en script de entrada de tu aplicación.
Es recomendable que la instalación se  termine antes de incluir el fichero Yii.php de forma que el cargador automático tenga precedencia al cargar
de forma automática las clases.

Si la librería no provee un cargador automático de clases, pero la denominación de sus clases sigue el PSR-4 [http://www.php-fig.org/psr/psr-4/],
puedes usar el cargador automático de Yii para cargar de forma automática las clases. Todo lo que necesitas
es declarar un alias raíz para cada espacio de nombres (namespace) raiz usado en sus clases. Por ejemplo,
asume que has instalado una librería en el directorio vendor/foo/bar, y que las clases de la librería están bajo el espacio de nombres raiz xyz.
Puedes incluir el siguiente código en la configuración de tu aplicación:

[
    'aliases' => [
        '@xyz' => '@vendor/foo/bar',
    ],
]





Si ninguno de lo anterior es el caso, estaría bien que la librería dependa del camino de inclusión (include path) de configuración de PHP
para localizar correctamente e incluir los ficheros  de las clases. Simplemente siguiendo estas instrucciones de cómo configurar el camino de inclusión de PHP.

En el caso más grave en el que la librería necesite incluir cada uno de sus ficheros de clases, puedes usar el siguiente método
para incluir las clases según se pidan:


	Identificar que clases contiene la librería.


	Listar las clases y el camino a los archivos correspondientes en Yii::$classMap  en el script de entrada script de entrada
de la aplicación. Por ejemplo,




Yii::$classMap['Class1'] = 'path/to/Class1.php';
Yii::$classMap['Class2'] = 'path/to/Class2.php';










Utilizar Yii en Sistemas de Terceros 

Debido a que Yii provee muchas posibilidades excelentes, a veces puedes querer usar alguna de sus características para permitir
el desarrollo o mejora de sistemas de terceros, como es WordPress, Joomla, o aplicaciones desarrolladas usando otros frameworks de PHP.
Por ejemplo, puedes querer utilizar la clase [[yii\helpers\ArrayHelper]] o usar la característica Active Record
en un sistema de terceros. Para lograr este objetivo, principalmente necesitas realizar dos pasos:
instalar Yii , e iniciar  Yii.

Si el sistema de terceros usa Composer para manejar sus dependencias, simplemente ejecuta estos comandos
para instalar Yii:

composer global require "fxp/composer-asset-plugin:^1.4.1"
composer require yiisoft/yii2
composer install





El primer comando instala el composer asset plugin [https://github.com/francoispluchino/composer-asset-plugin/],
que permite administrar paquetes bower y npm a través de Composer. Incluso si sólo quieres utilizar la capa de base de datos
u otra característica de Yii no relacionada a assets, requiere que instales el paquete composer de Yii.

Si quieres utilizar la publicación de Assets de Yii deberías agregar también la siguiente configuración
a la sección extra de tu composer.json:

{
    ...
    "extra": {
        "asset-installer-paths": {
            "npm-asset-library": "vendor/npm",
            "bower-asset-library": "vendor/bower"
        }
    }
}





Visita también la sección de cómo instalar Yii para más información
sobre Composer y sobre cómo solucionar posibles problemas que surjan durante la instalación.

En otro caso, puedes descargar [http://www.yiiframework.com/download/] el archivo de la edición de Yii
y desempaquetarla en el directorio BasePath/vendor.

Después, debes de modificar el script de entrada de sistema de terceros para incluir el siguiente código al principio:

require __DIR__ . '/../vendor/yiisoft/yii2/Yii.php';

$yiiConfig = require __DIR__ . '/../config/yii/web.php';
new yii\web\Application($yiiConfig); // No ejecutes run() aquí





Como puedes ver, el código anterior es muy similar al que puedes ver en script de entrada
de una aplicación típica. La única diferencia es que después de que se crea la instancia de la aplicación, el método run() no es llamado.
Esto es así porque llamando a run(), Yii se haría cargo del control del flujo de trabajo del manejo de las peticiones,
lo cual no es necesario en este caso por estar ya es manejado por la aplicación existente.

Como en una aplicación Yii, debes configurar la instancia de la aplicación basándose en el entorno que se está
ejecutando del sistema de terceros. Por ejemplo, para usar la característica Active Record, necesitas configurar
el componente de la aplicación db con los parámetros de la conexión a la BD del sistema de terceros.

Ahora puedes usar muchas características provistas por Yii. Por ejemplo, puedes crear clases Active Record y usarlas
para trabajar con bases de datos.




Utilizar Yii 2 con Yii 1 

Si estaba usando Yii 1 previamente, es como si tuvieras una aplicación Yii 1 funcionando. En vez de reescribir
toda la aplicación en Yii 2, puedes solamente mejorarla usando alguna de las características sólo disponibles en Yii 2.
Esto se puede lograr tal y como se describe abajo.


Note: Yii 2 requiere PHP 5.4 o superior. Debes de estar seguro que tanto tu servidor como la aplicación
existente lo soportan.




Primero, instala Yii 2 en tu aplicación siguiendo las instrucciones descritas en la última subsección.

Segundo, modifica el script de entrada de la aplicación como sigue,

// incluir la clase Yii personalizada descrita debajo
require __DIR__ . '/../components/Yii.php';

// configuración para la aplicación Yii 2
$yii2Config = require __DIR__ . '/../config/yii2/web.php';
new yii\web\Application($yii2Config); // No llamar a run()

// configuración para la aplicación Yii 1
$yii1Config = require __DIR__ . '/../config/yii1/main.php';
Yii::createWebApplication($yii1Config)->run();





Debido a que ambos Yii 1 y Yii 2 tiene la clase Yii , debes crear una versión personalizada para combinarlas.
El código anterior incluye el fichero con la clase Yii personalizada, que tiene que ser creada como sigue.

$yii2path = '/path/to/yii2';
require $yii2path . '/BaseYii.php'; // Yii 2.x

$yii1path = '/path/to/yii1';
require $yii1path . '/YiiBase.php'; // Yii 1.x

class Yii extends \yii\BaseYii
{
    // copy-paste the code from YiiBase (1.x) here
}

Yii::$classMap = include($yii2path . '/classes.php');
// registrar el autoloader de Yii 2 vía Yii 1
Yii::registerAutoloader(['Yii', 'autoload']);
// crear el contenedor de inyección de dependencia
Yii::$container = new yii\di\Container;





¡Esto es todo!. Ahora, en cualquier parte de tu código, puedes usar Yii::$app para acceder a la instancia de la aplicación de Yii 2,
mientras Yii::app() proporciona la instancia de la aplicación de  Yii 1 :

echo get_class(Yii::app()); // genera 'CWebApplication'
echo get_class(Yii::$app);  // genera 'yii\web\Application'











          

      

      

    

  

  
    
    Guide définitif pour Yii 2.0
    

    
 
  

    
      
          
            
  
Guide définitif pour Yii 2.0

Ce guide est soumis aux Conditions de la Documentation de Yii [http://www.yiiframework.com/doc/terms/].

Tous droits réservés.

2014 (c) Yii Software LLC.


Introduction


	A propos de Yii


	Mise à jour depuis la version 1.1







Mise en Route


	Installer Yii


	Fonctionnement des applications


	Hello World


	Travailler avec les formulaires


	Travailler avec les bases de données


	Générer du code avec Gii


	En savoir plus







Structure Application


	Vue d’ensemble


	Scripts d’entrée


	Applications


	Composants application


	Contrôleurs


	Modèles


	Vues


	TBD Filtres


	TBD Widgets


	TBD Modules


	Assets


	TBD Extensions







Gérer les Requêtes


	TBD Amorçage (Bootstrapping)


	TBD Routes


	TBD Requêtes


	TBD Réponses


	TBD Sessions et Cookies


	Génération et traitement des URL


	Gestion des erreurs


	Journalisation







Concepts Clés


	Composants


	Propriétés


	Evénements


	Comportements


	Configurations


	Alias


	Auto-chargement de classes


	Annuaire de services


	Conteneur d’injection de dépendance







Travailler avec les Bases de Données


	Objet d’accès aux données (DAO) - Connexion à une base de données, requêtes basiques, transactions et manipulation de schéma


	Constructeur de requête - Interrogation de base de données en utilisant une couche d’abstraction simple


	Active Record - Active Record ORM, récupération et manipulation d’enregistrements et définition des relations


	Migrations - Contrôle de version de vos bases de données dans un environnement de développement en équipe


	TBD Sphinx


	TBD Redis


	TBD MongoDB


	TBD ElasticSearch







Getting Data from Users


	Créer des formulaires


	Valider les entrées


	TBD Télécharger des fichiers


	TBD Récupération de données provenant de plusieurs modèles







Afficher les données


	TBD Formattage


	TBD Pagination


	TBD Tri


	Fournisseurs de données


	Widgets pour afficher des données


	Thématisation







Securité


	Authentification


	Autorisation


	Gestion des mots de passe


	TBD Clients authentification


	TBD Meilleures pratiques







Cache


	Vue d’ensemble


	Cache de données


	Cache de fragment


	Cache de page


	Cache HTTP







Services Web RESTful


	Démarrage rapide


	Ressources


	Contrôleurs


	Gestion des routes


	Formattage des réponses


	Authentification


	Limiter le taux d’utilisation


	Gestion des versions


	Gestion des erreurs







Outils de développement


	Barre de débogage, et débogueur


	Générer du code avec Gii


	TBD Générer une documentation API







Tests


	Vue d’ensemble


	TBD Tests unitaires


	TBD tests fonctionnels


	TBD Tests d’acceptation


	Fixtures







Etendre Yii


	Créer des extensions


	Personnalisation du code du noyau


	Utiliser des libraires tierces


	TBD Utiliser Yii dans d’autres systèmes


	TBD Utiliser Yii 1.1 et 2.0 ensemble


	Utiliser Composer







Sujets avancés


	Modèle application avancée


	Créer une application à partir de zéro


	Commandes console


	Validateurs de base


	Internationalisation


	Envoyer des courriels


	Amélioration des performances


	TBD Environnement d’hébergement mutualisé


	Moteur de gabarit







Widgets


	GridView: link to demo page


	ListView: link to demo page


	DetailView: link to demo page


	ActiveForm: link to demo page


	Pjax: link to demo page


	Menu: link to demo page


	LinkPager: link to demo page


	LinkSorter: link to demo page


	Widgets Bootstrap


	TBD Widgets Jquery UI







Assistants


	Vue d’ensemble


	TBD ArrayHelper


	TBD Html


	TBD Url


	TBD Security










          

      

      

    

  

  
    
    Mise en cache de données
    

    
 
  

    
      
          
            
  
Mise en cache de données

La mise en cache de données consiste à stocker quelques variables PHP dans un cache et à les y retrouver plus tard.
C’est également la base pour des fonctionnalités de mise en cache plus avancées, comme la mise en cache de requêtes et la mise en cache de pages.

Le code qui suit est un modèle d’utilisation typique de la mise en cache de données, dans lequel cache fait référence à un composant de mise en cache :

// tente de retrouver la donnée $data dans le cache
$data = $cache->get($key);

if ($data === false) {
    // la donnée $data n'a pas été trouvée dans le cache, on la recalcule
    $data = $this->calculateSomething();

    // stocke la donnée $data dans le cache de façon à la retrouver la prochaine fois
    $cache->set($key, $data);
}

// la donnée $data est disponible ici





Depuis la version 2.0.11, le composant de mise en cache fournit la méthode [[yii\caching\Cache::getOrSet()|getOrSet()]] qui simplifie le code pour l’obtention, le calcul et le stockage des données. Le code qui suit fait exactement la même chose que l’exemple précédent :

$data = $cache->getOrSet($key, function () {
    return $this->calculateSomething();
});





Lorsque le cache possède une donnée associée à la clé $key, la valeur en cache est retournée. Autrement, la fonction anonyme passée est exécutée pour calculer cette valeur qui est mise en cache et retournée.

Si la fonction anonyme a besoin de quelques données en dehors de la portée courante, vous pouvez les passer en utilisant l’instruction use. Par exemple :

$user_id = 42;
$data = $cache->getOrSet($key, function () use ($user_id) {
    return $this->calculateSomething($user_id);
});






Note : la méthode [[yii\caching\Cache::getOrSet()|getOrSet()]] prend également en charge la durée et les dépendances.
Reportez-vous à Expiration de la mise en cache et à Dépendances de mise en cache pour en savoir plus.





Composants de mise en cache 

La mise en cache s’appuie sur ce qu’on appelle les composants de mise en cache qui représentent des supports de mise en cache tels que les mémoires, les fichiers et les bases de données.

Les composants de mise en cache sont généralement enregistrés en tant que composants d’application de façon à ce qu’ils puissent être configurables et accessibles globalement. Le code qui suit montre comment configurer le composant d’application cache pour qu’il utilise memcached [http://memcached.org/] avec deux serveurs de cache :

'components' => [
    'cache' => [
        'class' => 'yii\caching\MemCache',
        'servers' => [
            [
                'host' => 'server1',
                'port' => 11211,
                'weight' => 100,
            ],
            [
                'host' => 'server2',
                'port' => 11211,
                'weight' => 50,
            ],
        ],
    ],
],





Vous pouvez accéder au composant de mise en cache configuré ci-dessus en utilisant l’expression Yii::$app->cache.

Comme tous les composants de mise en cache prennent en charge le même jeux d’API, vous pouvez remplacer le composant de mise en cache sous-jacent par un autre en le reconfigurant  dans la configuration de l’application, cela sans modifier le code qui utilise le cache. Par exemple, vous pouvez modifier le code ci-dessus pour utiliser [[yii\caching\ApcCache|APC cache]] :

'components' => [
    'cache' => [
        'class' => 'yii\caching\ApcCache',
    ],
],






Tip: vous pouvez enregistrer de multiples composants d’application de mise en cache. Le composant nommé cache est utilisé par défaut par de nombreuses classes dépendantes d’un cache (p. ex.[[yii\web\UrlManager]]).





Supports de stockage pour cache pris en charge 

Yii prend en charge un large panel de supports de stockage pour cache. Ce qui suit est un résumé :


	[[yii\caching\ApcCache]]: utilise l’extension PHP APC [http://php.net/manual/en/book.apc.php]. Cette option peut être considérée comme la plus rapide lorsqu’on utilise un cache pour une grosse application centralisée (p. ex. un serveur, pas d’équilibrage de charge dédié, etc.).


	[[yii\caching\DbCache]]: utilise une table de base de données pour stocker les données en cache. Pour utiliser ce cache, vous devez créer une table comme spécifié dans [[yii\caching\DbCache::cacheTable]].


	[[yii\caching\DummyCache]]: tient lieu de cache à remplacer qui n’assure pas de mise en cache réelle. Le but de ce composant est de simplifier le code qui a besoin de vérifier la disponibilité du cache. Par exemple, lors du développement ou si le serveur ne dispose pas de la prise en charge d’un cache, vous pouvez configurer un composant de mise en cache pour qu’il utilise ce cache. Lorsque la prise en charge réelle de la mise en cache est activée, vous pouvez basculer sur le composant de mise en cache correspondant. Dans les deux cas, vous pouvez utiliser le même code Yii::$app->cache->get($key) pour essayer de retrouver les données du cache sans vous préoccuper du fait que Yii::$app->cache puisse être null.


	[[yii\caching\FileCache]]: utilise des fichiers standards pour stocker les données en cache. Cela est particulièrement adapté à la mise en cache de gros blocs de données, comme le contenu d’une page.


	[[yii\caching\MemCache]]: utilise le memcache [http://php.net/manual/en/book.memcache.php] PHP et l’extension memcached [http://php.net/manual/en/book.memcached.php]. Cette option peut être considérée comme la plus rapide lorsqu’on utilise un cache dans des applications distribuées (p. ex. avec plusieurs serveurs, l’équilibrage de charge, etc.).


	[[yii\redis\Cache]]: met en œuvre un composant de mise en cache basé sur un stockage clé-valeur Redis [http://redis.io/]
(une version de redis égale ou supérieure à 2.6.12 est nécessaire).


	[[yii\caching\WinCache]]: utilise le WinCache [http://iis.net/downloads/microsoft/wincache-extension] PHP
(voir aussi l’extension [http://php.net/manual/en/book.wincache.php]).


	[[yii\caching\XCache]] (deprecated): utilise l’extension PHP XCache [http://xcache.lighttpd.net/].


	[[yii\caching\ZendDataCache]] (deprecated): utilise le
cache de données Zend [http://files.zend.com/help/Zend-Server-6/zend-server.htm#data_cache_component.htm]
en tant que médium de cache sous-jacent.





Tip: vous pouvez utiliser différents supports de stockage pour cache dans la même application. Une stratégie courante est d’utiliser un support de stockage pour cache basé sur la mémoire pour stocker des données de petite taille mais d’usage constant (p. ex. des données statistiques), et d’utiliser des supports de stockage pour cache basés sur des fichiers ou des bases de données pour stocker des données volumineuses et utilisées moins souvent (p. ex. des contenus de pages).









Les API Cache 

Tous les composants de mise en cache dérivent de la même classe de base [[yii\caching\Cache]] et par conséquent prennent en charge les API suivantes :


	[[yii\caching\Cache::get()|get()]]: retrouve une donnée dans le cache identifiée par une clé spécifiée. Une valeur false (faux) est retournée si la donnée n’est pas trouvée dans le cache ou si elle a expiré ou été invalidée.


	[[yii\caching\Cache::set()|set()]]: stocke une donnée sous une clé dans le cache.


	[[yii\caching\Cache::add()|add()]]: stocke une donnée identifiée par une clé dans le cache si la clé n’existe pas déjà dans le cache.


	[[yii\caching\Cache::getOrSet()|getOrSet()]]: retrouve une donnée dans le cache identifiée par une clé spécifiée ou exécute la fonction de rappel passée, stocke la valeur retournée par cette fonction dans le cache sous cette clé et retourne la donnée.


	[[yii\caching\Cache::multiGet()|multiGet()]]: retrouve de multiples données dans le cache identifiées par les clés spécifiées.


	[[yii\caching\Cache::multiSet()|multiSet()]]: stocke de multiples données dans le cache. Chaque donnée est identifiée par une clé.


	[[yii\caching\Cache::multiAdd()|multiAdd()]]: stocke de multiples données dans le cache. Chaque donnée est identifiée par une clé. Si la clé existe déjà dans le cache, la donnée est ignorée.


	[[yii\caching\Cache::exists()|exists()]]: retourne une valeur indiquant si la clé spécifiée existe dans le cache.


	[[yii\caching\Cache::delete()|delete()]]: retire du cache une donnée identifiée par une clé.


	[[yii\caching\Cache::flush()|flush()]]: retire toutes les données du cache.





Note : ne mettez pas directement en cache une valeur booléenne false parce que la méthode [[yii\caching\Cache::get()|get()]] utilise  la valeur false pour indiquer que la donnée n’a pas été trouvée dans le cache. Au lieu de cela, vous pouvez placer cette donnée dans un tableau et mettre ce tableau en cache pour éviter le problème.




Quelques supports de cache, tels que MemCache, APC, prennent en charge la récupération de multiples valeurs en cache en mode « batch » (lot), ce qui réduit la surcharge occasionnée par la récupération des données en cache. Les API [[yii\caching\Cache::multiGet()|multiGet()]] et [[yii\caching\Cache::multiAdd()|multiAdd()]] sont fournies pour exploiter cette fonctionnalité. Dans le cas où le support de cache sous-jacent ne prend pas en charge cette fonctionnalité, elle est simulée.
Comme [[yii\caching\Cache]] implémente ArrayAccess, un composant de mise en cache peut être utilisé comme un tableau. En voici quelques exemples :

$cache['var1'] = $value1;  // équivalent à : $cache->set('var1', $value1);
$value2 = $cache['var2'];  // équivalent à : $value2 = $cache->get('var2');






Clés de cache 

Chacune des données stockée dans le cache est identifiée de manière unique par une clé. Lorsque vous stockez une donnée dans le cache, vous devez spécifier une clé qui lui est attribuée. Plus tard, pour récupérer la donnée, vous devez fournir cette clé.

Vous pouvez utiliser une chaîne de caractères ou une valeur arbitraire en tant que clé de cache. Lorsqu’il ne s’agit pas d’une chaîne de caractères, elle est automatiquement sérialisée sous forme de chaîne de caractères.

Une stratégie courante pour définir une clé de cache consiste à inclure tous les facteurs déterminants sous forme de tableau. Par exemple,[[yii\db\Schema]] utilise la clé suivante par mettre en cache les informations de schéma d’une table de base de données :

[
    __CLASS__,              // schema class name
    $this->db->dsn,         // DB connection data source name
    $this->db->username,    // DB connection login user
    $name,                  // table name
];





Comme vous le constatez, la clé inclut toutes les informations nécessaires pour spécifier de manière unique une table de base de données.


Note : les valeurs stockées dans le cache via [[yii\caching\Cache::multiSet()|multiSet()]] ou [[yii\caching\Cache::multiAdd()|multiAdd()]] peuvent n’avoir que des clés sous forme de chaînes de caractères ou de nombres entiers. Si vous avez besoin de définir des clés plus complexes, stockez la valeur séparément via [[yii\caching\Cache::set()|set()]] ou [[yii\caching\Cache::add()|add()]].




Lorsque le même support de cache est utilisé par différentes applications, vous devriez spécifier un préfixe de clé de cache pour chacune des applications afin d’éviter les conflits de clés de cache. Cela peut être fait en configurant la propriété [[yii\caching\Cache::keyPrefix]]. Par exemple, dans la configuration de l’application vous pouvez entrer le code suivant :

'components' => [
    'cache' => [
        'class' => 'yii\caching\ApcCache',
        'keyPrefix' => 'myapp',       // a unique cache key prefix
    ],
],





Pour garantir l’interopérabilité, vous ne devez utiliser que des caractères alpha-numériques.




Expiration de la mise en cache 

Une donnée stockée dans le cache y restera à jamais sauf si elle en est retirée par l’application d’une quelconque politique de mise en cache (p. ex. l’espace de mise en cache est plein et les données les plus anciennes sont retirées). Pour modifier ce comportement, vous pouvez fournir un paramètre d’expiration lors de l’appel de la fonction [[yii\caching\Cache::set()|set()]] pour stocker une donnée. Le paramètre indique pour combien de secondes la donnée restera valide dans le cache. Lorsque vous appelez la fonction [[yii\caching\Cache::get()|get()]] pour récupérer une donnée, si cette dernière a expiré, la méthode retourne false, pour indiquer que la donnée n’a pas été trouvée dans le cache. Par exemple,

// conserve la donnée dans le cache pour un maximum de 45 secondes
$cache->set($key, $data, 45);

sleep(50);

$data = $cache->get($key);
if ($data === false) {
    // $data a expiré ou n'a pas été trouvée dans le cache
}





Depuis la version 2.0.11, vous pouvez définir une valeur [[yii\caching\Cache::$defaultDuration|defaultDuration]] dans la configuration de votre composant de mise en cache si vous préférez utiliser une durée de mise en cache personnalisée au lieu de la durée illimitée par défaut. Cela vous évitera d’avoir à passer la durée personnalisée à la fonction [[yii\caching\Cache::set()|set()]] à chaque fois.




Dépendances de mise en cache 

En plus de la définition du temps d’expiration, les données mises en cache peuvent également être invalidées par modification de ce qu’on appelle les dépendances de mise en cache.
Par exemple, [[yii\caching\FileDependency]] représente la dépendance à la date de modification d’un fichier.
Lorsque cette dépendance est modifiée, cela signifie que le fichier correspondant est modifié. En conséquence, tout contenu de fichier périmé trouvé dans le cache devrait être invalidé et l’appel de la fonction [[yii\caching\Cache::get()|get()]] devrait retourner false.

Les dépendances de mise en cache sont représentées sous forme d’objets dérivés de [[yii\caching\Dependency]]. Lorsque vous appelez la fonction [[yii\caching\Cache::set()|set()]] pour stocker une donnée dans le cache, vous pouvez lui passer un objet de dépendance (« Dependency ») associé. Par exemple,

// Crée une dépendance à la date de modification du fichier example.txt
$dependency = new \yii\caching\FileDependency(['fileName' => 'example.txt']);

// La donnée expirera dans 30 secondes.
// Elle sera également invalidée plus tôt si le fichier example.txt est modifié.
$cache->set($key, $data, 30, $dependency);

// Le cache vérifiera si la donnée a expiré.
// Il vérifiera également si la dépendance associée a été modifiée. 
// Il retournera `false` si l'une de ces conditions est vérifiée.
$data = $cache->get($key);





Ci-dessous nous présentons un résumé des dépendances de mise en cache disponibles :


	[[yii\caching\ChainedDependency]]: la dépendance est modifiée si l’une des dépendances de la chaîne est modifiée.


	[[yii\caching\DbDependency]]: la dépendance est modifiée si le résultat de le requête de l’instruction SQL spécifiée est modifié.


	[[yii\caching\ExpressionDependency]]: la dépendance est modifiée si le résultat de l’expression PHP spécifiée est modifié.


	[[yii\caching\FileDependency]]: la dépendance est modifiée si la date de dernière modification du fichier est modifiée.


	[[yii\caching\TagDependency]]: associe une donnée mise en cache à une ou plusieurs balises. Vous pouvez invalider la donnée mise en cache associée à la balise spécifiée en appelant [[yii\caching\TagDependency::invalidate()]].





Note : évitez d’utiliser la méthode [[yii\caching\Cache::exists()|exists()]] avec des dépendances. Cela ne vérifie pas si la dépendance associée à la donnée mise en cache, s’il en existe une, a changé. Ainsi, un appel de la fonction [[yii\caching\Cache::get()|get()]] peut retourner false alors que l’appel de la fonction [[yii\caching\Cache::exists()|exists()]] retourne true.









Mise en cache de requêtes 

La mise en cache de requêtes est une fonctionnalité spéciale de la mise en cache construite sur la base de la mise en cache de données. Elle est fournie pour permettre la mise en cache du résultat de requêtes de base de données.

La mise en cache de requêtes nécessite une [[yii\db\Connection|connexion à une base de données]] et un  composant d’applicationcache valide.
L’utilisation de base de la mise en cache de requêtes est la suivante, en supposant que $db est une instance de [[yii\db\Connection]] :

$result = $db->cache(function ($db) {

    // le résultat d'une requête SQL sera servi à partir du cache
    // si la mise en cache de requêtes est activée et si le résultat de la requête est trouvé dans le cache
    return $db->createCommand('SELECT * FROM customer WHERE id=1')->queryOne();

});





La mise en cache de requêtes peut être utilisée pour des DAO ainsi que pour des enregistrements actifs:

$result = Customer::getDb()->cache(function ($db) {
    return Customer::find()->where(['id' => 1])->one();
});






Info : quelques systèmes de gestion de bases de données (DBMS) (p. ex. MySQL [http://dev.mysql.com/doc/refman/5.1/en/query-cache.html])
prennent également en charge la mise en cache de requêtes du côté serveur de base de données. Vous pouvez choisir d’utiliser l’un ou l’autre des ces mécanismes de mise en cache de requêtes. Les mises en cache de requêtes décrites ci-dessus offrent l’avantage de pouvoir spécifier des dépendances de mise en cache flexibles et sont potentiellement plus efficaces.





Vidage du cache 
  
    
    Mise en cache de fragments
    

    
 
  

    
      
          
            
  
Mise en cache de fragments

La mise en cache de fragments fait référence à la mise en cache de fragments de pages Web. Par exemple, si une page affiche un résumé des ventes annuelles dans un tableau, vous pouvez stocker ce tableau en cache pour éliminer le temps nécessaire à sa génération à chacune des requêtes. La mise en cache de fragments est construite au-dessus de la mise en cache de données.

Pour utiliser la mise en cache de fragments, utilisez la construction qui suit dans une vue:

if ($this->beginCache($id)) {

    // ... générez le contenu ici ...

    $this->endCache();
}





C’est à dire, insérez la logique de génération du contenu entre les appels [[yii\base\View::beginCache()|beginCache()]] et
[[yii\base\View::endCache()|endCache()]]. Si le contenu est trouvé dans le cache, [[yii\base\View::beginCache()|beginCache()]]
rendra le contenu en cache et retournera false (faux), ignorant la logique de génération de contenu.
Autrement, votre logique de génération de contenu sera appelée, et quand [[yii\base\View::endCache()|endCache()]] sera appelée, le contenu généré sera capturé et stocké dans le cache.

Comme pour la mise en cache de données, un $id (identifiant) unique est nécessaire pour identifier un cache de contenu.


Options de mise en cache 

Vous pouvez spécifier des options additionnelles sur la mise en cache de fragments en passant le tableau d’options comme second paramètre à la méthode [[yii\base\View::beginCache()|beginCache()]]. En arrière plan, ce tableau d’options est utilisé pour configurer un composant graphique [[yii\widgets\FragmentCache]] qui met en œuvre la fonctionnalité réelle de mise en cache de fragments.


Durée 

L’option [[yii\widgets\FragmentCache::duration|duration]] (durée) est peut-être l’option de la mise en cache de fragments la plus couramment utilisée. Elle spécifie pour combien de secondes le contenu peut demeurer valide dans le cache. Le code qui suit met le fragment de contenu en cache pour au maximum une heure :

if ($this->beginCache($id, ['duration' => 3600])) {

    // ... générez le contenu ici...

    $this->endCache();
}





Si cette option n’est pas définie, la valeur utilisée par défaut est 60, ce qui veut dire que le contenu mise en cache expirera au bout de 60 secondes.




Dépendances 

Comme pour la mise en cache de données, le fragment de contenu mis en cache peut aussi avoir des dépendances. Par exemple, le contenu d’un article affiché dépend du fait que l’article a été modifié ou pas.

Pour spécifier une dépendance, définissez l’option [[yii\widgets\FragmentCache::dependency|dependency]], soit sous forme d’objet [[yii\caching\Dependency]], soit sous forme d’un tableau de configuration pour créer un objet [[yii\caching\Dependency]]. Le code qui suit spécifie que le fragment de contenu dépend du changement de la valeur de la colonne updated_at (mis à jour le) :

$dependency = [
    'class' => 'yii\caching\DbDependency',
    'sql' => 'SELECT MAX(updated_at) FROM post',
];

if ($this->beginCache($id, ['dependency' => $dependency])) {

    // ... générez le contenu ici ...

    $this->endCache();
}








Variations 

Le contenu mise en cache peut connaître quelques variations selon certains paramètres. Par exemple, pour une application Web prenant en charge plusieurs langues, le même morceau de code d’une vue peut générer le contenu dans différentes langues. Par conséquent, vous pouvez souhaitez que le contenu mis en cache varie selon la langue courante de l’application.

Pour spécifier des variations de mise en cache, définissez l’option [[yii\widgets\FragmentCache::variations|variations]], qui doit être un tableau de valeurs scalaires, représentant chacune un facteur de variation particulier. Par exemple, pour que le contenu mis en cache varie selon la langue, vous pouvez utiliser le code suivant :

if ($this->beginCache($id, ['variations' => [Yii::$app->language]])) {

    // ... générez le contenu ici ...

    $this->endCache();
}








Activation désactivation de la mise en cache 

Parfois, vous désirez activer la mise en cache de fragments seulement lorsque certaines conditions sont rencontrées. Par exemple, pour une page qui affiche un formulaire, vous désirez seulement mettre le formulaire en cache lorsqu’il est initialement demandé (via une requête GET). Tout affichage subséquent du formulaire (via des requêtes POST) ne devrait pas être mise en cache car il contient des données entrées par l’utilisateur. Pour mettre en œuvre ce mécanisme, vous pouvez définir l’option [[yii\widgets\FragmentCache::enabled|enabled]], comme suit :

if ($this->beginCache($id, ['enabled' => Yii::$app->request->isGet])) {

    // ... générez le contenu ici ...

    $this->endCache();
}










Mises en cache imbriquées 

La mise en cache de fragments peut être imbriquée. C’est à dire qu’un fragment mis en cache peut être contenu dans un autre fragment lui aussi mis en cache.
Par exemple, les commentaires sont mis en cache dans un cache de fragment interne, et sont mis en cache en même temps et avec le contenu de l’article dans un cache de fragment externe. Le code qui suit montre comment deux caches de fragment peuvent être imbriqués :

if ($this->beginCache($id1)) {

    // ...logique de génération du contenu ...

    if ($this->beginCache($id2, $options2)) {

        // ...logique de génération du contenu...

        $this->endCache();
    }

    // ... logique de génération de contenu ...

    $this->endCache();
}





Différentes options de mise en cache peuvent être définies pour les caches imbriqués. Par exemple, les caches internes et les caches externes peuvent utiliser des valeurs de durée différentes. Même lorsque les données mises en cache dans le cache externe sont invalidées, le cache interne peut continuer à fournir un fragment interne valide. Néanmoins, le réciproque n’est pas vraie ; si le cache externe est évalué comme valide, il continue à fournir la même copie mise en cache après que le contenu du cache interne a été invalidé. Par conséquent, vous devez être prudent lors de la définition des durées ou des dépendances des caches imbriqués, autrement des fragments internes périmés peuvent subsister dans le fragment externe.




Contenu dynamique 

Lors de l’utilisation de la mise en cache de fragments, vous pouvez rencontrer une situation dans laquelle un gros fragment de contenu est relativement statique en dehors de quelques endroits particuliers. Par exemple, l’entête d’une page peut afficher le menu principal avec le nom de l’utilisateur courant. Un autre problème se rencontre lorsque le contenu mis en cache, contient du code PHP qui doit être exécuté à chacune des requêtes (p. ex. le code pour enregistrer un paquet de ressources). Ces deux problèmes peuvent être résolus par une fonctionnalité qu’on appelle contenu dynamique.

Un contenu dynamique signifie un fragment de sortie qui ne doit jamais être mis en cache même s’il est contenu dans un  fragment mis en cache. Pour faire en sorte que le contenu soit dynamique en permanence, il doit être généré en exécutant un code PHP à chaque requête, même si le contenu l’englobant est servi à partir du cache.

Vous pouvez appeler la fonction [[yii\base\View::renderDynamic()]] dans un fragment mis en cache pour y insérer un contenu dynamique à l’endroit désiré, comme ceci :

if ($this->beginCache($id1)) {

    // ... logique de génération de contenu ...

    echo $this->renderDynamic('return Yii::$app->user->identity->name;');

    // ... logique de génération de contenu ...

    $this->endCache();
}





La méthode [[yii\base\View::renderDynamic()|renderDynamic()]] accepte un morceau de code PHP en paramètre. La valeur retournée est traitée comme un contenu dynamique. Le même code PHP est exécuté à chacune des requêtes, peu importe que le fragment englobant soit servi à partir du cache ou pas.







          

      

      

    

  

  
    
    Mise en cache HTTP
    

    
 
  

    
      
          
            
  
Mise en cache HTTP

En plus de la mise en cache côté serveur que nous avons décrite dans les sections précédentes, les applications Web peuvent aussi exploiter la mise en cache côté client pour économiser le temps de génération et de transfert d’un contenu de page inchangé.

Pour utiliser la mise en cache côté client, vous pouvez configurer [[yii\filters\HttpCache]] comme un filtre pour des actions de contrôleur dont le résultat rendu peut être mis en cache du côté du client. [[yii\filters\HttpCache|HttpCache]]
ne fonctionne que pour les requêtes GET et HEAD. Il peut gérer trois sortes d’entêtes HTTP relatifs à la mise en cache pour ces requêtes :


	[[yii\filters\HttpCache::lastModified|Last-Modified]]


	[[yii\filters\HttpCache::etagSeed|Etag]]


	[[yii\filters\HttpCache::cacheControlHeader|Cache-Control]]





Entête Last-Modified 

L’entête Last-Modified (dernière modification) utilise un horodatage pour indiquer si la page a été modifiée depuis sa mise en cache par le client.

Vous pouvez configurer la propriété [[yii\filters\HttpCache::lastModified]] pour activer l’envoi de l’entête Last-modified. La propriété doit être une fonction de rappel PHP qui retourne un horodatage UNIX concernant la modification de la page. La signature de la fonction de rappel PHP doit être comme suit :

/**
 * @param Action $action l'objet action qui est actuellement géré
 * @param array $params la valeur de la propriété "params"
 * @return int un horodatage UNIX représentant l'instant de modification de la page
 */
function ($action, $params)





Ce qui suit est un exemple d’utilisation de l’entête Last-Modified :

public function behaviors()
{
    return [
        [
            'class' => 'yii\filters\HttpCache',
            'only' => ['index'],
            'lastModified' => function ($action, $params) {
                $q = new \yii\db\Query();
                return $q->from('post')->max('updated_at');
            },
        ],
    ];
}





Le code précédent établit que la mise en cache HTTP doit être activée pour l’action index seulement. Il doit générer un entête HTTP Last-Modified basé sur l’instant de la dernière mise à jour d’articles (posts). Lorsque le navigateur visite la page index pour la première fois, la page est générée par le serveur et envoyée au navigateur. Si le navigateur visite à nouveau la même page, et qu’aucun article n’a été modifié, le serveur ne régénère par la page, et le navigateur utilise la version mise en cache du côté du client. En conséquence, le rendu côté serveur et la transmission de la page sont tous deux évités.




Entête ETag 

L’entête “Entity Tag” (or ETag en raccourci) utilise une valeur de hachage pour représenter le contenu d’une page. Si la page est modifiée, la valeur de hachage change également. En comparant la valeur de hachage conservée sur le client avec la valeur de hachage générée côté serveur, le cache peut déterminer si la page a été modifiée et doit être retransmise.

Vous pouvez configurer la propriété [[yii\filters\HttpCache::etagSeed]] pour activer l’envoi de l’entête ETag. La propriété doit être une fonction de rappel PHP qui retourne un nonce (sel) pour la génération de la valeur de hachage Etag. La signature de la fonction de rappel PHP doit être comme suit :

/**
 * @param Action $action l'objet action qui est actuellement géré
 * @param array $params la valeur de la propriété "params"
 * @return string une chaîne de caractères à utiliser comme nonce (sel) pour la génération d'une valeur de hachage ETag 
 */
function ($action, $params)





Ce qui suit est un exemple d’utilisation de l’entête ETag :

public function behaviors()
{
    return [
        [
            'class' => 'yii\filters\HttpCache',
            'only' => ['view'],
            'etagSeed' => function ($action, $params) {
                $post = $this->findModel(\Yii::$app->request->get('id'));
                return serialize([$post->title, $post->content]);
            },
        ],
    ];
}





Le code ci-dessus établit que la mise en cache HTTP doit être activée pour l’action view seulement. Il doit générer un entête HTTP ETag basé sur le titre et le contenu de l’article demandé. Lorsque le navigateur visite la page pour la première fois, la page est générée par le serveur et envoyée au navigateur. Si le navigateur visite à nouveau la même page et que ni le titre, ni le contenu de l’article n’ont changé, le serveur ne régénère pas la page et le navigateur utilise la version mise en cache côté client. En conséquence, le rendu par le serveur et la transmission de la page sont tous deux évités.

ETags vous autorise des stratégies de mises en cache plus complexes et/ou plus précises que l’entête Last-Modified. Par exemple, un ETag peut être invalidé si on a commuté le site sur un nouveau thème.

Des génération coûteuses d’ETag peuvent contrecarrer l’objectif poursuivi en utilisant HttpCache et introduire une surcharge inutile, car il faut les réévaluer à chacune des requêtes. Essayez de trouver une expression simple qui invalide le cache si le contenu de la page a été modifié.


Note : en conformité avec la norme RFC 7232 [http://tools.ietf.org/html/rfc7232#section-2.4],
HttpCache envoie les entêtes ETag et Last-Modified à la fois si ils sont tous deux configurés. Et si le client envoie les entêtes If-None-Match et If-Modified-Since à la fois, seul le premier est respecté.







Entête Cache-Control 

L’entête Cache-Control spécifie la politique de mise en cache générale pour les pages. Vous pouvez l’envoyer en configurant la propriété [[yii\filters\HttpCache::cacheControlHeader]] avec la valeur de l’entête. Par défaut, l’entête suivant est envoyé :

Cache-Control: public, max-age=3600








Propriété “Session Cache Limiter” 

Lorsqu’une page utilise une session, PHP envoie automatiquement quelques entêtes HTTP relatifs à la mise en cache comme spécifié dans la propriété session.cache_limiter de PHP INI. Ces entêtes peuvent interférer ou désactiver la mise en cache que vous voulez obtenir de HttpCache. Pour éviter ce problème, par défaut, HttpCache désactive l’envoi de ces entêtes automatiquement. Si vous désirez modifier ce comportement, vous devez configurer la propriété [[yii\filters\HttpCache::sessionCacheLimiter]]. Cette propriété accepte une chaîne de caractères parmi public, private, private_no_expire et nocache. Reportez-vous au manuel de PHP à propos de session_cache_limiter() [http://www.php.net/manual/en/function.session-cache-limiter.php] pour des explications sur ces valeurs.




Implications SEO 

Les robots moteurs de recherche ont tendance à respecter les entêtes de mise en cache. Comme certains moteurs d’indexation du Web sont limités quant aux nombre de pages par domaine qu’ils sont à même de traiter dans un certain laps de temps, l’introduction d’entêtes de mise en cache peut aider à l’indexation de votre site car ils limitent le nombre de pages qui ont besoin d’être traitées.







          

      

      

    

  

  
    
    Mise en cache
    

    
 
  

    
      
          
            
  
Mise en cache

La mise en cache est un moyen peu coûteux et efficace d’améliorer la performance d’une application Web. En stockant des données relativement statiques en cache et en les servant à partir de ce cache lorsqu’elles sont demandées, l’application économise le temps qu’il aurait fallu pour générer ces données à partir de rien à chaque demande.

La mise en cache se produit à différents endroits et à différents niveaux dans une application Web. Du côté du serveur, au niveau le plus bas, le cache peut être utilisé pour stocker des données de base, telles qu’une liste des informations sur des articles recherchée dans une base de données ; et à un niveau plus élevé, il peut être utilisé pour stocker des fragments ou l’intégralité de pages Web, telles que le rendu des articles les plus récents.

Du côté client, la mise en cache HTTP peut être utilisée pour conserver le contenu des pages visitées les plus récentes dans le cache du navigateur.

Yii prend en charge tous ces mécanismes de mise en cache :


	Mise en cache de données


	Mise en cache de fragments


	Mise en cache de pages


	Mise en cache HTTP








          

      

      

    

  

  
    
    Mise en cache de pages
    

    
 
  

    
      
          
            
  
Mise en cache de pages

La mise en cache de pages fait référence à la mise en cache du contenu d’une page entière du côté serveur. Plus tard, lorsque la même page est demandée à nouveau, son contenu est servi à partir du cache plutôt que d’être régénéré entièrement.

La mise en cache de pages est prise en charge par [[yii\filters\PageCache]], un filtre d’action. On peut l’utiliser de la manière suivante dans une classe contrôleur :

public function behaviors()
{
    return [
        [
            'class' => 'yii\filters\PageCache',
            'only' => ['index'],
            'duration' => 60,
            'variations' => [
                \Yii::$app->language,
            ],
            'dependency' => [
                'class' => 'yii\caching\DbDependency',
                'sql' => 'SELECT COUNT(*) FROM post',
            ],
        ],
    ];
}





Le code ci-dessus établit que la mise en cache de pages doit être utilisée uniquement pour l’action index. Le contenu de la page doit être mis en cache pour au plus 60 secondes et doit varier selon la langue courante de l’application. De plus, le contenu de la page mis en cache doit être invalidé si le nombre total d’articles (post) change.

Comme vous pouvez le constater, la mise en cache de pages est très similaire à la mise en cache de fragments. Les deux prennent en charge les options telles que duration, dependencies, variations et enabled. La différence principale est que la mise en cache de pages est mis en œuvre comme un filtre d’action alors que la mise en cache de framgents l’est comme un composant graphique.

Vous pouvez utiliser la mise en cache de fragments ainsi que le contenu dynamique en simultanéité avec la mise en cache de pages.





          

      

      

    

  

  
    
    Alias
    

    
 
  

    
      
          
            
  
Alias

Les alias sont utilisés  pour représenter des chemins de fichier ou des URL de façon à ce que vous n’ayez pas besoin d’écrire ces chemins ou ces URL en entier dans votre code. Un alias doit commencer par le caractère arobase @ pour être différentié des chemins de fichier et des URL normaux. Les alias définis sans ce caractère de tête @ sont automatiquement préfixés avec ce dernier.

Yii possèdent de nombreux alias pré-définis déjà disponibles. Par exemple, l’alias @yii représente le chemin d’installation de la base structurée de développement PHP (framework), Yii ; L’alias @web représente l’URL de base de l’application Web en cours d’exécution.


Définition des alias 

Vous pouvez définir un alias pour un chemin de fichier ou pour une URL en appelant [[Yii::setAlias()]]:

// un alias pour un chemin de fichier
Yii::setAlias('@foo', '/path/to/foo');

// un alias pour une URL
Yii::setAlias('@bar', 'http://www.example.com');


// un alias de fichier concrêt qui contient une classe  \foo\Bar
Yii::setAlias('@foo/Bar.php', '/definitely/not/foo/Bar.php');






Note: le chemin de fichier ou l’URL pour qui un alias est créé peut ne pas nécessairement faire référence à un fichier ou une ressource existante.




Étant donné un alias, vous pouvez dériver un autre alias – sans faire appel à [[Yii::setAlias()]]) – en y ajoutant une barre oblique de division / suivi d’un ou plusieurs segments de chemin. Les alias définis via [[Yii::setAlias()]] sont des alias racines, tandis que les alias qui en dérivent sont des alias dérivés. Par exemple, @foo est un alias racine, alors que @foo/bar/file.php est un alias dérivé.

Vous pouvez définir un alias en utilisant un autre alias (qu’il soit racine ou dérivé) :

Yii::setAlias('@foobar', '@foo/bar');





Les alias racines sont ordinairement définis pendant l’étape d’amorçage. Par exemple, vous pouvez appeler [[Yii::setAlias()]] dans le script d’entrée. Pour commodité, la classe Application fournit une propriété nommée aliases que vous pouvez configurer dans la configuration de l’application :

return [
    // ...
    'aliases' => [
        '@foo' => '/path/to/foo',
        '@bar' => 'http://www.example.com',
    ],
];








Résolution des alias 

Vous pouvez appeler [[Yii::getAlias()]] pour résoudre un alias racine en le chemin de fichier ou l’URL qu’il représente. La même méthode peut aussi résoudre un alias dérivé en le chemin de fichier ou l’URL correspondant :

echo Yii::getAlias('@foo');               // affiche : /path/to/foo
echo Yii::getAlias('@bar');               // affiche : http://www.example.com
echo Yii::getAlias('@foo/bar/file.php');  // affiche : /path/to/foo/bar/file.php





Le chemin ou l’URL que représente un alias dérivé est déterminé en remplaçant l’alias racine par le chemin ou l’URL qui lui correspond dans l’alias dérivé.


Note: la méthode [[Yii::getAlias()]] ne vérifie pas que le chemin ou l’URL qui en résulte fait référence à un fichier existant ou à une ressource existante.




Un alias racine peut également contenir des barres obliques de division /. La méthode [[Yii::getAlias()]] est suffisamment intelligente pour dire quelle partie d’un alias est un alias racine et, par conséquent, déterminer correctement le chemin de fichier ou l’URL qui correspond :

Yii::setAlias('@foo', '/path/to/foo');
Yii::setAlias('@foo/bar', '/path2/bar');
Yii::getAlias('@foo/test/file.php');  // affiche : /path/to/foo/test/file.php
Yii::getAlias('@foo/bar/file.php');   // affiche : /path2/bar/file.php





Si @foo/bar n’est pas défini en tant qu’alias racine, la dernière instruction affiche /path/to/foo/bar/file.php.




Utilisation des alias 

Les alias sont reconnus en différents endroits dans Yii sans avoir besoin d’appeler [[Yii::getAlias()]] pour les convertir en chemin ou URL. Par exemple, [[yii\caching\FileCache::cachePath]] accepte soit un chemin de fichier, soit un alias représentant un chemin de fichier, grâce au préfixe @ qui permet de différentier un chemin de fichier d’un alias.

use yii\caching\FileCache;

$cache = new FileCache([
    'cachePath' => '@runtime/cache',
]);





Reportez-vous à la documentation de l’API pour savoir si une propriété ou une méthode prend en charge les alias.




Alias prédéfinis  

Yii prédéfinit un jeu d’alias pour faire référence à des chemins de fichier ou à des URL d’utilisation courante :


	@yii, le dossier où le fichier BaseYii.php se trouve – aussi appelé dossier de la base structurée de développement PHP (framework).


	@app, le  [[yii\base\Application::basePath|chemin de base]] de l’application en cours d’exécution.


	@runtime, le [[yii\base\Application::runtimePath|chemin du dossier runtime]] de l’application en cours d’exécution. Valeur par défaut @app/runtime.


	@webroot, le dossier Web racine de l’application en cours d’exécution. Il est déterminé en se basant sur le dossier qui contient le script d’entrée.


	@web, l’URL de base de l’application en cours d’exécution. Cet alias a la même valeur que  [[yii\web\Request::baseUrl]].


	@vendor, le [[yii\base\Application::vendorPath|dossier vendor de Composer]]. Valeur par défaut @app/vendor.


	@bower, le dossier racine des paquets bower [http://bower.io/]. Valeur par défaut @vendor/bower.


	@npm, le dossier racine des paquets npm [https://www.npmjs.org/]. Valeur par défaut @vendor/npm.




L’alias @yii est défini lorsque vous incluez le fichier Yii.php dans votre script d’entrée. Les alias restants sont définis dans le constructeur de l’application au moment où la configuration de l’application est appliquée.
.




Alias d’extension 

Un alias est automatiquement défini par chacune des extensions qui sont installées par Composer. Chaque alias est nommé d’après le nom de l’extension déclaré dans le fichier composer.json. Chaque alias représente le dossier racine du paquet. Par exemple, si vous installez l’extension yiisoft/yii2-jui, vous obtiendrez automatiquement l’alias @yii/jui défini durant l’étape d’amorçage, et équivalent à :

Yii::setAlias('@yii/jui', 'VendorPath/yiisoft/yii2-jui');











          

      

      

    

  

  
    
    Chargement automatique des classes
    

    
 
  

    
      
          
            
  
Chargement automatique des classes

Yii compte sur le mécanisme de chargement automatique des classes [http://www.php.net/manual/en/language.oop5.autoload.php] pour localiser et inclure tous les fichiers de classes requis. Il fournit un chargeur automatique de classes de haute performance qui est conforme à la norme PSR-4 [https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-4-autoloader.md]. Le chargeur automatique est installé lorsque vous incluez le fichier Yii.php.


Note: pour simplifier la description, dans cette section, nous ne parlerons que du chargement automatique des classes. Néanmoins, gardez présent à l’esprit que le contenu que nous décrivons ici s’applique aussi au chargement automatique des interfaces et des traits.





Utilisation du chargeur automatique de Yii 

Pour utiliser le chargeur automatique de classes de Yii, vous devez suivre deux règles simples lorsque vous créez et nommez vos classes :


	Chaque classe doit être placée sous un espace de noms [http://php.net/manual/en/language.namespaces.php] (p. ex. foo\bar\MyClass)


	Chaque classe doit être sauvegardée sous forme d’un fichier individuel dont le chemin est déterminé par l’algorithme suivant :




// $className est un nom de classe pleinement qualifié sans la barre oblique inversée de tête
$classFile = Yii::getAlias('@' . str_replace('\\', '/', $className) . '.php');





For exemple, si le nom de classe et l’espace de noms sont foo\bar\MyClass, l’alias pour le chemin du fichier de classe correspondant est @foo/bar/MyClass.php. Pour que cet alias puisse être résolu en un chemin de fichier, soit @foo, soit @foo/bar doit être un alias racine.

Lorsque vous utilisez le modèle de projet basic, vous pouvez placer vos classes sous l’espace de noms de niveau le plus haut app afin qu’elles puissent être chargées automatiquement par Yii sans avoir besoin de définir un nouvel alias. Cela est dû au fait que @app est un alias prédéfini, et qu’un nom de classe comme app\components\MyClass peut être résolu en le fichier de classe AppBasePath/components/MyClass.php, en appliquant l’algorithme précédemment décrit.

Dans le modèle de projet avancé [https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/README.md], chaque niveau possède son propre alias. Par exemple, le niveau « interface utilisateur » a l’alias @frontend, tandis que le niveau « interface d’administration » a l’alias @backend. En conséquence, vous pouvez mettre les classes de l’interface utilisateur sous l’espace de noms frontend, tandis que les classes de l’interface d’administration sont sous l’espace de noms backend. Cela permet à ces classes d’être chargées automatiquement par le chargeur automatique de Yii.

Pour ajouter un espace de noms personnalisé au chargeur automatique, vous devez définir un alias pour le dossier de base de l’espace de noms en utilisant  [[Yii::setAlias()]].
Par exemple, pour charger des classes de l’espace de noms foo qui se trouvent dans le dossier path/to/foo, vous appelez Yii::setAlias('@foo', 'path/to/foo').




Table de mise en correspondance des classes 

Le chargeur automatique de classes de Yii prend en charge la fonctionnalité table de mise en correspondance des classes, qui met en correspondance les noms de classe avec les chemins de classe de fichiers. Lorsque le chargeur automatique charge une classe, il commence par chercher si la classe existe dans la table de mise en correspondance. Si c’est le cas, le chemin de fichier correspondant est inclus directement sans plus de recherche. Cela rend le chargement des classes très rapide. En fait, toutes les classes du noyau de Yii sont chargées de cette manière.

Vous pouvez ajouter une classe à la table de mise en correspondance des classes, stockée dans Yii::$classMap, avec l’instruction :

Yii::$classMap['foo\bar\MyClass'] = 'path/to/MyClass.php';





Les alias peuvent être utilisés pour spécifier des chemins de fichier de classe. Vous devez définir la table de mise en correspondance dans le processus d’amorçage afin qu’elle soit prête avant l’utilisation de vos classes.




Utilisation d’autres chargeurs automatiques 

Comme Yii utilise Composer comme gestionnaire de dépendances de paquets, il est recommandé que vous installiez aussi le chargeur automatique de Composer. Si vous utilisez des bibliothèques de tierces parties qui ont besoin de leurs propres chargeurs, vous devez installer ces chargeurs également.

Lors de l’utilisation conjointe du chargeur automatique de Yii et d’autres chargeurs automatiques, vous devez inclure le fichier Yii.php après que tous les autres chargeurs automatiques sont installés. Cela fait du chargeur automatique de Yii le premier à répondre à une requête de chargement automatique de classe. Par exemple, le code suivant est extrait du script d’entrée du modèle de projet basic. La première ligne installe le chargeur automatique de Composer, tandis que la seconde installe le chargeur automatique de Yii :

require __DIR__ . '/../vendor/autoload.php';
require __DIR__ . '/../vendor/yiisoft/yii2/Yii.php';





Vous pouvez utiliser le chargeur automatique de Composer seul sans celui de Yii. Néanmoins, en faisant de cette manière, la performance de chargement de vos classes est dégradée et vous devez appliquer les règles de Composer pour que vos classes puissent être chargées automatiquement.


Info: si vous voulez ne pas utiliser le chargeur automatique de Yii, vous devez créer votre propre version du fichier Yii.php et l’inclure dans votre script d’entrée.







Chargement automatique des classes d’extension 

Le chargeur automatique de Yii est capable de charger automatiquement des classes d’extension. La seule exigence est que cette extension spécifie la section autoload correctement dans son fichier composer.json. Reportez-vous à la documentation de Composer [https://getcomposer.org/doc/04-schema.md#autoload] pour plus de détails sur la manière de spécifier autoload.

Dans le cas où vous n’utilisez pas le chargeur automatique de Yii, le chargeur automatique de Composer peut toujours charger les classes d’extensions pour vous.







          

      

      

    

  

  
    
    Comportements
    

    
 
  

    
      
          
            
  
Comportements

Les comportements (behaviors sont des instances de la classe [[yii\base\Behavior]], ou de ses classes filles. Les comportements, aussi connus sous le nom de mixins [http://en.wikipedia.org/wiki/Mixin], vous permettent d’améliorer les fonctionnalités d’une classe de [[yii\base\Component|composant]] existante sans avoir à modifier les héritages de cette classe. Le fait d’attacher un comportement à un composant injecte les méthodes et les propriétés de ce comportement dans le composant, rendant ces méthodes et ces propriétés accessibles comme si elles avaient été définies dans la classe du composant lui-même. En outre, un comportement peut répondre aux événements déclenchés par le composant, ce qui permet aux comportements de personnaliser l’exécution normale du code du composant.


Définition des comportements 

Pour définir un comportement, vous devez créer une classe qui étend la classe  [[yii\base\Behavior]], ou une des ses classes filles. Par exemple :

namespace app\components;

use yii\base\Behavior;

class MyBehavior extends Behavior
{
    public $prop1;

    private $_prop2;

    public function getProp2()
    {
        return $this->_prop2;
    }

    public function setProp2($value)
    {
        $this->_prop2 = $value;
    }

    public function foo()
    {
        // ...
    }
}





Le code ci-dessus définit la classe de comportement app\components\MyBehavior avec deux propriété — prop1 et prop2 — et une méthode foo(). Notez que la propriété prop2 est définie via la méthode d’obtention getProp2 et la méthode d’assignation setProp2. Cela est le cas parce que la classe  [[yii\base\Behavior]] étend la classe [[yii\base\BaseObject]] et, par conséquent, prend en charge la définition des propriétés via les méthodes d’obtention et d’assignation.

Comme cette classe est un comportement, lorsqu’elle est attachée à un composant, ce composant acquiert alors les propriétés  prop1 et prop2, ainsi que la méthode foo().


Tip: depuis l’intérieur d’un comportement, vous avez accès au composant auquel le comportement est attaché via la propriété [[yii\base\Behavior::owner]].





Note: dans le cas où les méthodes  [[yii\base\Behavior::__get()]] et/ou [[yii\base\Behavior::__set()]] du comportement sont redéfinies, vous devez redéfinir les méthodes [[yii\base\Behavior::canGetProperty()]] et/ou [[yii\base\Behavior::canSetProperty()]] également.







Gestion des événements du composant

Si un comportement a besoin de répondre aux événements déclenchés par le composant auquel il est attaché, il doit redéfinir la méthode [[yii\base\Behavior::events()]]. Par exemple:

namespace app\components;

use yii\db\ActiveRecord;
use yii\base\Behavior;

class MyBehavior extends Behavior
{
    // ...

    public function events()
    {
        return [
            ActiveRecord::EVENT_BEFORE_VALIDATE => 'beforeValidate',
        ];
    }

    public function beforeValidate($event)
    {
        // ...
    }
}





La méthode [[yii\base\Behavior::events()|events()]] doit retourner une liste d’événements avec leur gestionnaire correspondant. L’exemple ci-dessus déclare que l’événement [[yii\db\ActiveRecord::EVENT_BEFORE_VALIDATE|EVENT_BEFORE_VALIDATE]] existe et définit son gestionnaire beforeValidate(). En spécifiant un gestionnaire d’événement, vous pouvez utiliser un des formats suivants :


	une chaîne de caractères qui fait référence au nom d’une méthode de la classe du comportement, comme dans l’exemple ci-dessus ;


	un tableau constitué d’un nom d’objet ou de classe et d’un nom de méthode sous forme de chaîne de caractères (sans les parenthèses), p. ex. [$object, 'methodName'];


	une fonction anonyme.




La signature d’un gestionnaire d’événement doit être similaire à ce qui suit, où event fait référence au paramètre événement. Reportez-vous à la section Événements pour plus de détail sur les événements.

function ($event) {
}








Attacher des comportements 

Vous pouvez attacher un comportement à un [[yii\base\Component|composant]] soit de manière statique, soit de manière dynamique. Le première manière est une pratique plus habituelle.

Pour attacher un comportement de manière statique, redéfinissez la méthode [[yii\base\Component::behaviors()|behaviors()]] de la classe du composant auquel le comportement va être attaché. La méthode [[yii\base\Component::behaviors()|behaviors()]] doit retourner une liste de configurations de comportements. Chaque comportement peut être soit un nom de classe de comportement, soit un tableau de configuration :

namespace app\models;

use yii\db\ActiveRecord;
use app\components\MyBehavior;

class User extends ActiveRecord
{
    public function behaviors()
    {
        return [
            // comportement anonyme, nom de la classe de comportement seulement
            MyBehavior::className(),

            // comportement nommé, nom de classe de comportement seulement
            'myBehavior2' => MyBehavior::className(),

            // comportement anonyme, tableau de configuration
            [
                'class' => MyBehavior::className(),
                'prop1' => 'value1',
                'prop2' => 'value2',
            ],

            // comportement nommé, tableau de configuration
            'myBehavior4' => [
                'class' => MyBehavior::className(),
                'prop1' => 'value1',
                'prop2' => 'value2',
            ]
        ];
    }
}





Vous pouvez associer un nom au comportement en spécifiant la clé de tableau correspondant à la configuration du comportement. Dans ce cas, le comportement est appelé comportement nommé. Dans l’exemple ci-dessus, il y a deux comportements nommés : myBehavior2 et myBehavior4. Si un comportement n’est pas associé à un nom, il est appelé comportement anonyme.

Pour attacher un comportement de manière dynamique, appelez la méthode [[yii\base\Component::attachBehavior()]] du composant auquel le comportement va être attaché :

use app\components\MyBehavior;

// attache un objet comportement 
$component->attachBehavior('myBehavior1', new MyBehavior);

// attache un classe de comportement
$component->attachBehavior('myBehavior2', MyBehavior::className());

// attache un tableau de configuration 
$component->attachBehavior('myBehavior3', [
    'class' => MyBehavior::className(),
    'prop1' => 'value1',
    'prop2' => 'value2',
]);





Vous pouvez attacher plusieurs comportements à la fois en utilisant la méthode  [[yii\base\Component::attachBehaviors()]] :

$component->attachBehaviors([
    'myBehavior1' => new MyBehavior,  // un comportement nommé
    MyBehavior::className(),          // un comportement anonyme
]);





Vous pouvez aussi attacher des comportements via les configurations comme ceci :

[
    'as myBehavior2' => MyBehavior::className(),

    'as myBehavior3' => [
        'class' => MyBehavior::className(),
        'prop1' => 'value1',
        'prop2' => 'value2',
    ],
]





Pour plus de détails, reportez-vous à la section  Configurations.




Utilisation des comportements 

Pour utiliser un comportement, commencez par l’attacher à un [[yii\base\Component|composant]] en suivant les instructions données ci-dessus. Une fois le comportement attaché au composant, son utilisation est évidente.

Vous pouvez accéder à une variable membre publique, ou à une  propriété définie par une méthode d’obtention et/ou une méthode d’assignation (getter et setter), du comportement, via le composant auquel ce comportement est attaché :

// "prop1" est une propriété définie dans la classe du comportement
echo $component->prop1;
$component->prop1 = $value;





Vous pouvez aussi appeler une méthode publique du comportement de façon similaire :

// foo() est une méthode publique définie dans la classe du comportement
$component->foo();





Comme vous pouvez le voir, bien que le composant $component ne définissent pas prop1 etfoo(), elles peuvent être utilisées comme si elles faisaient partie de la définition du composant grâce au comportement attaché.

Si deux comportement définissent la même propriété ou la même méthode, et que ces deux comportement sont attachés au même composant, le comportement qui a été attaché le premier prévaut lorsque la propriété ou la méthode est accédée.

Un comportement peut être associé à un nom lorsqu’il est attaché à un composant. Dans un tel cas, vous pouvez accéder à l’objet comportement en utilisant ce nom :

$behavior = $component->getBehavior('myBehavior');





Vous pouvez aussi obtenir tous les comportements attachés au composant :

$behaviors = $component->getBehaviors();








Détacher des comportements 

Pour détacher un comportement, appelez [[yii\base\Component::detachBehavior()]] avec le nom associé au comportement :

$component->detachBehavior('myBehavior1');





Vous pouvez aussi détacher tous les comportements :

$component->detachBehaviors();








Utilisation de  TimestampBehavior 

Pour aller à l’essentiel, jetons un coup d’œil à [[yii\behaviors\TimestampBehavior]]. Ce comportement prend automatiquement en charge la mise à jour de l’attribut timestamp (horodate) d’un modèle [[yii\db\ActiveRecord|enregistrement actif]] à chaque fois qu’il est sauvegardé via les méthodes insert(), update() ou save().

Tout d’abord, attachez ce comportement à la classe [[yii\db\ActiveRecord|Active Record (enregistrement actif)]] que vous envisagez d’utiliser :

namespace app\models\User;

use yii\db\ActiveRecord;
use yii\behaviors\TimestampBehavior;

class User extends ActiveRecord
{
    // ...

    public function behaviors()
    {
        return [
            [
                'class' => TimestampBehavior::className(),
                'attributes' => [
                    ActiveRecord::EVENT_BEFORE_INSERT => ['created_at', 'updated_at'],
                    ActiveRecord::EVENT_BEFORE_UPDATE => ['updated_at'],
                ],
                // si vous utilisez datetime au lieur de l'UNIX timestamp:
                // 'value' => new Expression('NOW()'),
            ],
        ];
    }
}





Le comportement ci-dessus spécifie que lorsque l’enregistrement est :


	inséré, le comportement doit assigner l’horodate UNIX courante aux attributs created_at (créé le)  et updated_at (mis à jour le) ;


	mis à jour, le comportement doit assigner l’horodate UNIX courante à l’attribut updated_at ;





Note: pour que la mise en œuvre ci-dessus fonctionne avec une base de données MySQL, vous devez déclarer les colonnes (created_at, updated_at) en tant que int(11) pour qu’elles puissent représenter des horodates UNIX.




Avec ce code en place, si vous avez un objet User (utilisateur) et que vous essayez de le sauvegarder, il verra ses attributs created_at et updated_at automatiquement remplis avec l’horodate UNIX :

$user = new User;
$user->email = 'test@example.com';
$user->save();
echo $user->created_at;  // affiche l'horodate courante





Le comportement [[yii\behaviors\TimestampBehavior|TimestampBehavior]] offre également une méthode utile [[yii\behaviors\TimestampBehavior::touch()|touch()]], qui assigne l’horodate courante à un attribut spécifié et le sauvegarde dans la base de données :

$user->touch('login_time');








Autres comportements

Il existe plusieurs comportements pré-inclus et extérieurs disponibles :


	[[yii\behaviors\BlameableBehavior]] – remplit automatiquement les attributs spécifiés avec l’identifiant de l’utilisateur courant.


	[[yii\behaviors\SluggableBehavior]] – remplit automatiquement l’attribut spécifié avec une valeur utilisable en tant que chaîne purement ASCII (slug) dans une URL.


	[[yii\behaviors\AttributeBehavior]] – assigne automatiquement une valeur spécifiée à un ou plusieurs attributs d’un objet enregistrement actif lorsque certains événements se produisent.


	yii2tech\ar\softdelete\SoftDeleteBehavior [https://github.com/yii2tech/ar-softdelete] – fournit des méthodes pour une suppression douce et une restauration douce d’un enregistrement actif c.-à-d. positionne un drapeau ou un état qui marque l’enregistrement comme étant effacé.


	yii2tech\ar\position\PositionBehavior [https://github.com/yii2tech/ar-position] – permet la gestion de l’ordre des enregistrements dans un champ entier (integer) en fournissant les méthodes de remise dans l’ordre.







Comparaison des comportement et des traits 

Bien que les comportements  soient similaires aux traits [http://www.php.net/traits] par le fait qu’ils injectent tous deux leurs propriétés et leurs méthodes dans la classe primaire, ils diffèrent par de nombreux aspects. Comme nous l’expliquons ci-dessous, ils ont chacun leurs avantages et leurs inconvénients. Ils sont plus des compléments l’un envers l’autre, que des alternatives.


Raisons d’utiliser des comportements 

Les classes de comportement, comme les classes normales, prennent en charge l’héritage. Les traits, par contre, peuvent être considérés comme des copier coller pris en charge par le langage. Ils ne prennent pas en charge l’héritage.

Les comportements peuvent être attachés et détachés à un composant de manière dynamique sans qu’une modification de la classe du composant soit nécessaire. Pour utiliser un trait, vous devez modifier le code de la classe qui l’utilise.

Les comportements sont configurables mais les traits ne le sont pas.

Les comportement peuvent personnaliser l’exécution du code d’un composant en répondant à ses événements.

Lorsqu’il se produit des conflits de noms entre les différents comportements attachés à un même composant, les conflits sont automatiquement résolus  en donnant priorité au comportement attaché le premier. Les conflits de noms causés par différents traits nécessitent une résolution manuelle en renommant les propriétés et méthodes concernées.




Raisons d’utiliser des traits 

Les traits sont beaucoup plus efficaces que les comportements car les comportements sont des objets qui requièrent plus de temps du processeur et plus de mémoire.

Les environnement de développement intégrés (EDI) sont plus conviviaux avec les traits car ces derniers sont des constructions natives du langage.









          

      

      

    

  

  
    
    Composants
    

    
 
  

    
      
          
            
  
Composants

Les composants sont les blocs de constructions principaux de vos applications Yii. Les composants sont des instances de la classe [[yii\base\Component]],
ou de ses classes filles. Les trois fonctionnalités principales fournies par les composants aux autres classes sont :


	Les propriétés ;


	Les événements ;


	Les comportements.




Séparément et en combinaisons, ces fonctionnalités rendent les classes de Yii beaucoup plus personnalisables et faciles à utiliser. Par exemple, l’[[yii\jui\DatePicker|objet graphique de sélection de date]] inclus, un composant d’interface utilisateur, peut être utilisé dans une vue pour générer un sélecteur de date interactif :

use yii\jui\DatePicker;

echo DatePicker::widget([
    'language' => 'ru',
    'name'  => 'country',
    'clientOptions' => [
        'dateFormat' => 'yy-mm-dd',
    ],
]);





Les propriétés de l’objet graphique sont faciles à écrire car la classe étend [[yii\base\Component]].

Tandis que les composants sont très puissants, ils sont un peu plus lourds que les objets normaux. Cela est dû au fait que, en particulier,  la prise en charge des fonctionnalités event et behavior requiert un peu plus de mémoire et de temps du processeur. Si vos composants n’ont pas besoin de ces deux fonctionnalités, vous devriez envisager d’étendre la classe [[yii\base\BaseObject]] au lieu de la classe [[yii\base\Component]]. Ce faisant, votre composant sera aussi efficace que les objets PHP normaux, mais avec la prise en charge des propriétés.

Lorsque votre classe étend la classe [[yii\base\Component]] ou [[yii\base\BaseObject]], il est recommandé que suiviez ces conventions :


	Si vous redéfinissez le constructeur, spécifiez un paramètre $config en tant que dernier paramètre du constructeur et passez le au constructeur du parent.


	Appelez toujours le constructeur du parent à la fin de votre constructeur redéfini.


	Si vous redéfinissez la méthode [[yii\base\BaseObject::init()]], assurez-vous que vous appelez la méthode init() mise en œuvre par le parent au début de votre méthodes init().




Par exemple :

<?php

namespace yii\components\MyClass;

use yii\base\BaseObject;

class MyClass extends BaseObject
{
    public $prop1;
    public $prop2;

    public function __construct($param1, $param2, $config = [])
    {
        // ... initialisation avant l'application de la configuration

        parent::__construct($config);
    }

    public function init()
    {
        parent::init();

        // ... initialization après l'application de la configuration
    }
}





Le respect de ces conseils rend vos composants  configurables lors de leur création. Par exemple :

$component = new MyClass(1, 2, ['prop1' => 3, 'prop2' => 4]);
// alternatively
$component = \Yii::createObject([
    'class' => MyClass::className(),
    'prop1' => 3,
    'prop2' => 4,
], [1, 2]);






Info: bien que l’approche qui consiste à appeler la méthode [[Yii::createObject()]] semble plus compliquée, elle est plus puissante car elle est mise en œuvre sur un conteneur d’injection de dépendances.




La classe [[yii\base\BaseObject]] fait appliquer le cycle de vie suivant de l’objet :


	Pré-initialisation dans le constructeur. Vous pouvez définir les propriétés par défaut à cet endroit.


	Configuration de l’objet via $config. La configuration peut écraser les valeurs par défaut définies dans le constructeur.


	Post-initialisation dans la méthode [[yii\base\BaseObject::init()|init()]]. Vous pouvez redéfinir cette méthode pour effectuer des tests sanitaires et normaliser les propriétés.


	Appel des méthodes de l’objet.




Les trois premières étapes arrivent toutes durant la construction de l’objet. Cela signifie qu’une fois que vous avez obtenu une instance de la classe (c.-à-d. un objet), cet objet a déjà été initialisé dans un état propre et fiable.





          

      

      

    

  

  
    
    Configurations
    

    
 
  

    
      
          
            
  
Configurations

Les configurations sont très largement utilisées dans Yii lors de la création d’objets ou l’initialisation d’objets existants. Les configurations contiennent généralement le nom de la classe de l’objet en cours de création, et une liste de valeurs initiales qui doivent être assignées aux propriétés de l’objet. Elles peuvent aussi comprendre une liste de gestionnaires qui doivent être attachés aux événements de l’objet et/ou une liste de comportements qui doivent être attachés à l’objet.

Dans ce qui suit, une configuration est utilisée pour créer et initialiser une connexion à une base de données :

$config = [
    'class' => 'yii\db\Connection',
    'dsn' => 'mysql:host=127.0.0.1;dbname=demo',
    'username' => 'root',
    'password' => '',
    'charset' => 'utf8',
];

$db = Yii::createObject($config);





La méthode [[Yii::createObject()]] prend un tableau de configuration en tant qu’argument et crée un objet en instanciant la classe nommée dans la configuration. Lorsque l’objet est instancié, le reste de la configuration est utilisé pour initialiser les propriétés de l’objet, ses gestionnaires d’événement et ses comportements.

Si vous disposez déjà d’un objet, vous pouvez utiliser la méthode [[Yii::configure()]] pour initialiser les propriétés de l’objet avec un tableau de configuration :

Yii::configure($object, $config);





Notez bien que dans ce cas, le tableau de configuration ne doit pas contenir d’élément class.


Format d’une configuration 

Le format d’une configuration peut être formellement décrit comme suit :

[
    'class' => 'ClassName',
    'propertyName' => 'propertyValue',
    'on eventName' => $eventHandler,
    'as behaviorName' => $behaviorConfig,
]





où


	L’élément class spécifie un nom de classe pleinement qualifié pour l’objet à créer.


	L’élément propertyName spécifie les valeurs initiales d’une propriété nommé property. Les clés sont les noms de propriété et les valeurs correspondantes les valeurs initiales. Seules les variables membres publiques et les propriétés définies par des méthodes d’obtention (getters) et/ou des méthodes d’assignation (setters) peuvent être configurées.


	Les éléments on eventName spécifient quels gestionnaires doivent être attachés aux événements de l’objet. Notez que les clés du tableau sont formées en préfixant les noms d’événement par on. Reportez-vous à la section événements pour connaître les formats des gestionnaires d’événement pris en charge.


	L’élément as behaviorName spécifie quels comportements doivent être attachés à l’objet. Notez que les clés du tableau sont formées en préfixant les noms de comportement par as ; la valeur $behaviorConfig représente la configuration pour la création du comportement, comme une configuration normale décrite ici.




Ci-dessous, nous présentons un exemple montrant une configuration avec des valeurs initiales de propriétés, des gestionnaires d’événement et des comportements.

[
    'class' => 'app\components\SearchEngine',
    'apiKey' => 'xxxxxxxx',
    'on search' => function ($event) {
        Yii::info("Keyword searched: " . $event->keyword);
    },
    'as indexer' => [
        'class' => 'app\components\IndexerBehavior',
        // ... property init values ...
    ],
]








Utilisation des configurations 

Les configurations sont utilisées en de nombreux endroits dans Yii. Au début de cette section, nous avons montré comment créer un objet obéissant à une configuration en utilisant la méthode [[Yii::createObject()]]. Dans cette sous-section, nous allons décrire les configurations d’applications et les configurations d’objets graphiques (widget) – deux utilisations majeures des configurations.


Configurations d’applications 

La configuration d’une application est probablement l’un des tableaux les plus complexes dans Yii. Cela est dû au fait que la classe [[yii\web\Application|application]] dispose d’un grand nombre de propriétés et événements configurables. De première importance, se trouve sa propriété [[yii\web\Application::components|components]] qui peut recevoir un tableau de configurations pour créer des composants qui sont enregistrés durant l’exécution de l’application. Ce qui suit est un résumé de la configuration de l’application du modèle de projet basic.

$config = [
    'id' => 'basic',
    'basePath' => dirname(__DIR__),
    'extensions' => require __DIR__ . '/../vendor/yiisoft/extensions.php',
    'components' => [
        'cache' => [
            'class' => 'yii\caching\FileCache',
        ],
        'mailer' => [
            'class' => 'yii\swiftmailer\Mailer',
        ],
        'log' => [
            'class' => 'yii\log\Dispatcher',
            'traceLevel' => YII_DEBUG ? 3 : 0,
            'targets' => [
                [
                    'class' => 'yii\log\FileTarget',
                ],
            ],
        ],
        'db' => [
            'class' => 'yii\db\Connection',
            'dsn' => 'mysql:host=localhost;dbname=stay2',
            'username' => 'root',
            'password' => '',
            'charset' => 'utf8',
        ],
    ],
];





La configuration n’a pas de clé class. Cela tient au fait qu’elle est utilisée comme indiqué ci-dessous dans un script d’entrée, dans lequel le nom de la classe est déjà donné :

(new yii\web\Application($config))->run();





Plus de détails sur la configuration de la propriété components d’une application sont donnés dans la section Applications et dans la section Localisateur de services.

Depuis la version 2.0.11, la configuration de l’application prend en charge la configuration du Conteneur d’injection de dépendances
via la propriété container. Par exemple :

$config = [
    'id' => 'basic',
    'basePath' => dirname(__DIR__),
    'extensions' => require __DIR__ . '/../vendor/yiisoft/extensions.php',
    'container' => [
        'definitions' => [
            'yii\widgets\LinkPager' => ['maxButtonCount' => 5]
        ],
        'singletons' => [
            // Configuration du singleton Dependency Injection Container
        ]
    ]
];





Pour en savoir plus sur les valeurs possibles des tableaux de configuration de   definitions et singletons  et avoir des exemples de la vie réelle, reportez-vous à la sous-section Utilisation pratique avancée de l’article
Conteneur d’injection de dépendances.




Configurations des objets graphiques 

Lorsque vous utilisez des objets graphiques, vous avez souvent besoin d’utiliser des configurations pour personnaliser les propriétés de ces objets graphiques. Les méthodes [[yii\base\Widget::widget()]] et [[yii\base\Widget::begin()]] peuvent toutes deux être utilisées pour créer un objet graphique. Elles acceptent un tableau de configuration, comme celui qui suit :

use yii\widgets\Menu;

echo Menu::widget([
    'activateItems' => false,
    'items' => [
        ['label' => 'Home', 'url' => ['site/index']],
        ['label' => 'Products', 'url' => ['product/index']],
        ['label' => 'Login', 'url' => ['site/login'], 'visible' => Yii::$app->user->isGuest],
    ],
]);





La configuration ci-dessus crée un objet graphique nommé Menu et initialise sa propriété activateItems à false (faux). La propriété items est également configurée avec les items de menu à afficher.

Notez que, comme le nom de classe est déjà donné, le tableau de configuration ne doit PAS contenir de clé class.






Fichiers de configuration 

Lorsqu’une configuration est très complexe, une pratique courante est de la stocker dans un ou plusieurs fichiers PHP appelés fichiers de configuration. Un fichier de configuration retourne un tableau PHP représentant la configuration. Par exemple, vous pouvez conserver une configuration d’application dans un fichier nommé web.php, comme celui qui suit :

return [
    'id' => 'basic',
    'basePath' => dirname(__DIR__),
    'extensions' => require __DIR__ . '/../vendor/yiisoft/extensions.php',
    'components' => require __DIR__ . '/components.php',
];





Parce que la configuration components et elle aussi complexe, vous pouvez la stocker dans un fichier séparé appelé components.php et requérir ce fichier dans web.php comme c’est montré ci-dessus. Le contenu de components.php ressemble à ceci :

return [
    'cache' => [
        'class' => 'yii\caching\FileCache',
    ],
    'mailer' => [
        'class' => 'yii\swiftmailer\Mailer',
    ],
    'log' => [
        'class' => 'yii\log\Dispatcher',
        'traceLevel' => YII_DEBUG ? 3 : 0,
        'targets' => [
            [
                'class' => 'yii\log\FileTarget',
            ],
        ],
    ],
    'db' => [
        'class' => 'yii\db\Connection',
        'dsn' => 'mysql:host=localhost;dbname=stay2',
        'username' => 'root',
        'password' => '',
        'charset' => 'utf8',
    ],
];





Pour obtenir une configuration stockée dans un fichier de configuration, il vous suffit requérir ce fichier avec “require”, comme ceci :

$config = require 'path/to/web.php';
(new yii\web\Application($config))->run();








Configurations par défaut 

La méthode [[Yii::createObject()]] est implémentée sur la base du conteneur d’injection de dépendances. Cela vous permet de spécifier un jeu de configurations dites configurations par défaut qui seront appliquées à TOUTES les instances des classes spécifiées lors de leur création en utilisant [[Yii::createObject()]]. Les configurations par défaut peuvent être spécifiées en appelant Yii::$container->set() dans le code d’amorçage.

Par exemple, si vous voulez personnaliser l’objet graphique [[yii\widgets\LinkPager]] de façon à ce que TOUS les fonctions de mise en page (pagers) affichent au plus 5 boutons de page (la valeur par défaut est 10), vous pouvez utiliser le code suivant pour atteindre ce but :

\Yii::$container->set('yii\widgets\LinkPager', [
   'maxButtonCount' => 5,
]);





Sans les configurations par défaut, vous devez configurer la propriété maxButtonCount partout où vous utilisez un pagineur.




Constantes d’environment 

Les configurations varient souvent en fonction de l’environnement dans lequel les applications s’exécutent. Par exemple, dans l’environnement de développement, vous désirez peut être utiliser la base de données nommée mydb_dev, tandis que sur un serveur en production, vous désirez utiliser la base de données nommée mydb_prod. Pour faciliter le changement d’environnement, Yii fournit une constante nommée YII_ENV que vous pouvez définir dans le script d’entrée de votre application. Par exemple :

defined('YII_ENV') or define('YII_ENV', 'dev');





Vous pouvez assigner à YII_ENV une des valeurs suivantes :


	prod: environnement de production. La constante YII_ENV_PROD est évaluée comme étant true (vrai). C’est la valeur par défaut de YII_ENV.


	dev: environnement de développement. La constante YII_ENV_DEV est évaluée comme étant true (vrai).


	test: environnement de test. La constante YII_ENV_TEST est évaluée comme étant true (vrai).




Avec ces constantes d’environnement, vous pouvez spécifier les configurations en fonction de l’environnement courant. Par exemple, votre configuration d’application peut contenir le code suivant pour activer la barre de débogage et le module de débogage dans l’environnement de développement seulement :

$config = [...];

if (YII_ENV_DEV) {
    // ajustement de la configuration pour l'environnement 'dev'
    $config['bootstrap'][] = 'debug';
    $config['modules']['debug'] = 'yii\debug\Module';
}

return $config;











          

      

      

    

  

  
    
    Conteneur d’injection de dépendances
    

    
 
  

    
      
          
            
  
Conteneur d’injection de dépendances

Un conteneur d’injection de dépendances (DI container) est un objet qui sait comment instancier et configurer des objets et tous leurs objets dépendants. Cet article de Martin Fowler [http://martinfowler.com/articles/injection.html] explique très bien en quoi un conteneur d’injection de dépendances est utile. Ici nous expliquons essentiellement l’utilisation qui est faite du conteneur d’injection de dépendances que fournit Yii.


Injection de dépendances 

Yii fournit la fonctionnalité conteneur d’injection de dépendances via la classe [[yii\di\Container]]. Elle prend en charge les sortes d’injections de dépendance suivantes :


	Injection par le constructeur ;


	Injection par les méthodes ;


	Injection par les méthodes d’assignation et les propriétés ;


	Injection par une méthode de rappel PHP ;





Injection par le constructeur 

Le conteneur d’injection de dépendances prend en charge l’injection dans le constructeur grâce à l’allusion au type pour les paramètres du constructeur. L’allusion au type indique au conteneur de quelles classes ou de quelles interfaces dépend l’objet concerné par la construction. Le conteneur essaye de trouver les instances des classes dont l’objet dépend pour les injecter dans le nouvel objet via le constructeur. Par exemple :

class Foo
{
    public function __construct(Bar $bar)
    {
    }
}

$foo = $container->get('Foo');
// qui est équivalent à ce qui suit
$bar = new Bar;
$foo = new Foo($bar);








Injection par les méthodes 

Ordinairement, les classes dont une classe dépend sont passées à son constructeur et sont disponibles dans la classe durant tout son cycle de vie. Avec l’injection par les méthodes, il est possible de fournir une classe qui est seulement nécessaire à une unique méthode de la classe, et qu’il est impossible de passer au constructeur, ou qui pourrait entraîner trop de surplus de travail dans la majorité des classes qui l’utilisent.

Une méthode de classe peut être définie comme la méthode doSomething() de l’exemple suivant :

class MyClass extends \yii\base\Component
{
    public function __construct(/*ici, quelques classes légères dont la classe dépend*/, $config = [])
    {
        // ...
    }

    public function doSomething($param1, \ma\dependance\Lourde $something)
    {
        // faire quelque chose avec $something
    }
}





Vous pouvez appeler la méthode, soit en passant une instance de \ma\dependance\Lourde vous-même, soit en utilisant [[yii\di\Container::invoke()]] comme ceci :

$obj = new MyClass(/*...*/);
Yii::$container->invoke([$obj, 'doSomething'], ['param1' => 42]); // $something est fournie par le conteneur d'injection de dépendances








Injection par les méthodes d’assignation et les propriétés 

L’injection par les méthodes d’assignation et les propriétés est prise en charge via les configurations. Lors de l’enregistrement d’une dépendance ou lors de la création d’un nouvel objet, vous pouvez fournir une configuration qui est utilisée par le conteneur pour injecter les dépendances via les méthodes d’assignation ou les propriétés correspondantes. Par exemple :

use yii\base\BaseObject;

class Foo extends BaseObject
{
    public $bar;

    private $_qux;

    public function getQux()
    {
        return $this->_qux;
    }

    public function setQux(Qux $qux)
    {
        $this->_qux = $qux;
    }
}

$container->get('Foo', [], [
    'bar' => $container->get('Bar'),
    'qux' => $container->get('Qux'),
]);






Info: la méthode [[yii\di\Container::get()]] accepte un tableau de configurations qui peut être appliqué à l’objet en création comme troisième paramètre. Si la classe implémente l’interface [[yii\base\Configurable]] (p. ex. [[yii\base\BaseObject]]), le tableau de configuration est passé en tant que dernier paramètre du constructeur de la classe ; autrement le tableau de configuration serait appliqué après la création de l’objet.







Injection par une méthode de rappel PHP 

Dans ce cas, le conteneur utilise une fonction de rappel PRP enregistrée pour construire de nouvelles instances d’une classe. À chaque fois que [[yii\di\Container::get()]] est appelée, la fonction de rappel correspondante est invoquée. Cette fonction de rappel est chargée de la résolution des dépendances et de leur injection appropriée dans les objets nouvellement créés. Par exemple :

$container->set('Foo', function ($container, $params, $config) {
    $foo = new Foo(new Bar);
    // ... autres initialisations ...
    return $foo;
});

$foo = $container->get('Foo');





Pour cacher la logique complexe de construction des nouveaux objets, vous pouvez utiliser un méthode de classe statique en tant que fonction de rappel. Par exemple :

class FooBuilder
{
    public static function build($container, $params, $config)
    {
        $foo = new Foo(new Bar);
        // ... autres initialisations ...
        return $foo;
    }
}

$container->set('Foo', ['app\helper\FooBuilder', 'build']);

$foo = $container->get('Foo');





En procédant de cette manière, la personne qui désire configurer la classe Foo n’a plus besoin de savoir comment elle est construite.






Enregistrement des dépendances 

Vous pouvez utiliser [[yii\di\Container::set()]] pour enregistrer les dépendances. L’enregistrement requiert un nom de dépendance et une définition de dépendance. Un nom de dépendance peut être un nom de classe, un nom d’interface, ou un nom d’alias ; et une définition de dépendance peut être une nom de classe, un tableau de configuration, ou une fonction de rappel PHP.

$container = new \yii\di\Container;

// enregistre un nom de classe tel quel. Cela peut être sauté. 
$container->set('yii\db\Connection');

// enregistre une interface
// Lorsqu'une classe dépend d'une interface, la classe correspondante
// est instanciée en tant qu'objet dépendant
$container->set('yii\mail\MailInterface', 'yii\swiftmailer\Mailer');

// enregistre un nom d'alias. Vous pouvez utiliser $container->get('foo')
// pour créer une instance de Connection
$container->set('foo', 'yii\db\Connection');

// enregistre une classe avec une configuration. La configuration
// est appliquée lorsque la classe est instanciée par  get()
$container->set('yii\db\Connection', [
    'dsn' => 'mysql:host=127.0.0.1;dbname=demo',
    'username' => 'root',
    'password' => '',
    'charset' => 'utf8',
]);

// enregistre un nom d'alias avec une configuration de classe
// Dans ce cas, un élément "class" est requis pour spécifier la classe
$container->set('db', [
    'class' => 'yii\db\Connection',
    'dsn' => 'mysql:host=127.0.0.1;dbname=demo',
    'username' => 'root',
    'password' => '',
    'charset' => 'utf8',
]);

// enregistre une fonction de rappel PHP 
// La fonction de rappel est exécutée à chaque fois que $container->get('db') est appelée
$container->set('db', function ($container, $params, $config) {
    return new \yii\db\Connection($config);
});

// enregistre une interface de composant 
// $container->get('pageCache') retourne la même instance à chaque fois qu'elle est appelée
$container->set('pageCache', new FileCache);






Tip: si un nom de dépendance est identique à celui de la définition de dépendance correspondante, vous n’avez pas besoin de l’enregistrer dans le conteneur d’injection de dépendances.




Une dépendance enregistrée via set() génère une instance à chaque fois que la dépendance est nécessaire. Vous pouvez utiliser [[yii\di\Container::setSingleton()]] pour enregistrer une dépendance qui ne génère qu’une seule instance :

$container->setSingleton('yii\db\Connection', [
    'dsn' => 'mysql:host=127.0.0.1;dbname=demo',
    'username' => 'root',
    'password' => '',
    'charset' => 'utf8',
]);








Résolution des dépendances 

Une fois que vous avez enregistré des dépendances, vous pouvez utiliser le conteneur d’injection de dépendances pour créer de nouveau objets, et le conteneur résout automatiquement les dépendances en les instanciant et en les injectant dans les nouveaux objets. Le résolution des dépendances est récursive, ce qui signifie que si une dépendance a d’autres dépendances, ces dépendances sont aussi résolue automatiquement.

Vous pouvez utiliser [[yii\di\Container::get()]] soit pour créer, soit pour obtenir une instance d’un objet. La méthode accepte un nom de dépendance qui peut être un nom de classe, un nom d’interface ou un nom d’alias. Le nom de dépendance, peut être enregistré [[yii\di\Container::set()|set()]]
ou [[yii\di\Container::setSingleton()|setSingleton()]]. En option, vous pouvez fournir une liste de paramètres du constructeur de la classe et une configuration pour configurer l’objet nouvellement créé. Par exemple :

// "db" est un nom d'alias enregistré préalablement
$db = $container->get('db');

// équivalent à : $engine = new \app\components\SearchEngine($apiKey, $apiSecret, ['type' => 1]);
$engine = $container->get('app\components\SearchEngine', [$apiKey, $apiSecret], ['type' => 1]);





En coulisses, le conteneur d’injection de dépendances ne fait rien de plus que de créer l’objet. Le conteneur inspecte d’abord le constructeur de la classe pour trouver les classes dépendantes ou les noms d’interface et résout ensuite ces dépendances récursivement.

Le code suivant montre un exemple plus sophistiqué. La classe UserLister dépend d’un objet implémentant l’interface UserFinderInterface ; la classe UserFinder implémente cet interface et dépend de l’objet Connection. Toutes ces dépendances sont déclarées via l’allusion au type des paramètres du constructeur de la classe. Avec l’enregistrement des dépendances de propriétés, le conteneur d’injection de dépendances est capable de résoudre ces dépendances automatiquement et de créer une nouvelle instance de UserLister par un simple appel à get('userLister').

namespace app\models;

use yii\base\BaseObject;
use yii\db\Connection;
use yii\di\Container;

interface UserFinderInterface
{
    function findUser();
}

class UserFinder extends BaseObject implements UserFinderInterface
{
    public $db;

    public function __construct(Connection $db, $config = [])
    {
        $this->db = $db;
        parent::__construct($config);
    }

    public function findUser()
    {
    }
}

class UserLister extends BaseObject
{
    public $finder;

    public function __construct(UserFinderInterface $finder, $config = [])
    {
        $this->finder = $finder;
        parent::__construct($config);
    }
}

$container = new Container;
$container->set('yii\db\Connection', [
    'dsn' => '...',
]);
$container->set('app\models\UserFinderInterface', [
    'class' => 'app\models\UserFinder',
]);
$container->set('userLister', 'app\models\UserLister');

$lister = $container->get('userLister');

// qui est équivalent à :

$db = new \yii\db\Connection(['dsn' => '...']);
$finder = new UserFinder($db);
$lister = new UserLister($finder);








Utilisation pratique 

Yii crée un conteneur d’injection de dépendances lorsque vous incluez le fichier Yii.php dans le script d’entrée de votre application. Le conteneur d’injection de dépendances est accessible via [[Yii::$container]]. Lorsque vous appelez [[Yii::createObject()]], la méthode appelle en réalité la méthode [[yii\di\Container::get()|get()]] du conteneur pour créer le nouvel objet. Comme c’est dit plus haut, le conteneur d’injection de dépendances résout automatiquement les dépendances (s’il en existe) et les injecte dans l’objet obtenu. Parce que Yii utilise [[Yii::createObject()]] dans la plus grande partie du code de son noyau pour créer de nouveaux objets, cela signifie que vous pouvez personnaliser ces objets globalement en utilisant [[Yii::$container]].

Par exemple, personnalisons globalement le nombre de boutons de pagination par défaut de l’objet graphique [[yii\widgets\LinkPager]] :

\Yii::$container->set('yii\widgets\LinkPager', ['maxButtonCount' => 5]);





Maintenant, si vous utilisez l’objet graphique dans une vue avec le code suivant, la propriété maxButtonCount est initialisée à la valeur 5 au lieu de la valeur par défaut 10 qui est définie dans la classe.

echo \yii\widgets\LinkPager::widget();





Vous pouvez encore redéfinir la valeur définie par le conteneur d’injection de dépendances via :

echo \yii\widgets\LinkPager::widget(['maxButtonCount' => 20]);






Tip: peu importe de quel type de valeur il s’agit, elle est redéfinie, c’est pourquoi vous devez vous montrer prudent avec les tableaux d’options. Ils ne sont pas fusionnés.




Un autre exemple est de profiter de l’injection automatique par le constructeur du conteneur d’injection de dépendances. Supposons que votre classe de contrôleur dépende de quelques autres objets, comme un service de réservation d’hôtel. Vous pouvez déclarer la dépendance via un paramètre de constructeur et laisser le conteneur d’injection de dépendances la résoudre pour vous.

namespace app\controllers;

use yii\web\Controller;
use app\components\BookingInterface;

class HotelController extends Controller
{
    protected $bookingService;

    public function __construct($id, $module, BookingInterface $bookingService, $config = [])
    {
        $this->bookingService = $bookingService;
        parent::__construct($id, $module, $config);
    }
}





Si vous accédez au contrôleur à partir du navigateur, vous verrez un message d’erreur se plaignant que l’interface BookingInterface ne peut pas être instanciée. Cela est dû au fait que vous devez dire au conteneur d’injection de dépendances comment s’y prendre avec cette dépendance :

\Yii::$container->set('app\components\BookingInterface', 'app\components\BookingService');





Maintenant, si vous accédez à nouveau au contrôleur, une instance de app\components\BookingService est créée et injectée en tant que troisième paramètre du constructeur.




Utilisation pratique avancée 

Supposons que nous travaillions sur l’API de l’application et ayons :S


	la classe app\components\Request qui étende yii\web\Request et fournisse une fonctionnalité additionnelle,


	la classe app\components\Response qui étende yii\web\Response et devrait avoir une propriété format définie à json à la création,


	des classes app\storage\FileStorage et app\storage\DocumentsReader qui mettent en œuvre une certaine logique pour travailler sur des documents qui seraient situés dans un dossier :




class FileStorage
{
    public function __construct($root) {
        // whatever
    }
}

class DocumentsReader
{
    public function __construct(FileStorage $fs) {
        // whatever
    }
}





Il est possible de configurer de multiples définitions à la fois, en passant un tableau de configurations à la méthode[[yii\di\Container::setDefinitions()|setDefinitions()]] ou à la méthode [[yii\di\Container::setSingletons()|setSingletons()]].
En itérant sur le tableau de configuration, les méthodes appellent [[yii\di\Container::set()|set()]]
ou [[yii\di\Container::setSingleton()|setSingleton()]] respectivement pour chacun des items.

Le format du tableau de  configurations est :


	key: nom de classe, nom d’interface ou alias. La clé est passée à la méthode
[[yii\di\Container::set()|set()]] comme premier argument $class.


	value: la définition associée à $class. Les valeurs possibles sont décrites dans la documentation [[yii\di\Container::set()|set()]]
du paramètre $definition. Est passé à la méthode [[set()]] comme deuxième argument $definition.




Par exemple, configurons notre conteneur pour répondre aux exigences mentionnées précédemment :

$container->setDefinitions([
    'yii\web\Request' => 'app\components\Request',
    'yii\web\Response' => [
        'class' => 'app\components\Response',
        'format' => 'json'
    ],
    'app\storage\DocumentsReader' => function ($container, $params, $config) {
        $fs = new app\storage\FileStorage('/var/tempfiles');
        return new app\storage\DocumentsReader($fs);
    }
]);

$reader = $container->get('app\storage\DocumentsReader'); 
// Crée un objet DocumentReader avec ses dépendances tel que décrit dans la configuration.






Tip: le conteneur peut être configuré dans le style déclaratif en utilisant la configuration de l’application depuis la version 2.0.11.
Consultez la sous-section Configurations des applications de l’article du guide  Configurations.




Tout fonctionne, mais au cas où, nous devons créer une classe  DocumentWriter, nous devons copier-coller la ligne qui crée un objet  FileStorage, ce qui n’est pas la manière la plus élégante, c’est évident.

Comme cela est décrit à la sous-section Résolution des dépendances subsection, [[yii\di\Container::set()|set()]]
et [[yii\di\Container::setSingleton()|setSingleton()]] peuvent facultativement des paramètres du constructeur de dépendances en tant que troisième argument. Pour définir les paramètres du constructeur, vous pouvez utiliser le format de tableau de configuration suivant :


	key: nom de classe, nom d’interface ou alias. La clé est passée à la méthode
[[yii\di\Container::set()|set()]] comme premier argument $class.


	value: un tableau de deux éléments. Le premier élément est passé à la méthode [[yii\di\Container::set()|set()]] comme deuxième argument $definition, le second — comme $params.




Modifions notre exemple :

$container->setDefinitions([
    'tempFileStorage' => [ // we've created an alias for convenience
        ['class' => 'app\storage\FileStorage'],
        ['/var/tempfiles'] // pourrait être extrait de certains fichiers de configuration
    ],
    'app\storage\DocumentsReader' => [
        ['class' => 'app\storage\DocumentsReader'],
        [Instance::of('tempFileStorage')]
    ],
    'app\storage\DocumentsWriter' => [
        ['class' => 'app\storage\DocumentsWriter'],
        [Instance::of('tempFileStorage')]
    ]
]);

$reader = $container->get('app\storage\DocumentsReader); 
// Se comporte exactement comme l'exemple précédent





Vous noterez la notation Instance::of('tempFileStorage'). cela siginifie que  le [[yii\di\Container|Container]] fournit implicitement une dépendance enregistrée avec le nom de  tempFileStorage et la passe en tant que premier argument du constructeur
of app\storage\DocumentsWriter.


Note: [[yii\di\Container::setDefinitions()|setDefinitions()]] and [[yii\di\Container::setSingletons()|setSingletons()]]
methods are available since version 2.0.11.




Une autre étape de l’optimisation de la configuration est d’enregistrer certaines dépendances  sous forme de singletons.
Une dépendance enregistrée via [[yii\di\Container::set()|set()]] est instanciée à chaque fois qu’on en a besoin.
Certaines classes ne changent pas l’état au moment de l’exécution, par conséquent elles peuvent être enregistrées sous forme de singletons afin d’augmenter la performance de l’application.

Un bon exemple serait la classe app\storage\FileStorage, qui effectue certaines opérations sur le système de fichiers avec une API simple (p. ex. $fs->read(), $fs->write()). Ces opération ne changent pas l’état interne de la classe, c’est pourquoi nous pouvons créer son instance une seule fois et l’utiliser de multiples fois.

$container->setSingletons([
    'tempFileStorage' => [
        ['class' => 'app\storage\FileStorage'],
        ['/var/tempfiles']
    ],
]);

$container->setDefinitions([
    'app\storage\DocumentsReader' => [
        ['class' => 'app\storage\DocumentsReader'],
        [Instance::of('tempFileStorage')]
    ],
    'app\storage\DocumentsWriter' => [
        ['class' => 'app\storage\DocumentsWriter'],
        [Instance::of('tempFileStorage')]
    ]
]);

$reader = $container->get('app\storage\DocumentsReader');








À quel moment enregistrer les dépendances 

Comme les dépendances sont nécessaires lorsque de nouveaux objets sont créés, leur enregistrement doit être fait aussi tôt que possible. Les pratiques recommandées sont :


	Si vous êtes le développeur d’une application, vous pouvez enregistrer les dépendances dans le script d’entrée de votre application ou dans un script qui est inclus par le script d’entrée.


	Si vous êtes le développeur d’une extension distribuable, vous pouvez enregistrer les dépendances dans la classe d’amorçage de l’extension.







Résumé 

L’injection de dépendances et le localisateur de services sont tous deux des modèles de conception populaires qui permettent des construire des logiciels d’une manière faiblement couplée et plus testable. Nous vous recommandons fortement de lire l’article de Martin [http://martinfowler.com/articles/injection.html] pour acquérir une compréhension plus profonde de l’injection de dépendances et du localisateur de services.

Yii implémente son localisateur de services par dessus le conteneur d’injection de dépendances. Lorsqu’un localisateur de services essaye de créer une nouvelle instance d’un objet, il appelle le conteneur d’injection de dépendances. Ce dernier résout les dépendances automatiquement comme c’est expliqué plus haut.







          

      

      

    

  

  
    
    Événements
    

    
 
  

    
      
          
            
  
Événements

Les événement vous permettent d’injecter du code personnalisé dans le code existant à des points précis de son exécution. Vous pouvez attacher du code personnalisé à un événement de façon à ce que, lorsque l’événement est déclenché, le code s’exécute automatiquement. Par exemple, un objet serveur de courriel  peut déclencher un événement messageSent (message envoyé) quand il réussit à envoyer un message. Si vous voulez conserver une trace des messages dont l’envoi a réussi, vous pouvez simplement attacher le code de conservation de la trace à l’événement  messageSent.

Yii introduit une classe de base appelée [[yii\base\Component]] pour prendre en charge les événements. Si une classe a besoin de déclencher des événements, elle doit étendre la classe [[yii\base\Component]], ou une de ses classes filles.


Gestionnaires d’événements 

Un gestionnaire d’événement est une  fonction de rappel PHP [http://www.php.net/manual/en/language.types.callable.php] qui est exécutée lorsque l’événement à laquelle elle est attachée est déclenché. Vous pouvez utiliser n’importe laquelle des fonctions de rappel suivantes :


	une fonction PHP globale spécifiée sous forme de chaîne de caractères (sans les parenthèses) p. ex., 'trim' ;


	une méthode d’objet spécifiée sous forme de tableau constitué d’un nom d’objet et d’un nom de méthode sous forme de chaîne de caractères (sans les parenthèses), p. ex., [$object, 'methodName'];


	une méthode d’une classe statique spécifiée sous forme de tableau constitué d’un nom de classe et d’un nom de méthode sous forme de chaîne de caractères (sans les parenthèses), p. ex., ['ClassName', 'methodName'];


	une fonction anonyme p. ex., function ($event) { ... }.




La signature d’un gestionnaire d’événement est :

function ($event) {
    // $event est un objet de la classe  yii\base\Event ou des ses classes filles
}





Via le paramètre $event, un gestionnaire d’événement peut obtenir l’information suivante sur l’événement qui vient de se produire :


	le [[yii\base\Event::name|nom de l’événement]];


	l’[[yii\base\Event::sender|émetteur de l’événement]]: l’objet dont la méthode  trigger() a été appelée ;


	les [[yii\base\Event::data|données personnalisées]]: les données fournies lorsque le gestionnaire d’événement est attaché (les explications arrivent bientôt).







Attacher des gestionnaires d’événements 

Vous pouvez attacher un gestionnaire d’événement en appelant la méthode [[yii\base\Component::on()]] du composant. Par exemple :

$foo = new Foo();

// le gestionnaire est une fonction globale
$foo->on(Foo::EVENT_HELLO, 'function_name');

// le gestionnaire est une méthode d'objet
$foo->on(Foo::EVENT_HELLO, [$object, 'methodName']);

// le gestionnaire est une méthode d'une classe statique
$foo->on(Foo::EVENT_HELLO, ['app\components\Bar', 'methodName']);

// le gestionnaire est un fonction anonyme
$foo->on(Foo::EVENT_HELLO, function ($event) {
    // event handling logic
});





Vous pouvez aussi attacher des gestionnaires d’événements via les configurations. Pour plus de détails, reportez-vous à la section Configurations.

Lorsque vous attachez un gestionnaire d’événement, vous pouvez fournir des données additionnelles telles que le troisième paramètre de [[yii\base\Component::on()]]. Les données sont rendues disponibles au gestionnaire lorsque l’événement est déclenché et que le gestionnaire est appelé. Par exemple :

// Le code suivant affiche  "abc" lorsque l'événement est déclenché
// parce que  $event->data contient les données passées en tant que troisième argument à la méthode "on"
$foo->on(Foo::EVENT_HELLO, 'function_name', 'abc');

function function_name($event) {
    echo $event->data;
}








Ordre des gestionnaires d’événements

Vous pouvez attacher un ou plusieurs gestionnaires à un seul événement. Lorsqu’un événement est déclenché, les gestionnaires attachés sont appelés dans l’ordre dans lequel ils ont été attachés à l’événement. Si un gestionnaire a besoin d’arrêter l’appel des gestionnaires qui viennent après lui, il doit définir la propriété [[yii\base\Event::handled (géré)]] du paramètre $event à true:

$foo->on(Foo::EVENT_HELLO, function ($event) {
    $event->handled = true;
});





Par défaut, un gestionnaire nouvellement attaché est ajouté à la file des gestionnaires de l’événement. En conséquence, le gestionnaire est appelé en dernier lorsque l’événement est déclenché. Pour insérer un événement nouvellement attaché en tête de file pour qu’il soit appelé le premier, vous devez appeler [[yii\base\Component::on()]], en lui passant false pour le quatrième paramètre $append:

$foo->on(Foo::EVENT_HELLO, function ($event) {
    // ...
}, $data, false);








Déclenchement des événements 

Les événements sont déclenchés en appelant la méthode [[yii\base\Component::trigger()]]. La méthode requiert un  nom d’événement et, en option, un objet événement qui décrit les paramètres à passer aux gestionnaires de cet événement. Par exemple :

namespace app\components;

use yii\base\Component;
use yii\base\Event;

class Foo extends Component
{
    const EVENT_HELLO = 'hello';

    public function bar()
    {
        $this->trigger(self::EVENT_HELLO);
    }
}





Avec le code précédent, tout appel à  bar() déclenche un événement nommé hello.


Tip: il est recommandé d’utiliser des constantes de classe pour représenter les noms d’événement. Dans l’exemple qui précède, la constante EVENT_HELLO représente l’événement hello. Cette approche procure trois avantages. Primo, elle évite les erreurs de frappe. Secundo, elle permet aux événements d’être reconnus par le mécanisme d’auto-complètement des EDI. Tertio, vous pouvez dire quels événements sont pris en charge par une classe en vérifiant la déclaration de ses constantes.




Parfois, lors du déclenchement d’un événement, vous désirez passer des informations additionnelles aux gestionnaires de cet événement. Par exemple, un serveur de courriels peut souhaiter passer les informations sur le message aux gestionnaires de l’événement messageSent pour que ces derniers soient informés de certaines particularités des messages envoyés. Pour ce faire, vous pouvez fournir un objet événement comme deuxième paramètre de la méthode [[yii\base\Component::trigger()]]. L’objet événement doit simplement être une instance de la classe [[yii\base\Event]] ou d’une de ses classes filles. Par exemple :

namespace app\components;

use yii\base\Component;
use yii\base\Event;

class MessageEvent extends Event
{
    public $message;
}

class Mailer extends Component
{
    const EVENT_MESSAGE_SENT = 'messageSent';

    public function send($message)
    {
        // ...sending $message...

        $event = new MessageEvent;
        $event->message = $message;
        $this->trigger(self::EVENT_MESSAGE_SENT, $event);
    }
}





Lorsque la méthode [[yii\base\Component::trigger()]] est appelée, elle appelle tous les gestionnaires attachés à l’événement nommé.




Détacher des gestionnaires d’événements 

Pour détacher un gestionnaire d’un événement, appelez la méthode [[yii\base\Component::off()]]. Par exemple :

// le gestionnaire est une fonction globale
$foo->off(Foo::EVENT_HELLO, 'function_name');

// le gestionnaire est une méthode d'objet
$foo->off(Foo::EVENT_HELLO, [$object, 'methodName']);

// le gestionnaire est une méthode d'une classe statique 
$foo->off(Foo::EVENT_HELLO, ['app\components\Bar', 'methodName']);

// le gestionnaire est une fonction anonyme
$foo->off(Foo::EVENT_HELLO, $anonymousFunction);





Notez qu’en général, vous ne devez pas essayer de détacher une fonction anonyme sauf si vous l’avez stockée quelque part lorsque vous l’avez attachée à un événement. Dans l’exemple ci-dessus, on suppose que la fonctions anonyme est stockée dans une variable nommée  $anonymousFunction.

Pour détacher tous les gestionnaires d’un événement, appelez simplement la méthode [[yii\base\Component::off()]] sans le deuxième paramètre :

$foo->off(Foo::EVENT_HELLO);








Gestionnaire d’événement au niveau de la classe 

Les sections précédent décrivent comment attacher un gestionnaire à un événement au niveau d’une instance. Parfois, vous désirez répondre à un événement déclenché par chacune des instances d’une classe plutôt que par une instance spécifique. Au lieu d’attacher l’événement à chacune des instances, vous pouvez attacher le gestionnaire au niveau de la classe en appelant la méthode statique [[yii\base\Event::on()]].

Par exemple, un objet Active Record déclenche un événement  [[yii\db\BaseActiveRecord::EVENT_AFTER_INSERT|EVENT_AFTER_INSERT]]
à chaque fois qu’il insère un nouvel enregistrement dans la base de données. Afin de suivre les insertions faites par tous les objets Active Record, vous pouvez utiliser le code suivant :

use Yii;
use yii\base\Event;
use yii\db\ActiveRecord;

Event::on(ActiveRecord::className(), ActiveRecord::EVENT_AFTER_INSERT, function ($event) {
    Yii::debug(get_class($event->sender) . ' is inserted');
});





Le gestionnaire d’événement est invoqué à chaque fois qu’une instance de la classe [[yii\db\ActiveRecord|ActiveRecord]], ou d’une de ses classes filles, déclenche l’événement [[yii\db\BaseActiveRecord::EVENT_AFTER_INSERT|EVENT_AFTER_INSERT]]. Dans le gestionnaire, vous pouvez obtenir l’objet qui a déclenché l’événement via $event->sender.

Lorsqu’un objet déclenche un événement, il commence par appeler les gestionnaires attachés au niveau de l’instance, puis les gestionnaires attachés au niveau de la classe.

Vous pouvez déclencher un événement au niveau de la classe en appelant la méthode statique [[yii\base\Event::trigger()]]. Un événement déclenché au niveau de la classe n’est associé à aucun objet en particulier. En conséquence, il provoque l’appel des gestionnaires attachés au niveau de la classe seulement. Par exemple :

use yii\base\Event;

Event::on(Foo::className(), Foo::EVENT_HELLO, function ($event) {
    var_dump($event->sender);  // displays "null"
});

Event::trigger(Foo::className(), Foo::EVENT_HELLO);





Notez que, dans ce cas, $event->sender fait référence au nom de la classe qui a déclenché l’événement plutôt qu’à une instance de classe.


Note: comme les gestionnaires attachés au niveau de la classe répondent aux événements déclenchés par n’importe quelle instance de cette classe, ou de ses classes filles, vous devez utiliser cette fonctionnalité avec précaution, en particulier si la classe est une classe de bas niveau comme la classe [[yii\base\BaseObject]].




Pour détacher un gestionnaire attaché au niveau de la classe, appelez  [[yii\base\Event::off()]]. Par exemple :

// détache $handler
Event::off(Foo::className(), Foo::EVENT_HELLO, $handler);

// détache tous les gestionnaires de Foo::EVENT_HELLO
Event::off(Foo::className(), Foo::EVENT_HELLO);








Événement utilisant des interfaces 

Il y a encore une manière plus abstraite d’utiliser les événements. Vous pouvez créer une interface séparée pour un événement particulier et l’implémenter dans des classes dans lesquelles vous en avez besoin.

Par exemple, vous pouvez créer l’interface suivante :

namespace app\interfaces;

interface DanceEventInterface
{
    const EVENT_DANCE = 'dance';
}





Et ajouter deux classes qui l’implémente :

class Dog extends Component implements DanceEventInterface
{
    public function meetBuddy()
    {
        echo "Woof!";
        $this->trigger(DanceEventInterface::EVENT_DANCE);
    }
}

class Developer extends Component implements DanceEventInterface
{
    public function testsPassed()
    {
        echo "Yay!";
        $this->trigger(DanceEventInterface::EVENT_DANCE);
    }
}





Pour gérer l’événement EVENT_DANCE déclenché par n’importe laquelle de ces classes, appelez [[yii\base\Event::on()|Event::on()]] et passez-lui le nom de l’interface comme premier argument :

Event::on('app\interfaces\DanceEventInterface', DanceEventInterface::EVENT_DANCE, function ($event) {
    Yii::debug(get_class($event->sender) . ' just danced'); // Will log that Dog or Developer danced
});





Vous pouvez déclencher l’événement de ces classes :

// trigger event for Dog class
Event::trigger(Dog::className(), DanceEventInterface::EVENT_DANCE);

// trigger event for Developer class
Event::trigger(Developer::className(), DanceEventInterface::EVENT_DANCE);





Notez bien que vous ne pouvez pas déclencher l’événement de toutes les classes qui implémentent l’interface :,

// NE FONCTIONNE PAS
Event::trigger('app\interfaces\DanceEventInterface', DanceEventInterface::EVENT_DANCE);





Pour détacher le gestionnaire d’événement, appelez [[yii\base\Event::off()|Event::off()]]. Par exemple :

// détache $handler
Event::off('app\interfaces\DanceEventInterface', DanceEventInterface::EVENT_DANCE, $handler);

// détache tous les gestionnaires de DanceEventInterface::EVENT_DANCE
Event::off('app\interfaces\DanceEventInterface', DanceEventInterface::EVENT_DANCE);








Événements globaux 

Yii prend en charge ce qu’on appelle les événements globaux, qui est une astuce basée sur le mécanisme des événements décrit ci-dessus. L’événement global requiert un singleton accessible globalement tel que l’instance de l’application elle-même.

Pour créer l’événement global, un émetteur d’événement appelle la méthode trigger()  du singleton pour déclencher l’événement au lieu d’appeler la méthode trigger() propre à l’émetteur. De façon similaire, les gestionnaires d’événement sont attachés à l’événement sur le singleton. Par exemple :

use Yii;
use yii\base\Event;
use app\components\Foo;

Yii::$app->on('bar', function ($event) {
    echo get_class($event->sender);  // affiche "app\components\Foo"
});

Yii::$app->trigger('bar', new Event(['sender' => new Foo]));





Un avantage de l’utilisation d’événement globaux est que vous n’avez pas besoin d’un objet lorsque vous attachez un gestionnaire à l’événement qui est déclenché par l’objet. Au lieu de cela, vous attachez le gestionnaire et déclenchez l’événement via le singleton (p. ex. l’instance d’application).

Néanmoins, parce que l’espace de noms des événements globaux est partagé par toutes les parties, vous devez nommer les événements globaux avec prudence, par exemple en introduisant une sorte d’espace de noms (p. ex. “frontend.mail.sent”, “backend.mail.sent”).




Événements génériques 

Depuis la version 2.0.14, vous pouvez définir un gestionnaire d’événement pour de multiples événement correspondant à un motif générique.
Par exemple:

use Yii;

$foo = new Foo();

$foo->on('foo.event.*', function ($event) {
    // déclenché pour tout événement dont le nom commence par 'foo.event.'
    Yii::debug('trigger event: ' . $event->name);
});





Les motifs génériques peuvent être utilisés pour des événements au niveau de la classe. Par exemple :

use yii\base\Event;
use Yii;

Event::on('app\models\*', 'before*', function ($event) {
    // déclenché pour toute classe de l'espace de noms  'app\models' pour tout événement dont le nom commence par 'before'
    Yii::debug('trigger event: ' . $event->name . ' for class: ' . get_class($event->sender));
});





Cela vous permet d’attraper tous les événement de l’application par un unique gestionnaire en utilisant le code suivant :

use yii\base\Event;
use Yii;

Event::on('*', '*', function ($event) {
    // déclenché pour tout événement de n'importe quelle classe
    Yii::debug('trigger event: ' . $event->name);
});






Note: l’utilisation de motifs génériques pour la définition des gestionnaires d’événement peut réduire la performance de l’application . Il vaut mieux l’éviter si possible.




Afin de détacher un gestionnaire d’événement spécifié par un motif générique, vous devez répéter le même motif en invoquant
[[yii\base\Component::off()]] ou [[yii\base\Event::off()]]. Soyez conscient que le passage d’un motif générique lors du détachement d’un gestionnaire d’événement ne détache que le gestionnaire attaché avec ce motif, tandis que les gestionnaires attachés par des noms réguliers d’événement resteront attachés même si leur nom correspond au motif. Par exemple :

use Yii;

$foo = new Foo();

// attache un gestionnaire de façon régulière
$foo->on('event.hello', function ($event) {
    echo 'direct-handler'
});

// attache un gestionnaire par un motif générique
$foo->on('*', function ($event) {
    echo 'wildcard-handler'
});

// ne détache que le gestionnaire attaché par le motif générique
$foo->off('*');

$foo->trigger('event.hello'); // outputs: 'direct-handler'











          

      

      

    

  

  
    
    Propriétés
    

    
 
  

    
      
          
            
  
Propriétés

En PHP, les variables membres des classes sont aussi appelées propriétés. Ces variables font partie de la définition de la classe  et sont utilisées pour représenter l’état d’une instance de cette classe (c.-à-d. à différentier une instance de la classe d’une autre). En pratique, vous désirez souvent gérer la lecture et l’écriture de ces propriété d’une manière particulière. Par exemple, vous pouvez désirer qu’une chaîne de caractères soit toujours nettoyée avant de l’assigner à une propriété label. Vous pouvez utiliser le code suivant pour arriver à cette fin :

$object->label = trim($label);





Le revers du code ci-dessus est que vous devez appeler trim() partout ou vous voulez définir la propriété label. Si, plus tard, la propriété label devient sujette à de nouvelles exigences, telles que la première lettre doit être une capitale, vous auriez à modifier toutes les parties de code  qui assignent une valeur à la propriété label. La répétition de code conduit à des bogues, et c’est une pratique courante de l’éviter autant que faire se peut.

Pour résoudre ce problème, Yii introduit une classe de base nommée [[yii\base\BaseObject]] qui prend en charge la définition de propriétés sur la base de méthodes d’obtention (getter) et de méthode d’assignation (setters). Si une classe a besoin de cette fonctionnalité, il suffit qu’elle étende la classe[[yii\base\BaseObject]], ou une de ses classes filles.


Info: presque toutes les classes du noyau du framework Yii étendent la classe [[yii\base\BaseObject]] ou une de ses classes filles. Cela veut dire, que chaque fois que vous trouvez une méthode d’obtention ou d’assignation dans une classe du noyau, vous pouvez l’utiliser comme une propriété.




Une méthode d’obtention est une méthode dont le nom commence par le mot get (obtenir) et une méthode d’assignation est une méthode dont le nom commence par le mot set (assigner, définir).  Le nom après les mots préfixes get ou set définit le nom d’une propriété. Par exemple, une méthode d’obtention getLabel et/ou une méthode d’assignation setLabel obtient et assigne, respectivement, une propriété nommée label, comme le montre le code suivant :

namespace app\components;

use yii\base\BaseObject;

class Foo extends BaseObject
{
    private $_label;

    public function getLabel()
    {
        return $this->_label;
    }

    public function setLabel($value)
    {
        $this->_label = trim($value);
    }
}





Pour être tout à fait exact, les méthodes d’obtention et d’assignation créent la propriété label, qui dans ce cas fait référence en interne à une propriété privée nommée _label.

Les propriétés définies par les méthodes d’obtention et d’assignation peuvent être utilisées comme des variables membres de la classe. La différence principale est que, lorsqu’une telle propriété est lue, la méthode d’obtention correspondante est appelée ; lorsqu’une valeur est assignée à la propriété, la méthode d’assignation correspondante est appelée. Par exemple :

// équivalent à $label = $object->getLabel();
$label = $object->label;

// équivalent à $object->setLabel('abc');
$object->label = 'abc';





Une propriété définie par une méthode d’obtention (getter) sans méthode d’assignation (setter) est une propriété en lecture seule. Essayer d’assigner une valeur à une telle propriété provoque une exception [[yii\base\InvalidCallException|InvalidCallException]]. De façon similaire, une propriété définie par une méthode d’assignation sans méthode d’obtention est en écriture seule. Essayer de lire une telle propriété provoque une exception. Il n’est pas courant d’avoir des propriétés en écriture seule.

Il existe plusieurs règles spéciales pour les propriétés définies via des méthodes d’obtention et d’assignation, ainsi que certaines limitations sur elles.


	Le nom de telles propriétés sont insensibles à la casse. Par exemple,  $object->label et $object->Label sont identiques. Cela est dû au fait que le nom des méthodes dans PHP est insensible à la casse.


	Si le nom d’une telle propriété est identique à celui d’une variable membre de la classe, le dernier prévaut. Par exemple, si la classe ci-dessus Foo possède une variable momée label, alors l’assignation $object->label = 'abc' affecte la variable membre label ; cette ligne ne fait pas appel à la méthode d’assignation setLabel().


	Ces propriétés ne prennent pas en charge la visibilité. Cela ne fait aucune différence pour les méthodes d’obtention et d’assignation qui définissent une propriété, que cette propriété soit publique, protégée ou privée.


	Les propriétés peuvent uniquement être définies par des méthodes d’obtention et d’assignation non-statiques. Les méthodes statiques ne sont pas traitées de la même manière.


	Un appel normal à la méthode property_exists() ne fonctionne pas pour déterminer des propriétés magiques. Vous devez appeler  [[yii\base\BaseObject::canGetProperty()|canGetProperty()]] ou [[yii\base\BaseObject::canSetProperty()|canSetProperty()]] respectivement.




En revenant au problème évoqué au début de ce guide, au lieu d’appeler trim() partout où une valeur est assignée à label, vous pouvez vous contenter d’appeler trim() dans la méthode d’assignation setLabel(). Et si une nouvelle exigence apparaît – comme celle de mettre la première lettre en capitale – la méthode  setLabel() peut être rapidement modifiée sans avoir à toucher à d’autres parties du code. Cet unique modification affecte l’ensemble des assignation de label.





          

      

      

    

  

  
    
    Localisateur de services
    

    
 
  

    
      
          
            
  
Localisateur de services

Un localisateur de services est un objet que sait comment fournir toutes sortes de services (ou composants) dont une application peut avoir besoin. Dans le localisateur de services, chaque composant existe seulement sous forme d’une unique instance, identifiée de manière unique par un identifiant. Vous utilisez l’identifiant pour retrouver un composant du localisateur de services.

Dans Yii, un localisateur de service est simplement une instance de [[yii\di\ServiceLocator]] ou d’une de ses classes filles.

Le localisateur de service le plus couramment utilisé dans Yii est l’objet application, auquel vous avez accès via \Yii::$app. Les services qu’il procure, tels les composants request, response et urlManager,  sont appelés composants d’application. Vous pouvez configurer ces trois composants, ou même les remplacer facilement avec votre propre implémentation, en utilisant les fonctionnalités procurées par le localisateur de services.

En plus de l’objet application, chaque objet module est aussi un localisateur de services.

Pour utiliser un localisateur de service, la première étape est d’enregistrer le composant auprès de lui. Un composant peut être enregistré via la méthode [[yii\di\ServiceLocator::set()]]. Le code suivant montre différentes manières d’enregistrer des composants :

use yii\di\ServiceLocator;
use yii\caching\FileCache;

$locator = new ServiceLocator;

// enregistre "cache" en utilisant un nom de classe qui peut être utilisé pour créer un composant
$locator->set('cache', 'yii\caching\ApcCache');

// enregistre "db" en utilisant un tableau de configuration qui peut être utilisé pour créer un composant
$locator->set('db', [
    'class' => 'yii\db\Connection',
    'dsn' => 'mysql:host=localhost;dbname=demo',
    'username' => 'root',
    'password' => '',
]);

// enregistre "search" en utilisant une fonction anonyme qui construit un composant
$locator->set('search', function () {
    return new app\components\SolrService;
});

// enregistre "pageCache" en utilisant un composant
$locator->set('pageCache', new FileCache);





Une fois qu’un composant a été enregistré, vous pouvez y accéder via son identifiant, d’une des deux manières suivantes :

$cache = $locator->get('cache');
// ou en alternative 
$cache = $locator->cache;





Comme montré ci-dessus, [[yii\di\ServiceLocator]] vous permet d’accéder à un composant comme à une propriété en utilisant l’identifiant du composant.

Lorsque vous accédez à un composant pour la première fois, [[yii\di\ServiceLocator]] utilise l’information d’enregistrement du composant pour créer une nouvelle instance du composant et la retourner. Par la suite, si on accède à nouveau au composant, le localisateur de service retourne la même instance.

Vous pouvez utiliser [[yii\di\ServiceLocator::has()]] pour savoir si un identifiant de composant a déjà été enregistré. Si vous appelez [[yii\di\ServiceLocator::get()]] avec un identifiant invalide, une exception est levée.

Comme les localisateurs de services sont souvent créés avec des configurations, une propriété accessible en écriture, et nommée [[yii\di\ServiceLocator::setComponents()|components]], est fournie. Cela vous permet de configurer et d’enregistrer plusieurs composants à la fois. Le code suivant montre un tableau de configuration qui peut être utilisé pour configurer un localisateur de services (p. ex. une application) avec les composants db, cache, tz et search :

return [
    // ...
    'components' => [
        'db' => [
            'class' => 'yii\db\Connection',
            'dsn' => 'mysql:host=localhost;dbname=demo',
            'username' => 'root',
            'password' => '',
        ],
        'cache' => 'yii\caching\ApcCache',
        'tz' => function() {
            return new \DateTimeZone(Yii::$app->formatter->defaultTimeZone);
        },
        'search' => function () {
            $solr = new app\components\SolrService('127.0.0.1');
            // ... other initializations ...
            return $solr;
        },
    ],
];





Dans ce qui précède, il y a une façon alternative de configurer le composant search. Au lieu d’écrire directement une fonction de rappel PHP qui construit une instance de SolrService, vous pouvez utiliser une méthode de classe statique pour retourner une telle fonction de rappel, comme c’est montré ci-dessous :

class SolrServiceBuilder
{
    public static function build($ip)
    {
        return function () use ($ip) {
            $solr = new app\components\SolrService($ip);
            // ... autres initialisations ...
            return $solr;
        };
    }
}

return [
    // ...
    'components' => [
        // ...
        'search' => SolrServiceBuilder::build('127.0.0.1'),
    ],
];





Cette approche alternative est à utiliser de préférence lorsque vous publiez une composant Yii qui encapsule quelques bibliothèques de tierces parties. Vous utilisez la méthode statique comme c’est montré ci-dessus pour représenter la logique complexe de construction de l’objet de tierce partie, et l’utilisateur de votre composant doit seulement appeler la méthode statique pour configurer le composant.


Parcours d’un arbre 

Les modules acceptent les inclusions arbitraires; une application Yii est essentiellement un arbre de modules. Comme chacun de ces modules est un localisateur de services, cela a du sens pour les enfants d’accéder à leur parent.
Cela permet aux modules d’utiliser $this->get('db') au lieu de faire référence au localisateur de services racine Yii::$app->get('db').
Un bénéficie supplémentaire pour le développeur est de pouvoir redéfinir la configuration dans un module.

Toute requête d’un service à l’intérieur d’un module est passée à son parent dans le cas où le module lui-même est incapable  de la satisfaire.

Notez que la configuration depuis des composants dans un module n’est jamais fusionnée avec celle depuis un composant du module parent. Le modèle de localisateur de services nous permet de définir des services nommés mais on ne peut supposer que des services du même nom utilisent les mêmes paramètres de configuration.







          

      

      

    

  

  
    
    Enregistrement actif (Active Record)
    

    
 
  

    
      
          
            
  
Enregistrement actif (Active Record)

L’enregistrement actif [http://en.wikipedia.org/wiki/Active_record_pattern] fournit une interface orientée objet pour accéder aux données stockées dans une base de données et les manipuler.
Une classe d’enregistrement actif (ActiveRecord) est associée à une table de base de données, une instance de cette classe représente une ligne de cette table, et un attribut d’une instance d’enregistrement actif représente la valeur d’une colonne particulière dans cette ligne.
Au lieu d’écrire des instructions SQL brutes,
vous pouvez accéder aux attributs de l’objet enregistrement actif et appeler ses méthodes pour accéder aux données stockées dans les tables de la base de données et les manipuler.

Par exemple, supposons que Customer soit une classe d’enregistrement actif associée à la table customer et que name soit une colonne de la table customer.
Vous pouvez écrire le code suivant pour insérer une nouvelle ligne dans la table customer :

$customer = new Customer();
$customer->name = 'Qiang';
$customer->save();





Le code ci-dessus est équivalent à l’utilisation de l’instruction SQL brute suivante pour MySQL, qui est moins intuitive, plus propice aux erreurs, et peut même poser des problèmes de compatibilité sur vous utilisez un système de gestion de base données différent.

$db->createCommand('INSERT INTO `customer` (`name`) VALUES (:name)', [
    ':name' => 'Qiang',
])->execute();





Yii assure la prise en charge de l’enregistrement actif (Active Record) pour les bases de données relationnelles suivantes :


	MySQL 4.1 ou versions postérieures : via [[yii\db\ActiveRecord]]


	PostgreSQL 7.3 ou versions postérieures : via [[yii\db\ActiveRecord]]


	SQLite 2 et 3 : via [[yii\db\ActiveRecord]]


	Microsoft SQL Server 2008 ou versions postérieures : via [[yii\db\ActiveRecord]]


	Oracle : via [[yii\db\ActiveRecord]]


	CUBRID 9.3 ou versions postérieures : via [[yii\db\ActiveRecord]]
(Notez que, à cause d’un bogue [http://jira.cubrid.org/browse/APIS-658] dans l’extension CUBRID 9.3, l’entourage des valeurs par des marques de citation ne fonctionne pas, c’est pourquoi vous avez besoin de CUBRID 9.3 à la fois comme client et comme serveur)


	Sphinx : via [[yii\sphinx\ActiveRecord]], requiert l’extension yii2-sphinx


	ElasticSearch : via [[yii\elasticsearch\ActiveRecord]], requiert l’extension yii2-elasticsearch




De plus, Yii prend aussi en charge l’enregistrement actif (Active Record) avec les bases de données non SQL suivantes :


	Redis 2.6.12 ou versions postérieures : via [[yii\redis\ActiveRecord]], requiert l’extension yii2-redis


	MongoDB 1.3.0 ou versions postérieures: via [[yii\mongodb\ActiveRecord]], requiert l’extension yii2-mongodb




Dans ce tutoriel, nous décrivons essentiellement l’utilisation de l’enregistrement actif pour des bases de données relationnelles.
Cependant, la majeure partie du contenu décrit ici est aussi applicable aux bases de données non SQL.


Déclaration des classes d’enregistrement actif (Active Record) 

Pour commencer, déclarez une classe d’enregistrement actif en étendant la classe [[yii\db\ActiveRecord]].


Définir un nom de table

Par défaut, chacune des classes d’enregistrement actif est associée à une table de la base de données.
La méthode [[yii\db\ActiveRecord::tableName()|tableName()]] retourne le nom de la table en convertissant le nom via [[yii\helpers\Inflector::camel2id()]].
Vous pouvez redéfinir cette méthode si le nom de la table ne suit pas cette convention.

Un [[yii\db\Connection::$tablePrefix|préfixe de table]] par défaut peut également être appliqué.Par exemple, si le [[yii\db\Connection::$tablePrefix|préfixe de table]] est tbl_, Customer devient tbl_customer et OrderItem devient tbl_order_item.

Si un nom de table est fourni sous la forme {{%TableName}}, alors le caractère % est remplacé par le préfixe de table.
Par exemple, {{%post}} devient {{tbl_post}}. Les accolades autour du nom de table sont utilisées pour
l’entourage par des marques de citation dans une requête SQL .

Dans l’exemple suivant, nous déclarons une classe  d’enregistrement actif nommée Customer pour la table de base de données customer.

namespace app\models;

use yii\db\ActiveRecord;

class Customer extends ActiveRecord
{
    const STATUS_INACTIVE = 0;
    const STATUS_ACTIVE = 1;
    
    /**
     * @return string le nom de la table associée à cette classe d'enregistrement actif.
     */
    public static function tableName()
    {
        return 'customer';
    }
}








Les enregistrements actifs sont appelés “modèles”

Les instances d’une classe d’enregistrement actif (Active Record) sont considérées comme des modèles.
Pour cette raison, nous plaçons les classes d’enregistrement actif dans l’espace de noms app\models(ou autres espaces de noms prévus pour contenir des classes de modèles).

Comme la classe [[yii\db\ActiveRecord]] étend la classe [[yii\base\Model]],
elle hérite de toutes les fonctionnalités d’un modèle, comme les attributs, les règles de validation, la sérialisation des données, etc.






Connexion aux bases de données 

Par défaut, l’enregistrement actif utilise le composant d’application db en tant que [[yii\db\Connection|connexion à une base de données]]
pour accéder aux données de la base de données et les manipuler.
Comme expliqué dans la section Objets d’accès aux bases de données, vous pouvez configurer le composant db dans la configuration de l’application comme montré ci-dessous :

return [
    'components' => [
        'db' => [
            'class' => 'yii\db\Connection',
            'dsn' => 'mysql:host=localhost;dbname=testdb',
            'username' => 'demo',
            'password' => 'demo',
        ],
    ],
];





Si vous voulez utiliser une connexion de base de données autre que le composant db, vous devez redéfinir la méthode [[yii\db\ActiveRecord::getDb()|getDb()]] :

class Customer extends ActiveRecord
{
    // ...

    public static function getDb()
    {
        // utilise le composant d'application "db2"
        return \Yii::$app->db2;
    }
}








Requête de données 

Après avoir déclaré une classe d’enregistrement actif, vous pouvez l’utiliser pour faire une requête de données de la table correspondante dans la base de données. Ce processus s’accomplit en général en trois étapes :


	Créer un nouvel objet query (requête) en appelant la méthode [[yii\db\ActiveRecord::find()]] ;


	Construire l’objet query en appelant des méthodes de construction de requête;


	Appeler une méthode de requête pour retrouver les données en terme d’instances d’enregistrement actif.




Comme vous pouvez le voir, cela est très similaire à la procédure avec le constructeur de requêtes.
La seule différence est que, au lieu d’utiliser l’opérateur new pour créer un objet query (requête), vous appelez la méthode [[yii\db\ActiveRecord::find()]] pour retourner un nouvel objet query qui est de la classe [[yii\db\ActiveQuery]].

Ce-dessous, nous donnons quelques exemples qui montrent comment utiliser l’Active Query (requête active) pour demander des données :

// retourne un client (*customer*) unique dont l'identifiant est 123
// SELECT * FROM `customer` WHERE `id` = 123
$customer = Customer::find()
    ->where(['id' => 123])
    ->one();

// retourne tous les clients actifs et les classe par leur identifiant
// SELECT * FROM `customer` WHERE `status` = 1 ORDER BY `id`
$customers = Customer::find()
    ->where(['status' => Customer::STATUS_ACTIVE])
    ->orderBy('id')
    ->all();

// retourne le nombre de clients actifs 
// SELECT COUNT(*) FROM `customer` WHERE `status` = 1
$count = Customer::find()
    ->where(['status' => Customer::STATUS_ACTIVE])
    ->count();

// retourne tous les clients dans un tableau indexé par l'identifiant du client 
// SELECT * FROM `customer`
$customers = Customer::find()
    ->indexBy('id')
    ->all();





Dans le code ci-dessus, $customer est un objet Customer tandis que $customers est un tableau d’objets Customer.
Ils sont tous remplis par les données retrouvées dans la table customer.


Info: comme la classe [[yii\db\ActiveQuery]] étend la classe [[yii\db\Query]],
vous pouvez utiliser toutes les méthodes de construction et de requête comme décrit dans la section sur le constructeur de requête.




Parce que faire une requête de données par les valeurs de clés primaires ou par jeu de valeurs de colonne est une tâche assez courante, Yii fournit une prise en charge de méthodes raccourcis pour cela :


	[[yii\db\ActiveRecord::findOne()]]: retourne une instance d’enregistrement actif remplie avec la première ligne du résultat de la requête.


	[[yii\db\ActiveRecord::findAll()]]: retourne un tableau d’instances d’enregistrement actif rempli avec tous les résultats de la requête.




Les deux méthodes acceptent un des formats de paramètres suivants :


	une valeur scalaire : la valeur est traitée comme la valeur de la clé primaire à rechercher. Yii détermine automatiquement quelle colonne est la colonne de clé primaire en lisant les informations du schéma de la base de données.


	un tableau de valeurs scalaires : le tableau est traité comme les valeurs de clé primaire désirées à rechercher.


	un tableau associatif : les clés sont les noms de colonne et les valeurs sont les valeurs de colonne désirées à rechercher.
Reportez-vous au format haché pour plus de détails.




Le code qui suit montre comment ces méthodes peuvent être utilisées :

// retourne un client unique dont l'identifiant est 123
// SELECT * FROM `customer` WHERE `id` = 123
$customer = Customer::findOne(123);

// retourne les clients dont les identifiants sont 100, 101, 123 ou 124
// SELECT * FROM `customer` WHERE `id` IN (100, 101, 123, 124)
$customers = Customer::findAll([100, 101, 123, 124]);

// retourne un client actif dont l'identifiant est 123
// SELECT * FROM `customer` WHERE `id` = 123 AND `status` = 1
$customer = Customer::findOne([
    'id' => 123,
    'status' => Customer::STATUS_ACTIVE,
]);

// retourne tous les clients inactifs 
// SELECT * FROM `customer` WHERE `status` = 0
$customers = Customer::findAll([
    'status' => Customer::STATUS_INACTIVE,
]);






Attention : si vous avez besoin de passer des saisies utilisateur à
ces méthodes, assurez-vous que la valeurs saisie est un scalaire ou dans le cas d’une
condition tableau, assurez-vous que la structure du tableau ne peut pas être changée depuis l’extérieur :

// yii\web\Controller garantit que $id est un scalaire
public function actionView($id)
{
    $model = Post::findOne($id);
    // ...
}

// spécifier explicitement la colonne à chercher, passer un scalaire ou un tableau ici, aboutit à retrouver un enregistrement unique
$model = Post::findOne(['id' => Yii::$app->request->get('id')]);

// n'utilisez PAS le code suivant si possible ! Il est possible d'injecter une condition tableau pour filtrer par des valeurs de colonne arbitraires !
$model = Post::findOne(Yii::$app->request->get('id'));









Note: ni [[yii\db\ActiveRecord::findOne()]], ni [[yii\db\ActiveQuery::one()]] n’ajoutent LIMIT 1 à l’instruction SQL générée. Si votre requête peut retourner plusieurs lignes de données, vous devez appeler limit(1) explicitement pour améliorer la performance, p. ex., Customer::find()->limit(1)->one().




En plus d’utiliser les méthodes de construction de requête, vous pouvez aussi écrire du SQL brut pour effectuer une requête de données et vous servir des résultats pour remplir des objets enregistrements actifs.
Vous pouvez le faire en appelant la méthode [[yii\db\ActiveRecord::findBySql()]] :

// retourne tous les clients inactifs
$sql = 'SELECT * FROM customer WHERE status=:status';
$customers = Customer::findBySql($sql, [':status' => Customer::STATUS_INACTIVE])->all();





N’appelez pas de méthodes de construction de requêtes supplémentaires après avoir appelé
[[yii\db\ActiveRecord::findBySql()|findBySql()]]
car elles seront ignorées.




Accès aux données 

Comme nous l’avons mentionné plus haut, les données extraites de la base de données servent à remplir des instances de la classe d’enregistrement actif et chacune des lignes du résultat de la requête correspond à une instance unique de la classe d’enregistrement actif.
Vous pouvez accéder accéder aux valeurs des colonnes en accédant aux attributs des instances de la classe d’enregistrement actif, par exemple :

// "id" et "email" sont les noms des colonnes de la table "customer"
$customer = Customer::findOne(123);
$id = $customer->id;
$email = $customer->email;






Note: les attributs de l’instance de la classe d’enregistrement actif sont nommés d’après les noms des colonnes de la table associée en restant sensibles à la casse.
Yii définit automatiquement un attribut dans l’objet enregistrement actif pour chacune des colonnes de la table associée.
Vous ne devez PAS déclarer à nouveau l’un quelconque des ces attributs.




Comme les attributs de l’instance d’enregistrement actif sont nommés d’après le nom des colonnes,
vous pouvez vous retrouver en train d’écrire du code PHP tel que $customer->first_name, qui utilise le caractère (_) souligné pour séparer les mots dans les noms d’attributs si vos colonnes de table sont nommées de cette manière.
Si vous êtes attaché à la cohérence du style de codage, vous devriez renommer vos colonnes de tables en conséquence (p. ex. en utilisant la notation en dos de chameau).


Transformation des données 

Il arrive souvent que les données entrées et/ou affichées soient dans un format qui diffère de celui utilisé pour stocker les données dans la base.
Par exemple, dans la base de données, vous stockez la date d’anniversaire des clients sous la forme de horodates UNIX (bien que ce soit pas une conception des meilleures),
tandis que dans la plupart des cas, vous avez envie de manipuler les dates d’anniversaire sous la forme de chaînes de caractères dans le format 'YYYY/MM/DD'.
Pour le faire, vous pouvez définir des méthodes de transformation de données dans la classe d’enregistrement actif comme ceci :

class Customer extends ActiveRecord
{
    // ...

    public function getBirthdayText()
    {
        return date('Y/m/d', $this->birthday);
    }
    
    public function setBirthdayText($value)
    {
        $this->birthday = strtotime($value);
    }
}





Désormais, dans votre code PHP, au lieu d’accéder à $customer->birthday, vous devez accéder à $customer->birthdayText, ce qui vous permet d’entrer et d’afficher les dates d’anniversaire dans le format 'YYYY/MM/DD'.


Tip: l’exemple qui précède montre une manière générique de transformer des données dans différents formats. Si vous travaillez avec des valeurs de dates, vous pouvez utiliser DateValidator et [[yii\jui\DatePicker|DatePicker]], qui sont plus faciles à utiliser et plus puissantes.







Retrouver des données dans des tableaux 

Alors que retrouver des données en termes d’objets enregistrements actifs est souple et pratique, cela n’est pas toujours souhaitable lorsque vous devez extraire une grande quantité de données à cause de l’empreinte mémoire très importante.
Dans ce cas, vous pouvez retrouver les données en utilisant des tableaux PHP en appelant [[yii\db\ActiveQuery::asArray()|asArray()]] avant d’exécuter une méthode de requête :

// retourne tous les clients
// chacun des clients est retourné sous forme de tableau associatif
$customers = Customer::find()
    ->asArray()
    ->all();






Note: bien que cette méthode économise de la mémoire et améliore la performance, elle est plus proche de la couche d’abstraction basse de la base de données et perd la plupart des fonctionnalités de l’objet enregistrement actif. Une distinction très importante réside dans le type de données des valeurs de colonne.
Lorsque vous retournez des données dans une instance d’enregistrement actif, les valeurs des colonnes sont automatiquement typées en fonction du type réel des colonnes ;
par contre, lorsque vous retournez des données dans des tableaux, les valeurs des colonnes sont des chaînes de caractères (parce qu’elles résultent de PDO sans aucun traitement), indépendamment du type réel de ces colonnes.







Retrouver des données dans des lots 

Dans la section sur le constructeur de requêtes, nous avons expliqué que vous pouvez utiliser des requêtes par lots pour minimiser l’utilisation de la mémoire lorsque vous demandez de grandes quantités de données de la base de données.
Vous pouvez utiliser la même technique avec l’enregistrement actif. Par exemple :

// va chercher 10 clients (customer) à la fois
foreach (Customer::find()->batch(10) as $customers) {
    // $customers est un tableau de 10 (ou moins) objets Customer 
}

// va chercher 10 clients (customers) à la fois et itère sur chacun d'eux 
foreach (Customer::find()->each(10) as $customer) {
    // $customer est un objet Customer 
}

// requête par lots avec chargement précoce 
foreach (Customer::find()->with('orders')->each() as $customer) {
    // $customer est un objet Customer avec la relation 'orders' remplie
}










Sauvegarde des données 

En utilisant l’enregistrement actif, vous pouvez sauvegarder facilement les données dans la base de données en suivant les étapes suivantes :


	Préparer une instance de la classe d’enregistrement actif


	Assigner de nouvelles valeurs aux attributs de cette instance


	Appeler [[yii\db\ActiveRecord::save()]] pour sauvegarder les données dans la base de données.




Par exemple :

// insère une nouvelle ligne de données
$customer = new Customer();
$customer->name = 'James';
$customer->email = 'james@example.com';
$customer->save();

// met à jour une ligne de données existante
$customer = Customer::findOne(123);
$customer->email = 'james@newexample.com';
$customer->save();





La méthode [[yii\db\ActiveRecord::save()|save()]] peut soit insérer, soit mettre à jour une ligne de données, selon l’état de l’instance de l’enregistrement actif.
Si l’instance est en train d’être créée via l’opérateur new, appeler [[yii\db\ActiveRecord::save()|save()]]
provoque l’insertion d’une nouvelle ligne de données ;
si l’instance est le résultat d’une méthode de requête, appeler [[yii\db\ActiveRecord::save()|save()]] met à jour la ligne associée à l’instance.

Vous pouvez différentier les deux états d’une instance d’enregistrement actif en testant la valeur de sa propriété [[yii\db\ActiveRecord::isNewRecord|isNewRecord]].
Cette propriété est aussi utilisée par [[yii\db\ActiveRecord::save()|save()]]
en interne, comme ceci :

public function save($runValidation = true, $attributeNames = null)
{
    if ($this->getIsNewRecord()) {
        return $this->insert($runValidation, $attributeNames);
    } else {
        return $this->update($runValidation, $attributeNames) !== false;
    }
}






Astuce: vous pouvez appeler [[yii\db\ActiveRecord::insert()|insert()]] ou [[yii\db\ActiveRecord::update()|update()]]
directement pour insérer ou mettre à jour une ligne.





Validation des données 

Comme la classe [[yii\db\ActiveRecord]] étend la classe [[yii\base\Model]],
elle partage la même fonctionnalité de validation des données.
Vous pouvez déclarer les règles de validation en redéfinissant la méthode [[yii\db\ActiveRecord::rules()|rules()]] et effectuer la validation des données en appelant la méthode [[yii\db\ActiveRecord::validate()|validate()]].

Lorsque vous appelez la méthode [[yii\db\ActiveRecord::save()|save()]], par défaut, elle appelle automatiquement la méthode [[yii\db\ActiveRecord::validate()|validate()]].
C’est seulement si la validation réussit, que les données sont effectivement sauvegardées ;
autrement elle retourne simplement false, et vous pouvez tester la propriété [[yii\db\ActiveRecord::errors|errors]] pour retrouver les messages d’erreurs de validation.


Astuce: si vous avez la certitude que vos données n’ont pas besoin d’être validées (p. ex. vos données proviennent de sources fiables), vous pouvez appeler save(false) pour omettre la validation.







Assignation massive 

Comme les modèles habituels, les instances d’enregistrement actif profitent de la fonctionnalité d’assignation massive.
L’utilisation de cette fonctionnalité vous permet d’assigner plusieurs attributs d’un enregistrement actif en une seule instruction PHP, comme c’est montré ci-dessous.
N’oubliez cependant pas que, seuls les attributs sûrs sont assignables en masse.

$values = [
    'name' => 'James',
    'email' => 'james@example.com',
];

$customer = new Customer();

$customer->attributes = $values;
$customer->save();








Mise à jour des compteurs 

C’est une tâche courante que d’incrémenter ou décrémenter une colonne dans une table de base de données.
Nous appelons ces colonnes « colonnes compteurs*. Vous pouvez utiliser la méthode [[yii\db\ActiveRecord::updateCounters()|updateCounters()]] pour mettre à jour une ou plusieurs colonnes de comptage.
Par exemple :

$post = Post::findOne(100);

// UPDATE `post` SET `view_count` = `view_count` + 1 WHERE `id` = 100
$post->updateCounters(['view_count' => 1]);






Note: si vous utilisez la méthode [[yii\db\ActiveRecord::save()]] pour mettre à jour une colonne compteur, vous pouvez vous retrouver avec un résultat erroné car il est probable que le même compteur soit sauvegardé par de multiples requêtes qui lisent et écrivent la même valeur de compteur.







Attributs sales (Dirty Attributes) 

Lorsque vous appelez la méthode [[yii\db\ActiveRecord::save()|save()]] pour sauvegarder une instance d’enregistrement actif, seuls les attributs dit attributs sales sont sauvegardés.
Un attribut est considéré comme sale si sa valeur a été modifiée depuis qu’il a été chargé depuis la base de données ou sauvegardé dans la base de données le plus récemment.
Notez que la validation des données est assurée sans se préoccuper de savoir si l’instance d’enregistrement actif possède des attributs sales ou pas.

L’enregistrement actif tient à jour la liste des attributs sales. Il le fait en conservant une version antérieure des valeurs d’attribut et en les comparant avec les dernières.
Vous pouvez appeler la méthode [[yii\db\ActiveRecord::getDirtyAttributes()]] pour obtenir les attributs qui sont couramment sales.
Vous pouvez aussi appeler la méthode [[yii\db\ActiveRecord::markAttributeDirty()]] pour marquer explicitement un attribut comme sale.

Si vous êtes intéressé par les valeurs d’attribut antérieurs à leur plus récente modification, vous pouvez appeler la méthode [[yii\db\ActiveRecord::getOldAttributes()|getOldAttributes()]]
ou la méthode [[yii\db\ActiveRecord::getOldAttribute()|getOldAttribute()]].


Note: la comparaison entre les anciennes et les nouvelles valeurs est faite en utilisant l’opérateur === , ainsi une valeur est considérée comme sale si le type est différent même si la valeur reste la même.
Cela est souvent le cas lorsque le modèle reçoit des entrées utilisateur de formulaires HTML ou chacune des valeurs est représentée par une chaîne de caractères.
Pour garantir le type correct pour p. ex. des valeurs entières, vous devez appliquer un filtre de validation:
['attributeName', 'filter', 'filter' => 'intval'].
Cela fonctionne pour toutes les fonctions de transformation de type de PHP comme intval() [http://php.net/manual/en/function.intval.php],
floatval() [http://php.net/manual/en/function.floatval.php],
boolval [http://php.net/manual/en/function.boolval.php], etc…







Valeurs d’attribut par défaut 

Quelques unes de vos colonnes de tables peuvent avoir des valeurs par défaut définies dans la base de données.
Parfois, vous voulez peut-être pré-remplir votre formulaire Web pour un enregistrement actif à partir des valeurs par défaut.
Pour éviter d’écrire les mêmes valeurs par défaut à nouveau, vous pouvez appeler la méthode [[yii\db\ActiveRecord::loadDefaultValues()|loadDefaultValues()]] pour remplir les attributs de l’enregistrement actif avec les valeurs par défaut prédéfinies dans la base de données :

$customer = new Customer();
$customer->loadDefaultValues();
// $customer->xyz recevra la valeur par défaut déclarée lors de la définition de la colonne « xyz » column








Conversion de type d’attributs 

Étant peuplé par les résultats des requêtes, l’[[yii\db\ActiveRecord|enregistrement actif]] effectue des conversions automatiques de type pour ses valeurs d’attribut, en utilisant les informations du schéma des tables de base de données.
Cela permet aux données retrouvées dans les colonnes de la table et déclarées comme entiers de peupler une instance d’enregistrement actif avec des entiers PHP, les valeurs booléennes avec des valeurs booléennes, et ainsi de suite.
Néanmoins, le mécanisme de conversion de type souffre de plusieurs limitation :


	Les valeurs flottantes (Float) ne sont pas converties et sont représentées par des chaînes de caractères, autrement elles pourraient perdre de la précision.


	La conversion des valeurs entières dépend de la capacité du système d’exploitation utilisé.
En particulier, les valeurs de colonne déclarée comme « entier non signé »,  ou  « grand entier » (big integer) sont converties en entier PHP seulement pour les système d’exploitation 64 bits, tandis que sur les systèmes 32 bits, elles sont représentées par des chaînes de caractères.




Notez que la conversion de type des attributs n’est effectuée que lors du peuplement d’une instance d’enregistrement actif par les résultats d’une requête.
Il n’y a pas de conversion automatique pour les valeurs chargées par une requête HTTP ou définies directement par accès à des propriétés.
Le schéma de table est aussi utilisé lors de la préparation des instructions SQL pour la sauvegarde de l’enregistrement actif, garantissant ainsi que les valeurs sont liées à la requête avec le type correct.
Cependant, les valeurs d’attribut d’une instance d’enregistrement actif ne sont pas converties durant le processus de sauvegarde.


Astuce : vous pouvez utiliser  [[yii\behaviors\AttributeTypecastBehavior]] pour faciliter la conversion de type des valeurs d’attribut lors de la validation ou la sauvegarde d’un enregistrement actif.




Depuis la version 2.0.14, la classe  ActiveRecord de Yii prend en charge des types de données complexe tels que JSON ou les tableaux multi-dimensionnels.


JSON dans MySQL et PostgreSQL

Après le peuplement par les données, la valeur d’une colonne JSON est automatiquement décodée selon les règles de décodage standard de JSON.

Pour sauvegarder une valeur d’attribut dans une colonne de type JSON, la classe ActiveRecord crée automatiquement un objet  [[yii\db\JsonExpression|JsonExpression]]
qui est encodé en une chaîne JSON au niveau du constructeur de requête.




Tableaux dans PostgreSQL

Après le peuplement par les données, les valeurs issues de colonnes de type tableau sont automatiquement décodée de la notation PgSQL en un objet  [[yii\db\ArrayExpression|ArrayExpression]].
Il met en œuvre l’interface ArrayAccess, ainsi pouvez-vous l’utiliser comme un tableau, ou appeler ->getValue() pour obtenir le tableau lui-même.

Pour sauvegarder une valeur d’attribut dans une colonne de type tableau,la classe ActiveRecord crée automatiquement un objet [[yii\db\ArrayExpression|ArrayExpression]] qui est encodé par le constructeur de requête en une chaîne PgSQL représentant le tableau.

Vous pouvez aussi utiliser des conditions pour les colonnes de type JSON :

$query->andWhere(['=', 'json', new ArrayExpression(['foo' => 'bar'])





Pour en apprendre plus sur les le système de construction d’expressions, reportez-vous à l’article  Constructeur de requêtes – Ajout de conditions et d’expressions personnalisées.






Mise à jour de plusieurs lignes 

Les méthodes décrites ci-dessus fonctionnent toutes sur des instances individuelles d’enregistrement actif pour insérer ou mettre à jour des lignes individuelles de table.
Pour mettre à jour plusieurs lignes à la fois, vous devez appeler la méthode statique [[yii\db\ActiveRecord::updateAll()|updateAll()]].

// UPDATE `customer` SET `status` = 1 WHERE `email` LIKE `%@example.com%`
Customer::updateAll(['status' => Customer::STATUS_ACTIVE], ['like', 'email', '@example.com']);





De façon similaire, vous pouvez appeler [[yii\db\ActiveRecord::updateAllCounters()|updateAllCounters()]] pour mettre à jour les colonnes compteurs de plusieurs lignes à la fois.

// UPDATE `customer` SET `age` = `age` + 1
Customer::updateAllCounters(['age' => 1]);










Suppression de données 

Pour supprimer une ligne unique de données, commencez par retrouver l’instance d’enregistrement actif correspondant à cette ligne et appelez la méthode [[yii\db\ActiveRecord::delete()]].

$customer = Customer::findOne(123);
$customer->delete();





Vous pouvez appeler [[yii\db\ActiveRecord::deleteAll()]] pour effacer plusieurs ou toutes les lignes de données. Par exemple :

Customer::deleteAll(['status' => Customer::STATUS_INACTIVE]);






Note : agissez avec prudence lorsque vous appelez [[yii\db\ActiveRecord::deleteAll()|deleteAll()]] parce que cela peut effacer totalement toutes les données de votre table si vous faites une erreur en spécifiant la condition.







Cycles de vie de l’enregistrement actif 

Il est important que vous compreniez les cycles de vie d’un enregistrement actif lorsqu’il est utilisé à des fins différentes.
Lors de chaque cycle de vie, une certaine séquence d’invocation de méthodes a lieu, et vous pouvez redéfinir ces méthodes pour avoir une chance de personnaliser le cycle de vie.
Vous pouvez également répondre à certains événements de l’enregistrement actif déclenchés durant un cycle de vie pour injecter votre code personnalisé.
Ces événements sont particulièrement utiles lorsque vous développez des comportements d’enregistrement actif qui ont besoin de personnaliser les cycles de vie d’enregistrement actifs.

Dans l’exemple suivant, nous résumons les différents cycles de vie d’enregistrement actif et les méthodes/événements à qui il est fait appel dans ces cycles.


Cycle de vie d’une nouvelle instance 

Lorsque vous créez un nouvel enregistrement actif via l’opérateur new, le cycle suivant se réalise :


	Construction de la classe.


	[[yii\db\ActiveRecord::init()|init()]]: déclenche un événement [[yii\db\ActiveRecord::EVENT_INIT|EVENT_INIT]].







Cycle de vie lors d’une requête de données 

Lorsque vous effectuez une requête de données via l’une des méthodes de requête, chacun des enregistrements actifs nouvellement rempli entreprend le cycle suivant :


	Construction de la classe.


	[[yii\db\ActiveRecord::init()|init()]]: déclenche un événement [[yii\db\ActiveRecord::EVENT_INIT|EVENT_INIT]].


	[[yii\db\ActiveRecord::afterFind()|afterFind()]]: déclenche un événement [[yii\db\ActiveRecord::EVENT_AFTER_FIND|EVENT_AFTER_FIND]].







Cycle de vie lors d’une sauvegarde de données 

En appelant [[yii\db\ActiveRecord::save()|save()]] pour insérer ou mettre à jour une instance d’enregistrement actif, le cycle de vie suivant se réalise :


	[[yii\db\ActiveRecord::beforeValidate()|beforeValidate()]]: déclenche un événement [[yii\db\ActiveRecord::EVENT_BEFORE_VALIDATE|EVENT_BEFORE_VALIDATE]] .
Si la méthode retourne false (faux), ou si [[yii\base\ModelEvent::isValid]] est false, les étapes suivantes sont sautées.


	Effectue la validation des données.
Si la validation échoue, les étapes après l’étape 3 saut sautées.


	[[yii\db\ActiveRecord::afterValidate()|afterValidate()]]:
déclenche un événement [[yii\db\ActiveRecord::EVENT_AFTER_VALIDATE|EVENT_AFTER_VALIDATE]].


	[[yii\db\ActiveRecord::beforeSave()|beforeSave()]]:
déclenche un événement [[yii\db\ActiveRecord::EVENT_BEFORE_INSERT|EVENT_BEFORE_INSERT]]
ou un événement [[yii\db\ActiveRecord::EVENT_BEFORE_UPDATE|EVENT_BEFORE_UPDATE]].
Si la méthode retourne false ou si [[yii\base\ModelEvent::isValid]] est false, les étapes suivantes sont sautées.


	Effectue l’insertion ou la mise à jour réelle.


	[[yii\db\ActiveRecord::afterSave()|afterSave()]]:
déclenche un événement [[yii\db\ActiveRecord::EVENT_AFTER_INSERT|EVENT_AFTER_INSERT]]
ou un événement [[yii\db\ActiveRecord::EVENT_AFTER_UPDATE|EVENT_AFTER_UPDATE]].







Cycle de vie lors d’une suppression de données 

En appelant [[yii\db\ActiveRecord::delete()|delete()]] pour supprimer une instance d’enregistrement actif, le cycle suivant se déroule :


	[[yii\db\ActiveRecord::beforeDelete()|beforeDelete()]]:
déclenche un événement [[yii\db\ActiveRecord::EVENT_BEFORE_DELETE|EVENT_BEFORE_DELETE]].
Si la méthode retourne false ou si [[yii\base\ModelEvent::isValid]] est false, les étapes suivantes sont sautées.


	Effectue la suppression réelle des données.


	[[yii\db\ActiveRecord::afterDelete()|afterDelete()]]:
déclenche un événement [[yii\db\ActiveRecord::EVENT_AFTER_DELETE|EVENT_AFTER_DELETE]].





Note : l’appel de l’une des méthodes suivantes n’initie AUCUN des cycles vus ci-dessus parce qu’elles travaillent directement sur la base de données et pas sur la base d’un enregistrement actif :






	[[yii\db\ActiveRecord::updateAll()]]


	[[yii\db\ActiveRecord::deleteAll()]]


	[[yii\db\ActiveRecord::updateCounters()]]


	[[yii\db\ActiveRecord::updateAllCounters()]]










Cycle de vie lors du rafraîchissement des données 

En appelant [[yii\db\ActiveRecord::refresh()|refresh()]] pour rafraîchir une instance d’enregistrement actif, l’événement [[yii\db\ActiveRecord::EVENT_AFTER_REFRESH|EVENT_AFTER_REFRESH]]
est déclenché si le rafraîchissement réussit et si la méthode retourne true.






Travail avec des transactions 

Il y a deux façons d’utiliser les transactions lorsque l’on travaille avec un enregistrement actif.

La première façon consiste à enfermer explicitement les appels des différents méthodes dans un bloc transactionnel, comme ci-dessous :

$customer = Customer::findOne(123);

Customer::getDb()->transaction(function($db) use ($customer) {
    $customer->id = 200;
    $customer->save();
    // ...autres opérations de base de données...
});

// ou en alternative

$transaction = Customer::getDb()->beginTransaction();
try {
    $customer->id = 200;
    $customer->save();
    // ...other DB operations...
    $transaction->commit();
} catch(\Exception $e) {
    $transaction->rollBack();
    throw $e;
} catch(\Throwable $e) {
    $transaction->rollBack();
    throw $e;
}






Note : dans le code précédent, nous utilisons deux blocs de capture pour être compatible avec PHP 5.x et PHP 7.x.
\Exception met en œuvre l’interface \Throwable [http://php.net/manual/en/class.throwable.php]
à partir de  PHP 7.0, c’est pourquoi vous pouvez sauter la partie avec \Exception si votre application utilise PHP 7.0 ou une version plus récente.




La deuxième façon consiste à lister les opérations de base de données qui nécessitent une prise en charge transactionnelle dans la méthode [[yii\db\ActiveRecord::transactions()]].
Par exemple :

class Customer extends ActiveRecord
{
    public function transactions()
    {
        return [
            'admin' => self::OP_INSERT,
            'api' => self::OP_INSERT | self::OP_UPDATE | self::OP_DELETE,
            // ce qui précède est équivalent à ce qui suit :
            // 'api' => self::OP_ALL,
        ];
    }
}





La méthode [[yii\db\ActiveRecord::transactions()]]
doit retourner un tableau dont les clés sont les noms de scénario et les valeurs les opérations correspondantes qui doivent être enfermées dans des transactions.
Vous devez utiliser les constantes suivantes pour faire référence aux différentes opérations de base de données :


	[[yii\db\ActiveRecord::OP_INSERT|OP_INSERT]]: opération d’insertion réalisée par [[yii\db\ActiveRecord::insert()|insert()]];


	[[yii\db\ActiveRecord::OP_UPDATE|OP_UPDATE]]: opération de mise à jour réalisée par [[yii\db\ActiveRecord::update()|update()]];


	[[yii\db\ActiveRecord::OP_DELETE|OP_DELETE]]: opération de suppression réalisée par [[yii\db\ActiveRecord::delete()|delete()]].




Utilisez l’opérateur | pour concaténer les constantes précédentes pour indiquer de multiples opérations.
Vous pouvez également utiliser la constante raccourci [[yii\db\ActiveRecord::OP_ALL|OP_ALL]] pour faire référence à l’ensemble des trois opération ci-dessus.

Les transactions qui sont créées en utilisant cette méthode sont démarrées avant d’appeler [[yii\db\ActiveRecord::beforeSave()|beforeSave()]] et sont entérinées après que la méthode [[yii\db\ActiveRecord::afterSave()|afterSave()]] a été exécutée.




Verrous optimistes 

Le verrouillage optimiste est une manière d’empêcher les conflits qui peuvent survenir lorsqu’une même ligne de données est mise à jour par plusieurs utilisateurs.
Par exemple, les utilisateurs A et B sont tous deux, simultanément, en train de modifier le même article de wiki.
Après que l’utilisateur A a sauvegardé ses modifications, l’utilisateur B clique sur le bouton « Sauvegarder » dans le but de sauvegarder ses modifications lui aussi.
Comme l’utilisateur B est en train de travailler sur une version périmée de l’article, il serait souhaitable de disposer d’un moyen de l’empêcher de sauvegarder sa version de l’article et de lui montrer un message d’explication.

Le verrouillage optimiste résout le problème évoqué ci-dessus en utilisant une colonne pour enregistrer le numéro de version de chacune des lignes.
Lorsqu’une ligne est sauvegardée avec un numéro de version périmée, une exception [[yii\db\StaleObjectException]] est levée, ce qui empêche la sauvegarde de la ligne.
Le verrouillage optimiste, n’est seulement pris en charge que lorsque vous mettez à jour ou supprimez une ligne de données existante en utilisant les méthodes [[yii\db\ActiveRecord::update()]]
ou [[yii\db\ActiveRecord::delete()]],respectivement.

Pour utiliser le verrouillage optimiste :


	Créez une colonne dans la table de base de données associée à la classe d’enregistrement actif pour stocker le numéro de version de chacune des lignes.
La colonne doit être du type big integer
(dans MySQL ce doit être BIGINT DEFAULT 0).


	Redéfinissez la méthode [[yii\db\ActiveRecord::optimisticLock()]] pour qu’elle retourne le nom de cette colonne.


	Dans la classe de votre modèle, mettez en œuvre  [[\yii\behaviors\OptimisticLockBehavior|OptimisticLockBehavior]] pour analyser automatiquement sa valeur des requêtes reçues.


	Dans le formulaire Web qui reçoit les entrées de l’utilisateur, ajoutez un champ caché pour stocker le numéro de version courant de la ligne en modification.
Retirez l’attribut version des règles de validation étant donné que [[\yii\behaviors\OptimisticLockBehavior|OptimisticLockBehavior]] s’en charge.


	Dans l’action de contrôleur qui met la ligne à jour en utilisant l’enregistrement actif, utiliser une structure try-catch pour l’exception [[yii\db\StaleObjectException]].
Mettez en œuvre la logique requise (p. ex. fusionner les modifications, avertir des données douteuses) pour résoudre le conflit.
Par exemple, supposons que la colonne du numéro de version est nommée version.
Vous pouvez mettre en œuvre le verrouillage optimiste avec un code similaire au suivant :




// ------ view code -------

use yii\helpers\Html;

// ...other input fields
echo Html::activeHiddenInput($model, 'version');


// ------ controller code -------

use yii\db\StaleObjectException;

public function actionUpdate($id)
{
    $model = $this->findModel($id);

    try {
        if ($model->load(Yii::$app->request->post()) && $model->save()) {
            return $this->redirect(['view', 'id' => $model->id]);
        } else {
            return $this->render('update', [
                'model' => $model,
            ]);
        }
    } catch (StaleObjectException $e) {
        // logique pour résoudre le  conflict
    }
}

// ------ model code -------

use yii\behaviors\OptimisticLockBehavior;

public function behaviors()
{
    return [
        OptimisticLockBehavior::className(),
    ];
}






Note : comme [[\yii\behaviors\OptimisticLockBehavior|OptimisticLockBehavior]] garantit que l’enregistrement n’est sauvegardé que
si l’utilisateur soumet un numéro de version valide en analysant directement [[\yii\web\Request::getBodyParam()|getBodyParam()]],
il peut être utile d’étendre votre classe de modèle et de réaliser l’étape 2 dans le modèle du parent lors de l’attachement du comportement (étape 3) à la classe enfant;
ainsi vous pouvez disposer d’une instance dédiée à l’usage interne tout en liant l’autre aux contrôleurs chargés de recevoir
les entrées de l’utilisateur final. En alternative, vous pouvez mettre en œuvre votre propre logique en configurant sa propriété [[\yii\behaviors\OptimisticLockBehavior::$value|value]].







Travail avec des données relationnelles 

En plus de travailler avec des tables de base de données individuelles, l’enregistrement actif permet aussi de rassembler des données en relation, les rendant ainsi immédiatement accessibles via les données primaires.
Par exemple, la donnée client est en relation avec les données commandes parce qu’un client peut avoir passé une ou plusieurs commandes.
Avec les déclarations appropriées de cette relation, vous serez capable d’accéder aux commandes d’un client en utilisant l’expression $customer->orders qui vous renvoie les informations sur les commandes du client en terme de tableau d’instances Order (Commande) d’enregistrement actif.


Déclaration de relations 

Pour travailler avec des données relationnelles en utilisant l’enregistrement actif, vous devez d’abord déclarer les relations dans les classes d’enregistrement actif.
La tâche est aussi simple que de déclarer une méthode de relation pour chacune des relations concernées, comme ceci :

class Customer extends ActiveRecord
{
    // ...

    public function getOrders()
    {
        return $this->hasMany(Order::className(), ['customer_id' => 'id']);
    }
}

class Order extends ActiveRecord
{
    // ...

    public function getCustomer()
    {
        return $this->hasOne(Customer::className(), ['id' => 'customer_id']);
    }
}





Dans le code ci-dessus, nous avons déclaré une relation orders (commandes) pour la classe Customer (client), et une relation customer (client) pour la classe Order (commande).

Chacune des méthodes de relation doit être nommée sous la forme getXyz. Nous appelons xyz (la première lettre est en bas de casse) le nom de la relation.
Notez que les noms de relation sont sensibles à la casse.

En déclarant une relation, vous devez spécifier les informations suivantes :


	la multiplicité de la relation : spécifiée en appelant soit la méthode [[yii\db\ActiveRecord::hasMany()|hasMany()]],
soit la méthode [[yii\db\ActiveRecord::hasOne()|hasOne()]].
Dans l’exemple ci-dessus vous pouvez facilement déduire en lisant la déclaration des relations qu’un client a beaucoup de commandes, tandis qu’une commande n’a qu’un client.


	le nom de la classe d’enregistrement actif : spécifié comme le premier paramètre de [[yii\db\ActiveRecord::hasMany()|hasMany()]] ou de [[yii\db\ActiveRecord::hasOne()|hasOne()]].
Une pratique conseillée est d’appeler Xyz::className()
pour obtenir la chaîne de caractères représentant le nom de la classe de manière à bénéficier
de l’auto-complètement de l’EDI et de la détection d’erreur dans l’étape de compilation.


	Le lien entre les deux types de données : spécifie le(s) colonne(s) via lesquelles les deux types de données sont en relation.
Les valeurs du tableau sont les colonnes des données primaires (représentées par la classe d’enregistrement actif dont vous déclarez les relations), tandis que les clés sont les colonnes des données en relation.




Une règle simple pour vous rappeler cela est, comme vous le voyez dans l’exemple ci-dessus, d’écrire la colonne qui appartient à l’enregistrement actif en relation juste à coté de lui.
Vous voyez là que l’identifiant du client (customer_id) est une propriété de Order et id est une propriété de Customer.




Accès aux données relationnelles  

Après avoir déclaré des relations, vous pouvez accéder aux données relationnelles via le nom des relations.
Tout se passe comme si vous accédiez à une propriété d’un objet défini par la méthode de relation. Pour cette raison, nous appelons cette propriété propriété de relation.
Par exemple :

// SELECT * FROM `customer` WHERE `id` = 123
$customer = Customer::findOne(123);

// SELECT * FROM `order` WHERE `customer_id` = 123
// $orders est un tableau d'objets Order 
$orders = $customer->orders;






Info : lorsque vous déclarez une relation nommée xyz via une méthode d’obtention getXyz(), vous êtes capable d’accéder à xyz comme à un objet property.
Notez que le nom est sensible à la casse.




Si une relation est déclarée avec la méthode [[yii\db\ActiveRecord::hasMany()|hasMany()]], l’accès à cette propriété de relation retourne un tableau des instances de l’enregistrement actif en relation ;
si une relation est déclarée avec la méthode [[yii\db\ActiveRecord::hasOne()|hasOne()]], l’accès à la propriété de relation retourne l’instance de l’enregistrement actif en relation, ou null si aucune donnée en relation n’est trouvée.

Lorsque vous accédez à une propriété de relation pour la première fois, une instruction SQL est exécutée comme le montre l’exemple précédent.
Si la même propriété fait l’objet d’un nouvel accès, le résultat précédent est retourné sans exécuter à nouveau l’instruction SQL.
Pour forcer l’exécution à nouveau de l’instruction SQL, vous devez d’abord annuler la définition de la propriété de relation : unset($customer->orders).


Note : bien que ce concept semble similaire à la fonctionnalité propriété d’objet, il y a une différence importante.
Pour les propriétés normales d’objet, la valeur est du même type que la méthode d’obtention de définition.
Une méthode de relation cependant retourne toujours une instance d’[[yii\db\ActiveRecord]] ou un tableau de telles instances.

$customer->orders; // est un tableau d'objets `Order` 
$customer->getOrders(); // retourne une instance d'ActiveQuery





Cela est utile for créer des requêtes personnalisées, ce qui est décrit dans la section suivante.







Requête relationnelle dynamique 

Parce qu’une méthode de relation retourne une instance d’[[yii\db\ActiveQuery]], vous pouvez continuer à construire cette requête en utilisant les méthodes de construction avant de l’exécuter.
Par exemple :

$customer = Customer::findOne(123);

// SELECT * FROM `order` WHERE `customer_id` = 123 AND `subtotal` > 200 ORDER BY `id`
$orders = $customer->getOrders()
    ->where(['>', 'subtotal', 200])
    ->orderBy('id')
    ->all();





Contrairement à l’accès à une propriété de relation, chaque fois que vous effectuez une requête relationnelle dynamique via une méthode de relation, une instruction SQL est exécutée, même si la même requête relationnelle dynamique a été effectuée auparavant.

Parfois, vous voulez peut-être paramétrer une déclaration de relation de manière à ce que vous puissiez effectuer des requêtes relationnelles dynamiques plus facilement.
Par exemple, vous pouvez déclarer une relation bigOrders comme ceci :,

class Customer extends ActiveRecord
{
    public function getBigOrders($threshold = 100)
    {
        return $this->hasMany(Order::className(), ['customer_id' => 'id'])
            ->where('subtotal > :threshold', [':threshold' => $threshold])
            ->orderBy('id');
    }
}





Par la suite, vous serez en mesure d’effectuer les requêtes relationnelles suivantes :

// SELECT * FROM `order` WHERE `customer_id` = 123 AND `subtotal` > 200 ORDER BY `id`
$orders = $customer->getBigOrders(200)->all();

// SELECT * FROM `order` WHERE `customer_id` = 123 AND `subtotal` > 100 ORDER BY `id`
$orders = $customer->bigOrders;








Relations via une table de jointure 

Dans la modélisation de base de données, lorsque la multiplicité entre deux tables en relation est many-to-many (de plusieurs à plusieurs), une table de jointure [https://en.wikipedia.org/wiki/Junction_table] est en général introduite.
Par exemple, la table order (commande) et la table item peuvent être en relation via une table de jointure nommée order_item (item_de_commande).
Une commande correspond ensuite à de multiples items de commande, tandis qu’un item de produit correspond lui-aussi à de multiples items de commande (order items).

Lors de la déclaration de telles relations, vous devez appeler soit [[yii\db\ActiveQuery::via()|via()]],
soit [[yii\db\ActiveQuery::viaTable()|viaTable()]], pour spécifier la table de jointure.
La différence entre [[yii\db\ActiveQuery::via()|via()]] et [[yii\db\ActiveQuery::viaTable()|viaTable()]] est que la première spécifie la table de jointure en termes de noms de relation existante, tandis que la deuxième utilise directement la table de jointure.
Par exemple :

class Order extends ActiveRecord
{
    public function getItems()
    {
        return $this->hasMany(Item::className(), ['id' => 'item_id'])
            ->viaTable('order_item', ['order_id' => 'id']);
    }
}





ou autrement,

class Order extends ActiveRecord
{
    public function getOrderItems()
    {
        return $this->hasMany(OrderItem::className(), ['order_id' => 'id']);
    }

    public function getItems()
    {
        return $this->hasMany(Item::className(), ['id' => 'item_id'])
            ->via('orderItems');
    }
}





L’utilisation de relations déclarées avec une table de jointure est la même que celle de relations normales. Par exemple :

// SELECT * FROM `order` WHERE `id` = 100
$order = Order::findOne(100);

// SELECT * FROM `order_item` WHERE `order_id` = 100
// SELECT * FROM `item` WHERE `item_id` IN (...)
// retourne un tableau d'objets Item 
$items = $order->items;








Chaînage de définitions de relation via de multiples tables 

Il est de plus possible de définir des relations via de multiples tables en chaînant les définitions de relation en utilisant [[yii\db\ActiveQuery::via()|via()]].
En reprenant l’exemple ci-dessus, nous avons les classes  Customer, Order et Item.
Nous pouvons ajouter une relation à la classe Customer qui liste tous les items de tous les commandes qu’ils ont passées,
et la nommer getPurchasedItems(), le chaînage de relations est présenté dans l’exemple de code suivant :

class Customer extends ActiveRecord
{
    // ...

    public function getPurchasedItems()
    {
        // items de clients pour lesquels la colonne 'id' de `Item` correspond à  'item_id' dans OrderItem
        return $this->hasMany(Item::className(), ['id' => 'item_id'])
                    ->via('orderItems');
    }

    public function getOrderItems()
    {
        // items de commandes clients pour lesquels, la colonne 'id' de `Order` correspond à 'order_id' dans OrderItem
        return $this->hasMany(OrderItem::className(), ['order_id' => 'id'])
                    ->via('orders');
    }

    public function getOrders()
    {
        // idem à ci-dessus
        return $this->hasMany(Order::className(), ['customer_id' => 'id']);
    }
}








Chargement paresseux et chargement précoce 

Dans la sous-section Accès aux données relationnelles, nous avons expliqué que vous pouvez accéder à une propriété de relation d’une instance d’enregistrement actif comme si vous accédiez à une propriété normale d’objet.
Une instruction SQL est exécutée seulement lorsque vous accédez à cette propriété pour la première fois.
Nous appelons une telle méthode d’accès à des données relationnelles, chargement paresseux.
Par exemple :

// SELECT * FROM `customer` WHERE `id` = 123
$customer = Customer::findOne(123);

// SELECT * FROM `order` WHERE `customer_id` = 123
$orders = $customer->orders;

// pas de SQL exécuté
$orders2 = $customer->orders;





Le chargement paresseux est très pratique à utiliser.
Néanmoins, il peut souffrir d’un problème de performance lorsque vous avez besoin d’accéder à la même propriété de relation sur de multiples instances d’enregistrement actif.
Examinons l’exemple de code suivant. Combien d’instruction SQL sont-elles exécutées ?

// SELECT * FROM `customer` LIMIT 100
$customers = Customer::find()->limit(100)->all();

foreach ($customers as $customer) {
    // SELECT * FROM `order` WHERE `customer_id` = ...
    $orders = $customer->orders;
}





Comme vous pouvez le constater dans le fragment de code ci-dessus, 101 instruction SQL sont exécutées !
Cela tient au fait que, à chaque fois que vous accédez à la propriété de relation orders d’un objet client différent dans la boucle for, une instruction SQL est exécutée.

Pour résoudre ce problème de performance, vous pouvez utiliser ce qu’on appelle le chargement précoce comme montré ci-dessous :

// SELECT * FROM `customer` LIMIT 100;
// SELECT * FROM `orders` WHERE `customer_id` IN (...)
$customers = Customer::find()
    ->with('orders')
    ->limit(100)
    ->all();

foreach ($customers as $customer) {
    // aucune instruction SQL exécutée
    $orders = $customer->orders;
}





En appelant [[yii\db\ActiveQuery::with()]], vous donner comme instruction à l’enregistrement actif de rapporter les commandes (orders) pour les 100 premiers clients (customers) en une seule instruction SQL.
En conséquence, vous réduisez le nombre d’instructions SQL de 101 à 2 !

Vous pouvez charger précocement une ou plusieurs relations. Vous pouvez même charger précocement des relations imbriquées.
Une relation imbriquée est une relation qui est déclarée dans une classe d’enregistrement actif.
Par exemple, Customer est en relation avec Order via la relation orders, et Order est en relation avec Item via la relation items.
Lorsque vous effectuez une requête pour Customer, vous pouvez charger précocement items en utilisant la notation de relation imbriquée orders.items.

Le code suivant montre différentes utilisations de [[yii\db\ActiveQuery::with()|with()]].
Nous supposons que la classe Customer possède deux relations orders (commandes) et country (pays), tandis que la classe Order possède une relation items.

// chargement précoce à la fois de "orders" et de "country"
$customers = Customer::find()->with('orders', 'country')->all();
// équivalent au tableau de syntaxe ci-dessous
$customers = Customer::find()->with(['orders', 'country'])->all();
// aucune instruction SQL exécutée 
$orders= $customers[0]->orders;
// aucune instruction SQL exécutée
$country = $customers[0]->country;

// chargement précoce de "orders" et de la relation imbriquée "orders.items"
$customers = Customer::find()->with('orders.items')->all();
// accés aux items de la première commande du premier client
// aucune instruction SQL exécutée
$items = $customers[0]->orders[0]->items;





Vous pouvez charger précocement des relations imbriquées en profondeur, telles que a.b.c.d. Toutes les relations parentes sont chargées précocement.
C’est à dire, que lorsque vous appelez [[yii\db\ActiveQuery::with()|with()]] en utilisant a.b.c.d, vous chargez précocement a, a.b, a.b.c et a.b.c.d.


Info : en général, lors du chargement précoce de N relations parmi lesquelles M relations sont définies par une table de jointure, N+M+1 instructions SQL sont exécutées au total.
Notez qu’une relation imbriquée a.b.c.d possède 4 relations.




Lorsque vous chargez précocement une relation, vous pouvez personnaliser le requête relationnelle correspondante en utilisant une fonction anonyme.
Par exemple :

// trouve les clients et rapporte leur pays et leurs commandes actives 
// SELECT * FROM `customer`
// SELECT * FROM `country` WHERE `id` IN (...)
// SELECT * FROM `order` WHERE `customer_id` IN (...) AND `status` = 1
$customers = Customer::find()->with([
    'country',
    'orders' => function ($query) {
        $query->andWhere(['status' => Order::STATUS_ACTIVE]);
    },
])->all();





Lors de la personnalisation de la requête relationnelle pour une relation, vous devez spécifier le nom de la relation comme une clé de tableau et utiliser une fonction anonyme comme valeur de tableau correspondante.
La fonction anonyme accepte une paramètre $query qui représente l’objet [[yii\db\ActiveQuery]] utilisé pour effectuer la requête relationnelle pour la relation.
Dans le code ci-dessus, nous modifions la requête relationnelle en ajoutant une condition additionnelle à propos de l’état de la commande (order).


Note : si vous appelez [[yii\db\Query::select()|select()]] tout en chargeant précocement les relations, vous devez vous assurer que les colonnes référencées dans la déclaration de la relation sont sélectionnées.
Autrement, les modèles en relation peuvent ne pas être chargés correctement.
Par exemple :

$orders = Order::find()->select(['id', 'amount'])->with('customer')->all();
// $orders[0]->customer est toujours nul. Pour régler le problème, vous devez faire ce qui suit :
$orders = Order::find()->select(['id', 'amount', 'customer_id'])->with('customer')->all();











Jointure avec des relations 


Note : le contenu décrit dans cette sous-section ne s’applique qu’aux bases de données relationnelles, telles que MySQL, PostgreSQL, etc.




Les requêtes relationnelles que nous avons décrites jusqu’à présent ne font référence qu’aux colonnes de table primaires lorsque nous faisons une requête des données primaires.
En réalité, nous avons souvent besoin de faire référence à des colonnes dans les tables en relation.
Par exemple, vous désirez peut-être rapporter les clients qui ont au moins une commande active.
Pour résoudre ce problème, nous pouvons construire une requête avec jointure comme suit :

// SELECT `customer`.* FROM `customer`
// LEFT JOIN `order` ON `order`.`customer_id` = `customer`.`id`
// WHERE `order`.`status` = 1
// 
// SELECT * FROM `order` WHERE `customer_id` IN (...)
$customers = Customer::find()
    ->select('customer.*')
    ->leftJoin('order', '`order`.`customer_id` = `customer`.`id`')
    ->where(['order.status' => Order::STATUS_ACTIVE])
    ->with('orders')
    ->all();






Note : il est important de supprimer les ambiguïtés sur les noms de colonnes lorsque vous construisez les requêtes relationnelles faisant appel à des instructions SQL JOIN.
Une pratique courante est de préfixer les noms de colonnes par le nom des tables correspondantes.




Néanmoins, une meilleure approche consiste à exploiter les déclarations de relations existantes en appelant [[yii\db\ActiveQuery::joinWith()]] :

$customers = Customer::find()
    ->joinWith('orders')
    ->where(['order.status' => Order::STATUS_ACTIVE])
    ->all();





Les deux approches exécutent le même jeu d’instructions SQL. La deuxième approche est plus propre et plus légère cependant.

Par défaut, [[yii\db\ActiveQuery::joinWith()|joinWith()]] utilise LEFT JOIN pour joindre la table primaire avec les tables en relation.
Vous pouvez spécifier une jointure différente (p .ex. RIGHT JOIN) via son troisième paramètre $joinType.
Si le type de jointure que vous désirez est INNER JOIN, vous pouvez simplement appeler [[yii\db\ActiveQuery::innerJoinWith()|innerJoinWith()]], à la place.

L’appel de [[yii\db\ActiveQuery::joinWith()|joinWith()]] charge précocement les données en relation par défaut.
Si vous ne voulez pas charger les données en relation, vous pouvez spécifier son deuxième paramètre $eagerLoading comme étant false.


Note : même en utilisant [[yii\db\ActiveQuery::joinWith()|joinWith()]] ou [[yii\db\ActiveQuery::innerJoinWith()|innerJoinWith()]]
avec le chargement précoce activé les données en relation ne sont pas peuplées à partir du résultat de la requête JOIN. C’est pourquoi il y a
toujours une requête supplémetaire pour chacune des relations jointes comme expliqué à la section chargement précoce.




Comme avec [[yii\db\ActiveQuery::with()|with()]], vous pouvez joindre une ou plusieurs relations ; vous pouvez personnaliser les requêtes de relation à la volée ; vous pouvez joindre des relations imbriquées ; et vous pouvez mélanger l’utilisation de [[yii\db\ActiveQuery::with()|with()]] et celle de [[yii\db\ActiveQuery::joinWith()|joinWith()]].
Par exemple :

$customers = Customer::find()->joinWith([
    'orders' => function ($query) {
        $query->andWhere(['>', 'subtotal', 100]);
    },
])->with('country')
    ->all();





Parfois, en joignant deux tables, vous désirez peut-être spécifier quelques conditions supplémentaires dans la partie ON de la requête JOIN.
Cela peut être réalisé en appelant la méthode [[yii\db\ActiveQuery::onCondition()]]
comme ceci :

// SELECT `customer`.* FROM `customer`
// LEFT JOIN `order` ON `order`.`customer_id` = `customer`.`id` AND `order`.`status` = 1 
// 
// SELECT * FROM `order` WHERE `customer_id` IN (...)
$customers = Customer::find()->joinWith([
    'orders' => function ($query) {
        $query->onCondition(['order.status' => Order::STATUS_ACTIVE]);
    },
])->all();





La requête ci-dessus retourne tous les clients, et pour chacun des clients, toutes les commandes actives.
Notez que cela est différent de notre exemple précédent qui ne retourne que les clients qui ont au moins une commande active.


Info : quand [[yii\db\ActiveQuery]] est spécifiée avec une condition via une jointure [[yii\db\ActiveQuery::onCondition()|onCondition()]], la condition est placée dans la partie ON si la requête fait appel à une requête JOIN.
Si la requête ne fait pas appel à JOIN, la on-condition est automatiquement ajoutée à la partie WHERE de la requête.
Par conséquent elle peut ne contenir que des conditions incluant des colonnes de la table en relation.





Alias de table de relation 

Comme noté auparavant, lorsque vous utilisez une requête JOIN, vous devez lever les ambiguïtés sur le nom des colonnes.
Pour cela, un alias est souvent défini pour une table. Définir un alias pour la requête relationnelle serait possible en personnalisant le requête de relation de la manière suivante :

$query->joinWith([
    'orders' => function ($q) {
        $q->from(['o' => Order::tableName()]);
    },
])





Cela paraît cependant très compliqué et implique soit de coder en dur les noms de tables des objets en relation, soit d’appeler Order::tableName().
Depuis la version 2.0.7, Yii fournit un raccourci pour cela. Vous pouvez maintenant définir et utiliser l’alias pour la table de relation comme ceci :

// joint la relation orders et trie les résultats par orders.id
$query->joinWith(['orders o'])->orderBy('o.id');





La syntaxe ci-dessus ne fonctionne que pour des relations simples. Si vous avez besoin d’un alias pour une table intermédiaire lors de la jointure via des relations imbriquées, p. ex. $query->joinWith(['orders.product']),
vous devez imbriquer les appels joinWith comme le montre l’exemple suivant :

$query->joinWith(['orders o' => function($q) {
        $q->joinWith('product p');
    }])
    ->where('o.amount > 100');










Relations inverses 

Les déclarations de relations sont souvent réciproques entre deux classes d’enregistrement actif.
Par exemple, Customer est en relation avec Order via la relation orders, et Order est en relation inverse avec Customer via la relation customer.

class Customer extends ActiveRecord
{
    public function getOrders()
    {
        return $this->hasMany(Order::className(), ['customer_id' => 'id']);
    }
}

class Order extends ActiveRecord
{
    public function getCustomer()
    {
        return $this->hasOne(Customer::className(), ['id' => 'customer_id']);
    }
}





Considérons maintenant ce fragment de code :

// SELECT * FROM `customer` WHERE `id` = 123
$customer = Customer::findOne(123);

// SELECT * FROM `order` WHERE `customer_id` = 123
$order = $customer->orders[0];

// SELECT * FROM `customer` WHERE `id` = 123
$customer2 = $order->customer;

// displays "not the same"
echo $customer2 === $customer ? 'same' : 'not the same';





On aurait tendance à penser que $customer et $customer2 sont identiques, mais ils ne le sont pas !
En réalité, ils contiennent les mêmes données de client, mais ce sont des objets différents.
En accédant à $order->customer, une instruction SQL supplémentaire est exécutée pour remplir un nouvel objet $customer2.

Pour éviter l’exécution redondante de la dernière instruction SQL dans l’exemple ci-dessus, nous devons dire à Yii que customer est une  relation inverse de orders en appelant la méthode [[yii\db\ActiveQuery::inverseOf()|inverseOf()]] comme ci-après :

class Customer extends ActiveRecord
{
    public function getOrders()
    {
        return $this->hasMany(Order::className(), ['customer_id' => 'id'])->inverseOf('customer');
    }
}





Avec cette déclaration de relation modifiée, nous avons :

// SELECT * FROM `customer` WHERE `id` = 123
$customer = Customer::findOne(123);

// SELECT * FROM `order` WHERE `customer_id` = 123
$order = $customer->orders[0];

// aucune instruction SQL n'est exécutée
$customer2 = $order->customer;

// affiche "same"
echo $customer2 === $customer ? 'same' : 'not the same';






Note : les relations inverses ne peuvent être définies pour des relations faisant appel à une table de jointure.
C’est à dire que, si une relation est définie avec [[yii\db\ActiveQuery::via()|via()]] ou avec [[yii\db\ActiveQuery::viaTable()|viaTable()]], vous ne devez pas appeler [[yii\db\ActiveQuery::inverseOf()|inverseOf()]] ensuite.









Sauvegarde des relations 

En travaillant avec des données relationnelles, vous avez souvent besoin d’établir de créer des relations entre différentes données ou de supprimer des relations existantes.
Cela requiert de définir les valeurs appropriées pour les colonnes qui définissent ces relations.
En utilisant l’enregistrement actif, vous pouvez vous retrouver en train d’écrire le code de la façon suivante :

$customer = Customer::findOne(123);
$order = new Order();
$order->subtotal = 100;
// ...

// défninition de l'attribut qui définit la relation "customer" dans Order
$order->customer_id = $customer->id;
$order->save();





L’enregistrement actif fournit la méthode [[yii\db\ActiveRecord::link()|link()]] qui vous permet d’accomplir cette tâche plus élégamment :

$customer = Customer::findOne(123);
$order = new Order();
$order->subtotal = 100;
// ...

$order->link('customer', $customer);





La méthode [[yii\db\ActiveRecord::link()|link()]] requiert que vous spécifiiez le nom de la relation et l’instance d’enregistrement actif cible avec laquelle le relation doit être établie.
La méthode modifie les valeurs des attributs qui lient deux instances d’enregistrement actif et les sauvegardes dans la base de données.
Dans l’exemple ci-dessus, elle définit l’attribut customer_id de l’instance Order comme étant la valeur de l’attribut id de l’instance Customer et le sauvegarde ensuite dans la base de données.


Note : vous ne pouvez pas lier deux instances d’enregistrement actif nouvellement créées.




L’avantage d’utiliser [[yii\db\ActiveRecord::link()|link()]]
est même plus évident lorsqu’une relation est définie via une table de jointure.
Par exemple, vous pouvez utiliser le code suivant pour lier une instance de Order à une instance de Item :

$order->link('items', $item);





Le code ci-dessus insère automatiquement une ligne dans la table de jointure order_item pour mettre la commande en relation avec l’item.


Info : la méthode [[yii\db\ActiveRecord::link()|link()]] n’effectue AUCUNE validation de données lors de la sauvegarde de l’instance d’enregistrement actif affectée.
Il est de votre responsabilité de valider toutes les données entrées avant d’appeler cette méthode.




L’opération opposée à [[yii\db\ActiveRecord::link()|link()]] est [[yii\db\ActiveRecord::unlink()|unlink()]]
qui casse une relation existante entre deux instances d’enregistrement actif. Par exemple :

$customer = Customer::find()->with('orders')->where(['id' => 123])->one();
$customer->unlink('orders', $customer->orders[0]);





Par défaut, la méthode [[yii\db\ActiveRecord::unlink()|unlink()]] définit la valeur de la (des) clé(s) étrangères qui spécifie(nt) la relation existante à null.
Vous pouvez cependant, choisir de supprimer la ligne de la table qui contient la valeur de clé étrangère en passant à la méthode la valeur true pour le paramètre $delete.

Lorsqu’une table de jointure est impliquée dans une relation, appeler [[yii\db\ActiveRecord::unlink()|unlink()]] provoque l’effacement des clés étrangères dans la table de jointure, ou l’effacement de la ligne correspondante dans la table de jointure si #delete vaut true.




Relations inter bases de données 

L’enregistrement actif vous permet de déclarer des relations entre les classes d’enregistrement actif qui sont mise en œuvre par différentes bases de données.
Les bases de données peuvent être de types différents (p. ex. MySQL and PostgreSQL, ou MS SQL et MongoDB), et elles peuvent s’exécuter sur des serveurs différents.
Vous pouvez utiliser la même syntaxe pour effectuer des requêtes relationnelles. Par exemple :

// Customer est associé à la table "customer" dans la base de données relationnelle (e.g. MySQL)
class Customer extends \yii\db\ActiveRecord
{
    public static function tableName()
    {
        return 'customer';
    }

    public function getComments()
    {
        // a customer has many comments
        return $this->hasMany(Comment::className(), ['customer_id' => 'id']);
    }
}

// Comment est associé à la collection "comment" dans une base de données MongoDB
class Comment extends \yii\mongodb\ActiveRecord
{
    public static function collectionName()
    {
        return 'comment';
    }

    public function getCustomer()
    {
        // un commentaire (comment) a un client (customer)
        return $this->hasOne(Customer::className(), ['id' => 'customer_id']);
    }
}

$customers = Customer::find()->with('comments')->all();





Vous pouvez utiliser la plupart des fonctionnalités de requêtes relationnelles qui ont été décrites dans cette section.


Note : l’utilisation de [[yii\db\ActiveQuery::joinWith()|joinWith()]] est limitée aux bases de données qui permettent les requête JOIN inter bases.
Pour cette raison, vous ne pouvez pas utiliser cette méthode dans l’exemple ci-dessus car MongoDB ne prend pas JOIN en charge.







Personnalisation des classes de requête 

Par défaut, toutes les requêtes d’enregistrement actif sont prises en charge par [[yii\db\ActiveQuery]].
Pour utiliser une classe de requête personnalisée dans une classe d’enregistrement actif, vous devez redéfinir la méthode [[yii\db\ActiveRecord::find()]] et retourner une instance de votre classe de requête personnalisée .
Par exemple :

namespace app\models;

use yii\db\ActiveRecord;
use yii\db\ActiveQuery;

class Comment extends ActiveRecord
{
    public static function find()
    {
        return new CommentQuery(get_called_class());
    }
}





Désormais, à chaque fois que vous effectuez une requête (p. ex. find(), findOne()) ou définissez une relation (p. ex. hasOne()) avec Comment, vous travaillez avec une instance de CommentQuery au lieu d’une instance d’ActiveQuery.

Vous devez maintenant définir la classe CommentQuery, qui peut être personnalisée de maintes manières créatives pour améliorer votre expérience de la construction de requête. Par exemple :

// fichier CommentQuery.php
namespace app\models;

use yii\db\ActiveQuery;

class CommentQuery extends ActiveQuery
{
    // conditions ajoutées par défaut (peut être sauté)
    public function init()
    {
        $this->andOnCondition(['deleted' => false]);
        parent::init();
    }

    // ... ajoutez vos méthodes de requêtes personnalisées ici ...

    public function active($state = true)
    {
        return $this->andOnCondition(['active' => $state]);
    }
}






Note : au lieu d’appeler [[yii\db\ActiveQuery::onCondition()|onCondition()]], vous devez généralement appeler
[[yii\db\ActiveQuery::andOnCondition()|andOnCondition()]] ou [[yii\db\ActiveQuery::orOnCondition()|orOnCondition()]]
pour ajouter des conditions supplémentaires lors de la définition de nouvelles méthodes de requête de façon à ce que aucune condition existante en soit redéfinie.




Cela vous permet d’écrire le code de construction de requête comme suit :

$comments = Comment::find()->active()->all();
$inactiveComments = Comment::find()->active(false)->all();






Astuce : dans les gros projets, il est recommandé que vous utilisiez des classes de requête personnalisées pour contenir la majeure partie de code relatif aux requêtes de manière à ce que les classe d’enregistrement actif puissent être maintenues propres.




Vous pouvez aussi utiliser les méthodes de construction de requêtes en définissant des relations avec Comment ou en effectuant une requête relationnelle :

class Customer extends \yii\db\ActiveRecord
{
    public function getActiveComments()
    {
        return $this->hasMany(Comment::className(), ['customer_id' => 'id'])->active();
    }
}

$customers = Customer::find()->joinWith('activeComments')->all();

// ou en alternative
class Customer extends \yii\db\ActiveRecord
{
    public function getComments()
    {
        return $this->hasMany(Comment::className(), ['customer_id' => 'id']);
    }
}

$customers = Customer::find()->joinWith([
    'comments' => function($q) {
        $q->active();
    }
])->all();






Info : dans Yii 1.1, il existe un concept appelé scope.
Scope n’est plus pris en charge directement par Yii 2.0, et vous devez utiliser des classes de requête personnalisées et des méthodes de requêtes pour remplir le même objectif.







Sélection de champs supplémentaires

Quand un enregistrement actif est rempli avec les résultats d’une requête, ses attributs sont remplis par les valeurs des colonnes correspondantes du jeu de données reçu.

Il vous est possible d’aller chercher des colonnes ou des valeurs additionnelles à partir d’une requête et des les stocker dans l’enregistrement actif.
Par exemple, supposons que nous ayons une table nommée room, qui contient des informations sur les chambres (rooms) disponibles dans l’hôtel.
Chacune des chambres stocke des informations sur ses dimensions géométriques en utilisant des champs length (longueur), width (largeur) , height (hauteur).
Imaginons que vous ayez besoin de retrouver une liste des chambres disponibles en les classant par volume décroissant.
Vous ne pouvez pas calculer le volume en PHP parce que vous avez besoin de trier les enregistrements par cette valeur, mais vous voulez peut-être aussi que volume soit affiché dans la liste.
Pour atteindre ce but, vous devez déclarer un champ supplémentaire dans la classe d’enregistrement actif Room qui contiendra la valeur de volume :

class Room extends \yii\db\ActiveRecord
{
    public $volume;

    // ...
}





Ensuite, vous devez composer une requête qui calcule le volume de la chambre et effectue le tri :

$rooms = Room::find()
    ->select([
        '{{room}}.*', // selectionne toutes les colonnes 
        '([[length]] * [[width]] * [[height]]) AS volume', // calcule un volume
    ])
    ->orderBy('volume DESC') // applique le tri
    ->all();

foreach ($rooms as $room) {
    echo $room->volume; // contient la valeur calculée par SQL
}





La possibilité de sélectionner des champs supplémentaires peut être exceptionnellement utile pour l’agrégation de requêtes.
Supposons que vous ayez besoin d’afficher une liste des clients avec le nombre total de commandes qu’ils ont passées.
Tout d’abord, vous devez déclarer une classe Customer avec une relation orders et un champ supplémentaire pour le stockage du nombre de commandes :

class Customer extends \yii\db\ActiveRecord
{
    public $ordersCount;

    // ...

    public function getOrders()
    {
        return $this->hasMany(Order::className(), ['customer_id' => 'id']);
    }
}





Ensuite vous pouvez composer une requête qui joint les commandes et calcule leur nombre :

$customers = Customer::find()
    ->select([
        '{{customer}}.*', // selectionne tous les champs de customer 
        'COUNT({{order}}.id) AS ordersCount' // calcule le nombre de commandes (orders)
    ])
    ->joinWith('orders') // garantit la jointure de la table
    ->groupBy('{{customer}}.id') // groupe les résultats pour garantir que la fonction d'agrégation fonctionne 
    ->all();





Un inconvénient de l’utilisation de cette méthode est que si l’information n’est pas chargée dans la requête SQL, elle doit être calculée séparément.
Par conséquent, si vous avez trouvé un enregistrement particulier via une requête régulière sans instruction de sélection supplémentaire, il ne pourra retourner la valeur réelle du champ supplémentaire.
La même chose se produit pour l’enregistrement nouvellement sauvegardé.

$room = new Room();
$room->length = 100;
$room->width = 50;
$room->height = 2;

$room->volume; // cette valeur est `null` puisqu'elle n'a pas encore été déclarée





En utilisant les méthodes magiques [[yii\db\BaseActiveRecord::__get()|__get()]] et [[yii\db\BaseActiveRecord::__set()|__set()]] nous pouvons émuler le comportement d’une propriété :

class Room extends \yii\db\ActiveRecord
{
    private $_volume;
    
    public function setVolume($volume)
    {
        $this->_volume = (float) $volume;
    }
    
    public function getVolume()
    {
        if (empty($this->length) || empty($this->width) || empty($this->height)) {
            return null;
        }
        
        if ($this->_volume === null) {
            $this->setVolume(
                $this->length * $this->width * $this->height
            );
        }
        
        return $this->_volume;
    }

    // ...
}





Lorsque la requête select ne fournit pas le volume, le modèle est capable de le calculer automatiquement en utilisant les attributs du modèle.

Vous pouvez aussi bien calculer les champs agrégés en utilisant les relations définies :

class Customer extends \yii\db\ActiveRecord
{
    private $_ordersCount;
    
    public function setOrdersCount($count)
    {
        $this->_ordersCount = (int) $count;
    }
    
    public function getOrdersCount()
    {
        if ($this->isNewRecord) {
            return null; // cela évite d'appeler une requête pour chercher une clé primaire nulle 
        }
        
        if ($this->_ordersCount === null) {
            $this->setOrdersCount($this->getOrders()->count()); // calcule l'aggrégation à la demande à partir de la relation
        }

        return $this->_ordersCount;
    }

    // ...

    public function getOrders()
    {
        return $this->hasMany(Order::className(), ['customer_id' => 'id']);
    }
}





Avec ce code, dans le cas où ‘ordersCount’ est présent dans l’instruction ‘select’  - Customer::ordersCount est peuplé
par les résultats de la requête, autrement il est calculé à la demande en utilisant la relation  Customer::orders.

Cette approche peut aussi bien être utilisée pour la création de raccourcis pour certaines données relationnelles, en particulier pour l’aggrégation.
Par exemple :

class Customer extends \yii\db\ActiveRecord
{
    /**
     * Definit une propriété en lecture seule pour les données agrégées.
     */
    public function getOrdersCount()
    {
        if ($this->isNewRecord) {
            return null; // ceci évite l'appel d'une requête pour cherche une clé primaire nulle
        }
        
        return empty($this->ordersAggregation) ? 0 : $this->ordersAggregation[0]['counted'];
    }

    /**
     * Déclere une relation 'orders' normale.
     */
    public function getOrders()
    {
        return $this->hasMany(Order::className(), ['customer_id' => 'id']);
    }

    /**
     * Déclare une nouvelle relation basée sur 'orders', qui fournit l'agrégation.
     */
    public function getOrdersAggregation()
    {
        return $this->getOrders()
            ->select(['customer_id', 'counted' => 'count(*)'])
            ->groupBy('customer_id')
            ->asArray(true);
    }

    // ...
}

foreach (Customer::find()->with('ordersAggregation')->all() as $customer) {
    echo $customer->ordersCount; // fournit les données agrégées à partir de la relation sans requête supplémentaire grâce au chargement précoce. 
}

$customer = Customer::findOne($pk);
$customer->ordersCount; // fournit les données agrégées à partir de la relation paresseuse chargée











          

      

      

    

  

  
    
    Objets d’accès aux bases de données
    

    
 
  

    
      
          
            
  
Objets d’accès aux bases de données

Construits au-dessus des objets de bases de données PHP (PDO – PHP Data Objects) [http://www.php.net/manual/en/book.pdo.php], les objets d’accès aux bases de données de Yii (DAO – Database Access Objects) fournissent une API orientée objets pour accéder à des bases de données relationnelles. C’est la fondation pour d’autres méthodes d’accès aux bases de données plus avancées qui incluent le constructeur de requêtes (query builder) et l’enregistrement actif (active record).

Lorsque vous utilisez les objets d’accès aux bases de données de Yii, vous manipulez des requêtes SQL et des tableaux PHP. En conséquence, cela reste le moyen le plus efficace pour accéder aux bases de données. Néanmoins, étant donné que la syntaxe du langage SQL varie selon le type de base de données, l’utilisation des objets d’accès aux bases de données de Yii signifie également que vous avez à faire un travail supplémentaire pour créer une application indifférente au type de base de données.

Dans Yii 2.0, les objets d’accès aux bases de données prennent en charge les bases de données suivantes sans configuration supplémentaire :


	MySQL [http://www.mysql.com/]


	MariaDB [https://mariadb.com/]


	SQLite [http://sqlite.org/]


	PostgreSQL [http://www.postgresql.org/]: version 8.4 ou plus récente.


	CUBRID [http://www.cubrid.org/]: version 9.3 ou plus récente.


	Oracle [http://www.oracle.com/us/products/database/overview/index.html]


	MSSQL [https://www.microsoft.com/en-us/sqlserver/default.aspx]: version 2008 ou plus récente.





Info: depuis Yii 2.1, la prise en charge des objets d’accès aux bases de données pour CUBRID, Oracle et MSSQL n’est plus fournie en tant que composants du noyau. Cette prise en charge nécessite l’installation d’extensions séparées.
Parmi les extensions officielles [https://www.yiiframework.com/extensions/official], on trouve yiisoft/yii2-oracle [https://www.yiiframework.com/extension/yiisoft/yii2-oracle] et
yiisoft/yii2-mssql [https://www.yiiframework.com/extension/yiisoft/yii2-mssql].





Note: la nouvelle version de pdo_oci pour PHP 7 n’existe pour le moment que sous forme de code source. Suivez les instructions de la communauté [https://github.com/yiisoft/yii2/issues/10975#issuecomment-248479268]
pour la compiler ou utilisez la couche d’émulation de PDO [https://github.com/taq/pdooci].





Création de connexions à une base de données 

Pour accéder à une base de données, vous devez d’abord vous y connecter en créant une instance de la classe [[yii\db\Connection]] :

$db = new yii\db\Connection([
    'dsn' => 'mysql:host=localhost;dbname=example',
    'username' => 'root',
    'password' => '',
    'charset' => 'utf8',
]);





Comme souvent vous devez accéder à une base de données en plusieurs endroits, une pratique commune est de la configurer en terme de composant d’application  comme ci-après :

return [
    // ...
    'components' => [
        // ...
        'db' => [
            'class' => 'yii\db\Connection',
            'dsn' => 'mysql:host=localhost;dbname=example',
            'username' => 'root',
            'password' => '',
            'charset' => 'utf8',
        ],
    ],
    // ...
];





Vous pouvez ensuite accéder à la base de données via l’expression Yii::$app->db.


Tip: vous pouvez configurer plusieurs composants d’application « base de données » si votre application a besoin d’accéder à plusieurs bases de données.




Lorsque vous configurez une connexion à une base de données, vous devez toujours spécifier le nom de sa source de données (DSN – Data Source Name) via la propriété [[yii\db\Connection::dsn|dsn]]. Les formats des noms de source de données varient selon le type de base de données. Reportez-vous au manuel de PHP [http://www.php.net/manual/en/function.PDO-construct.php] pour plus de détails. Ci-dessous, nous donnons quelques exemples :


	MySQL, MariaDB: mysql:host=localhost;dbname=mydatabase


	SQLite: sqlite:/path/to/database/file


	PostgreSQL: pgsql:host=localhost;port=5432;dbname=mydatabase


	CUBRID: cubrid:dbname=demodb;host=localhost;port=33000


	MS SQL Server (via sqlsrv driver): sqlsrv:Server=localhost;Database=mydatabase


	MS SQL Server (via dblib driver): dblib:host=localhost;dbname=mydatabase


	MS SQL Server (via mssql driver): mssql:host=localhost;dbname=mydatabase


	Oracle: oci:dbname=//localhost:1521/mydatabase




Notez que si vous vous connectez à une base de données en utilisant ODBC (Open Database Connectivity), vous devez configurer la propriété [[yii\db\Connection::driverName]] afin que Yii connaisse le type réel de base de données. Par exemple :

'db' => [
    'class' => 'yii\db\Connection',
    'driverName' => 'mysql',
    'dsn' => 'odbc:Driver={MySQL};Server=localhost;Database=test',
    'username' => 'root',
    'password' => '',
],





En plus de la propriété [[yii\db\Connection::dsn|dsn]], vous devez souvent configurer les propriétés [[yii\db\Connection::username|username (nom d’utilisateur)]] et [[yii\db\Connection::password|password (mot de passe)]]. Reportez-vous à [[yii\db\Connection]] pour une liste exhaustive des propriétés configurables.


Info: lorsque vous créez une instance de connexion à une base de données, la connexion réelle à la base de données n’est pas établie tant que vous n’avez pas exécuté la première requête SQL ou appelé la méthode [[yii\db\Connection::open()|open()]] explicitement.





Tip: parfois, vous désirez effectuer quelques requêtes juste après l’établissement de la connexion à la base de données pour initialiser quelques variables d’environnement (p. ex. pour définir le fuseau horaire ou le jeu de caractères). Vous pouvez le faire en enregistrant un gestionnaire d’événement pour l’événement [[yii\db\Connection::EVENT_AFTER_OPEN|afterOpen]] de la connexion à la base de données. Vous pouvez enregistrer le gestionnaire directement dans la configuration de l’application comme ceci :

'db' => [
    // ...
    'on afterOpen' => function($event) {
        // $event->sender refers to the DB connection
        $event->sender->createCommand("SET time_zone = 'UTC'")->execute();
    }
],











Execution de requêtes SQL 

Une fois que vous avez une instance de connexion à la base de données, vous pouvez exécuter une requête SQL en suivant les étapes suivantes :


	Créer une [[yii\db\Command|commande]] avec une requête SQL simple ;


	Lier les paramètres (facultatif);


	Appeler l’une des méthodes d’exécution SQL dans la [[yii\db\Command|commande]].




L’exemple qui suit montre différentes façons d’aller chercher des données dans une base de données :

// retourne un jeu de lignes. Chaque ligne est un tableau associatif (couples clé-valeur) dont les clés sont des noms de colonnes 
// retourne un tableau vide si la requête ne retourne aucun résultat
$posts = Yii::$app->db->createCommand('SELECT * FROM post')
            ->queryAll();

// retourne une ligne unique (la première ligne) 
// retourne false si la requête ne retourne aucun résultat
$post = Yii::$app->db->createCommand('SELECT * FROM post WHERE id=1')
           ->queryOne();

// retourne une colonne unique (la première colonne) 
//retourne un tableau vide si la requête ne retourne aucun résultat
$titles = Yii::$app->db->createCommand('SELECT title FROM post')
             ->queryColumn();

// retourne une valeur scalaire
// retourne false si la requête ne retourne aucun résultat
$count = Yii::$app->db->createCommand('SELECT COUNT(*) FROM post')
             ->queryScalar();






Note: pour préserver la précision, les données extraites des bases de données sont toutes représentées sous forme de chaînes de caractères, même si les colonnes sont de type numérique.





Liaison des paramètres 

Lorsque vous créez une commande de base de données à partir d’une requête SQL avec des paramètres, vous devriez presque toujours utiliser l’approche de liaison des paramètres pour éviter les attaques par injection SQL. Par exemple :

$post = Yii::$app->db->createCommand('SELECT * FROM post WHERE id=:id AND status=:status')
           ->bindValue(':id', $_GET['id'])
           ->bindValue(':status', 1)
           ->queryOne();





Dans l’instruction SQL, vous pouvez incorporer une ou plusieurs valeurs à remplacer pour les paramètres (p. ex. :id dans l’exemple ci-dessus). Une valeur à remplacer pour un paramètre doit être une chaîne de caractères commençant par le caractère deux-points :. Vous pouvez ensuite appeler l’une des méthodes de liaison de paramètres suivantes pour lier les valeurs de paramètre :


	[[yii\db\Command::bindValue()|bindValue()]]: lie une unique valeur de paramètre


	[[yii\db\Command::bindValues()|bindValues()]]: lie plusieurs valeurs de paramètre en un seul appel


	[[yii\db\Command::bindParam()|bindParam()]]: similaire à [[yii\db\Command::bindValue()|bindValue()]] mais prend aussi en charge la liaison de références à des paramètres




L’exemple suivant montre les manières alternatives de lier des paramètres :

$params = [':id' => $_GET['id'], ':status' => 1];

$post = Yii::$app->db->createCommand('SELECT * FROM post WHERE id=:id AND status=:status')
           ->bindValues($params)
           ->queryOne();
           
$post = Yii::$app->db->createCommand('SELECT * FROM post WHERE id=:id AND status=:status', $params)
           ->queryOne();





La liaison des paramètres est implémentée via des instructions préparées [http://php.net/manual/en/mysqli.quickstart.prepared-statements.php]. En plus d’empêcher les attaques par injection SQL, cela peut aussi améliorer la performance en préparant l’instruction SQL une seule fois et l’exécutant de multiples fois avec des paramètres différents. Par exemple :

$command = Yii::$app->db->createCommand('SELECT * FROM post WHERE id=:id');

$post1 = $command->bindValue(':id', 1)->queryOne();
$post2 = $command->bindValue(':id', 2)->queryOne();
// ...





Comme la méthode [[yii\db\Command::bindParam()|bindParam()]] prend en charge la liaison des paramètres par référence, le code ci-dessus peut aussi être écrit comme suit :

$command = Yii::$app->db->createCommand('SELECT * FROM post WHERE id=:id')
              ->bindParam(':id', $id);

$id = 1;
$post1 = $command->queryOne();

$id = 2;
$post2 = $command->queryOne();
// ...





Notez que vous devez lier la valeur à remplacer à la variable $id avant l’exécution, et ensuite changer la valeur de cette variable avant chacune des exécutions subséquentes (cela est souvent réalisé dans une boucle). L’exécution de requêtes de cette façon peut être largement plus efficace que d’exécuter une nouvelle requête pour chacune des valeurs du paramètre).


Info: la liaison de paramètres n’est utilisée qu’en des endroits où les valeurs doivent être insérées dans des chaînes de caractères qui contiennent du langage SQL.
Dans de nombreux endroits dans des couches plus abstraites comme le query builder (constructeur de requêtes) et active record (enregistrement actif)
vous spécifiez souvent un tableau de valeurs qui est transformé en SQL. À ces endroits, la liaison de paramètres est assurée par Yii en interne. Il n’est donc pas nécessaire de spécifier ces paramètres manuellement.







Exécution de requête sans sélection 

Les méthodes queryXyz() introduites dans les sections précédentes concernent toutes des requêtes SELECT qui retournent des données de la base de données. Pour les instructions qui ne retournent pas de donnée, vous devez appeler la méthode [[yii\db\Command::execute()]] à la place. Par exemple :

Yii::$app->db->createCommand('UPDATE post SET status=1 WHERE id=1')
   ->execute();





La méthode [[yii\db\Command::execute()]] exécute retourne le nombre de lignes affectées par l’exécution de la requête SQL.

Pour les requeêtes INSERT, UPDATE et DELETE, au lieu d’écrire des instructions SQL simples, vous pouvez appeler les méthodes [[yii\db\Command::insert()|insert()]], [[yii\db\Command::update()|update()]] ou [[yii\db\Command::delete()|delete()]], respectivement, pour construire les instructions SQL correspondantes. Ces méthodes entourent correctement les noms de tables et de colonnes par des marques de citation et lient les paramètres. Par exemple :

// INSERT (table name, column values)
Yii::$app->db->createCommand()->insert('user', [
    'name' => 'Sam',
    'age' => 30,
])->execute();

// UPDATE (table name, column values, condition)
Yii::$app->db->createCommand()->update('user', ['status' => 1], 'age > 30')->execute();

// DELETE (table name, condition)
Yii::$app->db->createCommand()->delete('user', 'status = 0')->execute();





Vous pouvez aussi appeler [[yii\db\Command::batchInsert()|batchInsert()]] pour insérer plusieurs lignes en un seul coup, ce qui est bien plus efficace que d’insérer une ligne à la fois :

// noms de table, noms de colonne, valeurs de colonne
Yii::$app->db->createCommand()->batchinsère('user', ['name', 'age'], [
    ['Tom', 30],
    ['Jane', 20],
    ['Linda', 25],
])->execute();





Une autre méthode utile est [[yii\db\Command::upsert()|upsert()]]. Upsert est une opération atomique qui insère des lignes dans une table de base de données si elles n’existent pas déjà (répondant à une contrainte unique), ou les mets à jour si elles existent :

Yii::$app->db->createCommand()->upsert('pages', [
    'name' => 'Front page',
    'url' => 'http://example.com/', // url is unique
    'visits' => 0,
], [
    'visits' => new \yii\db\Expression('visits + 1'),
], $params)->execute();





Le code ci-dessus, soit insère un enregistrement pour une nouvelle page, soit incrémente sont compteur de visite automatiquement.

Notez que les méthodes mentionnées ci-dessus ne font que créer les requêtes, vous devez toujours appeler [[yii\db\Command::execute()|execute()]] pour les exécuter réellement.






Entourage de noms de table et de colonne par des marque de citation 

Lorsque l’on écrit du code indifférent au type de base de données, entourer correctement les noms table et de colonne avec des marques de citation (p. ex. guillemets ou simple apostrophe) et souvent un casse-tête parce que les différentes base de données utilisent des règles de marquage de citation différentes. Pour vous affranchir de cette difficulté, vous pouvez utiliser la syntaxe de citation introduite par Yii :


	[[column name]]: entourez un nom de colonne qui doit recevoir les marques de citation par des doubles crochets ;


	{{table name}}: entourez un nom de table qui doit recevoir les marques de citation par des doubles accolades ;




Les objets d’accès aux base de données de Yii convertissent automatiquement de telles constructions en les noms de colonne ou de table correspondants en utilisant la syntaxe spécifique au système de gestion de la base de données. Par exemple :

// exécute cette instruction SQL pour MySQL: SELECT COUNT(`id`) FROM `employee`
$count = Yii::$app->db->createCommand("SELECT COUNT([[id]]) FROM {{employee}}")
            ->queryScalar();






Utilisation des préfixes de table 

La plupart des noms de table de base de données partagent un préfixe commun. Vous pouvez utiliser la fonctionnalité de gestion du préfixe de noms de table procurée par les objets d’accès aux bases de données de Yii.

Tout d’abord, spécifiez un préfixe de nom de table via la propriété [[yii\db\Connection::tablePrefix]] dans la configuration de l’application :

return [
    // ...
    'components' => [
        // ...
        'db' => [
            // ...
            'tablePrefix' => 'tbl_',
        ],
    ],
];





Ensuite dans votre code, à chaque fois que vous faites référence à une table dont le nom commence par ce préfixe, utilisez la syntaxe {{%table_name}}. Le caractère pourcentage % est automatiquement remplacé par le préfixe que vous avez spécifié dans la configuration de la connexion à la base de données. Par exemple :

// exécute cette instruction SQL pour MySQL: SELECT COUNT(`id`) FROM `tbl_employee`
$count = Yii::$app->db->createCommand("SELECT COUNT([[id]]) FROM {{%employee}}")
            ->queryScalar();










Réalisation de transactions 

Lorsque vous exécutez plusieurs requêtes liées en séquence, il arrive que vous ayez besoin de les envelopper dans une transactions pour garantir l’intégrité et la cohérence de votre base de données. Si une des requêtes échoue, la base de données est ramenée en arrière dans l’état dans lequel elle se trouvait avant qu’aucune de ces requêtes n’ait été exécutée.

Le code suivant montre une façon typique d’utiliser les transactions :

Yii::$app->db->transaction(function($db) {
    $db->createCommand($sql1)->execute();
    $db->createCommand($sql2)->execute();
    // ... exécution des autres instruction SQL ...
});





Le code précédent est équivalent à celui qui suit, et qui vous donne plus de contrôle sur le code de gestion des erreurs :

$db = Yii::$app->db;
$transaction = $db->beginTransaction();
try {
    $db->createCommand($sql1)->execute();
    $db->createCommand($sql2)->execute();
    // ... exécutions des autres instructions SQL  ...
    
    $transaction->commit();
} catch(\Exception $e) {
    $transaction->rollBack();
    throw $e;
} catch(\Throwable $e) {
    $transaction->rollBack();
    throw $e;
}





En appelant la méthode [[yii\db\Connection::beginTransaction()|beginTransaction()]], une nouvelle transaction est démarrée. La transaction est représentée sous forme d’objet [[yii\db\Transaction]] stocké dans la variable $transaction. Ensuite, les requêtes à exécuter sont placées dans un bloc try...catch.... Si toutes les requêtes réussissent, la méthode [[yii\db\Transaction::commit()|commit()]] est appelée pour entériner la transaction. Autrement, si une exception a été levée et capturée, la méthode [[yii\db\Transaction::rollBack()|rollBack()]] est appelée pour défaire les changements faits par les requêtes de la transaction antérieures à celle qui a échoué. throw $e est alors à nouveau exécutée comme si l’exception n’avait jamais été capturée, ce qui permet au processus normal de gestion des erreurs de s’en occuper.


Note: dans le code précédent nous avons deux blocs « catch » pour compatibilité
avec PHP 5.x et PHP 7.x. \Exception met en œuvre l’interface \Throwable [http://php.net/manual/en/class.throwable.php]
depuis PHP 7.0, ainsi vous pouvez sauter la partie avec \Exception si votre application utilise seulement PHP 7.0 et plus récent.





Spécification de niveaux d’isolation 

Yii prend aussi en charge la définition de [niveaux d’isolation] pour vos transactions. Par défaut, lors du démarrage d’une nouvelle transaction, il utilise le niveau d’isolation par défaut défini par votre système de base de données. Vous pouvez redéfinir le niveau d’isolation comme indiqué ci-après :

$isolationLevel = \yii\db\Transaction::REPEATABLE_READ;

Yii::$app->db->transaction(function ($db) {
    ....
}, $isolationLevel);
 
// ou alternativement

$transaction = Yii::$app->db->beginTransaction($isolationLevel);





Yii fournit quatre constantes pour les niveaux d’isolation les plus courants :


	[[\yii\db\Transaction::READ_UNCOMMITTED]] – le niveau le plus faible, des lectures sales (dirty reads) , des lectures non répétables) (non-repeatable reads) et des lectures fantômes (phantoms) peuvent se produire.


	[[\yii\db\Transaction::READ_COMMITTED]] – évite les lectures sales.


	[[\yii\db\Transaction::REPEATABLE_READ]] – évite les lectures sales et les lectures non répétables.


	[[\yii\db\Transaction::SERIALIZABLE]] – le niveau le plus élevé, évite tous les problèmes évoqués ci-dessus.




En plus de l’utilisation des constantes présentées ci-dessus pour spécifier un niveau d’isolation, vous pouvez également utiliser des chaînes de caractères avec une syntaxe valide prise en charges par le système de gestion de base de données que vous utilisez. Par exemple, dans PostgreSQL, vous pouvez utiliser "SERIALIZABLE READ ONLY DEFERRABLE".

Notez que quelques systèmes de gestion de base de données autorisent la définition des niveaux d’isolation uniquement au niveau de la connexion tout entière. Toutes les transactions subséquentes auront donc le même niveau d’isolation même si vous n’en spécifiez aucun. En utilisant cette fonctionnalité, vous avez peut-être besoin de spécifier le niveau d’isolation de manière explicite pour éviter les conflits de définition. Au moment d’écrire ces lignes, seules MSSQL et SQLite sont affectées par cette limitation.


Note: SQLite ne prend en charge que deux niveaux d’isolation, c’est pourquoi vous ne pouvez utiliser que READ UNCOMMITTED et SERIALIZABLE. L’utilisation d’autres niveaux provoque la levée d’une exception.





Note: PostgreSQL n’autorise pas la définition du niveau d’isolation tant que la transaction n’a pas démarré, aussi ne pouvez-vous pas spécifier le niveau d’isolation directement en démarrant la transaction. Dans ce cas, vous devez appeler [[yii\db\Transaction::setIsolationLevel()]] après que la transaction a démarré.







Imbrication des transactions 

Si votre système de gestion de base de données prend en charge Savepoint, vous pouvez imbriquer plusieurs transactions comme montré ci-dessous :

Yii::$app->db->transaction(function ($db) {
    //  transaction extérieure
    
    $db->transaction(function ($db) {
        //  transaction intérieure
    });
});





Ou en alternative,

$db = Yii::$app->db;
$outerTransaction = $db->beginTransaction();
try {
    $db->createCommand($sql1)->execute();

    $innerTransaction = $db->beginTransaction();
    try {
        $db->createCommand($sql2)->execute();
        $innerTransaction->commit();
    } catch (\Exception $e) {
        $innerTransaction->rollBack();
        throw $e;
    } catch (\Throwable $e) {
        $innerTransaction->rollBack();
        throw $e;
    }

    $outerTransaction->commit();
} catch (\Exception $e) {
    $outerTransaction->rollBack();
    throw $e;
} catch (\Throwable $e) {
    $outerTransaction->rollBack();
    throw $e;
}










Réplication et éclatement lecture-écriture 

Beaucoup de systèmes de gestion de bases de données prennent en charge la réplication de la base de données [http://en.wikipedia.org/wiki/Replication_(computing)#Database_replication] pour obtenir une meilleure disponibilité et des temps de réponse de serveur plus courts. Avec la réplication de la base de données, les données sont répliquées depuis les serveurs dits serveurs maîtres vers les serveurs dit serveurs esclaves. Toutes les écritures et les mises à jour ont lieu sur les serveurs maîtres, tandis que les lectures ont lieu sur les serveurs esclaves.

Pour tirer parti de la réplication des bases de données et réaliser l’éclatement lecture-écriture, vous pouvez configurer un composant [[yii\db\Connection]] comme le suivant :

[
    'class' => 'yii\db\Connection',

    // configuration pour le maître
    'dsn' => 'dsn pour le serveur maître',
    'username' => 'master',
    'password' => '',

    //  configuration commune pour les esclaves
    'slaveConfig' => [
        'username' => 'slave',
        'password' => '',
        'attributes' => [
            // utilise un temps d'attente de connexion plus court
            PDO::ATTR_TIMEOUT => 10,
        ],
    ],

    // liste des configurations d'esclave
    'slaves' => [
        ['dsn' => 'dsn pour le serveur esclave 1'],
        ['dsn' => 'dsn pour le serveur esclave 2'],
        ['dsn' => 'dsn pour le serveur esclave 3'],
        ['dsn' => 'dsn pour le serveur esclave 4'],
    ],
]





La configuration ci-dessus spécifie une configuration avec un unique maître et de multiples esclaves. L’un des esclaves est connecté et utilisé pour effectuer des requêtes en lecture, tandis que le maître est utilisé pour effectuer les requêtes en écriture. Un tel éclatement lecture-écriture est accompli automatiquement avec cette configuration. Par exemple :

// crée une instance de Connection en utilisant la configuration ci-dessus
Yii::$app->db = Yii::createObject($config);

// effectue une requête auprès d'un des esclaves
$rows = Yii::$app->db->createCommand('SELECT * FROM user LIMIT 10')->queryAll();

// effectue une requête auprès du maître
Yii::$app->db->createCommand("UPDATE user SET username='demo' WHERE id=1")->execute();






Info: les requêtes effectuées en appelant [[yii\db\Command::execute()]] sont considérées comme des requêtes en écriture, tandis que toutes les autres requêtes faites via l’une des méthodes « query » sont des requêtes en lecture. Vous pouvez obtenir la connexion couramment active à un des esclaves via Yii::$app->db->slave.




Le composant Connection prend en charge l’équilibrage de charge et de basculement entre esclaves. Lorsque vous effectuez une requête en lecture par la première fois, le composant Connection sélectionne un esclave de façon aléatoire et essaye de s’y connecter. Si l’esclave set trouvé « mort », il en essaye un autre. Si aucun des esclaves n’est disponible, il se connecte au maître. En configurant un [[yii\db\Connection::serverStatusCache|cache d’état du serveur]], le composant mémorise le serveur « mort » et ainsi, pendant un [[yii\db\Connection::serverRetryInterval|certain intervalle de temps]], n’essaye plus de s’y connecter.


Info: dans la configuration précédente, un temps d’attente de connexion de 10 secondes est spécifié pour chacun des esclaves. Cela signifie que, si un esclave ne peut être atteint pendant ces 10 secondes, il est considéré comme « mort ». Vous pouvez ajuster ce paramètre en fonction de votre environnement réel.




Vous pouvez aussi configurer plusieurs maîtres avec plusieurs esclaves. Par exemple :

[
    'class' => 'yii\db\Connection',

    // configuration commune pour les maîtres
    'masterConfig' => [
        'username' => 'master',
        'password' => '',
        'attributes' => [
            // utilise un temps d'attente de connexion plus court 
            PDO::ATTR_TIMEOUT => 10,
        ],
    ],

    // liste des configurations de maître
    'masters' => [
        ['dsn' => 'dsn for master server 1'],
        ['dsn' => 'dsn for master server 2'],
    ],

    // configuration commune pour les esclaves
    'slaveConfig' => [
        'username' => 'slave',
        'password' => '',
        'attributes' => [
            // use a smaller connection timeout
            PDO::ATTR_TIMEOUT => 10,
        ],
    ],

    // liste des configurations d'esclave 
    'slaves' => [
        ['dsn' => 'dsn for slave server 1'],
        ['dsn' => 'dsn for slave server 2'],
        ['dsn' => 'dsn for slave server 3'],
        ['dsn' => 'dsn for slave server 4'],
    ],
]





La configuration ci-dessus spécifie deux maîtres et quatre esclaves. Le composant Connection prend aussi en charge l’équilibrage de charge et le basculement entre maîtres juste comme il le fait pour les esclaves. Une différence est que, si aucun des maîtres n’est disponible, une exception est levée.


Note: lorsque vous utilisez la propriété [[yii\db\Connection::masters|masters]] pour configurer un ou plusieurs maîtres, toutes les autres propriétés pour spécifier une connexion à une base de données (p. ex. dsn, username, password) avec l’objet Connection lui-même sont ignorées.




Par défaut, les transactions utilisent la connexion au maître. De plus, dans une transaction, toutes les opérations de base de données utilisent la connexion au maître. Par exemple :

$db = Yii::$app->db;
// la transaction est démarrée sur la connexion au maître
$transaction = $db->beginTransaction();

try {
    //  les deux requêtes sont effectuées auprès du maître
    $rows = $db->createCommand('SELECT * FROM user LIMIT 10')->queryAll();
    $db->createCommand("UPDATE user SET username='demo' WHERE id=1")->execute();

    $transaction->commit();
} catch(\Exception $e) {
    $transaction->rollBack();
    throw $e;
}





Si vous voulez démarrer une transaction avec une connexion à un esclave, vous devez le faire explicitement, comme ceci :

$transaction = Yii::$app->db->slave->beginTransaction();





Parfois, vous désirez forcer l’utilisation de la connexion au maître pour effectuer une requête en lecture . Cela est possible avec la méthode useMaster() :

$rows = Yii::$app->db->useMaster(function ($db) {
    return $db->createCommand('SELECT * FROM user LIMIT 10')->queryAll();
});





Vous pouvez aussi définir directement Yii::$app->db->enableSlaves à false (faux) pour rediriger toutes les requêtes vers la connexion au maître.




Travail avec le schéma de la base de données 

Les objets d’accès aux bases de données de Yii DAO fournissent un jeu complet de méthodes pour vous permettre de manipuler le schéma de la base de données, comme créer de nouvelles tables, supprimer une colonne d’une table, etc. Ces méthodes sont listées ci-après :


	[[yii\db\Command::createTable()|createTable()]]: crée une table


	[[yii\db\Command::renameTable()|renameTable()]]: renomme une table


	[[yii\db\Command::dropTable()|dropTable()]]: supprime une table


	[[yii\db\Command::truncateTable()|truncateTable()]]: supprime toutes les lignes dans une table


	[[yii\db\Command::addColumn()|addColumn()]]: ajoute une colonne


	[[yii\db\Command::renameColumn()|renameColumn()]]: renomme une colonne


	[[yii\db\Command::dropColumn()|dropColumn()]]: supprime une colonne


	[[yii\db\Command::alterColumn()|alterColumn()]]: modifie une colonne


	[[yii\db\Command::addPrimaryKey()|addPrimaryKey()]]: ajoute une clé primaire


	[[yii\db\Command::dropPrimaryKey()|dropPrimaryKey()]]: supprime une clé primaire


	[[yii\db\Command::addForeignKey()|addForeignKey()]]: ajoute un clé étrangère


	[[yii\db\Command::dropForeignKey()|dropForeignKey()]]: supprime une clé étrangère


	[[yii\db\Command::createIndex()|createIndex()]]: crée un index


	[[yii\db\Command::dropIndex()|dropIndex()]]: supprime un index




Ces méthodes peuvent être utilisées comme suit :

// CREATE TABLE
Yii::$app->db->createCommand()->createTable('post', [
    'id' => 'pk',
    'title' => 'string',
    'text' => 'text',
]);





Le tableau ci-dessus décrit le nom et le type des colonnes à créer. Pour les types de colonne, Yii fournit un jeu de types de donnée abstraits, qui permettent de définir un schéma de base de données indifférent au type de base de données. Ces types sont convertis en définition de types spécifiques au système de gestion de base de données qui dépendent de la base de données dans laquelle la table est créée. Reportez-vous à la documentation de l’API de la méthode [[yii\db\Command::createTable()|createTable()]] pour plus d’informations.

En plus de changer le schéma de la base de données, vous pouvez aussi retrouver les informations de définition d’une table via la méthode [[yii\db\Connection::getTableSchema()|getTableSchema()]] d’une connexion à une base de données. Par exemple :

$table = Yii::$app->db->getTableSchema('post');





La méthode retourne un objet [[yii\db\TableSchema]] qui contient les information sur les colonnes de la table, les clés primaires, les clés étrangères, etc. Toutes ces informations sont essentiellement utilisées par le constructeur de requêtes et par l’enregistrement actif pour vous aider à écrire du code indifférent au type de la base de données.







          

      

      

    

  

  
    
    Migrations de base de données
    

    
 
  

    
      
          
            
  
Migrations de base de données

Durant la période de développement et de maintenance d’une application s’appuyant sur une base de données, la structure de la base de données évolue tout comme le code source. Par exemple, durant développement une nouvelle table peut devenir nécessaire ; après que l’application est déployée en production, on peut s’apercevoir qu’un index doit être créé pour améliorer la performance des requêtes ; et ainsi de suite. Comme un changement dans la base de données nécessite souvent des changements dans le code, Yii prend en charge une fonctionnalité qu’on appelle migrations de base de données. Cette fonctionnalité permet de conserver la trace des changements de la base de données en termes de migrations de base de données dont les versions sont contrôlées avec celles du code.

Les étapes suivantes montrent comment des migrations de base de données peuvent être utilisées par une équipe durant la phase de développement :


	Tim crée une nouvelle migration (p. ex. créer une nouvelle table, changer la définition d’une colonne, etc.).


	Tim entérine (commit) la nouvelle migration dans le système de contrôle de version (p. ex. Git, Mercurial).


	Doug met à jour son dépôt depuis le système de contrôle de version et reçoit la nouvelle migration.


	Doug applique la migration à sa base de données de développement locale, et ce faisant synchronise sa base de données pour refléter les changements que Tim a faits.




Les étapes suivantes montrent comment déployer une nouvelle version avec les migrations de base de données en production :


	Scott crée une balise de version pour le dépôt du projet qui contient quelques nouvelles migrations de base de données.


	Scott met à jour le code source sur le serveur de production à la version balisée.


	Scott applique toutes les migrations accumulées à la base de données de production.




Yii fournit un jeu de commandes de migration en ligne de commande qui vous permet de :


	créer de nouvelles migrations;


	appliquer les migrations;


	défaire les migrations;


	ré-appliquer les migrations;


	montrer l’historique de l’état des migrations.




Tous ces outils sont accessibles via la commande yii migrate. Dans cette section nous décrivons en détails comment accomplir des tâches variées en utilisant ces outils. Vous pouvez aussi obtenir les conseils d’utilisation de chacun des outils via la commande d’aide yii help migrate.


Astuce : les migrations peuvent non seulement affecter le schéma de base de données mais aussi ajuster les données existantes pour s’adapter au nouveau schéma, créer la hiérarchie RBAC (Role Based Acces Control - Contrôle d’accès basé sur les rôles), ou vider le cache.





Note : lors de la manipulation de données utilisant une migration, vous pouvez trouver qu’utiliser vos classes  Active Record
pour cela peut s’avérer utile parce qu’une partie de la logique y est déjà mise en œuvre. Soyez cependant conscient que, contrairement
au code écrit dans les migrations, dont la nature est de rester constant à jamais, la logique d’application est sujette à modification.
C’est pourquoi, lorsque vous utilisez des classes ActiveRecord dans le code d’une migration, des modifications de la logique de l’ActiveRecord peuvent accidentellement casser
des migrations existantes. Pour cette raison, le code des migrations devrait être conservé indépendant d’autres logiques d’application telles que celles des classes ActiveRecord.





Création de migrations 

Pour créer une nouvelle migration, exécutez la commande suivante :

yii migrate/create <name>





L’argument name requis donne une brève description de la nouvelle migration. Par exemple, si la création concerne la création d’une nouvelle table nommée news, vous pouvez utiliser le nom create_news_table et exécuter la commande suivante :

yii migrate/create create_news_table






Note: comme l’argument name est utilisé comme partie du nom de la classe migration générée, il ne doit contenir que des lettres, des chiffre et/ou des caractères souligné.




La commande ci-dessus crée une nouvelle classe PHP nommée m150101_185401_create_news_table.php dans le dossier @app/migrations. Le fichier contient le code suivant qui déclare principalement une classe de migration m150101_185401_create_news_table avec le squelette de code suivant :

<?php

use yii\db\Migration;

class m150101_185401_create_news_table extends Migration
{
    public function up()
    {

    }

    public function down()
    {
        echo "m101129_185401_create_news_table cannot be reverted.\n";

        return false;
    }

    /*
    // Use safeUp/safeDown to run migration code within a transaction
    public function safeUp()
    {
    }

    public function safeDown()
    {
    }
    */
}





Chaque migration de base de données est définie sous forme de classe PHP étendant la classe [[yii\db\Migration]]. Le nom de la classe de migration est généré automatiquement dans le format m<YYMMDD_HHMMSS>_<Name>, dans lequel :


	<YYMMDD_HHMMSS> fait référence à l’horodate UTC à laquelle la commande de création de la migration a été exécutée.


	<Name> est le même que la valeur que vous donnez à l’argument name dans la commande.




Dans la classe de migration, vous devez écrire du code dans la méthode up() qui effectue les modifications dans la structure de la base de données. Vous désirez peut-être écrire du code dans la méthode down() pour défaire les changements apportés par up(). La méthode up() est invoquée lorsque vous mettez à jour la base de données avec la migration, tandis que la méthode down() est invoquée lorsque vous ramenez la base de données à l’état antérieur. Le code qui suit montre comment mettre en œuvre la classe de migration pour créer une table news :

<?php

use yii\db\Schema;
use yii\db\Migration;

class m150101_185401_create_news_table extends Migration
{
    public function up()
    {
        $this->createTable('news', [
            'id' => Schema::TYPE_PK,
            'title' => Schema::TYPE_STRING . ' NOT NULL',
            'content' => Schema::TYPE_TEXT,
        ]);
    }

    public function down()
    {
        $this->dropTable('news');
    }
}






Info: toutes les migrations ne sont pas réversibles. Par exemple, si la méthode up() supprime une ligne dans une table, il se peut que vous soyez incapable de récupérer cette ligne dans la méthode down(). Parfois, vous pouvez simplement être trop paresseux pour implémenter la méthode down, parce que défaire une migration de base de données n’est pas chose courante. Dans ce cas, vous devriez retourner false dans la méthode down() pour indiquer que la migration n’est pas réversible.




La classe de migration de base [[yii\db\Migration]] expose une connexion à une base de données via la propriété [[yii\db\Migration::db|db]]. Vous pouvez utiliser cette connexion pour manipuler le schéma en utilisant les méthodes décrites dans la sous-section Travail avec le schéma de base de données.

Plutôt que d’utiliser des types physiques, lors de la création d’une table ou d’une colonne, vous devez utiliser des types abstraits afin que vos migrations soient indépendantes d’un système de gestion de base de données en particulier. La classe [[yii\db\Schema]] définit une jeu de constantes pour représenter les types abstraits pris en charge. Ces constantes sont nommées dans le format TYPE_<Name>. Par exemple, TYPE_PK fait référence au type clé primaire à auto-incrémentation ; TYPE_STRING fait référence au type chaîne de caractères. Lorsqu’une migration est appliquée à une base de données particulière, le type abstrait est converti dans le type physique correspondant. Dans le cas de MySQL, TYPE_PK est transformé en int(11) NOT NULL AUTO_INCREMENT PRIMARY KEY, tandis que TYPE_STRING est transformé en varchar(255).

Vous pouvez ajouter des contraintes additionnelles lors de l’utilisation des types abstraits. Dans l’exemple ci-dessus,NOT NULL est ajouté à Schema::TYPE_STRING pour spécifier que la colonne ne peut être null (nulle).


Info: la mise en correspondance entre les types abstraits et les types physiques est spécifiée par la propriété [[yii\db\QueryBuilder::$typeMap|$typeMap]] dans chacune des classes QueryBuilder concrètes.




Depuis la version 2.0.6, vous pouvez utiliser le constructeur de schéma récemment introduit qui procure un moyen plus pratique de définir le schéma d’une colonne. Ainsi, la migration ci-dessus pourrait s’écrire comme ceci :

<?php

use yii\db\Migration;

class m150101_185401_create_news_table extends Migration
{
    public function up()
    {
        $this->createTable('news', [
            'id' => $this->primaryKey(),
            'title' => $this->string()->notNull(),
            'content' => $this->text(),
        ]);
    }

    public function down()
    {
        $this->dropTable('news');
    }
}





Une liste de toutes les méthodes disponibles pour définir les types de colonne est disponible dans la documentation de l’API de [[yii\db\SchemaBuilderTrait]].




Génération des migrations 

Depuis la version 2.0.7, la commande de migration procure un moyen pratique de créer des migrations.

Si le nom de la migration est d’une forme spéciale, par exemple, create_xxx_table ou drop_xxx_table alors le fichier de la migration générée contient du code supplémentaire, dans ce cas pour créer/supprimer des tables. Dans ce qui suit, toutes les variantes de cette fonctionnalité sont décrites.


Création d’une table

yii migrate/create create_post_table





génère

/**
 * prend en charge la création de la table `post`.
 */
class m150811_220037_create_post_table extends Migration
{
    /**
     * {@inheritdoc}
     */
    public function up()
    {
        $this->createTable('post', [
            'id' => $this->primaryKey()
        ]);
    }

    /**
     * {@inheritdoc}
     */
    public function down()
    {
        $this->dropTable('post');
    }
}





Pour créer les champs de table tout de suite, spécifiez les via l’option --fields.

yii migrate/create create_post_table --fields="title:string,body:text"





génère

/**
 * prend en charge la création de la table `post`.
 */
class m150811_220037_create_post_table extends Migration
{
    /**
     * {@inheritdoc}
     */
    public function up()
    {
        $this->createTable('post', [
            'id' => $this->primaryKey(),
            'title' => $this->string(),
            'body' => $this->text(),
        ]);
    }

    /**
     * {@inheritdoc}
     */
    public function down()
    {
        $this->dropTable('post');
    }
}





Vous pouvez spécifier plus de paramètres de champs.

yii migrate/create create_post_table --fields="title:string(12):notNull:unique,body:text"





génère

/**
 * prend en charge la création de la table `post`.
 */
class m150811_220037_create_post_table extends Migration
{
    /**
     * {@inheritdoc}
     */
    public function up()
    {
        $this->createTable('post', [
            'id' => $this->primaryKey(),
            'title' => $this->string(12)->notNull()->unique(),
            'body' => $this->text()
        ]);
    }

    /**
     * {@inheritdoc}
     */
    public function down()
    {
        $this->dropTable('post');
    }
}






Note: par défaut, une clé primaire nommée id est ajoutée automatiquement. Si vous voulez utiliser un autre nom, vous devez le spécifier explicitement comme dans --fields="name:primaryKey".





Clés étrangères

Depuis 2.0.8 le générateur prend en charge les clés étrangères en utilisant le mot clé foreignKey.

yii migrate/create create_post_table --fields="author_id:integer:notNull:foreignKey(user),category_id:integer:defaultValue(1):foreignKey,title:string,body:text"





génère

/**
 * prend en charge la création de la table `post`.
 * possède des clés étrangères vers les tables
 *
 * - `user`
 * - `category`
 */
class m160328_040430_create_post_table extends Migration
{
    /**
     * {@inheritdoc}
     */
    public function up()
    {
        $this->createTable('post', [
            'id' => $this->primaryKey(),
            'author_id' => $this->integer()->notNull(),
            'category_id' => $this->integer()->defaultValue(1),
            'title' => $this->string(),
            'body' => $this->text(),
        ]);

        // crée un index pour la colonne `author_id`
        $this->createIndex(
            'idx-post-author_id',
            'post',
            'author_id'
        );

        // ajoute une clé étrangère vers la table `user`
        $this->addForeignKey(
            'fk-post-author_id',
            'post',
            'author_id',
            'user',
            'id',
            'CASCADE'
        );

        // crée un index pour la colonne `category_id`
        $this->createIndex(
            'idx-post-category_id',
            'post',
            'category_id'
        );

        // ajoute une clé étrangère vers la table `category`
        $this->addForeignKey(
            'fk-post-category_id',
            'post',
            'category_id',
            'category',
            'id',
            'CASCADE'
        );
    }

    /**
     * {@inheritdoc}
     */
    public function down()
    {
        // supprime la clé étrangère vers la table `user`
        $this->dropForeignKey(
            'fk-post-author_id',
            'post'
        );

        // supprime l'index pour la colonne `author_id`
        $this->dropIndex(
            'idx-post-author_id',
            'post'
        );

        // supprime la clé étrangère vers la table `category`
        $this->dropForeignKey(
            'fk-post-category_id',
            'post'
        );

        // supprime l'index pour la colonne `category_id`
        $this->dropIndex(
            'idx-post-category_id',
            'post'
        );

        $this->dropTable('post');
    }
}





La position du mot clé foreignKey dans la description de la colonne ne change pas le code généré. Ce qui signifie que les expressions :


	author_id:integer:notNull:foreignKey(user)


	author_id:integer:foreignKey(user):notNull


	author_id:foreignKey(user):integer:notNull




génèrent toutes le même code.

Le mot clé foreignKey accepte un paramètre entre parenthèses qui est le nom de la table en relation pour la clé étrangère générée. Si aucun paramètre n’est passé, le nom de table est déduit du nom de la colonne.

Dans l’exemple ci-dessus author_id:integer:notNull:foreignKey(user) génère une colonne nommée author_id avec une clé étrangère pointant sur la table user, tandis que category_id:integer:defaultValue(1):foreignKey génère une colonne category_id avec une clé étrangère pointant sur la table category.

Depuis la version 2.0.11, le mot clé foreignKey accepte un second paramètre, séparé par une espace.
Il accepte le nom de la colonne en relation pour la clé étrangère générée.
Si aucun second paramètre n’est passé, le nom de la colonne est retrouvé dans le schéma de table.
Si aucun schéma n’existe, la clé primaire n’est pas définie ou est composite, le nom par défaut id est utilisé.






Suppression de tables

yii migrate/create drop_post_table --fields="title:string(12):notNull:unique,body:text"





génère

class m150811_220037_drop_post_table extends Migration
{
    public function up()
    {
        $this->dropTable('post');
    }

    public function down()
    {
        $this->createTable('post', [
            'id' => $this->primaryKey(),
            'title' => $this->string(12)->notNull()->unique(),
            'body' => $this->text()
        ]);
    }
}








Ajout de colonnes

Si le nom de la migration est de la forme add_xxx_column_to_yyy_table alors le fichier doit contenir les instructions addColumn et dropColumn nécessaires.

Pour ajouter une colonne :

yii migrate/create add_position_column_to_post_table --fields="position:integer"





génère

class m150811_220037_add_position_column_to_post_table extends Migration
{
    public function up()
    {
        $this->addColumn('post', 'position', $this->integer());
    }

    public function down()
    {
        $this->dropColumn('post', 'position');
    }
}





Vous pouvez spécifier de multiples colonnes comme suit :

yii migrate/create add_xxx_column_yyy_column_to_zzz_table --fields="xxx:integer,yyy:text"








Supprimer une colonne

Si le nom de la migration est de la forme drop_xxx_column_from_yyy_table alors le fichier doit contenir les instructions addColumn et dropColumn néessaires.

yii migrate/create drop_position_column_from_post_table --fields="position:integer"





génère

class m150811_220037_drop_position_column_from_post_table extends Migration
{
    public function up()
    {
        $this->dropColumn('post', 'position');
    }

    public function down()
    {
        $this->addColumn('post', 'position', $this->integer());
    }
}








Ajout d’une table de jointure

Si le nom de la migration est de la forme create_junction_table_for_xxx_and_yyy_tables ou create_junction_xxx_and_yyy_tables, alors le code nécessaire à la création de la table de jointure est généré.

yii migrate/create create_junction_table_for_post_and_tag_tables --fields="created_at:dateTime"





génère

/**
 * prend en charge la création de la table `post_tag`.
 * possède des clés étrangères vers les tables:
 *
 * - `post`
 * - `tag`
 */
class m160328_041642_create_junction_table_for_post_and_tag_tables extends Migration
{
    /**
     * {@inheritdoc}
     */
    public function up()
    {
        $this->createTable('post_tag', [
            'post_id' => $this->integer(),
            'tag_id' => $this->integer(),
            'created_at' => $this->dateTime(),
            'PRIMARY KEY(post_id, tag_id)',
        ]);

        // crée un index pour la colonne`post_id`
        $this->createIndex(
            'idx-post_tag-post_id',
            'post_tag',
            'post_id'
        );

        // ajoute un clé étrangère vers la table `post`
        $this->addForeignKey(
            'fk-post_tag-post_id',
            'post_tag',
            'post_id',
            'post',
            'id',
            'CASCADE'
        );

        // crée un index pour la colonne `tag_id`
        $this->createIndex(
            'idx-post_tag-tag_id',
            'post_tag',
            'tag_id'
        );

        // ajoute une clé étrangère vers la table `tag`
        $this->addForeignKey(
            'fk-post_tag-tag_id',
            'post_tag',
            'tag_id',
            'tag',
            'id',
            'CASCADE'
        );
    }

    /**
     * {@inheritdoc}
     */
    public function down()
    {
        // supprime la clé étrangère vers la table `post`
        $this->dropForeignKey(
            'fk-post_tag-post_id',
            'post_tag'
        );

        // supprime l'index pour la colonne `post_id`
        $this->dropIndex(
            'idx-post_tag-post_id',
            'post_tag'
        );

        // supprime la clé étrangère vers la table `tag`
        $this->dropForeignKey(
            'fk-post_tag-tag_id',
            'post_tag'
        );

        // supprime l'index pour la column `tag_id`
        $this->dropIndex(
            'idx-post_tag-tag_id',
            'post_tag'
        );

        $this->dropTable('post_tag');
    }
}





Depuis la version 2.0.1, les noms de colonne des clés étrangères pour les tables de jonction sont recherchées dans le schéma de table.
Dans le cas où la table n’est pas définie dans le schéma, ou quand la clé primaire n’est pas définie ou est composite, le nom par défaut id est utilisé.




Migrations transactionnelles 

En effectuant des migration de base de données complexes, il est important de garantir que chacune des migrations soit réussisse, soit échoue dans son ensemble, de manière à ce que la base de données reste cohérente et intègre. Pour atteindre ce but, il est recommandé que vous englobiez les opérations de base de données de chacune des migrations dans une transaction.

Une manière encore plus aisée pour mettre en œuvre des migrations transactionnelles est de placer le code de migration dans les méthodes safeUp() et safeDown(). Ces deux méthodes diffèrent de up() et down() par le fait qu’elles sont implicitement englobées dans une transaction. En conséquence, si n’importe quelle opération de ces méthodes échoue, toutes les opérations antérieures à elle sont automatiquement défaites.

Dans l’exemple suivant, en plus de créer la table news, nous insérons une ligne initiale dans cette table.

<?php

use yii\db\Migration;

class m150101_185401_create_news_table extends Migration
{
    public function safeUp()
    {
        $this->createTable('news', [
            'id' => $this->primaryKey(),
            'title' => $this->string()->notNull(),
            'content' => $this->text(),
        ]);

        $this->insert('news', [
            'title' => 'test 1',
            'content' => 'content 1',
        ]);
    }

    public function safeDown()
    {
        $this->delete('news', ['id' => 1]);
        $this->dropTable('news');
    }
}





Notez que, généralement, si vous effectuez de multiples opérations de base de données dans safeUp(), vous devriez les défaire dans safeDown(). Dans l’exemple ci-dessus, dans safeUp(), nous créons d’abord la table puis nous insérons une ligne, tandis que, dans safeDown, nous commençons par supprimer la ligne, puis nous supprimons la table.


Note: tous les systèmes de gestion de bases de données NE prennent PAS en charge les transactions. De plus, quelques requêtes de base de données ne peuvent être placées dans une transaction. Pour quelques exemples, reportez-vous à entérinement implicite [http://dev.mysql.com/doc/refman/5.7/en/implicit-commit.html]. Si c’est le cas, vous devez simplement mettre en œuvre up() etdown(), à la place.







Méthodes d’accès aux bases de données 

La classe de base de migration [[yii\db\Migration]] fournit un jeu de méthodes pour vous permettre d’accéder aux bases de données et de les manipuler. Vous vous apercevrez que ces méthodes sont nommées de façon similaires aux méthodes d’objets d’accès aux données fournies par la classe [[yii\db\Command]]. Par exemple, la méthode [[yii\db\Migration::createTable()]] vous permet de créer une nouvelle table, tout comme [[yii\db\Command::createTable()]].

L’avantage d’utiliser les méthodes fournies par [[yii\db\Migration]] est que vous n’avez pas besoin de créer explicitement des instances de [[yii\db\Command]] et que l’exécution de chacune des méthodes affiche automatiquement des messages utiles vous indiquant que les opérations de base de données sont effectuées et combien de temps ces opérations ont pris.

Ci-dessous, nous présentons la liste de toutes les méthodes d’accès aux bases de données :


	[[yii\db\Migration::execute()|execute()]]: exécute une instruction SQL


	[[yii\db\Migration::insert()|insert()]]: insère une unique ligne


	[[yii\db\Migration::batchInsert()|batchInsert()]]: insère de multiples lignes


	[[yii\db\Migration::update()|update()]]: met à jour des lignes


	[[yii\db\Migration::delete()|delete()]]: supprime des lignes


	[[yii\db\Migration::createTable()|createTable()]]: crée une table


	[[yii\db\Migration::renameTable()|renameTable()]]: renomme une table


	[[yii\db\Migration::dropTable()|dropTable()]]: supprime une table


	[[yii\db\Migration::truncateTable()|truncateTable()]]: supprime toutes les lignes d’une table


	[[yii\db\Migration::addColumn()|addColumn()]]: ajoute une colonne


	[[yii\db\Migration::renameColumn()|renameColumn()]]: renomme une colonne


	[[yii\db\Migration::dropColumn()|dropColumn()]]: supprime une colonne


	[[yii\db\Migration::alterColumn()|alterColumn()]]: modifie une colonne


	[[yii\db\Migration::addPrimaryKey()|addPrimaryKey()]]: ajoute une clé primaire


	[[yii\db\Migration::dropPrimaryKey()|dropPrimaryKey()]]: supprime une clé primaire


	[[yii\db\Migration::addForeignKey()|addForeignKey()]]: ajoute une clé étrangère


	[[yii\db\Migration::dropForeignKey()|dropForeignKey()]]: supprime une clé étrangère


	[[yii\db\Migration::createIndex()|createIndex()]]: crée un index


	[[yii\db\Migration::dropIndex()|dropIndex()]]: supprime un index


	[[yii\db\Migration::addCommentOnColumn()|addCommentOnColumn()]]: ajoute un commentaire à une colonne


	[[yii\db\Migration::dropCommentFromColumn()|dropCommentFromColumn()]]: supprime un commentaire d’une colonne


	[[yii\db\Migration::addCommentOnTable()|addCommentOnTable()]]: ajoute un commentaire à une table


	[[yii\db\Migration::dropCommentFromTable()|dropCommentFromTable()]]: supprime un commentaire d’une table





Info: [[yii\db\Migration]]
ne fournit pas une méthode de requête de base de données. C’est parce que, normalement, vous n’avez pas besoin d’afficher de messages supplémentaire à propos de l’extraction de données dans une base de données. C’est aussi parce que vous pouvez utiliser le puissant constructeur de requêtes pour construire et exécuter des requêtes complexes.
L’utilisation du constructeur de requêtes dans une migration ressemble à ceci :

// update status field for all users
foreach((new Query)->from('users')->each() as $user) {
    $this->update('users', ['status' => 1], ['id' => $user['id']]);
}













Application des migrations 

Pour mettre une base de données à jour à sa dernière structure, vous devez appliquer toutes les nouvelles migrations disponibles en utilisant la commande suivante :

yii migrate





Cette commande liste toutes les migrations qui n’ont pas encore été appliquées. Si vous confirmez que vous voulez appliquer ces migrations, cela provoque l’exécution des méthodes up() ou safeUp() de chacune des nouvelles migrations, l’une après l’autre, dans l’ordre de leur horodate. Si l’une de ces migrations échoue, la commande se termine sans appliquer les migrations qui restent.


Astuce : dans le cas où votre serveur ne vous offre pas de ligne de commande, vous pouvez essayer Web shell [https://github.com/samdark/yii2-webshell].




Pour chaque migration qui n’a pas été appliqué avec succès, la commande insère une ligne dans une table de base de données nommée migration pour enregistrer les applications réussies de la migration. Cela permet à l’outil de migration d’identifier les migrations qui ont été appliquées et celles qui ne l’ont pas été.


Info: l’outil de migration crée automatiquement la table migration dans la base de données spécifiée par l’option [[yii\console\controllers\MigrateController::db|db]] de la commande. Par défaut, la base de données est spécifiée dans le composant d’application db.




Parfois, vous désirez peut-être appliquer une ou quelques migrations plutôt que toutes les migrations disponibles. Vous pouvez le faire en spécifiant le nombre de migrations que vous voulez appliquer en exécutant la commande. Par exemple, la commande suivante essaye d’appliquer les trois prochaines migrations disponibles :

yii migrate 3





Vous pouvez également spécifier explicitement une migration particulière à laquelle la base de données doit être amenée en utilisant la commande migrate/to dans l’un des formats suivants :

yii migrate/to 150101_185401                      # utiliser l'horodatage pour spécifier la migration
yii migrate/to "2015-01-01 18:54:01"              # utilise une chaîne de caractères qui peut être analysée par strtotime()
yii migrate/to m150101_185401_create_news_table   # utilise le nom complet 
yii migrate/to 1392853618                         # utilise un horodatage UNIX





S’il existe des migrations non appliquée antérieures à celle spécifiée, elles sont toutes appliquées avant que la migration spécifiée ne le soit.

Si la migration spécifiée a déjà été appliquée auparavant, toutes les migrations postérieures qui ont été appliquées sont défaites.




Défaire des migrations 

Pour défaire une ou plusieurs migrations que ont été appliquées auparavant, vous pouvez exécuter la commande suivante :

yii migrate/down     # défait la migration appliquée le plus récemment
yii migrate/down 3   # défait les 3 migrations appliquées le plus récemment 






Note: toutes les migrations ne sont PAS réversibles. Essayer de défaire de telles migrations provoque une erreur et arrête tout le processus de retour à l’état initial.







Refaire des migrations 

Refaire (ré-appliquer) des migrations signifie d’abord défaire les migrations spécifiées puis les appliquer à nouveau. Cela peut être fait comme suit :

yii migrate/redo        # refait la dernière migration appliquée 
yii migrate/redo 3      # refait les 3 dernière migrations appliquées






Note: si une  migration n’est pas réversible, vous ne serez pas en mesure de la refaire.







Rafraîchir des Migrations 

Deepuis la version 2.0.13, vous pouvez supprimer toutes les tables et clés étrangères de la base de données et ré-appliquer toutes les migrations depuis le début.

yii migrate/fresh       # Tronçonne la base de données et applique toutes les migrations depuis le début








Lister des migrations 

Pour lister quelles migrations ont été appliquées et quelles migrations ne l’ont pas été, vous pouvez utiliser les commandes suivantes :

yii migrate/history     # montre les 10 dernières migrations appliquées
yii migrate/history 5   # montre les 5 dernières migrations appliquées
yii migrate/history all # montre toutes les migrations appliquées

yii migrate/new         # montre les 10 premières nouvelles migrations 
yii migrate/new 5       # montre les 5 premières nouvelles migrations
yii migrate/new all     # montre toutes les nouvelles migrations








Modification de l’historique des migrations 

Au lieu d’appliquer ou défaire réellement des migrations, parfois, vous voulez peut-être simplement marquer que votre base de données a été portée à une certaine migration. Cela arrive souvent lorsque vous changer manuellement la base de données pour l’amener à un état particulier et que vous ne voulez pas que la migration correspondant à ce changement soit appliquée de nouveau par la suite. Vous pouvez faire cela avec la commande suivante :

yii migrate/mark 150101_185401                      # utilise un horodatage pour spécifier la migration 
yii migrate/mark "2015-01-01 18:54:01"              # utilise une chaîne de caractères qui peut être analysée par strtotime()
yii migrate/mark m150101_185401_create_news_table   # utilise le nom complet
yii migrate/mark 1392853618                         # utilise un horodatage UNIX





La commande modifie la table migration en ajoutant ou en supprimant certaines lignes pour indiquer que la base de données s’est vue appliquer toutes les migrations jusqu’à celle spécifiée. Aucune migration n’est appliquée ou défaite par cette commande.




Personnalisation des migrations 

Il y a plusieurs manières de personnaliser la commande de migration.


Utilisation des options de ligne de commande 

La commande de migration possède quelques options en ligne de commande qui peuvent être utilisées pour personnaliser son comportement :


	interactive: boolean (valeur par défaut true), spécifie si la migration doit être effectuées en mode interactif. Lorsque cette option est true, l’utilisateur reçoit un message avant que la commande n’effectue certaines actions. Vous désirez peut-être définir cette valeur à false si la commande s’exécute en arrière plan.


	migrationPath: string (valeur par défaut @app/migrations), spécifie le dossier qui stocke tous les fichiers de classe de  migration. Cela peut être spécifié soit comme un chemin de dossier, soit comme un alias de chemin. Notez que le dossier doit exister sinon la commande déclenche une erreur.


	migrationTable: string (valeur par défaut migration), spécifie le nom de la table de base de données pour stocker l’historique de migration. La table est créée automatiquement par la commande si elle n’existe pas encore. Vous pouvez aussi la créer à la main en utilisant la structure version varchar(255) primary key, apply_time integer.


	db: string (valeur par défaut db), spécifie l’identifiant du composant d’application base de données. Il représente la base de données à laquelle les migrations sont appliquées avec cette commande.


	templateFile: string (valeur par défaut @yii/views/migration.php), spécifie le chemin vers le fichier modèle qui est utilisé pour générer le squelette des fichiers de classe de migration. Cela peut être spécifié soit sous forme de chemin de fichier, soit sous forme d’alias de chemin. Le fichier modèle est un script PHP dans lequel vous pouvez utiliser une variable prédéfinie nommée $className pour obtenir le nom de la classe de migration.


	generatorTemplateFiles: array (valeur par défaut [ 'create_table' => '@yii/views/createTableMigration.php', 'drop_table' => '@yii/views/dropTableMigration.php', 'add_column' => '@yii/views/addColumnMigration.php', 'drop_column' => '@yii/views/dropColumnMigration.php', 'create_junction' => '@yii/views/createTableMigration.php' ]), spécifie les fichiers modèles pour générer le code de migration. Voir “Génération des migrations” pour plus de détails.


	fields: array (tableau) de chaîne de caractères de définition de colonnes utilisées pour créer le code de migration. Valeur par défaut []. Le format de chacune des définitions est COLUMN_NAME:COLUMN_TYPE:COLUMN_DECORATOR. Par exemple, --fields=name:string(12):notNull produit une colonne chaîne de caractères de taille 12 qui n’est pas null (nulle).




L’exemple suivant montre comment vous pouvez utiliser ces options.

Par exemple, si vous voulez appliquer des migrations à un module forum dont les fichiers de migration sont situés dans le dossier migrations du module, vous pouvez utiliser la commande suivante :

# Appliquer les migrations d'un module forum sans interactivité
yii migrate --migrationPath=@app/modules/forum/migrations --interactive=0








Configuration globale des commandes 

Au lieu de répéter les mêmes valeurs d’option à chaque fois que vous exécutez une commande de migration, vous pouvez la configurer une fois pour toute dans la configuration de l’application comme c’est montré ci-après :

return [
    'controllerMap' => [
        'migrate' => [
            'class' => 'yii\console\controllers\MigrateController',
            'migrationTable' => 'backend_migration',
        ],
    ],
];





Avec la configuration ci-dessus, à chaque fois que vous exécutez la commande de migration, la table backend_migration est utilisée pour enregistrer l’historique de migration. Vous n’avez plus besoin de le spécifier via l’option en ligne de commande migrationTable.




Migrations avec espaces de noms 

Depuis la version 2.0.10, vous pouvez utiliser les espaces de noms pour les classes de migration. Vous pouvez spécifier la liste des espaces de noms des migrations via
[[yii\console\controllers\MigrateController::migrationNamespaces|migrationNamespaces]]. L’utilisation des espaces de noms pour les classes de migration vous permet l’utilisation de plusieurs emplacement pour les sources des migrations. Par exemple :

return [
    'controllerMap' => [
        'migrate' => [
            'class' => 'yii\console\controllers\MigrateController',
            'migrationPath' => null, // désactive les migration sans espace de noms si app\migrations est listé ci-dessous
            'migrationNamespaces' => [
                'app\migrations', // Migration ordinaires pour l'ensemble de l'application
                'module\migrations', // Migrations pour le module de projet spécifique
                'some\extension\migrations', // Migrations pour l'extension spécifique 
            ],
        ],
    ],
];






Note : les migrations appliquées appartenant à des espaces de noms différent créent un historique de migration unique, p. ex. vous pouvez être incapable d’appliquer ou d’inverser des migrations d’un espace de noms particulier seulement.




Lors des opérations sur les migrations avec espaces de noms : la création, l’inversion, etc. vous devez spécifier l’espace de nom complet avant le nom de la migration.
Notez que le caractère barre oblique inversée (\) est en général considéré comme un caractère spécial dans l’interprète de commandes, c’est pourquoi vous devez l’échapper correctement pour éviter des erreurs d’interprète de commandes ou des comportements incorrects. Par exemple :

yii migrate/create 'app\\migrations\\createUserTable'






Note : les migrations spécifiées via [[yii\console\controllers\MigrateController::migrationPath|migrationPath]]
ne peuvent pas contenir un espace de noms, les migrations avec espaces de noms peuvent être appliquée via la propriété [[yii\console\controllers\MigrateController::migrationNamespaces]].




Depuis la version 2.0.12, la propriété [[yii\console\controllers\MigrateController::migrationPath|migrationPath]]
accepte également un tableau pour spécifier de multiples dossiers contenant des migrations sans espaces de noms.
Cela a été ajouté principalement pour être utilisé dans des projets existants qui utilisent des migrations provenant de différents emplacements. Ces migrations viennent principalement de
sources externes, comme les extensions à Yii développées par d’autres développeurs,
qui ne peuvent être facilement modifiées pour utiliser les espaces de noms lors du démarrage avec la nouvelle approche.




Migrations séparées 

Parfois, l’utilisation d’un historique unique de migration pour toutes les migrations du projet n’est pas souhaité. Par exemple : vous pouvez installer une extension ‘blog’, qui contient des fonctionnalités complètement séparées et contient ses propres migrations, qui ne devraient pas affecter celles dédiées aux fonctionnalités principales du projet.
Si vous voulez qui plusieurs migrations soient appliquées et complétement tracées séparément l’une de l’autre, vous pouvez configurer de multiples commandes de migration qui utilisent des espaces de noms différents et des tables d’historique de migration différentes :

return [
    'controllerMap' => [
        // Common migrations for the whole application
        'migrate-app' => [
            'class' => 'yii\console\controllers\MigrateController',
            'migrationNamespaces' => ['app\migrations'],
            'migrationTable' => 'migration_app',
            'migrationPath' => null,
        ],
        // Migrations for the specific project's module
        'migrate-module' => [
            'class' => 'yii\console\controllers\MigrateController',
            'migrationNamespaces' => ['module\migrations'],
            'migrationTable' => 'migration_module',
            'migrationPath' => null,
        ],
        // Migrations for the specific extension
        'migrate-rbac' => [
            'class' => 'yii\console\controllers\MigrateController',
            'migrationPath' => '@yii/rbac/migrations',
            'migrationTable' => 'migration_rbac',
        ],
    ],
];





Notez que pour synchroniser la base de données vous devez maintenant exécuter plusieurs commandes au lieu d’une seule :

yii migrate-app
yii migrate-module
yii migrate-rbac










Migration de multiples base de données 

Par défaut, les migrations sont appliquées à la même base de données spécifiée par le composant d’application db. Si vous voulez que celles-ci soient appliquées à des bases de données différentes, vous pouvez spécifier l’option en ligne de commande db comme indiqué ci-dessous :

yii migrate --db=db2





La commande ci-dessus applique les migration à la base de données db2.

Parfois, il est possible que vous vouliez appliquer quelques unes des migrations à une base de données, et quelques autres à une autre base de données. Pour y parvenir, lorsque vous implémentez une classe de migration, vous devez spécifier explicitement l’identifiant du composant base de données que la migration doit utiliser, comme ceci :

<?php

use yii\db\Migration;

class m150101_185401_create_news_table extends Migration
{
    public function init()
    {
        $this->db = 'db2';
        parent::init();
    }
}





La migration ci-dessus est appliquée à db2, même si vous spécifiez une autre base via l’option en ligne de commande db. Notez que l’historique de migration est toujours enregistré dans la base de données spécifiée par l’option en ligne de commande db.

Si vous avez de multiples migrations qui utilisent la même base de données, il est recommandé que vous créiez une classe de migration de base avec le code init() ci-dessus. Ensuite, chaque classe de migration peut étendre cette classe de base.


Astuce : en plus de définir la propriété [[yii\db\Migration::db|db]], vous pouvez aussi opérer sur différentes bases de données en créant de nouvelles connexions à ces bases de données dans vos classes de migration. Ensuite,vous utilisez les méthodes des objets d’accès aux bases de données avec ces connexions pour manipuler différentes bases de données.




Une autre stratégie que vous pouvez adopter pour appliquer des migrations à de multiples bases de données est de tenir ces migrations de différentes bases de données dans des chemins différents. Ensuite vous pouvez appliquer les migrations à ces bases de données dans des commandes séparées comme ceci :

yii migrate --migrationPath=@app/migrations/db1 --db=db1
yii migrate --migrationPath=@app/migrations/db2 --db=db2
...





La première commande applique les migrations dans @app/migrations/db1 à la base de données db1, la seconde commande applique les migrations dans @app/migrations/db2 à db2, et ainsi de suite.







          

      

      

    

  

  
    
    Le constructeur de requêtes
    

    
 
  

    
      
          
            
  
Le constructeur de requêtes

Construit sur la base des objets d’accès aux bases de données (DAO), le constructeur de requêtes vous permet de construire des requêtes SQL par programme qui sont indifférentes au système de gestion de base de données utilisé. Comparé à l’écriture d’instructions SQL brutes, l’utilisation du constructeur de requêtes vous aide à écrire du code relatif à SQL plus lisible et à générer des instructions SQL plus sûres.

L’utilisation du constructeur de requêtes comprend ordinairement deux étapes :


	Construire un objet [[yii\db\Query]] pour représenter différentes parties (p. ex. SELECT, FROM) d’une instruction SQL.


	Exécuter une méthode de requête (p. ex. all()) de [[yii\db\Query]] pour retrouver des données dans la base de données.




Le code suivant montre une manière typique d’utiliser le constructeur de requêtes.

$rows = (new \yii\db\Query())
    ->select(['id', 'email'])
    ->from('user')
    ->where(['last_name' => 'Smith'])
    ->limit(10)
    ->all();





Le code ci-dessus génère et exécute la requête SQL suivante, dans laquelle le paramètre :last_name est lié à la chaîne de caractères 'Smith'.

SELECT `id`, `email` 
FROM `user`
WHERE `last_name` = :last_name
LIMIT 10






Info: génélalement vous travaillez essentiellement avec [[yii\db\Query]] plutôt qu’avec [[yii\db\QueryBuilder]].
Le dernier est implicitement invoqué par le premier lorsque vous appelez une des méthodes de requête. [[yii\db\QueryBuilder]] est la classe en charge de la génération des instructions SQL dépendantes du système de gestion de base de données (p. ex. entourer les noms de table/colonne par des marques de citation différemment) à partir d’objets [[yii\db\Query]] indifférents au système de gestion de base de données.





Construction des requêtes 

Pour construire un objet [[yii\db\Query]], vous appelez différentes méthodes de construction de requêtes pour spécifier différentes parties de la requête SQL.
Les noms de ces méthodes ressemblent aux mots clés de SQL utilisés dans les parties correspondantes de l’instruction SQL.
Par exemple, pour spécifier la partie FROM d’une requête SQL, vous appelez la méthode [[yii\db\Query::from()|from()]].
Toutes les méthodes de construction de requêtes retournent l’objet query lui-même, ce qui vous permet d’enchaîner plusieurs appels.

Dans ce qui suit, nous décrivons l’utilisation de chacune des méthodes de requête.


[[yii\db\Query::select()|select()]] 

La méthode [[yii\db\Query::select()|select()]] spécifie le fragment SELECT d’une instruction SQL. Vous pouvez spécifier les colonnes à sélectionner soit sous forme de chaînes de caractères, soit sous forme de tableaux, comme ci-après.
Les noms des colonnes sélectionnées sont automatiquement entourés des marques de citation lorsque l’instruction SQL
est générée à partir de l’objet query (requête).

$query->select(['id', 'email']);

// équivalent à:

$query->select('id, email');





Les noms des colonnes sélectionnées peuvent inclure des préfixes de table et/ou des alias de colonne, comme vous le faites en écrivant une requête SQL brute.
Par exemple :

$query->select(['user.id AS user_id', 'email']);

// équivalent à:

$query->select('user.id AS user_id, email');





Si vous utilisez le format tableau pour spécifier les colonnes, vous pouvez aussi utiliser les clés du tableau pour spécifier les alias de colonne.
Par exemple, le code ci-dessus peut être réécrit comme ceci :

$query->select(['user_id' => 'user.id', 'email']);





Si vous n’appelez pas la méthode [[yii\db\Query::select()|select()]] en construisant une requête, * est sélectionné,
ce qui signifie la sélection de toutes les colonnes.

En plus des noms de colonne, vous pouvez aussi sélectionner des expression de base de données. Vous devez utiliser le format tableau en sélectionnant une expression de base de données qui contient des virgules pour éviter des entourages automatiques incorrects des noms par des marques de citation.
Par exemple :

$query->select(["CONCAT(first_name, ' ', last_name) AS full_name", 'email']); 





Comme en tout lieu où il est fait appel à du SQL brut, vous devez utiliser la syntaxe des marques de citation indifférentes au système de gestion de base de données pour les noms de table et
de colonne lorsque vous écrivez les expressions de base de données dans select.

Depuis la version 2.0.1, vous pouvez aussi sélectionner des sous-requêtes. Vous devez spécifier chacune des sous-requêtes en termes d’objet [[yii\db\Query]].
Par exemple :

$subQuery = (new Query())->select('COUNT(*)')->from('user');

// SELECT `id`, (SELECT COUNT(*) FROM `user`) AS `count` FROM `post`
$query = (new Query())->select(['id', 'count' => $subQuery])->from('post');





Pour sélectionner des lignes distinctes, vous pouvez appeler [[yii\db\Query::distinct()|distinct()]], comme ceci :

// SELECT DISTINCT `user_id` ...
$query->select('user_id')->distinct();





Vous pouvez appeler [[yii\db\Query::addSelect()|addSelect()]] pour sélectionner des colonnes additionnelles. Par exemple :

$query->select(['id', 'username'])
    ->addSelect(['email']);








[[yii\db\Query::from()|from()]] 

La méthode [[yii\db\Query::from()|from()]] spécifie le fragment FROMd’une instruction. Par exemple :

// SELECT * FROM `user`
$query->from('user');





Vous pouvez spécifier les tables à sélectionner soit sous forme de chaînes de caractères, soit sous forme de tableaux. Les noms de table peuvent contenir des préfixes et/ou des alias de table.
Par exemple :

$query->from(['public.user u', 'public.post p']);

// équivalent à :

$query->from('public.user u, public.post p');





Si vous utilisez le format tableau, vous pouvez aussi utiliser les clés du tableau pour spécifier les alias de table, comme suit :

$query->from(['u' => 'public.user', 'p' => 'public.post']);





En plus des noms de table, vous pouvez aussi sélectionner à partir de sous-requêtes en les spécifiant en termes d’objets [[yii\db\Query]].
Par exemple :

$subQuery = (new Query())->select('id')->from('user')->where('status=1');

// SELECT * FROM (SELECT `id` FROM `user` WHERE status=1) u 
$query->from(['u' => $subQuery]);






Préfixes

Un [[yii\db\Connection::$tablePrefix|préfixe de table]] peut aussi être appliqué. Les instructions de mise en œuvre sont données à la section
“Entourage des noms de table et de colonne par des marques de citation” du guide sur les objets d’accès aux bases de données” .






[[yii\db\Query::where()|where()]] 

La méthode [[yii\db\Query::where()|where()]] spécifie le fragment WHEREd’une requête SQL. Vous pouvez utiliser un des quatre formats suivants pour spécifier une condition WHERE :


	format chaîne de caractères, p. ex. 'status=1'


	format haché, p. ex. ['status' => 1, 'type' => 2]


	format opérateur, p. ex. ['like', 'name', 'test']


	format objet, p. ex. new LikeCondition('name', 'LIKE', 'test')





Format chaîne de caractères 

Le format chaîne de caractères est celui qui convient le mieux pour spécifier des conditions très simples ou si vous avez besoin d’utiliser les fonctions incorporées au système de gestion de base de données.
Il fonctionne comme si vous écriviez une requête SQL brute. Par exemple :

$query->where('status=1');

// ou utilisez la liaison des paramètres pour lier des valeurs dynamiques des paramètres.
$query->where('status=:status', [':status' => $status]);

//  SQL brute utilisant la fonction MySQL YEAR() sur un champ de date
$query->where('YEAR(somedate) = 2015');





N’imbriquez PAS les variables directement dans la condition comme ce qui suit, spécialement si les valeurs des variables proviennent d’entrées utilisateur, parce que cela rendrait votre application SQL sujette aux attaques par injections SQL.

// Dangereux! Ne faites PAS cela sauf si vous êtes tout à fait sûr que $status est un entier
$query->where("status=$status");





Lorsque vous utilisez la liaison des paramètres, vous pouvez appeler [[yii\db\Query::params()|params()]] ou [[yii\db\Query::addParams()|addParams()]] pour spécifier les paramètres séparément.

$query->where('status=:status')
    ->addParams([':status' => $status]);





Comme dans tous les endroits ou il est fait appel à du SQL, vous pouvez utiliser la syntaxe d’entourage par des marques de citation indifférente au système de gestion de base de données pour les noms de table et de colonne lorsque vous écrivez les conditions au format chaîne de caractères.




Format haché 

Le format valeur de hachage convient le mieux pour spécifier de multiples sous-conditions concaténées par AND, chacune étant une simple assertion d’égalité.
Il se présente sous forme de tableau dont les clés sont les noms des colonnes et les valeurs les valeurs correspondantes que les valeurs des colonnes devraient avoir.
Par exemple :

// ...WHERE (`status` = 10) AND (`type` IS NULL) AND (`id` IN (4, 8, 15))
$query->where([
    'status' => 10,
    'type' => null,
    'id' => [4, 8, 15],
]);





Comme vous pouvez le voir, le constructeur de requêtes est assez intelligent pour manipuler correctement les valeurs qui sont soit nulles, soit des tableaux.

Vous pouvez utiliser aussi des sous-requêtes avec le format haché comme suit :

$userQuery = (new Query())->select('id')->from('user');

// ...WHERE `id` IN (SELECT `id` FROM `user`)
$query->where(['id' => $userQuery]);





En utilisant le format haché, Yii, en interne, utilise la liaison des paramètres pour les valeurs de façon à ce que, contrairement au format chaîne de caractères, vous n’ayez pas à ajouter les paramètres à la main.
Cependant, notez que Yii ne procède pas à l’échappement des noms de colonne, c’est pourquoi si vous passez un nom de variable obtenu de l’utilisateur en tant que nom de colonne sans vérification, l’application devient vulnérable à l’injection SQL.
Afin de maintenir l’application sûre, soit n’utilisez pas de variables comme nom de colonne, soit filtrez les variables par une liste blanche.
Dans le cas où vous avez besoin d’obtenir un nom de colonne de l’utilisateur, lisez
l’article du guide Filtrage des données.
Ainsi l’exemple de code suivant est vulnérable :

// Vulnerable code:
$column = $request->get('column');
$value = $request->get('value');
$query->where([$column => $value]);
// $value est sûre, mais le nom de colonne n'est pas encodé!








Format opérateur 

Le format opérateur vous permet de spécifier des conditions arbitraires par programmation. Il accepte les formats suivants :

[operator, operand1, operand2, ...]





dans lequel chacun des opérandes peut être spécifié au format chaîne de caractères, au format haché ou au format opérateur de façon récursive, tandis que l’opérateur peut être un de ceux qui suivent :


	and: les opérandes doivent être concaténés en utilisant AND. Par exemple, ['and', 'id=1', 'id=2'] génère id=1 AND id=2.
Si un opérande est un tableau, il est converti en une chaîne de caractères en utilisant les règles décrites ici.
Par exemple, ['and', 'type=1', ['or', 'id=1', 'id=2']] génère type=1 AND (id=1 OR id=2).
La méthode ne procède à aucun entourage par des marques de citation, ni à aucun échappement.





	or: similaire à l’opérateur and sauf que les opérandes sont concaténés en utilisant OR.


	not: ne réclame que l’opérande 1, qui est emballé dans  NOT(). Par exemple, ['not', 'id=1'] génère NOT (id=1). L’opérande 1 peut aussi être un tableau pour décrire des expressions multiples. Par exemple ['not', ['status' => 'draft', 'name' => 'example']] génère NOT ((status='draft') AND (name='example')).


	between: l’opérande 1 doit être le nom de la colonne, et les opérandes 2 et 3 doivent être les valeurs de départ et de fin de la plage dans laquelle la colonne doit être. Par exemple, ['between', 'id', 1, 10] génère id BETWEEN 1 AND 10.
Dans le cas où vous avez besoin de construire une expression dans laquelle la valeur est entre deux colonnes (telle que 11 BETWEEN min_id AND max_id),
vous devez utiliser  [[yii\db\conditions\BetweenColumnsCondition|BetweenColumnsCondition]].
Reportez-vous au chapitre Conditions – Format d’objet pour en savoir plus sur la définition des conditions d’objet.





	not between: similaire à between sauf que  BETWEEN est remplacé par NOT BETWEEN
dans la condition générée.


	in: l’opérande 1 doit être une colonne ou une expression de base de données.
L’opérande 2 peut être soit un tableau, soit un objet Query.
Il génère une condition IN. Si l’opérande 2 est un tableau, il représente la plage des valeurs que la colonne ou l’expression de base de données peut prendre.
Si l’opérande 2 est un objet Query, une sous-requête est générée et utilisée comme plage pour la colonne ou l’expression de base de données.
Par exemple, ['in', 'id', [1, 2, 3]] génère id IN (1, 2, 3).
La méthode assure correctement l’entourage des noms de colonnes par des marques de citation et l’échappement des valeurs de la plage.
L’opérateur in prend aussi en charge les colonnes composites.
Dans ce cas, l’opérande 1 doit être un tableau des colonnes, tandis que l’opérateur 2 doit être un tableau de tableaux, ou un objet Query représentant la plage de colonnes.


	not in: similaire à l’opérateur in sauf que IN est remplacé par NOT IN dans la condition générée.


	like: l’opérande 1 doit être une colonne ou une expression de base de données, tandis que l’opérande 2 doit être une chaîne de caractères ou
un tableau représentant les valeurs que cette colonne ou cette expression de base de données peuvent être.
Par exemple, ['like', 'name', 'tester'] génère name LIKE '%tester%'.
Lorsque la plage de valeurs est donnée sous forme de tableau, de multiples prédicats LIKE sont générés et concaténés
en utilisant AND.
Par exemple, ['like', 'name', ['test', 'sample']] génère name LIKE '%test%' AND name LIKE '%sample%'.
Vous pouvez également fournir un troisième paramètre facultatif pour spécifier comment échapper les caractères spéciaux dans les valeurs.
Les opérandes doivent être un tableau de correspondance
entre les caractères spéciaux et les contre-parties échappées.
Si cet opérande n’est pas fourni, une mise en correspondance par défaut est utilisée.
Vous pouvez utiliser false ou un tableau vide pour indiquer que les valeurs sont déjà échappées et qu’aucun échappement ne doit être appliqué.
Notez que lorsqu’un tableau de mise en correspondance pour l’échappement est utilisé (ou quand le troisième opérande n’est pas fourni), les valeurs sont automatiquement entourées par une paire de caractères %.


Note: lors de l’utilisation de PostgreSQL vous pouvez aussi utiliser ilike [http://www.postgresql.org/docs/8.3/static/functions-matching.html#FUNCTIONS-LIKE]à la place de like pour une mise en correspondance insensible à la casse.






	or like: similaire à l’opérateur like sauf que ORest utilisé pour concaténer les prédicats LIKE
quand l’opérande 2 est un tableau.


	not like: similaire à l’opérateur like sauf que LIKE est remplacé par NOT LIKE
dans la condition générée.


	or not like: similaire à l’opérateur not like sauf que OR est utilisé pour concaténer
les prédicats NOT LIKE.


	exists: requiert un opérande que doit être une instance de [[yii\db\Query]] représentant la sous-requête.Il construit une expression EXISTS (sub-query).


	not exists: similaire à l’opérateur exists et construit une expression NOT EXISTS (sub-query).


	>, <=, ou tout autre opérateur de base de données valide qui accepte deux opérandes :
le premier opérande doit être un nom de colonne, tandis que le second doit être une valeur. Par exemple, ['>', 'age', 10] génère age>10.




En utilisant le format opérateur, Yii, en interne, utilise la liaison des paramètres afin, que contrairement au format chaîne de caractères, ici, vous n’avez pas besoin d’ajouter les paramètres à la main.
Cependant, notez que Yii ne procède pas à l’échappement des noms de colonne, c’est pourquoi si vous passez un nom de variable obtenu de l’utilisateur en tant que nom de colonne sans vérification, l’application devient vulnérable à l’injection SQL.
Afin de maintenir l’application sûre, soit n’utilisez pas de variables comme nom de colonne, soit filtrez les variables par une liste blanche.
Dans le cas où vous avez besoin d’obtenir un nom de colonne de l’utilisateur, lisez
l’article du guide Filtrage des données.
Ainsi l’exemple de code suivant est vulnérable :

// Code vulnérable:
$column = $request->get('column');
$value = $request->get('value);
$query->where(['=', $column, $value]);
// $value est sûre, mais le nom  $column n'est pas encodé !








Format objet 

Le format objet est disponible depuis 2.0.14 et est à la fois le moyen plus puissant et le plus complexe pour définir des conditions.
Vous devez le suivre si vous voulez construire votre propre abstraction au-dessus du constructeur de requêtes (query builder) ou si vous voulez mettre en œuvre vos propres conditions complexes.

Les instances de classes de condition sont immuables.
Le seul but est de stocker des données de condition et de fournir des obtenteurs (getters) pour les constructeurs de conditions.
La classe « constructeur de condition » (condition builder) est une classe qui contient la logique qui transforme les données stockées en condition dans une expression SQL.

En interne, les formats décrits plus haut sont implicitement convertis en format objet avant de construire le SQL brut,
aussi est-il possible de combiner les formats en une condition unique :

$query->andWhere(new OrCondition([
    new InCondition('type', 'in', $types),
    ['like', 'name', '%good%'],
    'disabled=false'
]))





La conversion du format opérateur au format objet est accomplie en fonction de la propriété
[[yii\db\QueryBuilder::conditionClasses|QueryBuilder::conditionClasses]] ,
qui fait correspondre des noms d’opérateurs à des nom de classe représentatives :


	AND, OR -> yii\db\conditions\ConjunctionCondition


	NOT -> yii\db\conditions\NotCondition


	IN, NOT IN -> yii\db\conditions\InCondition


	BETWEEN, NOT BETWEEN -> yii\db\conditions\BetweenCondition




Et ainsi de suite.

L’utilisation du format objet rend possible de créer vos propres conditions ou de changer la manière dont celles par défaut sont construites.
Reportez-vous au chapitre  Ajout de conditions et d’expressions personnalisées pour en savoir plus.




Ajout de conditions 

Vous pouvez utiliser [[yii\db\Query::andWhere()|andWhere()]] ou [[yii\db\Query::orWhere()|orWhere()]] pour ajouter des conditions supplémentaires à une condition existante.
Vous pouvez les appeler plusieurs fois pour ajouter plusieurs conditions séparément.
Par exemple :

$status = 10;
$search = 'yii';

$query->where(['status' => $status]);

if (!empty($search)) {
   $query->andWhere(['like', 'title', $search]);
}





Si $search n’est pas vide, la condition WHERE suivante est générée :

WHERE (`status` = 10) AND (`title` LIKE '%yii%')








Conditions de filtrage 

Lors de la construction de conditions  WHERE basées sur des entrées de l’utilisateur final,
vous voulez généralement ignorer les valeurs entrées qui sont vides.
Par exemple, dans un formulaire de recherche par nom d’utilisateur ou par adresse de courriel, vous aimeriez ignorer la condition nom d’utilisateur/adresse de courriel si l’utilisateur n’a rien saisi dans les champs correspondants.
Vous pouvez faire cela en utilisant la méthode [[yii\db\Query::filterWhere()|filterWhere()]] :

// $username et $email sont entrées par l'utilisateur
$query->filterWhere([
    'username' => $username,
    'email' => $email,
]);





La seule différence entre [[yii\db\Query::filterWhere()|filterWhere()]] et [[yii\db\Query::where()|where()]] est que la première ignore les valeurs vides fournies dans la condition au format haché.
Ainsi si $email est vide alors que $username ne l’est pas,
le code ci dessus produit la condition SQL WHERE username=:username.


Info: une valeur est considérée comme vide si elle est nulle, un tableau vide, ou un chaîne de caractères vide, ou un chaîne de caractères constituée d’espaces uniquement.




Comme avec [[yii\db\Query::andWhere()|andWhere()]] et [[yii\db\Query::orWhere()|orWhere()]],
vous pouvez utiliser [[yii\db\Query::andFilterWhere()|andFilterWhere()]] et [[yii\db\Query::orFilterWhere()|orFilterWhere()]]
pour ajouter des conditions de filtrage supplémentaires à une condition existante.

En outre, il y a [[yii\db\Query::andFilterCompare()]] qui peut déterminer intelligemment l’opérateur
en se basant sur ce qu’il y a dans les valeurs :

$query->andFilterCompare('name', 'John Doe');
$query->andFilterCompare('rating', '>9');
$query->andFilterCompare('value', '<=100');





Vous pouvez aussi utiliser un opérateur explicitement :

$query->andFilterCompare('name', 'Doe', 'like');





Depuis Yii 2.0.1, il existe des méthodes similaires pour la condition  HAVING :


	[[yii\db\Query::filterHaving()|filterHaving()]]


	[[yii\db\Query::andFilterHaving()|andFilterHaving()]]


	[[yii\db\Query::orFilterHaving()|orFilterHaving()]]









[[yii\db\Query::orderBy()|orderBy()]] 

La méthode [[yii\db\Query::orderBy()|orderBy()]] spécifie le fragment ORDER BY d’une requête SQL. Par exemple :

// ... ORDER BY `id` ASC, `name` DESC
$query->orderBy([
    'id' => SORT_ASC,
    'name' => SORT_DESC,
]);





Dans le code ci-dessus, les clés du tableau sont des noms de colonnes, tandis que les valeurs sont les instructions de direction de tri.
La constante PHP SORT_ASC spécifie un tri ascendant et SORT_DESC, un tri descendant.

Si ORDER BY ne fait appel qu’à des noms de colonnes simples, vous pouvez le spécifier en utilisant une chaîne de caractères, juste comme vous le faites en écrivant des instructions SQL brutes.
Par exemple :

$query->orderBy('id ASC, name DESC');






Note: vous devez utiliser le format tableau si ORDER BY fait appel à une expression de base de données.




Vous pouvez appeler [[yii\db\Query::addOrderBy()|addOrderBy()]] pour ajouter des colonnes supplémentaires au fragment ORDER BY.
Par exemple :

$query->orderBy('id ASC')
    ->addOrderBy('name DESC');








[[yii\db\Query::groupBy()|groupBy()]] 

La méthode [[yii\db\Query::groupBy()|groupBy()]] spécifie le fragment GROUP BY d’une requête SQL. Par exemple :

// ... GROUP BY `id`, `status`
$query->groupBy(['id', 'status']);





Si GROUP BY ne fait appel qu’à des noms de colonnes simples, vous pouvez le spécifier en utilisant un chaîne de caractères, juste comme vous le faîtes en écrivant des instructions SQL brutes.
Par exemple :

$query->groupBy('id, status');






Note: vous devez utiliser le format tableau si GROUP BY fait appel à une expression de base de données.




Vous pouvez appeler [[yii\db\Query::addGroupBy()|addGroupBy()]] pour ajouter des colonnes au fragment GROUP BY.
Par exemple :

$query->groupBy(['id', 'status'])
    ->addGroupBy('age');








[[yii\db\Query::having()|having()]] 

La méthode [[yii\db\Query::having()|having()]]
spécifie le fragment HAVING d’un requête SQL. Elle accepte une condition qui peut être spécifiée de la même manière que celle pour where(). Par exemple :

// ... HAVING `status` = 1
$query->having(['status' => 1]);





Reportez-vous à la documentation de where() pour plus de détails sur la manière de spécifier une condition.

Vous pouvez appeler [[yii\db\Query::andHaving()|andHaving()]] ou [[yii\db\Query::orHaving()|orHaving()]] pour ajouter des conditions supplémentaires au fragment HAVING fragment.
Par exemple :

// ... HAVING (`status` = 1) AND (`age` > 30)
$query->having(['status' => 1])
    ->andHaving(['>', 'age', 30]);








[[yii\db\Query::limit()|limit()]] et [[yii\db\Query::offset()|offset()]] 

Les méthodes [[yii\db\Query::limit()|limit()]] et [[yii\db\Query::offset()|offset()]] spécifient les fragments LIMIT et OFFSET d’une requête SQL.
Par exemple :

// ... LIMIT 10 OFFSET 20
$query->limit(10)->offset(20);





Si vous spécifiez une limite ou un décalage (p. ex. une valeur négative), il est ignoré.


Info: pour les systèmes de gestion de base de données qui ne prennent pas en charge LIMIT et OFFSET (p. ex. MSSQL),
le constructeur de requêtes génère une instruction SQL qui émule le comportement LIMIT/OFFSET.







[[yii\db\Query::join()|join()]] 

La méthode [[yii\db\Query::join()|join()]] spécifie le fragment JOIN d’une requête SQL. Par exemple :

// ... LEFT JOIN `post` ON `post`.`user_id` = `user`.`id`
$query->join('LEFT JOIN', 'post', 'post.user_id = user.id');





La méthode [[yii\db\Query::join()|join()]] accepte quatre paramètres :


	$type: type de jointure , p. ex. 'INNER JOIN', 'LEFT JOIN'.


	$table: le nom de la table à joindre.


	$on: facultatif, la condition de jointure, c.-à-d. le fragment ON.
Reportez-vous à where() pour des détails sur la manière de spécifier une condition.
Notez, que la syntaxe tableau ne fonctionne PAS pour spécifier une condition basée sur une colonne, p. ex. ['user.id' => 'comment.userId'] conduit à une condition
où l’identifiant utilisateur doit être égal à la chaîne de caractères 'comment.userId'.
Vous devez utiliser la syntaxe chaîne de caractères à la place et spécifier la condition 'user.id = comment.userId'.


	$params: facultatif, les paramètres à lier à la condition de jointure.




Vous pouvez utiliser les méthodes raccourcies suivantes pour spécifier INNER JOIN, LEFT JOIN et RIGHT JOIN, respectivement.


	[[yii\db\Query::innerJoin()|innerJoin()]]


	[[yii\db\Query::leftJoin()|leftJoin()]]


	[[yii\db\Query::rightJoin()|rightJoin()]]




Par exemple :

$query->leftJoin('post', 'post.user_id = user.id');





Pour joindre plusieurs tables, appelez les méthodes join ci-dessus plusieurs fois, une fois pour chacune des tables.

En plus de joindre des tables, vous pouvez aussi joindre des sous-requêtes. Pour faire cela, spécifiez les sous-requêtes à joindre sous forme d’objets [[yii\db\Query]].
Par exemple :

$subQuery = (new \yii\db\Query())->from('post');
$query->leftJoin(['u' => $subQuery], 'u.id = author_id');





Dans ce cas, vous devez mettre la sous-requête dans un tableau et utiliser les clés du tableau pour spécifier les alias.




[[yii\db\Query::union()|union()]] 

La méthode [[yii\db\Query::union()|union()]] spécifie le fragment UNION d’une requête SQL. Par exemple :

$query1 = (new \yii\db\Query())
    ->select("id, category_id AS type, name")
    ->from('post')
    ->limit(10);

$query2 = (new \yii\db\Query())
    ->select('id, type, name')
    ->from('user')
    ->limit(10);

$query1->union($query2);





Vous pouvez appeler [[yii\db\Query::union()|union()]] plusieurs fois pour ajouter plus de fragments UNION.






Méthodes de requête 

L’objet [[yii\db\Query]] fournit un jeu complet de méthodes pour différents objectifs de requêtes :


	[[yii\db\Query::all()|all()]]: retourne un tableau de lignes dont chacune des lignes est un tableau associatif de paires clé-valeur.


	[[yii\db\Query::one()|one()]]: retourne la première ligne du résultat.


	[[yii\db\Query::column()|column()]]: retourne la première colonne du résultat.


	[[yii\db\Query::scalar()|scalar()]]: retourne une valeur scalaire située au croisement de la première ligne et de la première colonne du résultat.


	[[yii\db\Query::exists()|exists()]]: retourne une valeur précisant si le résultat de la requête contient un résultat.


	[[yii\db\Query::count()|count()]]: retourne le résultat d’une requête COUNT..


	D’autres méthodes d’agrégation de requêtes, y compris [[yii\db\Query::sum()|sum($q)]], [[yii\db\Query::average()|average($q)]], [[yii\db\Query::max()|max($q)]], [[yii\db\Query::min()|min($q)]].
Le paramètre $q est obligatoire pour ces méthodes
et peut être soit un nom de colonne, soit une expression de base de données.




Par exemple :

// SELECT `id`, `email` FROM `user`
$rows = (new \yii\db\Query())
    ->select(['id', 'email'])
    ->from('user')
    ->all();
    
// SELECT * FROM `user` WHERE `username` LIKE `%test%`
$row = (new \yii\db\Query())
    ->from('user')
    ->where(['like', 'username', 'test'])
    ->one();






Note: la méthode [[yii\db\Query::one()|one()]] retourne seulement la première ligne du résultat de la requête.
Elle n’ajoute PAS LIMIT 1 à l’instruction SQL générée.
Cela est bon et préférable si vous savez que la requête ne retourne qu’une seule
ou quelques lignes de données (p. ex. si vous effectuez une requête avec quelques clés primaires).
Néanmoins, si la requête peut potentiellement retourner de nombreuses lignes de données, vous devriez appeler limit(1) explicitement pour améliorer la performance, p. ex. (new \yii\db\Query())->from('user')->limit(1)->one().




Toutes ces méthodes de requête acceptent un paramètre supplémentaire $db représentant la [[yii\db\Connection|connexion à la base de données]]
qui doit être utilisée pour effectuer la requête.
Si vous omettez ce paramètre, le composant d’application db est utilisé en tant que connexion à la base de données. Ci-dessous, nous présentons un autre exemple utilisant la méthode [[yii\db\Query::count()|count()]] :

// exécute SQL: SELECT COUNT(*) FROM `user` WHERE `last_name`=:last_name
$count = (new \yii\db\Query())
    ->from('user')
    ->where(['last_name' => 'Smith'])
    ->count();





Lorsque vous appelez une méthode de requête de [[yii\db\Query]], elle effectue réellement le travail suivant en interne :


	Appelle [[yii\db\QueryBuilder]] pour générer une instruction SQL basée sur la construction courante de [[yii\db\Query]] ;


	Crée un objet [[yii\db\Command]] avec l’instruction SQL générée ;


	Appelle une méthode de requête (p. ex. [[yii\db\Command::queryAll()|queryAll()]]) de [[yii\db\Command]] pour exécuter une instruction SQL et retrouver les données.




Parfois, vous voulez peut-être examiner ou utiliser une instruction SQL construite à partir d’un objet [[yii\db\Query]]. Vous pouvez faire cela avec le code suivant :

$command = (new \yii\db\Query())
    ->select(['id', 'email'])
    ->from('user')
    ->where(['last_name' => 'Smith'])
    ->limit(10)
    ->createCommand();
    
// affiche l'instruction SQL
echo $command->sql;
// affiche les paramètres à lier 
print_r($command->params);

// retourne toutes les lignes du résultat de la requête 
$rows = $command->queryAll();






Indexation des résultats de la requête 

Lorsque vous appelez [[yii\db\Query::all()|all()]], elle retourne un tableau de lignes qui sont indexées par des entiers consécutifs.
Parfois, vous désirez peut-être les indexer différemment, comme les indexer par une colonne particulière ou par des expressions donnant une valeur.
Vous pouvez le faire en appelant [[yii\db\Query::indexBy()|indexBy()]] avant [[yii\db\Query::all()|all()]].
Par exemple :

// retourne [100 => ['id' => 100, 'username' => '...', ...], 101 => [...], 103 => [...], ...]
$query = (new \yii\db\Query())
    ->from('user')
    ->limit(10)
    ->indexBy('id')
    ->all();





Pour indexer par des valeurs d’expressions, passez une fonction anonyme à la méthode [[yii\db\Query::indexBy()|indexBy()]] :

$query = (new \yii\db\Query())
    ->from('user')
    ->indexBy(function ($row) {
        return $row['id'] . $row['username'];
    })->all();





Le fonction anonyme accepte un paramètre $row qui contient les données de la ligne courante
et retourne une valeur scalaire qui est utilisée comme la valeur d’index de la ligne courante.


Note: contrairement aux méthodes de requête telles que [[yii\db\Query::groupBy()|groupBy()]] ou [[yii\db\Query::orderBy()|orderBy()]]
qui sont converties en SQL et font partie de la requête, cette méthode ne fait son travail qu’après que les données ont été retrouvées dans la base de données.
Cela signifie que seuls les noms de colonne qui on fait partie du fragment SELECT dans votre requête peuvent être utilisés.
De plus, si vous avez sélectionné une colonne avec un préfixe de table, p. ex. customer.id, le jeu de résultats ne contient que id c’est pourquoi vous devez appeler
->indexBy('id') sans  préfixe de table.







Requêtes par lots 

Lorsque vous travaillez sur de grandes quantités de données, des méthodes telles que [[yii\db\Query::all()]] ne conviennent pas  car elles requièrent le chargement de toutes les données en mémoire du client.
Pour résoudre cet problème Yii assure la prise en charge de requêtes par lots.
Le serveur conserve les résultats de la requête, et le client utilise un curseur  pour itérer sur le jeu de résultats un lot à la fois.


Attention : il existe des limitations connues et des solutions de contournement pour la mise en œuvre des requêtes par lots par MySQL.




Les requêtes par lots peuvent être utilisées comme suit :

use yii\db\Query;

$query = (new Query())
    ->from('user')
    ->orderBy('id');

foreach ($query->batch() as $users) {
    // $users est dans un tableau de 100 ou moins lignes de la table user. 
}

// ou si vous voulez itérer les lignes une par une 
foreach ($query->each() as $user) {
     //les données sont retrouvées du serveur en lots de 100,
    // $user représente une ligne de données de la table user.
}





Les méthodes [[yii\db\Query::batch()]] et [[yii\db\Query::each()]] retournent un objet [[yii\db\BatchQueryResult]]
qui implémente l’interface Iterator et qui, par conséquent, peut être utilisé dans une construction foreach.
Durant la première itération, une requête SQL est faite à la base de données. Les données sont retrouvées en lots dans les itérations suivantes.
Par défaut, la taille du lot est 100, ce qui signifie que 100 lignes sont retrouvées dans chacun des lots.
Vous pouvez changer la taille du lot en passant le premier paramètre des méthodes batch() ou each().

Comparée à la requête [[yii\db\Query::all()]], la requête par lots ne charge que 100 lignes de données à la fois en mémoire. Si vous traitez les données et les détruisez tout de suite, la requête par lots réduit l’utilisation de la mémoire.

Si vous spécifiez l’indexation du résultat de la requête par une colonne via [[yii\db\Query::indexBy()]],
la requête par lots conserve l’index approprié. Par exemple :

Par exemple :

$query = (new \yii\db\Query())
    ->from('user')
    ->indexBy('username');

foreach ($query->batch() as $users) {
    // $users est indexé par la colonne "username"
}

foreach ($query->each() as $username => $user) {
    // ...
}






Limitations des requêtes par lots dans MySQL 

La mise en œuvre des requêtes par lots de MySQL s’appuie sur la bibliothèque du pilote PDO. Par défaut, les requêtes MySQL sont
mises en tampon [http://php.net/manual/en/mysqlinfo.concepts.buffering.php].
Cela empêche d’utiliser le curseur pour obtenir les données, parce que cela n’empêche pas le jeu résultant complet d’être chargé dans la mémoire du client par le pilote.


Note: lorsque libmysqlclient est utilisé (typique de PHP5), la limite mémoire de  PHP ne compte pas la mémoire utilisée par les jeux de résultats.
Il peut sembler que les requêtes par lot fonctionnent correctement, mais en réalité l’intégralité du jeu de données est chargé dans la mémoire du client.




Pour désactiver la mise en tampon et réduire les exigences en mémoire client, la propriété connexion à PDOT
PDO::MYSQL_ATTR_USE_BUFFERED_QUERY doit être définie à false. Cependant, jusqu’à ce que l’intégralité du jeu de données ait été retrouvé, aucune autre requête ne peut être faite via la même connexion. Cela peut empêcher  ActiveRecord
d’effectuer une requête pour obtenir le schéma de table lorsqu’il le doit.
Si cela n’est pas un problème (le schéma de table est déjà mis en cache), il est possible de commuter la connexion originale en mode sans mise en tampon,
et de revenir en arrière lorsque la requête par lots est terminée.

Yii::$app->db->pdo->setAttribute(\PDO::MYSQL_ATTR_USE_BUFFERED_QUERY, false);

// Effectue la requête par lots

Yii::$app->db->pdo->setAttribute(\PDO::MYSQL_ATTR_USE_BUFFERED_QUERY, true);






Note: dans le cas de  MyISAM, pour toute la durée de la requête par lots, la table peut devenir verrouillée, retardant ainsi ou refusant l’accès en écriture pour une autre connexion. Lors de l’utilisation de requêtes sans mise en tampon, essayez de conserver le curseur ouvert pour un temps aussi court que possible.




Si le schéma n’est pas mis en cache, ou s’il est nécessaire d’effectuer d’autres requêtes alors que la requête par lots est en cours de traitement, vous pouvez créer une connexion à la base de données séparée sans mise en tampon :

$unbufferedDb = new \yii\db\Connection([
    'dsn' => Yii::$app->db->dsn,
    'username' => Yii::$app->db->username,
    'password' => Yii::$app->db->password,
    'charset' => Yii::$app->db->charset,
]);
$unbufferedDb->open();
$unbufferedDb->pdo->setAttribute(\PDO::MYSQL_ATTR_USE_BUFFERED_QUERY, false);





Si vous voulez garantir que la $unbufferedDb a exactement les mêmes attributs PDO gue la $db originale avec mise en tampon mais que PDO::MYSQL_ATTR_USE_BUFFERED_QUERY est false,
envisagez une copie profonde de $db [https://github.com/yiisoft/yii2/issues/8420#issuecomment-301423833],
définissez le à false manuellement.

Ensuite, les requêtes sont créées normalement. La nouvelle connexion est utilisée pour exécuter les requêtes par lots et retrouver des résultats soit par lots, soit un par un :

// obtention des données par lots de 1000
foreach ($query->batch(1000, $unbufferedDb) as $users) {
    // ...
}


// les données sont retrouvées dans le serveur par lots de 1000, mais elles sont itérées une à une 
foreach ($query->each(1000, $unbufferedDb) as $user) {
    // ...
}





Lorsque la connexion n’est plus nécessaire et que le jeu de résultats a été retrouvé, on peut le fermer :

$unbufferedDb->close();






Note: une requête sans mise en tampon utilise moinsde mémoire du côté PHP, mais peut augmenter la charge du serveur MySQL.
Il est recommandé de concevoir votre propre code avec votre pratique en production pour des données massives supplémentaires,
par exemple, divisez la plage pour les clés entières, itérez sur elles avec des requêtes sans mise en tampon [https://github.com/yiisoft/yii2/issues/8420#issuecomment-296109257].









Ajout de conditions et expressions personnalisées 

Comme cela a été mentionné au chapitre Conditions – Format Object, il est possible de créer des classe de condition personnalisées.
Pour l’exemple, créons une condition qui vérifie que des colonnes spécifiques sont inférieures à une valeur donnée.
En utilisant le format opérateur, ça devrait ressembler à ce qui suit :

[
    'and',
    '>', 'posts', $minLimit,
    '>', 'comments', $minLimit,
    '>', 'reactions', $minLimit,
    '>', 'subscriptions', $minLimit
]





Lorsqu’une telle condition est utilisée une seule fois, tout va bien. Dans le cas où elle est utilisée de multiples fois dans une unique requête, cela peut être grandement optimisé.
Créons un objet condition personnalisé pour le démontrer.

Yii dispose d’une classe [[yii\db\conditions\ConditionInterface|ConditionInterface]], qui peut être utilisée pour marquer des classes qui représentent une condition.
Elle nécessite la mise en œuvre de la méthode fromArrayDefinition(), afin de rendre possible la création d’une condition à partir du format tableau.
Dans le cas où vous n’en n’avez pas besoin, vous pouvez mettre cette méthode en œuvre avec lancement d’une exception.

Comme nous créons notre classe de condition personnalisée, nous pouvons construire une API qui s’adapte au mieux à notre tâche.

namespace app\db\conditions;

class AllGreaterCondition implements \yii\db\conditions\ConditionInterface
{
    private $columns;
    private $value;

    /**
     * @param string[] $columns tableau de colonnes qui doivent être plus grande que $value
     * @param mixed $value la valeur à laquelle comparer chaque $column
     */
    public function __construct(array $columns, $value)
    {
        $this->columns = $columns;
        $this->value = $value;
    }
    
    public static function fromArrayDefinition($operator, $operands)
    {
        throw new InvalidArgumentException('Not implemented yet, but we will do it later');
    }
    
    public function getColumns() { return $this->columns; }
    public function getValue() { return $this->vaule; }
}





Ainsi nous pouvons créer un objet condition :

$conditon = new AllGreaterCondition(['col1', 'col2'], 42);





Mais QueryBuilder (le constructeur de requêtes) ne sait toujours pas comment élaborer une condition SQL à partir de cet objet.
Maintenant nous devons créer un constructeur pour cette condition. Il doit mettre en œuvre une méthode build().

namespace app\db\conditions;

class AllGreaterConditionBuilder implements \yii\db\ExpressionBuilderInterface
{
    use \yii\db\Condition\ExpressionBuilderTrait; // Contient le constructeur et la propriété `queryBuilder`.

    /**
     * @param AllGreaterCondition $condition la condition à élaborer
     * @param array $params les paramètres de liaison.
     */ 
    public function build(ConditionInterface $condition, &$params)
    {
        $value = $condition->getValue();
        
        $conditions = [];
        foreach ($condition->getColumns() as $column) {
            $conditions[] = new SimpleCondition($column, '>', $value);
        }

        return $this->queryBuider->buildCondition(new AndCondition($conditions), $params);
    }
}





Ensuite, laissons simplement  [[yii\db\QueryBuilder|QueryBuilder]] prendre connaissance de notre nouvelle condition — établissons une correspondance entre lui et notre tableau  expressionBuilders. Cela peut se faire directement à partir de la configuration de l’application :

'db' => [
    'class' => 'yii\db\mysql\Connection',
    // ...
    'queryBuilder' => [
        'expressionBuilders' => [
            'app\db\conditions\AllGreaterCondition' => 'app\db\conditions\AllGreaterConditionBuilder',
        ],
    ],
],





Maintenant nous sommes en mesure d’utiliser notre condition dans where():

$query->andWhere(new AllGreaterCondition(['posts', 'comments', 'reactions', 'subscriptions'], $minValue));





Si nous voulons rendre possible la création  de notre condition personnalisée en utilisant le format opérateur, nous devons le déclarer dans
[[yii\db\QueryBuilder::conditionClasses|QueryBuilder::conditionClasses]]:

'db' => [
    'class' => 'yii\db\mysql\Connection',
    // ...
    'queryBuilder' => [
        'expressionBuilders' => [
            'app\db\conditions\AllGreaterCondition' => 'app\db\conditions\AllGreaterConditionBuilder',
        ],
        'conditionClasses' => [
            'ALL>' => 'app\db\conditions\AllGreaterCondition',
        ],
    ],
],





Et créer une mise en œuvre réelle de la méthode  AllGreaterCondition::fromArrayDefinition()dans app\db\conditions\AllGreaterCondition:

namespace app\db\conditions;

class AllGreaterCondition implements \yii\db\conditions\ConditionInterface
{
    // ... see the implementation above
     
    public static function fromArrayDefinition($operator, $operands)
    {
        return new static($operands[0], $operands[1]);
    }
}





À la suite de cela, nous pouvons créer notre condition personnalisée en utilisant un format opérateur plus court :

$query->andWhere(['ALL>', ['posts', 'comments', 'reactions', 'subscriptions'], $minValue]);





Vous pouvez noter que deux conceptes ont été utilisés : Expressions et Conditions. Il y a une  [[yii\db\ExpressionInterface]] qui doit être utilisée pour marquer les objets qui requièrent une classe constructrice d’expression qui met en œuvre
[[yii\db\ExpressionBuilderInterface]] pour être construite. Il existe également une  [[yii\db\condition\ConditionInterface]], qui étend
[[yii\db\ExpressionInterface|ExpressionInterface]] et doit être utilisée pour des objets qui peuvent être créés à partir d’un tableau de définition comme cela a été expliqué plus haut, mais qui peuvent aussi bien nécessiter le constructeur.

Pour résumer:


	Expression – est un objet de transfert de donnèes — Data Transfer Object (DTO) — pour un jeu de données, qui peut être compilé en une instruction SQL  (un opérateur, une chaîne de caractères, un tableau, JSON, etc).


	Condition – est un super jeu d’expressions, qui agrège de multiples expressions (ou valeurs scalaires) qui peut être compilé en une unique condition SQL.




Vous pouvez créer votre propre classe qui met en œuvre l’interface  [[yii\db\ExpressionInterface|ExpressionInterface]] pour cacher la complexité de la transformation de données en instructions SQL. Vous en apprendrez plus sur d’autres exemples d’expressions dans le
prochain article;









          

      

      

    

  

  
    
    Classe assistante ArrayHelper
    

    
 
  

    
      
          
            
  
Classe assistante ArrayHelper

En plus du jeu riche de fonctions de tableaux [http://php.net/manual/en/book.array.php] qu’offre PHP, la classe assistante traitant les tableaux dans Yii fournit des méthodes statiques supplémentaires qui vous permettent de traiter les tableaux avec plus d’efficacité.


Obtention de valeurs 

Récupérer des valeurs d’un tableau ou d’un objet ou une structure complexe écrits tous deux en PHP standard est un processus assez répétitif. Vous devez d’abord vérifier que la clé existe avec isset, puis si c’est le cas, vous récupérez la valeur associée, sinon il vous faut fournir une valeur par défaut :

class User
{
    public $name = 'Alex';
}

$array = [
    'foo' => [
        'bar' => new User(),
    ]
];

$value = isset($array['foo']['bar']->name) ? $array['foo']['bar']->name : null;





Yii fournit une méthode très pratique pour faire cela :

$value = ArrayHelper::getValue($array, 'foo.bar.name');





Le premier argument de la méthode indique de quelle source nous voulons récupérer une valeur. Le deuxième spécifie comment récupérer la donnée. Il peut s’agir d’un des éléments suivants :


	Nom d’une clé de tableau ou de la propriété d’un objet de laquelle récupérer une valeur.


	Un jeu de noms de clé de tableau ou de propriétés d’objet séparées par des points, comme dans l’exemple que nous venons de présenter ci-dessus.


	Une fonction de rappel qui retourne une valeur.




Le fonction de rappel doit être la suivante :

$fullName = ArrayHelper::getValue($user, function ($user, $defaultValue) {
    return $user->firstName . ' ' . $user->lastName;
});





Le troisième argument facultatif est la valeur par défaut qui est null si on ne la spécifie pas. Il peut être utilisé comme ceci :

$username = ArrayHelper::getValue($comment, 'user.username', 'Unknown');





Dans le cas où vous voulez récupérer la valeur tout en la retirant immédiatement du tableau, vous pouvez utiliser la méthode remove :

$array = ['type' => 'A', 'options' => [1, 2]];
$type = ArrayHelper::remove($array, 'type');





Après exécution du code, $array contiendra ['options' => [1, 2]] et $type sera A. Notez que contrairement à la méthode getValue, remove accepte seulement les noms de clé.




Tester l’existence des clés 

ArrayHelper::keyExists fonctionne comme array_key_exists [http://php.net/manual/en/function.array-key-exists.php] sauf qu’elle prend également en charge la comparaison de clés insensible à la casse. Par exemple,

$data1 = [
    'userName' => 'Alex',
];

$data2 = [
    'username' => 'Carsten',
];

if (!ArrayHelper::keyExists('username', $data1, false) || !ArrayHelper::keyExists('username', $data2, false)) {
    echo "Veuillez fournir un nom d'utilisateur (username).";
}








Récupération de colonnes 

Il arrive souvent que vous ayez à récupérer une colonne de valeurs d’un tableau de lignes de données ou d’objets. Un exemple courant est l’obtention d’une liste d’identifiants.

$array = [
    ['id' => '123', 'data' => 'abc'],
    ['id' => '345', 'data' => 'def'],
];
$ids = ArrayHelper::getColumn($array, 'id');





Le résultat sera ['123', '345'].

Si des transformations supplémentaires sont nécessaires ou si la manière de récupérer les valeurs est complexe, le second argument peut être formulé sous forme de fonction anonyme :

$result = ArrayHelper::getColumn($array, function ($element) {
    return $element['id'];
});








Réindexation de tableaux 

La méthode index peut être utilisées pour indexer un tableau selon une clé spécifiée. L’entrée doit être soit un tableau multidimensionnel, soit un tableau d’objets. $key peut être un nom de clé du sous-tableau, un nom de propriété d’objet ou une fonction anonyme qui doit retourner la valeur à utiliser comme clé.

L’attribut $groups est un tableau de clés qui est utilisé pour regrouper le tableau d’entrée en un ou plusieurs sous-tableaux basés sur les clés spécifiées.

Si l’argument $key ou sa valeur pour l’élément particulier est null alors que $groups n’est pas défini, l’élément du tableau est écarté. Autrement, si $groups est spécifié, l’élément du tableau est ajouté au tableau résultant sans aucune clé.

Par exemple :

$array = [
    ['id' => '123', 'data' => 'abc', 'device' => 'laptop'],
    ['id' => '345', 'data' => 'def', 'device' => 'tablet'],
    ['id' => '345', 'data' => 'hgi', 'device' => 'smartphone'],
];
$result = ArrayHelper::index($array, 'id');





Le résultat est un tableau associatif, dans lequel la clé est la valeur de l’attribut id :

[
    '123' => ['id' => '123', 'data' => 'abc', 'device' => 'laptop'],
    '345' => ['id' => '345', 'data' => 'hgi', 'device' => 'smartphone']
    // Le second élément du tableau d'origine est écrasé par le dernier élément parce que les identifiants sont identiques. 
]





Une fonction anonyme passée en tant que $key, conduit au même résultat :

$result = ArrayHelper::index($array, function ($element) {
    return $element['id'];
});





Passer id comme troisième argument regroupe $array par id:

$result = ArrayHelper::index($array, null, 'id');





Le résultat est un tableau multidimensionnel regroupé par id au premier niveau et non indexé au deuxième niveau :

[
    '123' => [
        ['id' => '123', 'data' => 'abc', 'device' => 'laptop']
    ],
    '345' => [ // all elements with this index are present in the result array
        ['id' => '345', 'data' => 'def', 'device' => 'tablet'],
        ['id' => '345', 'data' => 'hgi', 'device' => 'smartphone'],
    ]
]





Une fonction anonyme peut également être utilisée dans le tableau de regroupement :

$result = ArrayHelper::index($array, 'data', [function ($element) {
    return $element['id'];
}, 'device']);





Le résultat est un tableau multidimensionnel regroupé par id au premier niveau, par device au deuxième niveau et par data au troisième niveau :

[
    '123' => [
        'laptop' => [
            'abc' => ['id' => '123', 'data' => 'abc', 'device' => 'laptop']
        ]
    ],
    '345' => [
        'tablet' => [
            'def' => ['id' => '345', 'data' => 'def', 'device' => 'tablet']
        ],
        'smartphone' => [
            'hgi' => ['id' => '345', 'data' => 'hgi', 'device' => 'smartphone']
        ]
    ]
]








Construction de tableaux de mise en correspondance 

Afin de construire un tableau de mise en correspondance (paires clé-valeur) sur la base d’un tableau multidimensionnel ou d’un tableau d’objets, vous pouvez utiliser la méthode map.
Les paramètres $from et $to spécifient les noms de clé ou les noms des propriétés pour construire le tableau de mise en correspondance. Le paramètre facultatif $group est un nom de clé ou de propriété qui permet de regrouper les éléments du tableau au premier niveau. Par exemple :

$array = [
    ['id' => '123', 'name' => 'aaa', 'class' => 'x'],
    ['id' => '124', 'name' => 'bbb', 'class' => 'x'],
    ['id' => '345', 'name' => 'ccc', 'class' => 'y'],
];

$result = ArrayHelper::map($array, 'id', 'name');
// le résultat est :
// [
//     '123' => 'aaa',
//     '124' => 'bbb',
//     '345' => 'ccc',
// ]

$result = ArrayHelper::map($array, 'id', 'name', 'class');
// le résultat est :
// [
//     'x' => [
//         '123' => 'aaa',
//         '124' => 'bbb',
//     ],
//     'y' => [
//         '345' => 'ccc',
//     ],
// ]








Tri multidimensionnel 

La méthode multisort facilite le tri d’un tableau d’objets ou de tableaux imbriqués selon une ou plusieurs clés. Par exemple :

$data = [
    ['age' => 30, 'name' => 'Alexander'],
    ['age' => 30, 'name' => 'Brian'],
    ['age' => 19, 'name' => 'Barney'],
];
ArrayHelper::multisort($data, ['age', 'name'], [SORT_ASC, SORT_DESC]);





Après le tri, data contient ce qui suit :

[
    ['age' => 19, 'name' => 'Barney'],
    ['age' => 30, 'name' => 'Brian'],
    ['age' => 30, 'name' => 'Alexander'],
];





Le deuxième argument, qui spécifie les clés de tri peut être une chaîne de caractères si la clé est unique, un tableau dans le cas de clés multiples, ou une fonction anonyme telle que celle qui suit :

ArrayHelper::multisort($data, function($item) {
    return isset($item['age']) ? ['age', 'name'] : 'name';
});





Le troisième argument précise la direction. Dans le cas d’un tri selon une clé unique, il s’agit soit de SORT_ASC, soit de SORT_DESC. Si le tri se fait selon des valeurs multiples, vous pouvez préciser des directions de tri différentes pour chacune des clés en présentant ces directions sous forme de tableau.

Le dernier argument est une option de tri de PHP qui peut prendre les mêmes valeurs que celles acceptées par la fonction sort() [http://php.net/manual/en/function.sort.php] de PHP.




Détection des types de tableau 

Il est pratique de savoir si un tableau est indexé ou associatif. Voici un exemple :

// aucune clé spécifiée
$indexed = ['Qiang', 'Paul'];
echo ArrayHelper::isIndexed($indexed);

// toutes les clés sont des chaînes de caractères
$associative = ['framework' => 'Yii', 'version' => '2.0'];
echo ArrayHelper::isAssociative($associative);








Encodage et décodage de valeurs HTML 

Afin d’encoder ou décoder des caractères spéciaux dans un tableau de chaînes de caractères en/depuis des entités HTML, vous pouvez utiliser les fonctions suivantes :

$encoded = ArrayHelper::htmlEncode($data);
$decoded = ArrayHelper::htmlDecode($data);





Seules les valeurs sont encodées par défaut. En passant un deuxième argument comme false vous pouvez également encoder les clés d’un tableau. L’encodage utilise le jeu de caractères de l’application et on peut le changer via un troisième argument.




Fusion de tableaux 

La fonction [[yii\helpers\ArrayHelper::merge()|ArrayHelper::merge()]] vous permet de fusionner deux, ou plus, tableaux en un seul de manière récursive. Si chacun des tableaux possède un élément avec la même chaîne clé valeur, le dernier écrase le premier (ce qui est un fonctionnement différent de array_merge_recursive() [http://php.net/manual/en/function.array-merge-recursive.php]).
La fusion récursive est entreprise si les deux tableaux possèdent un élément de type tableau avec la même clé. Pour des éléments dont la clé est un entier, les éléments du deuxième tableau sont ajoutés aux éléments du premier tableau. Vous pouvez utiliser l’objet [[yii\helpers\UnsetArrayValue]] pour supprimer la valeur du premier tableau ou [[yii\helpers\ReplaceArrayValue]] pour forcer le remplacement de la première valeur au lieu de la fusion récursive.

Par exemple :

$array1 = [
    'name' => 'Yii',
    'version' => '1.1',
    'ids' => [
        1,
    ],
    'validDomains' => [
        'example.com',
        'www.example.com',
    ],
    'emails' => [
        'admin' => 'admin@example.com',
        'dev' => 'dev@example.com',
    ],
];

$array2 = [
    'version' => '2.0',
    'ids' => [
        2,
    ],
    'validDomains' => new \yii\helpers\ReplaceArrayValue([
        'yiiframework.com',
        'www.yiiframework.com',
    ]),
    'emails' => [
        'dev' => new \yii\helpers\UnsetArrayValue(),
    ],
];

$result = ArrayHelper::merge($array1, $array2);





Le résultat est :

[
    'name' => 'Yii',
    'version' => '2.0',
    'ids' => [
        1,
        2,
    ],
    'validDomains' => [
        'yiiframework.com',
        'www.yiiframework.com',
    ],
    'emails' => [
        'admin' => 'admin@example.com',
    ],
]








Conversion d’objets en tableaux 

Il arrive souvent que vous ayez besoin de convertir un objet, ou un tableau d’objets, en tableau. Le cas le plus courant est la conversion de modèles d’enregistrements actifs afin de servir des tableaux de données via une API REST ou pour un autre usage. Le code suivant peut alors être utilisé :

$posts = Post::find()->limit(10)->all();
$data = ArrayHelper::toArray($posts, [
    'app\models\Post' => [
        'id',
        'title',
        // the key name in array result => property name
        'createTime' => 'created_at',
        // the key name in array result => anonymous function
        'length' => function ($post) {
            return strlen($post->content);
        },
    ],
]);





Le premier argument contient les données à convertir. Dans notre cas, nous convertissons un modèle d’enregistrements actifs Post.

The second argument est un tableau de mise en correspondance de conversions par classe. Nous définissons une mise en correspondance pour le modèle Post. Chaque tableau de mise en correspondance contient un jeu de mise en correspondance. Chaque mise en correspondance peut être :


	Un nom de champ à inclure tel quel.


	Une paire clé-valeur dans laquelle la clé est donnée sous forme de chaîne de caractères et la valeur sous forme du nom de la colonne dont on doit prendre la valeur.


	Une paire clé-valeur dans laquelle la clé est donnée sous forme de chaîne de caractères et la valeur sous forme de fonction de rappel qui la retourne.




Le résultat de la conversion ci-dessus pour un modèle unique est :

[
    'id' => 123,
    'title' => 'test',
    'createTime' => '2013-01-01 12:00AM',
    'length' => 301,
]





Il est possible de fournir une manière par défaut de convertir un objet en tableau pour une classe spécifique en implémentant l’interface [[yii\base\Arrayable|Arrayable]] dans cette classe.




Test de l’appartenance à un tableau 

Souvent, vous devez savoir si un élément se trouve dans un tableau ou si un jeu d’éléments est un sous-ensemble d’un autre. Bien que PHP offre la fonction in_array(), cette dernière ne prend pas en charge les sous-ensembles ou les objets \Traversable.

Pour faciliter ce genre de tests, [[yii\helpers\ArrayHelper]] fournit les méthodes [[yii\helpers\ArrayHelper::isIn()|isIn()]]
et [[yii\helpers\ArrayHelper::isSubset()|isSubset()]] avec la même signature que in_array() [http://php.net/manual/en/function.in-array.php].

// true
ArrayHelper::isIn('a', ['a']);
// true
ArrayHelper::isIn('a', new ArrayObject(['a']));

// true 
ArrayHelper::isSubset(new ArrayObject(['a', 'c']), new ArrayObject(['a', 'b', 'c']));











          

      

      

    

  

  
    
    Classe assistante Html
    

    
 
  

    
      
          
            
  
Classe assistante Html

Toutes les applications Web génèrent un grand nombre de balises HTML. Si le code HTML est statique, il peut être créé efficacement sous forme de mélange de code PHP et de code HTML dans un seul fichier [http://php.net/manual/en/language.basic-syntax.phpmode.php], mais lorsqu’il est généré dynamiquement, cela commence à être compliqué à gérer sans une aide supplémentaire. Yii fournit une telle aide sous la forme de la classe assistante Html, qui offre un jeu de méthodes statiques pour manipuler les balises Html les plus courantes, leurs options et leur contenu.


Note: si votre code HTML est presque statique, il vaut mieux utiliser HTML directement. Il n’est pas nécessaire d’envelopper tout dans des appels aux méthodes de la classe assistante Html.





Les bases 

Comme la construction de code HTML dynamique en concaténant des chaînes de caractère peut très vite tourner à la confusion, Yii fournit un jeu de méthodes pour manipuler les options de balises et construire des balises s’appuyant sur ces options.


Génération de balises 

Le code pour générer une balise ressemble à ceci :

<?= Html::tag('p', Html::encode($user->name), ['class' => 'username']) ?>





Le premier argument est le nom de la balise. Le deuxième est le contenu qui apparaît entre l’ouverture de la balise et sa fermeture.
Notez que nous utilisons Html::encode – c’est parce que le contenu n’est pas encodé automatiquement pour permetre l’utilisation de HTML quand c’est nécessaire.
Le troisième est un tableau d’options HTML ou, en d’autres mots, les attributs de la balise.
Dans ce tableau, la clé est le nom de l’attribut (comme class, href ou target) et la valeur est sa valeur.

Le code ci-dessus génère le code HTML suivant :

<p class="username">samdark</p>





Dans le cas où vous avez simplement besoin d’ouvrir ou de fermer la balise, vous pouvez utiliser les méthodes Html::beginTag() et Html::endTag().

Des options sont utilisées dans de nombreuses méthodes de la classe assistante Html et de nombreux composants graphiques (widgets). Dans tous ces cas, il y a quelques manipulations supplémentaires à connaître :


	Si une valeur est null, l’attribut correspondant n’est pas rendu.


	Les attributs du type booléen sont traités comme des
attributs booléens  [http://www.w3.org/TR/html5/infrastructure.html#boolean-attributes].


	Les valeurs des attributs sont encodés HTML à l’aide de la méthode [[yii\helpers\Html::encode()|Html::encode()]].


	Si la valeur d’un attribut est un tableau, il est géré comme suit :


	Si l’attribut est un attribut de donnée tel que listé dans [[yii\helpers\Html::$dataAttributes]], tel que data ou ng,
une liste d’attributs est rendue, un pour chacun des élément dans le tableau de valeurs. Par exemple,
'data' => ['id' => 1, 'name' => 'yii'] génère data-id="1" data-name="yii"; et
'data' => ['params' => ['id' => 1, 'name' => 'yii'], 'status' => 'ok'] génère
data-params='{"id":1,"name":"yii"}' data-status="ok". Notez que dans le dernier exemple le format JSON est utilisé pour rendre le sous-tableau.


	Si l’attribut n’est PAS un attribut de donnée, la valeur est encodée JSON. Par exemple,
['params' => ['id' => 1, 'name' => 'yii'] génère params='{"id":1,"name":"yii"}'.











Formation des classes et des styles CSS 

Lors de la construction des options pour des balises HTML, nous démarrons souvent avec des valeurs par défaut qu’il faut modifier. Afin d’ajouter ou de retirer une classe, vous pouvez utiliser ce qui suit :

$options = ['class' => 'btn btn-default'];

if ($type === 'success') {
    Html::removeCssClass($options, 'btn-default');
    Html::addCssClass($options, 'btn-success');
}

echo Html::tag('div', 'Pwede na', $options);

// si la valeur de $type est 'success' le rendu sera
// <div class="btn btn-success">Pwede na</div>





Vous pouvez spécifier de multiples classe CSS en utilisant le tableau de styles également :

$options = ['class' => ['btn', 'btn-default']];

echo Html::tag('div', 'Save', $options);
// rend '<div class="btn btn-default">Save</div>'





Vous pouvez aussi utiliser le tableau de styles pour ajouter ou retirer des classes :

$options = ['class' => 'btn'];

if ($type === 'success') {
    Html::addCssClass($options, ['btn-success', 'btn-lg']);
}

echo Html::tag('div', 'Save', $options);
// rend '<div class="btn btn-success btn-lg">Save</div>'





Html::addCssClass() empêche la duplication, vous n’avez donc pas à vous préoccuper de savoir si une classe apparaît deux fois :

$options = ['class' => 'btn btn-default'];

Html::addCssClass($options, 'btn-default'); // class 'btn-default' is already present

echo Html::tag('div', 'Save', $options);
// rend '<div class="btn btn-default">Save</div>'





Si l’option classe CSS est spécifiée en utilisant le tableau de styles, vous pouvez utiliser une clé nommée pour indiquer le but logique de la classe. Dans ce cas, une classe utilisant la même clé dans le tableau de styles passé à Html::addClass() est ignorée :

$options = [
    'class' => [
        'btn',
        'theme' => 'btn-default',
    ]
];

Html::addCssClass($options, ['theme' => 'btn-success']); // la clé 'theme' est déjà utilisée

echo Html::tag('div', 'Save', $options);
// rend '<div class="btn btn-default">Save</div>'





Les styles CSS peuvent être définis d’une façon similaire en utilisant l’attribut style :

$options = ['style' => ['width' => '100px', 'height' => '100px']];

// donne style="width: 100px; height: 200px; position: absolute;"
Html::addCssStyle($options, 'height: 200px; position: absolute;');

// gives style="position: absolute;"
Html::removeCssStyle($options, ['width', 'height']);





Lors de l’utilisation de  [[yii\helpers\Html::addCssStyle()|addCssStyle()]], vous pouvez spécifier soit un tableau de paires clé-valeur qui correspond aux propriétés CSS noms et valeurs, soit une chaîne de caractères telle que width: 100px; height: 200px;. Ces formats peuvent être convertis de l’un en l’autre en utilisant les méthodes [[yii\helpers\Html::cssStyleFromArray()|cssStyleFromArray()]] et
[[yii\helpers\Html::cssStyleToArray()|cssStyleToArray()]]. La méthode [[yii\helpers\Html::removeCssStyle()|removeCssStyle()]]
accepte un tableau de propriétés à retirer. S’il s’agit d’une propriété unique, elle peut être spécifiée sous forme de chaîne de caractères.




Encodage et décodage du contenu 

Pour que le contenu puisse être affiché en HTML de manière propre et en toute sécurité, les caractères spéciaux du contenu doivent être encodés. En PHP, cela s’obtient avec htmlspecialchars [http://www.php.net/manual/en/function.htmlspecialchars.php] et
htmlspecialchars_decode [http://www.php.net/manual/en/function.htmlspecialchars-decode.php]. Le problème rencontré en utilisant ces méthodes directement est que vous devez spécifier l’encodage et des options supplémentaires tout le temps. Comme ces options restent toujours les mêmes et que l’encodage doit correspondre à celui de l’application pour éviter les problèmes de sécurité, Yii fournit deux méthodes compactes et faciles à utiliser :

$userName = Html::encode($user->name);
echo $userName;

$decodedUserName = Html::decode($userName);










Formulaires 

Manipuler des formulaires dans le code HTML est tout à fait répétitif et sujet à erreurs. À cause de cela, il existe un groupe de méthodes pour aider à les manipuler.


Note : envisagez d’utiliser [[yii\widgets\ActiveForm|ActiveForm]] dans le cas où vous avez affaire à des modèles et que ces derniers doivent être validés.





Création de formulaires 

Les formulaires peut être ouverts avec la méthode [[yii\helpers\Html::beginForm()|beginForm()]] comme ceci :

<?= Html::beginForm(['order/update', 'id' => $id], 'post', ['enctype' => 'multipart/form-data']) ?>





Le premier argument est l’URL à laquelle le formulaire sera soumis. Il peut être spécifié sous la forme d’une route Yii et de paramètres acceptés par [[yii\helpers\Url::to()|Url::to()]].
Le deuxième est la méthode à utiliser. post est la méthode par défaut. Le troisième est un tableau d’options pour la balise form. Dans ce cas, nous modifions l’encodage des données du formulaire dans la requête POST en multipart/form-data, ce qui est requis pour envoyer des fichiers.

La fermeture du formulaire se fait simplement par :

<?= Html::endForm() ?>








Boutons 

Pour générer des boutons, vous pouvez utiliser le code suivant :

<?= Html::button('Pressez-mo!', ['class' => 'teaser']) ?>
<?= Html::submitButton('Envoyer', ['class' => 'submit']) ?>
<?= Html::resetButton('Ré-initialiser', ['class' => 'reset']) ?>





Le premier argument pour les trois méthodes est l’intitulé du bouton, le deuxième est un tableau d’options.
L’intitulé n’est pas encodé, mais si vous affichez des données en provenance de l’utilisateur, encodez les avec [[yii\helpers\Html::encode()|Html::encode()]].




Champs d’entrée 

Il y a deux groupes de méthodes d’entrée de données. Celles qui commencent par active, est qui sont appelées entrées actives, et celles qui ne commencent pas par ce mot. Les entrées actives prennent leurs données dans le modèle à partir des attributs spécifiés, tandis que pour les entrées régulières, les données sont spécifiées directement.

Les méthodes les plus génériques sont :

type, nom de l'entrée, valeur de l'entrée, options
<?= Html::input('text', 'username', $user->name, ['class' => $username]) ?>

type, modèle, nom de l'attribut du modèle, options
<?= Html::activeInput('text', $user, 'name', ['class' => $username]) ?>





Si vous connaissez le type de l’entrée à l’avance, il est plus commode d’utiliser les méthodes raccourcis :


	[[yii\helpers\Html::buttonInput()]]


	[[yii\helpers\Html::submitInput()]]


	[[yii\helpers\Html::resetInput()]]


	[[yii\helpers\Html::textInput()]], [[yii\helpers\Html::activeTextInput()]]


	[[yii\helpers\Html::hiddenInput()]], [[yii\helpers\Html::activeHiddenInput()]]


	[[yii\helpers\Html::passwordInput()]] / [[yii\helpers\Html::activePasswordInput()]]


	[[yii\helpers\Html::fileInput()]], [[yii\helpers\Html::activeFileInput()]]


	[[yii\helpers\Html::textarea()]], [[yii\helpers\Html::activeTextarea()]]




Les listes radio et les boîtes à cocher sont un peu différentes en matière de signature de méthode :

<?= Html::radio('agree', true, ['label' => 'I agree']);
<?= Html::activeRadio($model, 'agree', ['class' => 'agreement'])

<?= Html::checkbox('agree', true, ['label' => 'I agree']);
<?= Html::activeCheckbox($model, 'agree', ['class' => 'agreement'])





Les listes déroulantes et les boîtes listes peuvent être rendues comme suit :

<?= Html::dropDownList('list', $currentUserId, ArrayHelper::map($userModels, 'id', 'name')) ?>
<?= Html::activeDropDownList($users, 'id', ArrayHelper::map($userModels, 'id', 'name')) ?>

<?= Html::listBox('list', $currentUserId, ArrayHelper::map($userModels, 'id', 'name')) ?>
<?= Html::activeListBox($users, 'id', ArrayHelper::map($userModels, 'id', 'name')) ?>





Le premier argument est le nom de l’entrée, le deuxième est la valeur sélectionnée actuelle et le troisième est un tableau de paires clé-valeur, dans lequel la clé est la valeur d’entrée dans la liste et la valeur est l’étiquette qui correspond à cette valeur dans la liste.

Si vous désirez que des choix multiples soient sélectionnables, vous pouvez utiliser la liste à sélection multiples (checkbox list) :

<?= Html::checkboxList('roles', [16, 42], ArrayHelper::map($roleModels, 'id', 'name')) ?>
<?= Html::activeCheckboxList($user, 'role', ArrayHelper::map($roleModels, 'id', 'name')) ?>





Sinon utilisez la liste radio :

<?= Html::radioList('roles', [16, 42], ArrayHelper::map($roleModels, 'id', 'name')) ?>
<?= Html::activeRadioList($user, 'role', ArrayHelper::map($roleModels, 'id', 'name')) ?>








Étiquettes et erreurs 

Comme pour les entrées, il existe deux méthodes pour générer les étiquettes de formulaire. Celles pour les entrées « actives » qui prennent leurs étiquettes dans le modèle, et celles « non actives » qui sont étiquetées directement :

<?= Html::label('User name', 'username', ['class' => 'label username']) ?>
<?= Html::activeLabel($user, 'username', ['class' => 'label username']) ?>





Pour afficher les erreurs de formulaire à partir d’un modèle ou sous forme de résumé pour un modèle, vous pouvez utiliser :

<?= Html::errorSummary($posts, ['class' => 'errors']) ?>





Pour afficher une erreur individuellement :

<?= Html::error($post, 'title', ['class' => 'error']) ?>








Nom et valeur des entrées  

Il existe deux méthodes pour obtenir des noms, des identifiants et des valeurs pour des champs d’entrée basés sur un modèle. Elles sont essentiellement utilisées en interne, mais peuvent être pratiques quelques fois :

// Post[title]
echo Html::getInputName($post, 'title');

// post-title
echo Html::getInputId($post, 'title');

// my first post
echo Html::getAttributeValue($post, 'title');

// $post->authors[0]
echo Html::getAttributeValue($post, '[0]authors[0]');





Dans ce qui précède, le premier argument est le modèle, tandis que le deuxième est l’expression d’attribut. Dans sa forme la plus simple, l’expression est juste un nom d’attribut, mais il peut aussi s’agir d’un nom d’attribut préfixé et-ou suffixé par des index de tableau, ce qui est essentiellement le cas pour des entrées tabulaires :


	[0]content est utilisé dans des entrées de données tabulaires pour représenter l’attribut content pour le premier modèle des entrées tabulaires ;


	dates[0] représente le premier élément du tableau de l’attribut dates ;


	[0]dates[0] représente le premier élément du tableau de l’attribut dates pour le premier modèle des entrées tabulaires.




Afin d’obtenir le nom de l’attribut sans suffixe ou préfixe, vous pouvez utiliser ce qui suit :

// dates
echo Html::getAttributeName('dates[0]');










Styles et scripts 

Il existe deux méthodes pour générer les balises enveloppes des styles et des scripts :

<?= Html::style('.danger { color: #f00; }') ?>

Produit

<style>.danger { color: #f00; }</style>


<?= Html::script('alert("Hello!");', ['defer' => true]);

Produit

<script defer>alert("Hello!");</script>





Si vous désirez utiliser utiliser un style externe d’un fichier CSS :

<?= Html::cssFile('@web/css/ie5.css', ['condition' => 'IE 5']) ?>

génère

<!--[if IE 5]>
    <link href="http://example.com/css/ie5.css" />
<![endif]-->





Le premier argument est l’URL. Le deuxième est un tableau d’options. En plus des options normales, vous pouvez spécifier :


	condition pour envelopper <link dans des commentaires conditionnels avec la condition spécifiée. Nous espérons que vous n’aurez jamais besoin de commentaires conditionnels ;


	noscript peut être défini à true pour envelopper <link dans une balise <noscript> de façon à ce qu’elle soit incluse seulement si le navigateur ne prend pas en charge JavaScript ou si l’utilisateur l’a désactivé.




Pour lier un fichier JavaScript :

<?= Html::jsFile('@web/js/main.js') ?>





Se passe comme avec CSS, le premier argument spécifie l’URL du fichier à inclure. Les options sont passées via le deuxième argument. Dans les options vous pouvez spécifier condition de la même manière que dans les options pour un fichier CSS (méthode cssFile).




Hyperliens 

Il y a une méthode commode pour générer les hyperliens :

<?= Html::a('Profile', ['user/view', 'id' => $id], ['class' => 'profile-link']) ?>





Le premier argument est le titre. Il n’est pas encodé, mais si vous utilisez des données entrées par l’utilisateur, vous devez les encoder avec Html::encode(). Le deuxième argument est ce qui se retrouvera dans l’attribut href de la balise <a.

Voir Url::to() pour les détails sur les valeurs acceptées.
Le troisième argument est un tableau pour les attributs de la balise.

Si vous devez générer des liens  mailto, vous pouvez utiliser le code suivant :

<?= Html::mailto('Contact us', 'admin@example.com') ?>








Images 

Pour générer une balise image, utilisez le code suivant :

<?= Html::img('@web/images/logo.png', ['alt' => 'My logo']) ?>

qui génère

<img src="http://example.com/images/logo.png" alt="My logo" />





En plus des alias, le premier argument accepte les routes, les paramètres et les URL, tout comme Url::to().




Listes 

Les listes non ordonnées peuvent être générées comme suit :

<?= Html::ul($posts, ['item' => function($item, $index) {
    return Html::tag(
        'li',
        $this->render('post', ['item' => $item]),
        ['class' => 'post']
    );
}]) ?>





Pour une liste ordonnée, utilisez plutôt Html::ol().







          

      

      

    

  

  
    
    Classes assistantes
    

    
 
  

    
      
          
            
  
Classes assistantes


Note: cette section est en cours de développement.




Yii procure de nombreuses classes qui vous aident à simplifier le code de tâches courantes, telles que la manipulation de chaînes de caractères ou de tableaux, la génération de code HTML, et ainsi de suite. Ces classes assistantes sont organisées dans l’espace de noms yii\helpers et sont toutes des classes statiques (ce qui signifie qu’elles ne contiennent que des propriétés et des méthodes statiques et ne doivent jamais être instanciées).

Vous utilisez une classe assistante en appelant directement une de ses méthodes statiques, comme ceci :

use yii\helpers\Html;

echo Html::encode('Test > test');






Note: pour prendre en charge la personnalisation des classes assistantes, Yii éclate chacune des classes assistantes du noyau en deux classes : une classe de base (p. ex. BaseArrayHelper) et une classe concrète (p. ex. ArrayHelper). Lorsque vous utilisez une classe assistante, vous devez utiliser la version concrète uniquement et ne jamais utiliser la classe de base.





Classes assistantes du noyau

Les versions de Yii fournissent les classes assistantes du noyau suivantes :


	ArrayHelper


	Console


	FileHelper


	FormatConverter


	Html


	HtmlPurifier


	Imagine (provided by yii2-imagine extension)


	Inflector


	Json


	Markdown


	StringHelper


	Url


	VarDumper







Personnalisation des classes assistantes 

Pour personnaliser une classe assistante du noyau (p. ex. [[yii\helpers\ArrayHelper]]), vous devez créer une nouvelle classe qui étend la classe de base correspondant à la classe assistante (p. ex. [[yii\helpers\ArrayHelper]]), y compris son espace de noms. Cette classe sera ensuite configurée pour remplacer l’implémentation originale de Yii.

L’exemple qui suit montre comment personnaliser la méthode [[yii\helpers\ArrayHelper::merge()|merge()]] de la classe [[yii\helpers\ArrayHelper]] :

<?php

namespace yii\helpers;

class ArrayHelper extends BaseArrayHelper
{
    public static function merge($a, $b)
    {
        // votre implémentation personnalisée
    }
}





Sauvegardez votre classe dans un fichier nommé ArrayHelper.php. Le fichier peut se trouver dans n’importe quel dossier, par exemple, @app/components.

Ensuite, dans le script d’entrée de votre application, ajoutez la ligne de code suivante, après l’inclusion du fichier yii.php pour dire à la classe autoloader de Yii de charger votre classe personnalisée au lieu de la classe assistance originale de Yii.

Yii::$classMap['yii\helpers\ArrayHelper'] = '@app/components/ArrayHelper.php';





Notez que la personnalisation d’une classe assistante n’est utile que si vous désirez changer le comportement d’une fonction existante de la classe assistante. Si vous désirez ajouter une fonction additionnelle à utiliser dans votre application, le mieux est de créer une classe assistante séparée pour cela.







          

      

      

    

  

  
    
    Classe assistante Url
    

    
 
  

    
      
          
            
  
Classe assistante Url

La classe assistante Url fournit un jeu de méthodes statiques pour gérer les URL.


Obtenir des URL communes 

Vous pouvez utiliser deux méthodes pour obtenir des URL communes : l’URL de la page d’accueil et l’URL de base de la requête courante. Pour obtenir l’URL de la page d’accueil, utilisez ce qui suit :

$relativeHomeUrl = Url::home();
$absoluteHomeUrl = Url::home(true);
$httpsAbsoluteHomeUrl = Url::home('https');





Si aucun paramètre n’est passé, l’URL générée est relative. Vous pouvez passer true pour obtenir une URL absolue pour le schéma courant ou spécifier un schéma explicitement (https, http).

Pour obtenir l’URL de base de la requête courante utilisez ceci :

$relativeBaseUrl = Url::base();
$absoluteBaseUrl = Url::base(true);
$httpsAbsoluteBaseUrl = Url::base('https');





L’unique paramètre de la méthode fonctionne comme pour Url::home().




Création d’URL 

En vue de créer une URL pour une route donnée, utilisez la méthode Url::toRoute(). La méthode utilise [[\yii\web\UrlManager]] pour créer une URL :

$url = Url::toRoute(['product/view', 'id' => 42]);





Vous pouvez spécifier la route sous forme de chaîne de caractère, p. ex. site/index. Vous pouvez également utiliser un tableau si vous désirez spécifier des paramètres de requête supplémentaires pour l’URL créée. Le format du tableau doit être :

// génère : /index.php?r=site%2Findex&param1=value1&param2=value2
['site/index', 'param1' => 'value1', 'param2' => 'value2']





Si vous voulez créer une URL avec une ancre, vous pouvez utiliser le format de tableau avec un paramètre #. Par exemple :

// génère: /index.php?r=site%2Findex&param1=value1#name
['site/index', 'param1' => 'value1', '#' => 'name']





Une route peut être ,soit absolue, soit relative. Une route absolue commence par une barre oblique de division (p. ex. /site/index) tandis que route relative commence sans ce caractère (p. ex. site/index ou index). Une route relative peut être convertie en une route absolue en utilisant une des règles suivantes :


	Si la route est une chaîne de caractères vide, la [[\yii\web\Controller::route|route]] est utilisée ;


	Si la route ne contient aucune barre oblique de division (p. ex. index), elle est considérée être un identifiant d’action dans le contrôleur courant et sera préfixée par l’identifiant du contrôleur ([[\yii\web\Controller::uniqueId]]);


	Si la route ne commence pas par une barre oblique de division (p. ex. site/index), elle est considérée être une route relative au module courant et sera préfixée par l’identifiant du module ([[\yii\base\Module::uniqueId|uniqueId]]).




Depuis la version 2.0.2, vous pouvez spécifier une route sous forme d’alias. Si c’est le cas, l’alias sera d’abord converti en la route réelle puis transformé en une route absolue en respectant les règles ci-dessus.

Voci quelques exemple d’utilisation de cette méthode :

// /index.php?r=site%2Findex
echo Url::toRoute('site/index');

// /index.php?r=site%2Findex&src=ref1#name
echo Url::toRoute(['site/index', 'src' => 'ref1', '#' => 'name']);

// /index.php?r=post%2Fedit&id=100     assume the alias "@postEdit" is defined as "post/edit"
echo Url::toRoute(['@postEdit', 'id' => 100]);

// http://www.example.com/index.php?r=site%2Findex
echo Url::toRoute('site/index', true);

// https://www.example.com/index.php?r=site%2Findex
echo Url::toRoute('site/index', 'https');





Il existe une autre méthode Url::to() très similaire à  [[toRoute()]]. La seule différence est que cette méthode requiert la spécification d’une route sous forme de tableau seulement. Si une chaîne de caractères est données, elle est traitée comme une URL.

Le premier argument peut être :


	un tableau : [[toRoute()]] sera appelée pour générer l’URL. Par exemple :
['site/index'], ['post/index', 'page' => 2]. Reportez-vous à la méthode [[toRoute()]] pour plus de détails sur la manière de spécifier une route.


	une chaîne de caractères commençant par @: elle est traitée commme un alias, et la chaine aliasée correspondante est retournée ;


	une chaîne de caractères vide : l’URL couramment requise est retournée ;


	une chaîne de caractères normale : elle est retournée telle que.




Lorsque $scheme est spécifié (soit une chaîne de caractères, soit true), une URL absolue avec l’information hôte tirée de [[\yii\web\UrlManager::hostInfo]]) est retournée. Si$url est déjà une URL absolue, son schéma est remplacé par celui qui est spécifié.

Voici quelques exemples d’utilisation :

// /index.php?r=site%2Findex
echo Url::to(['site/index']);

// /index.php?r=site%2Findex&src=ref1#name
echo Url::to(['site/index', 'src' => 'ref1', '#' => 'name']);

// /index.php?r=post%2Fedit&id=100     assume the alias "@postEdit" is defined as "post/edit"
echo Url::to(['@postEdit', 'id' => 100]);

// l'URL couramment requise
echo Url::to();

// /images/logo.gif
echo Url::to('@web/images/logo.gif');

// images/logo.gif
echo Url::to('images/logo.gif');

// http://www.example.com/images/logo.gif
echo Url::to('@web/images/logo.gif', true);

// https://www.example.com/images/logo.gif
echo Url::to('@web/images/logo.gif', 'https');





Depuis la version 2.0.3, vous pouvez utiliser [[yii\helpers\Url::current()]] pour créer une URL basée sur la route couramment requise et sur les paramètres de la méthode GET. Vous pouvez modifier ou retirer quelques uns des paramètres GET et en ajouter d’autres en passant le paramètre $params à la méthode. Par exemple :

// suppose que $_GET = ['id' => 123, 'src' => 'google'],et que la route courante est "post/view"

// /index.php?r=post%2Fview&id=123&src=google
echo Url::current();

// /index.php?r=post%2Fview&id=123
echo Url::current(['src' => null]);
// /index.php?r=post%2Fview&id=100&src=google
echo Url::current(['id' => 100]);








Se souvenir d’URL 

Il y a des cas dans lesquels vous avez besoin de mémoriser une URL et ensuite de l’utiliser durant le traitement d’une des requêtes séquentielles. Cela peut être fait comme suit :

// se souvenir de l'URL courante 
Url::remember();

// Se souvenir de l'URL spécifiée. Voir Url::to() pour le format des arguments.
Url::remember(['product/view', 'id' => 42]);

// Se souvenir de  l'URL spécifiée avec un nom
Url::remember(['product/view', 'id' => 42], 'product');





Dans la prochaine requête, vous pouvez récupérer l’URL mémorisée comme ceci :

$url = Url::previous();
$productUrl = Url::previous('product');








Vérification des URL relatives 

Pour savoir si une URL est relative, c.-à-d. n’a pas de partie « hôte », vous pouvez utiliser le code suivant :

$isRelative = Url::isRelative('test/it');











          

      

      

    

  

  
    
    Chargement de fichiers sur le serveur
    

    
 
  

    
      
          
            
  
Chargement de fichiers sur le serveur

Le chargement de fichiers sur le serveur dans Yii est ordinairement effectué avec l’aide de [[yii\web\UploadedFile]] qui encapsule chaque fichier chargé dans un objet UploadedFile. Combiné avec les [[yii\widgets\ActiveForm]] et les modèles, vous pouvez aisément mettre en œuvre un mécanisme sûr de chargement de fichiers sur le serveur.


Création de modèles 

Comme on le ferait avec des entrées de texte simple, pour charger un unique fichier sur le serveur, vous devez créer une classe de modèle et utliser un attribut du modèle pour conserver un instance du fichier chargé. Vous devez également déclarer une règle de validation pour valider le fichier chargé. Par exemple :

namespace app\models;

use yii\base\Model;
use yii\web\UploadedFile;

class UploadForm extends Model
{
    /**
     * @var UploadedFile
     */
    public $imageFile;

    public function rules()
    {
        return [
            [['imageFile'], 'file', 'skipOnEmpty' => false, 'extensions' => 'png, jpg'],
        ];
    }
    
    public function upload()
    {
        if ($this->validate()) {
            $this->imageFile->saveAs('uploads/' . $this->imageFile->baseName . '.' . $this->imageFile->extension);
            return true;
        } else {
            return false;
        }
    }
}





Dans le code ci-dessus, l’attribut imageFile est utilisé pur conserver une instance du fichier chargé. Il est associé à une règle de validation de fichier (file) qui utilise [[yii\validators\FileValidator]] pour garantir que l’extension du nom de fichier chargé est png ou jpg. La méthode upload() effectue l’examen de validation et sauvegarde le fichier sur le serveur.

Le validateur file vous permet de vérifier l’extension du fichier, sa taille, son type MIME, etc. Reportez-vous à la section Validateurs de noyau pour plus de détails.


Tip: si vous chargez une image sur le serveur, vous pouvez envisager l’utilisation du validateur image au lieu de file. Le validateur image est mis en œuvre via [[yii\validators\ImageValidator]] qui vérifie si un attribut a reçu une image valide qui peut être, soit sauvegardée, soit traitée en utilisant l’extension Imagine [https://github.com/yiisoft/yii2-imagine].







Rendu d’une entrée de fichier 

Ensuite, créez une entrée de fichier dans une vue :

<?php
use yii\widgets\ActiveForm;
?>

<?php $form = ActiveForm::begin(['options' => ['enctype' => 'multipart/form-data']]) ?>

    <?= $form->field($model, 'imageFile')->fileInput() ?>

    <button>Submit</button>

<?php ActiveForm::end() ?>





Il est important de se rappeler que vous devez ajouter l’option enctype au formulaire afin que le fichier soit proprement chargé sur le serveur. L’appel de fileInput() rend une balise <input type="file"> qui permet à l’utilisateur de sélectionner un fichier à charger sur le serveur.


Tip: depuis la version 2.0.8, [[yii\widgets\ActiveField::fileInput|fileInput]] ajoute l’option enctype au formulaire automatiquement lorsqu’un champ d’entrée de fichier est utilisé.







Câblage 

Maintenant dans une action de contrôleur, écrivez le code de câblage entre le modèle et la vue pour mettre en œuvre le chargement sur le serveur :

namespace app\controllers;

use Yii;
use yii\web\Controller;
use app\models\UploadForm;
use yii\web\UploadedFile;

class SiteController extends Controller
{
    public function actionUpload()
    {
        $model = new UploadForm();

        if (Yii::$app->request->isPost) {
            $model->imageFile = UploadedFile::getInstance($model, 'imageFile');
            if ($model->upload()) {
                // le fichier a été chargé avec succès sur le serveur
                return;
            }
        }

        return $this->render('upload', ['model' => $model]);
    }
}





Dans le code ci-dessus, lorsque le formulaire est soumis, la méthode [[yii\web\UploadedFile::getInstance()]] est appelée pour représenter le fichier chargé sous forme d’instance de UploadedFile. Nous comptons ensuite sur la validation du modèle pour garantir que le fichier chargé est valide et le sauvegarder sur le serveur.




Chargement sur le serveur de plusieurs fichiers  

Vous pouvez également charger sur le serveur plusieurs fichiers à la fois, avec quelques ajustements au code présenté dans les sous-sections précédentes.

Tout d’abord, vous devez ajuster la classe du modèle en ajoutant l’option maxFiles dans la règle de validation de file pour limiter le nombre maximum de fichiers à charger simultanément. Définir maxFiles à 0 signifie que ce nombre n’est pas limité. Le nombre maximal de fichiers que l’on peut charger simultanément est aussi limité par la directive PHP max_file_uploads [http://php.net/manual/en/ini.core.php#ini.max-file-uploads], dont la valeur par défaut est 20. La méthode upload() doit aussi être modifiée pour permettre la sauvegarde des fichiers un à un.

namespace app\models;

use yii\base\Model;
use yii\web\UploadedFile;

class UploadForm extends Model
{
    /**
     * @var UploadedFile[]
     */
    public $imageFiles;

    public function rules()
    {
        return [
            [['imageFiles'], 'file', 'skipOnEmpty' => false, 'extensions' => 'png, jpg', 'maxFiles' => 4],
        ];
    }
    
    public function upload()
    {
        if ($this->validate()) { 
            foreach ($this->imageFiles as $file) {
                $file->saveAs('uploads/' . $file->baseName . '.' . $file->extension);
            }
            return true;
        } else {
            return false;
        }
    }
}





Dans le fichier de vue, vous devez ajouter l’option multiple à l’appel de fileInput() afin que le champ d’entrée puisse recevoir plusieurs fichiers :

<?php
use yii\widgets\ActiveForm;
?>

<?php $form = ActiveForm::begin(['options' => ['enctype' => 'multipart/form-data']]) ?>

    <?= $form->field($model, 'imageFiles[]')->fileInput(['multiple' => true, 'accept' => 'image/*']) ?>

    <button>Submit</button>

<?php ActiveForm::end() ?>





Pour finir, dans l’action du contrôleur, vous devez appeler UploadedFile::getInstances() au lieu de UploadedFile::getInstance() pour assigner un tableau d’instances de UploadedFile à UploadForm::imageFiles.

namespace app\controllers;

use Yii;
use yii\web\Controller;
use app\models\UploadForm;
use yii\web\UploadedFile;

class SiteController extends Controller
{
    public function actionUpload()
    {
        $model = new UploadForm();

        if (Yii::$app->request->isPost) {
            $model->imageFiles = UploadedFile::getInstances($model, 'imageFiles');
            if ($model->upload()) {
                // file is uploaded successfully
                return;
            }
        }

        return $this->render('upload', ['model' => $model]);
    }
}











          

      

      

    

  

  
    
    Création de formulaires
    

    
 
  

    
      
          
            
  
Création de formulaires

La manière primaire d’utiliser des formulaires dans Yii de faire appel aux [[yii\widgets\ActiveForm]]. Cette approche doit être privilégiée lorsque le formulaire est basé sur un modèle. En plus, il existe quelques méthodes utiles dans [[yii\helpers\Html]] qui sont typiquement utilisées pour ajouter des boutons et des textes d’aides de toute forme.

Un formulaire, qui est affiché du côté client, possède dans la plupart des cas, un modèle correspondant qui est utilisé pour valider ses entrées du côté serveur (lisez la section Validation des entrées pour plus de détails sur la validation). Lors de la création de formulaires basés sur un modèle, la première étape est de définir le modèle lui-même. Le modèle peut être soit basé sur une classe d’enregistrement actif représentant quelques données de la base de données, soit sur une classe de modèle générique qui étend la classe [[yii\base\Model]]) pour capturer des entrées arbitraires, par exemple un formulaire de connexion. Dans l’exemple suivant, nous montrons comment utiliser un modèle générique pour un formulaire de connexion :

<?php

class LoginForm extends \yii\base\Model
{
    public $username;
    public $password;

    public function rules()
    {
        return [
            // les règles de validation sont définies ici
        ];
    }
}





Dans le contrôleur, nous passons une instance de ce modèle à la vue, dans laquelle le composant graphique [[yii\widgets\ActiveForm|ActiveForm]] est utilisé pour afficher le formulaire :

<?php
use yii\helpers\Html;
use yii\widgets\ActiveForm;

$form = ActiveForm::begin([
    'id' => 'login-form',
    'options' => ['class' => 'form-horizontal'],
]) ?>
    <?= $form->field($model, 'username') ?>
    <?= $form->field($model, 'password')->passwordInput() ?>

    <div class="form-group">
        <div class="col-lg-offset-1 col-lg-11">
            <?= Html::submitButton('Login', ['class' => 'btn btn-primary']) ?>
        </div>
    </div>
<?php ActiveForm::end() ?>





Dans le code précédent, [[yii\widgets\ActiveForm::begin()|ActiveForm::begin()]] ne crée pas seulement une instance de formulaire, mais il marque également le début du formulaire. Tout le contenu placé entre [[yii\widgets\ActiveForm::begin()|ActiveForm::begin()]] et [[yii\widgets\ActiveForm::end()|ActiveForm::end()]] sera enveloppé dans la balise HTML <form>. Comme avec tout composant graphique, vous pouvez spécifier quelques options sur la façon dont le composant graphique est configuré en passant un tableau à la méthode begin. Dans ce cas précis, une classe CSS supplémentaire et un identifiant sont passés pour être utilisés dans l’ouverture de balise <form>. Pour connaître toutes les options disponibles, reportez-vous à la documentation de l’API de [[yii\widgets\ActiveForm]].

Afin de créer un élément form dans le formulaire, avec l’élément label et toute validation JavaScript applicable, la méthode [[yii\widgets\ActiveForm::field()|ActiveForm::field()]] est appelée. Elle retourne une instance de [[yii\widgets\ActiveField]]. Lorsque le résultat de cette méthode est renvoyé en écho directement, le résultat est un champ de saisie de texte régulier. Pour personnaliser la sortie, vous pouvez enchaîner des méthodes additionnelles de [[yii\widgets\ActiveField|ActiveField]] à cet appel :

// un champ de saisie du mot de passe
<?= $form->field($model, 'password')->passwordInput() ?>
// ajoute une invite et une étiquette personnalisée
<?= $form->field($model, 'username')->textInput()->hint('Please enter your name')->label('Name') ?>
// crée un élément HTML5 de saisie d'une adresse de courriel
<?= $form->field($model, 'email')->input('email') ?>





Cela crée toutes les balises <label>, <input> et autres, selon le [[yii\widgets\ActiveField::$template|modèle]] défini par le champ de formulaire. Le nom du champ de saisie est déterminé automatiquement à partir du [[yii\base\Model::formName()|nom de formulaire]] du modèle et du nom d’attribut. Par exemple, le nom du champ de saisie de l’attribut username dans l’exemple ci-dessus est LoginForm[username]. Cette règle de nommage aboutit à un tableau de tous les attributs du formulaire de connexion dans $_POST['LoginForm'] côté serveur.


Tip: si vous avez seulement un modèle dans un formulaire et que vous voulez simplifier le nom des champs de saisie, vous pouvez sauter la partie tableau en redéfinissant la méthode [[yii\base\Model::formName()|formName()]] du modèle pour qu’elle retourne une chaîne vide. Cela peut s’avérer utile pour les modèles de filtres utilisés dans le composant graphique GridView pour créer des URL plus élégantes.




Spécifier l’attribut de modèle peut se faire de façon plus sophistiquée. Par exemple, lorsqu’un attribut peut prendre une valeur de tableau lors du chargement sur le serveur de multiples fichiers ou lors de la sélection de multiples items, vous pouvez le spécifier en ajoutant [] au nom d’attribut :

// permet à de multiples fichiers d'être chargés sur le serveur :
echo $form->field($model, 'uploadFile[]')->fileInput(['multiple'=>'multiple']);

// permet à de multiples items d'être cochés :
echo $form->field($model, 'items[]')->checkboxList(['a' => 'Item A', 'b' => 'Item B', 'c' => 'Item C']);





Soyez prudent lorsque vous nommez des éléments de formulaire tels que des boutons de soumission. Selon la documentation de jQuery [https://api.jquery.com/submit/], certains noms sont réservés car ils peuvent créer des conflits :


Les éléments forms et leurs éléments enfants ne devraient par utiliser des noms de champ de saisie, ou des identifiants que entrent en conflit avec les propriétés d’un élément de form, tels que submit, length, ou method. Les conflits de noms peuvent créer des échecs troublants. Pour une liste complètes des règles et pour vérifier votre code HTML à propos de ces problèmes, reportez-vous à DOMLint [http://kangax.github.io/domlint/].




Des balises additionnelles HTML peuvent être ajoutées au formulaire en utilisant du HTML simple ou en utilisant les méthodes de la classe [[yii\helpers\Html|Html]]-helper comme cela est fait dans l’exemple ci-dessus avec le [[yii\helpers\Html::submitButton()|bouton de soumission]].


Tip: si vous utilisez la base structurée Twitter Bootstrap CSS dans votre application, vous désirez peut-être utiliser [[yii\bootstrap\ActiveForm]] à la place de [[yii\widgets\ActiveForm]]. La première étend la deuxième et utilise les styles propres à Bootstrap lors de la génération des champs de saisie du formulaire.





Tip: afin de styler les champs requis avec une astérisque, vous pouvez utiliser le CSS suivant :

div.required label.control-label:after {
    content: " *";
    color: red;
}









Création d’une liste déroulante 

Vous pouvez utiliser la méthode dropDownList() [http://www.yiiframework.com/doc-2.0/yii-widgets-activefield.html#dropDownList()-detail] de ActiveForm pour créer une liste déroulante :

use app\models\ProductCategory;

/* @var $this yii\web\View */
/* @var $form yii\widgets\ActiveForm */
/* @var $model app\models\Product */

echo $form->field($model, 'product_category')->dropdownList(
    ProductCategory::find()->select(['category_name', 'id'])->indexBy('id')->column(),
    ['prompt'=>'Select Category']
);





La valeur du champ de saisie de votre modèle est automatiquement pré-selectionnée




Travail avec Pjax 

Le composant graphique [[yii\widgets\Pjax|Pjax]] vous permet de mettre à jour une certaine section d’une page plutôt que de recharger la page entière. Vous pouvez l’utiliser pour mettre à jour seulement le formulaire et remplacer son contenu après la soumission.

Vous pouvez configurer [[yii\widgets\Pjax::$formSelector|$formSelector]] pour spécifier quelles soumissions de formulaire peuvent déclencher pjax. Si cette propriété n’est pas définie, tous les formulaires avec l’attribut data-pjax dans le contenu englobé par Pjax déclenchent des requêtes pjax.

use yii\widgets\Pjax;
use yii\widgets\ActiveForm;

Pjax::begin([
    // Pjax options
]);
    $form = ActiveForm::begin([
        'options' => ['data' => ['pjax' => true]],
        // plus d'options d'ActiveForm
    ]);

        // contenu de ActiveForm

    ActiveForm::end();
Pjax::end();






Tip: soyez prudent avec les liens à l’intérieur du composant graphique [[yii\widgets\Pjax|Pjax]] car la réponse est également rendue dans le composant graphique. Pour éviter cela, utilisez l’attribut HTML data-pjax="0".





Valeurs dans les boutons de soumission et dans les chargement de fichiers sur le serveur

Il y a des problèmes connus avec l’utilisation de jQuery.serializeArray() lorsqu’on manipule des fichiers [https://github.com/jquery/jquery/issues/2321] et des valeurs de boutons de soumission [https://github.com/jquery/jquery/issues/2321] qui ne peuvent être résolus et sont plutôt rendus obsolète en faveur de la classe FormData introduite en HTML5.

Cela siginifie que la seule prise en charge officielle pour les fichiers et les valeurs de boutons de soumission avec ajax, ou en utilisant le composant graphique  [[yii\widgets\Pjax|Pjax]], dépend de la prise en charge par le navigateur [https://developer.mozilla.org/en-US/docs/Web/API/FormData#Browser_compatibility] de la classe FormData.






Lectures d’approfondissement 

La section suivante, Validation des entrées prend en charge la validation des données soumises par le formulaire du côté serveur ainsi que la validation ajax et du côté client.

Pour en apprendre plus sur les utilisations complexes de formulaires, vous pouvez lire les sections suivantes :


	Collecte des champs de saisie tabulaires, pour collecter des données à destination de multiples modèles du même genre.


	Obtention de données pour de multiples modèles, pour manipuler plusieurs modèles différents dans le même formulaire.


	Chargement de fichiers sur le serveur, sur la manière d’utiliser les formulaires pour charger des fichiers sur le serveur.










          

      

      

    

  

  
    
    Obtenir des données pour plusieurs modèles
    

    
 
  

    
      
          
            
  
Obtenir des données pour plusieurs modèles

Lorsque vous avez affaire à des données complexes, il est possible que vous ayez besoin d’utiliser plusieurs modèles différents pour collecter des saisies de l’utilisateur. Par exemple, en supposant que les informations de connexion de l’utilisateur sont stockées dans la table user tandis que les informations de son profil sont stockées dans la table profil, vous désirez peut-être collecter les données de l’utilisateur via un modèle User et un modèle Profile. Avec la prise en charge par Yii des modèles et des formulaires, vous pouvez résoudre ce problème d’une façon qui ne diffère qu’assez peu de celle consistant à utiliser un modèle unique.

Dans ce qui suit, nous montrons comment créer un formulaire que permet la collecte de données pour les deux modèles, User et Profile, à la fois.

Tout d’abord, l’action de contrôleur pour la collecte des données de connexion (user) et des données de profil, peut être écrite comme suit :

namespace app\controllers;

use Yii;
use yii\base\Model;
use yii\web\Controller;
use yii\web\NotFoundHttpException;
use app\models\User;
use app\models\Profile;

class UserController extends Controller
{
    public function actionUpdate($id)
    {
        $user = User::findOne($id);
        if (!$user) {
            throw new NotFoundHttpException("The user was not found.");
        }
        
        $profile = Profile::findOne($user->profile_id);
        
        if (!$profile) {
            throw new NotFoundHttpException("The user has no profile.");
        }
        
        $user->scenario = 'update';
        $profile->scenario = 'update';
        
        if ($user->load(Yii::$app->request->post()) && $profile->load(Yii::$app->request->post())) {
            $isValid = $user->validate();
            $isValid = $profile->validate() && $isValid;
            if ($isValid) {
                $user->save(false);
                $profile->save(false);
                return $this->redirect(['user/view', 'id' => $id]);
            }
        }
        
        return $this->render('update', [
            'user' => $user,
            'profile' => $profile,
        ]);
    }
}





Dans l’action update, nous commençons par charger les données des modèles, $user et $profile, à mettre à jour dans la base de données. Puis nous appelons [[yii\base\Model::load()]] pour remplir les deux modèles avec les entrées de l’utilisateur. Si tout se passe bien, nous validons les deux modèles et les sauvegardons. Autrement, nous rendons la vue update avec le contenu suivant :

<?php
use yii\helpers\Html;
use yii\widgets\ActiveForm;

$form = ActiveForm::begin([
    'id' => 'user-update-form',
    'options' => ['class' => 'form-horizontal'],
]) ?>
    <?= $form->field($user, 'username') ?>

    ...autres champs de saisie...
    
    <?= $form->field($profile, 'website') ?>

    <?= Html::submitButton('Update', ['class' => 'btn btn-primary']) ?>
<?php ActiveForm::end() ?>





Comme vous le voyez, la vue update rend les champs de saisie de deux modèles $user et $profile.





          

      

      

    

  

  
    
    Collecte d’entrées tabulaires
    

    
 
  

    
      
          
            
  
Collecte d’entrées tabulaires

Il arrive parfois que vous ayez besoin de manipuler plusieurs modèles de même sorte dans un formulaire unique. Par exemple, de multiples réglages où chacun des réglages est stocké sous forme de paire nom-valeur et est représenté par un modèle d’enregistrement actif Setting. Cette sorte de formulaire est aussi appelé « entrées tabulaires ». Par opposition à cela, la manipulation des modèles de différente sortes, est traitée dans la section Formulaires complexes avec plusieurs modèles.

Ce qui suit montre comment mettre en œuvre les entrées tabulaires avec Yii.

Il y a trois situations différentes à couvrir, qui doivent être traitées avec de légères différences :


	La mise à jour d’un jeu fixe d’enregistrement de la base de données.


	La création d’un jeu dynamique d’enregistrements.


	La mise à jour, création et suppression d’enregistrements sur une page.




Par contraste avec les formulaires de modèle unique expliqué précédemment, nous travaillons maintenant sur un tableau de modèles. Ce tableau est passé à la vue pour afficher les champs de saisie de chacun des modèles sous une forme ressemblant à un tableau. Nous allons utiliser les méthodes d’aide de [[yii\base\Model]] qui nous permettent le chargement et la validation de plusieurs modèles à la fois :


	[[yii\base\Model::loadMultiple()|Model::loadMultiple()]] charge les données d’une requête POST dans un tableau de modèles.


	[[yii\base\Model::validateMultiple()|Model::validateMultiple()]] valide un tableau de modèles.





Mise à jour d’un jeu fixe d’enregistrements

Commençons par l’action du contrôleur :

<?php

namespace app\controllers;

use Yii;
use yii\base\Model;
use yii\web\Controller;
use app\models\Setting;

class SettingsController extends Controller
{
    // ...

    public function actionUpdate()
    {
        $settings = Setting::find()->indexBy('id')->all();

        if (Model::loadMultiple($settings, Yii::$app->request->post()) && Model::validateMultiple($settings)) {
            foreach ($settings as $setting) {
                $setting->save(false);
            }
            return $this->redirect('index');
        }

        return $this->render('update', ['settings' => $settings]);
    }
}





Dans le code ci-dessus, nous utilisons [[yii\db\ActiveQuery::indexBy()|indexBy()]] lors de l’extraction de modèles depuis la base de données pour remplir un tableau indexé par les clés primaires des modèles. Celles-ci seront utilisées plus tard pour identifier les champs de formulaires. [[yii\base\Model::loadMultiple()|Model::loadMultiple()]] remplit de multiples modèles avec les données du formulaire issues de la méthode POST et [[yii\base\Model::validateMultiple()|Model::validateMultiple()]] valide tous les modèles en une seule fois. Comme nous avons validé auparavant, nous passons maintenant false en paramètre à [[yii\db\ActiveRecord::save()|save()]] pour ne pas exécuter la validation deux fois.

Maintenant, voyons le formulaire qui se trouve dans la vue update (mise à jour) :

<?php
use yii\helpers\Html;
use yii\widgets\ActiveForm;

$form = ActiveForm::begin();

foreach ($settings as $index => $setting) {
    echo $form->field($setting, "[$index]value")->label($setting->name);
}

ActiveForm::end();





Ici, pour chaque réglage, nous rendons un champ de saisie avec un nom indexé. Il est important d’ajouter un index approprié au nom d’un champ de saisie car c’est avec cela que [[yii\base\Model::loadMultiple()|Model::loadMultiple()]] détermine à quel modèle attribuer telles valeurs.




Création d’un jeu dynamique d’enregistrements

La création d’enregistrements est similaire à leur mise à jour, sauf que nous avons a instancier les modèles :

public function actionCreate()
{
    $count = count(Yii::$app->request->post('Setting', []));
    $settings = [new Setting()];
    for($i = 1; $i < $count; $i++) {
        $settings[] = new Setting();
    }

    // ...
}





Ici nous créons un tableau initial de $settings (réglages) contenant un modèle par défaut de façon à ce qu’au moins un champ de texte soit visible dans la vue. De plus, nous ajoutons un modèle pour chacune des lignes d’entrée que nous recevons.

Dans la vue, nous pouvons utiliser JavaScript pour ajouter de nouvelles lignes dynamiquement.




Combinaison, mise à jour, création et suppression sur une page


Note: Cette section est en cours de création

Elle est vide pour le moment.




TBD







          

      

      

    

  

  
    
    Validation des entrées utilisateur
    

    
 
  

    
      
          
            
  
Validation des entrées utilisateur

En général, vous ne devriez jamais faire confiance aux données entrées par l’utilisateur et devriez toujours les valider avant de les utiliser.,

Étant donné un modèle rempli par les données entrées par l’utilisateur, il est possible de valider ces entrées en appelant la méthode [[yii\base\Model::validate()]]. La méthode retourne une valeur booléenne qui indique si la validation a réussi ou pas. Si ce n’est pas le cas, vous pouvez obtenir les messages d’erreur depuis la propriété [[yii\base\Model::errors]]. Par exemple :

$model = new \app\models\ContactForm();

// remplit les attributs du modèle avec les entrées de l'utilisateur
$model->load(\Yii::$app->request->post());
// ce qui est équivalent à :
// $model->attributes = \Yii::$app->request->post('ContactForm');

if ($model->validate()) {
    // toutes les entrées sont valides
} else {
    // la validation a échoué: $errors est un tableau contenant les messages d'erreur
    $errors = $model->errors;
}






Déclaration de règles 

Pour que validate() fonctionne réellement, vous devez déclarer des règles de validation pour les attributs que vous envisagez de valider. Cela peut être réalisé en redéfinissant la méthode [[yii\base\Model::rules()]]. L’exemple suivant montre comment les règles de validation pour le modèle ContactForm sont déclarées :

public function rules()
{
    return [
        // les attributs  name, email, subject et  body sont à saisir obligatoirement
        [['name', 'email', 'subject', 'body'], 'required'],

        // l'attribut email doit être une adresse de courriel valide
        ['email', 'email'],
    ];
}





La méthode [[yii\base\Model::rules()|rules()]] doit retourner un tableau de règles, dont chacune est un tableau dans le format suivant :

[
    // obligatoire, spécifie quels attributs doivent être validés par cette règle.
    // Pour un attribut unique, vous pouvez utiliser le nom de l'attribut directement
    // sans le mettre dans un tableau
    ['attribute1', 'attribute2', ...],

    // obligatoire, spécifier le type de cette règle.
    // Il peut s'agir d'un nom de classe, d'un alias de validateur ou du nom d'une méthode de validation
    'validator',

    // facultatif, spécifie dans quel(s) scénario(s) cette règle doit être appliquée
    // si absent, cela signifie que la règle s'applique à tous les scénarios
    // Vous pouvez aussi configurer l'option "except" si vous voulez que la règle
    // s'applique à tous les scénarios sauf à ceux qui sont listés
    'on' => ['scenario1', 'scenario2', ...],

    // facultatif, spécifie des configurations additionnelles pour l'objet validateur
    'property1' => 'value1', 'property2' => 'value2', ...
]





Pour chacune des règles vous devez spécifier au moins à quels attributs la règle s’applique et quel est le type de cette règle. Vous pouvez spécifier le type de la règle sous l’une des formes suivantes :


	l’alias d’un validateur du noyau, comme required, in, date, etc. Reportez-vous à la sous-section Validateurs du noyau pour une liste complète des validateurs du noyau.


	le nom d’une méthode de validation dans la classe du modèle, ou une fonction anonyme. Reportez-vous à la sous-section Inline Validators pour plus de détails.


	un nom de classe de validateur pleinement qualifié. Reportez-vous à la sous-section Validateurs autonomes pour plus de détails.




Une règle peut être utilisée pour valider un ou plusieurs attributs, et un attribut peut être validé par une ou plusieurs règles. Une règle peut s’appliquer dans certains scenarios seulement en spécifiant l’option on. Si vous ne spécifiez pas l’option on, la règle s’applique à tous les scénarios.

Quand la méthode validate() est appelée, elle suit les étapes suivantes pour effectuer l’examen de validation :


	Détermine quels attributs doivent être validés en obtenant la liste des attributs de [[yii\base\Model::scenarios()]] en utilisant le [[yii\base\Model::scenario|scenario]] courant. Ces attributs sont appelés attributs actifs.


	Détermine quelles règles de validation doivent être appliquées en obtenant la liste des règles de [[yii\base\Model::rules()]] en utilisant le [[yii\base\Model::scenario|scenario]] courant. Ces règles sont appelées règles actives.


	Utilise chacune des règles actives pour valider chacun des attributs qui sont associés à cette règle. Les règles sont évaluées dans l’ordre dans lequel elles sont listées.




Selon les étapes de validation décrites ci-dessus, un attribut est validé si, et seulement si, il est un attribut actif déclaré dans scenarios() et est associé à une ou plusieurs règles actives déclarées dans rules().


Note: il est pratique le nommer les règles, c.-à-d.

public function rules()
{
    return [
        // ...
        'password' => [['password'], 'string', 'max' => 60],
    ];
}





Vous pouvez l’utiliser dans un modèle enfant :

public function rules()
{
    $rules = parent::rules();
    unset($rules['password']);
    return $rules;
}









Personnalisation des messages d’erreur 

La plupart des validateurs possèdent des messages d’erreurs qui sont ajoutés au modèle en cours de validation lorsque ses attributs ne passent pas la validation. Par exemple, le validateur [[yii\validators\RequiredValidator|required]] ajoute le message “Username cannot be blank.” (Le nom d’utilisateur ne peut être vide.) au modèle lorsque l’attribut username ne passe pas la règle de validation utilisant ce validateur.

Vous pouvez personnaliser le message d’erreur d’une règle en spécifiant la propriété message lors de la déclaration de la règle, comme ceci :

public function rules()
{
    return [
        ['username', 'required', 'message' => 'Please choose a username.'],
    ];
}





Quelques validateurs peuvent prendre en charge des messages d’erreur additionnels pour décrire précisément les différentes causes de non validation. Par exemple, le validateur [[yii\validators\NumberValidator|number]] prend en charge[[yii\validators\NumberValidator::tooBig|tooBig (trop grand)]] et [[yii\validators\NumberValidator::tooSmall|tooSmall (trop petit)]] pour décrire la cause de non validation lorsque la valeur à valider est trop grande ou trop petite, respectivement. Vous pouvez configurer ces messages d’erreur comme vous configureriez d’autres propriétés de validateurs dans une règle de validation.




Événement de validation 

Losque la méthode [[yii\base\Model::validate()]] est appelée, elle appelle deux méthodes que vous pouvez redéfinir pour personnaliser le processus de validation :


	[[yii\base\Model::beforeValidate()]]: la mise en œuvre par défaut déclenche un événement [[yii\base\Model::EVENT_BEFORE_VALIDATE]]. Vous pouvez, soit redéfinir cette méthode, soit répondre à cet événement pour accomplir un travail de pré-traitement (p. ex. normaliser les données entrées) avant que l’examen de validation n’ait lieu. La méthode retourne une valeur booléenne indiquant si l’examen de validation doit avoir lieu ou pas.


	[[yii\base\Model::afterValidate()]]: la mise en œuvre par défaut déclenche un événement [[yii\base\Model::EVENT_AFTER_VALIDATE]]. Vous pouvez, soit redéfinir cette méthode, soit répondre à cet événement pour accomplir un travail de post-traitement après que l’examen de validation a eu lieu.







Validation conditionnelle 

Pour valider des attributs seulement lorsque certaines conditions sont réalisées, p. ex. la validation d’un attribut dépend de la valeur d’un autre attribut, vous pouvez utiliser la propriété [[yii\validators\Validator::when|when]] pour définir de telles conditions. Par exemple :

    ['state', 'required', 'when' => function($model) {
        return $model->country == 'USA';
    }]





La propriété [[yii\validators\Validator::when|when]] accepte une fonction de rappel PHP avec la signature suivante :

/**
 * @param Model $model le modèle en cours de validation
 * @param string $attribute l'attribut en cours de validation
 * @return bool `true` si la règle doit être appliqué, `false` si non
 */
function ($model, $attribute)





Si vous avez aussi besoin de la prise en charge côté client de la validation conditionnelle, vous devez configurer la propriété [[yii\validators\Validator::whenClient|whenClient]] qui accepte une chaîne de caractères représentant une fonction JavaScript dont la valeur de retour détermine si la règles doit être appliquée ou pas. Par exemple :

    ['state', 'required', 'when' => function ($model) {
        return $model->country == 'USA';
    }, 'whenClient' => "function (attribute, value) {
        return $('#country').val() == 'USA';
    }"]








Filtrage des données 

Les entrées utilisateur nécessitent souvent d’être filtrées ou pré-traitées. Par exemple, vous désirez peut-être vous débarrasser des espaces devant et derrière l’entrée username. Vous pouvez utiliser les règles de validation pour le faire.

Les exemples suivants montrent comment se débarrasser des espaces dans les entrées et transformer des entrées vides en nulls en utilisant les validateurs du noyau trim et default :

return [
    [['username', 'email'], 'trim'],
    [['username', 'email'], 'default'],
];





Vous pouvez également utiliser le validateur plus général filter pour accomplir un filtrage plus complexe des données.

Comme vous le voyez, ces règles de validation ne pratiquent pas un examen de validation proprement dit. Plus exactement, elles traitent les valeurs et les sauvegardent dans les attributs en cours de validation.




Gestion des entrées vides 

Lorsque les entrées sont soumises par des formulaires HTML, vous devez souvent assigner des valeurs par défaut aux entrées si elles restent vides. Vous pouvez le faire en utilisant le validateur default. Par exemple :

return [
    // définit "username" et "email" comme *null* si elles sont vides
    [['username', 'email'], 'default'],

    // définit "level" à 1 si elle est vide
    ['level', 'default', 'value' => 1],
];





Par défaut, une entrée est considérée vide si sa valeur est une chaîne de caractères vide, un tableau vide ou un null. Vous pouvez personnaliser la logique de détection de vide en configurant la propriété [[yii\validators\Validator::isEmpty]] avec une fonction de rappel PHP. Par exemple :

    ['agree', 'required', 'isEmpty' => function ($value) {
        return empty($value);
    }]






Note: la plupart des validateurs ne traitent pas les entrées vides si leur propriété [[yii\validators\Validator::skipOnEmpty]] prend la valeur par défaut true (vrai). Ils sont simplement sautés lors de l’examen de validation si leurs attributs associés reçoivent des entrées vides. Parmi les validateurs de noyau, seuls les validateurs captcha, default, filter, required, et trim traitent les entrées vides.









Validation ad hoc 

Parfois vous avez besoin de faire une validation ad hoc pour des valeurs qui ne sont pas liées à un modèle.

Si vous n’avez besoin d’effectuer qu’un seul type de validation (p. ex. valider une adresse de courriel), vous pouvez appeler la méthode [[yii\validators\Validator::validate()|validate()]] du validateur désiré, comme ceci :

$email = 'test@example.com';
$validator = new yii\validators\EmailValidator();

if ($validator->validate($email, $error)) {
    echo 'Email is valid.';
} else {
    echo $error;
}






Note: tous les validateurs ne prennent pas en charge ce type de validation. Le validateur du noyau unique, qui est conçu pour travailler avec un modèle uniquement, en est un exemple.




Si vous avez besoin de validations multiples pour plusieurs valeurs, vous pouvez utiliser [[yii\base\DynamicModel]] qui prend en charge, à la fois les attributs et les règles à la volée. Son utilisation ressemble à ce qui suit :

public function actionSearch($name, $email)
{
    $model = DynamicModel::validateData(compact('name', 'email'), [
        [['name', 'email'], 'string', 'max' => 128],
        ['email', 'email'],
    ]);

    if ($model->hasErrors()) {
        // validation fails
    } else {
        // validation succeeds
    }
}





La méthode [[yii\base\DynamicModel::validateData()]] crée une instance de DynamicModel, définit les attributs utilisant les données fournies (name et email dans cet exemple), puis appelle [[yii\base\Model::validate()]] avec les règles données.

En alternative, vous pouvez utiliser la syntaxe plus classique suivante pour effectuer la validation ad hoc :

public function actionSearch($name, $email)
{
    $model = new DynamicModel(compact('name', 'email'));
    $model->addRule(['name', 'email'], 'string', ['max' => 128])
        ->addRule('email', 'email')
        ->validate();

    if ($model->hasErrors()) {
        // la validation a échoué
    } else {
        // la validation a réussi
    }
}





Après l’examen de validation, vous pouvez vérifier si la validation a réussi ou pas en appelant la méthode [[yii\base\DynamicModel::hasErrors()|hasErrors()]] et obtenir les erreurs de validation de la propriété [[yii\base\DynamicModel::errors|errors]], comme vous le feriez avec un modèle normal. Vous pouvez aussi accéder aux attributs dynamiques définis via l’instance de modèle, p. ex. $model->name et $model->email.




Création de validateurs 

En plus de pouvoir utiliser les validateurs du noyau inclus dans les versions publiées de Yii, vous pouvez également créer vos propres validateurs. Vous pouvez créer des validateurs en ligne et des validateurs autonomes.


Validateurs en ligne 

Un validateur en ligne est un validateur défini sous forme de méthode de modèle ou de fonction anonyme. La signature de la méthode/fonction est :

/**
 * @param string $attribute l'attribut en cours de validation
 * @param mixed $params la valeur des *paramètres* donnés dans la règle
 */
function ($attribute, $params)





Si un attribut ne réussit pas l’examen de validation, la méthode/fonction doit appeler [[yii\base\Model::addError()]] pour sauvegarder le message d’erreur dans le modèle de manière à ce qu’il puisse être retrouvé plus tard pour être présenté à l’utilisateur.

Voici quelques exemples :

use yii\base\Model;

class MyForm extends Model
{
    public $country;
    public $token;

    public function rules()
    {
        return [
            // un validateur en ligne défini sous forme de méthode de modèle validateCountry()
            ['country', 'validateCountry'],

            // un validateur en ligne défini sous forme de fonction anonyme
            ['token', function ($attribute, $params) {
                if (!ctype_alnum($this->$attribute)) {
                    $this->addError($attribute, 'The token must contain letters or digits.');
                }
            }],
        ];
    }

    public function validateCountry($attribute, $params)
    {
        if (!in_array($this->$attribute, ['USA', 'Web'])) {
            $this->addError($attribute, 'The country must be either "USA" or "Web".');
        }
    }
}






Note: Par défaut, les validateurs en ligne ne sont pas appliqués si leurs attributs associés reçoivent des entrées vides ou s’ils ont déjà échoué à des examen de validation selon certaines règles. Si vous voulez être sûr qu’une règle sera toujours appliquée, vous devez configurer les propriétés [[yii\validators\Validator::skipOnEmpty|skipOnEmpty]] et/ou [[yii\validators\Validator::skipOnError|skipOnError]] à false (faux) dans les déclarations des règles. Par exemple :

[
    ['country', 'validateCountry', 'skipOnEmpty' => false, 'skipOnError' => false],
]











Validateurs autonomes 

Un validateur autonome est une classe qui étend la classe [[yii\validators\Validator]] ou une de ses classe filles. Vous pouvez mettre en œuvre sa logique de validation en redéfinissant la méthode [[yii\validators\Validator::validateAttribute()]]. Si un attribut ne réussit pas l’exament de validation, appellez [[yii\base\Model::addError()]] pour sauvegarder le message d’erreur dans le modèle, comme vous le feriez avec des validateurs en ligne.

Par exemple, le validateur en ligne ci-dessus peut être transformé en une nouvelle classe [[components/validators/CountryValidator]].

namespace app\components;

use yii\validators\Validator;

class CountryValidator extends Validator
{
    public function validateAttribute($model, $attribute)
    {
        if (!in_array($model->$attribute, ['USA', 'Web'])) {
            $this->addError($model, $attribute, 'The country must be either "USA" or "Web".');
        }
    }
}





Si vous voulez que votre validateur prennent en charge la validation d’une valeur sans modèle, vous devez redéfinir la méthode [[yii\validators\Validator::validate()]]. Vous pouvez aussi redéfinir [[yii\validators\Validator::validateValue()]] au lieu de validateAttribute() et validate(), parce que, par défaut, les deux dernières méthodes sont appelées en appelant validateValue().

Ci-dessous, nous présentons un exemple de comment utiliser la classe de validateur précédente dans votre modèle.

namespace app\models;

use Yii;
use yii\base\Model;
use app\components\validators\CountryValidator;

class EntryForm extends Model
{
    public $name;
    public $email;
    public $country;

    public function rules()
    {
        return [
            [['name', 'email'], 'required'],
            ['country', CountryValidator::className()],
            ['email', 'email'],
        ];
    }
}










Validation côté client 

La validation côté client basée sur JavaScript est souhaitable lorsque l’utilisateur fournit les entrées via des formulaires HTML, parce que cela permet à l’utilisateur de détecter plus vite les erreurs et lui apporte ainsi un meilleur ressenti. Vous pouvez utiliser ou implémenter un validateur qui prend en charge la validation côté client en plus de la validation côté serveur.


Info: bien que la validation côté client soit souhaitable, ce n’est pas une obligation. Son but principal est d’apporter un meilleur ressenti à l’utilisateur. Comme pour les données venant de l’utilisateur, vous ne devriez jamais faire confiance à la validation côté client. Pour cette raison, vous devez toujours effectuer la validation côté serveur en appelant [[yii\base\Model::validate()]], comme nous l’avons décrit dans les sous-sections précédentes.





Utilisation de la validation côté client 

Beaucoup de  validateurs du noyau prennent en charge la validation côté client directement. Tout ce que vous avez à faire c’est utiliser [[yii\widgets\ActiveForm]] pour construire vos formulaires HTML. Par exemple, LoginForm ci-dessous déclare deux règles : l’une utilise le validateur du noyau required qui est pris en charge à la fois côté serveur et côté client ; l’autre utilise le validateur en ligne validatePassword qui ne prend pas en charge la validation côté client.

namespace app\models;

use yii\base\Model;
use app\models\User;

class LoginForm extends Model
{
    public $username;
    public $password;

    public function rules()
    {
        return [
            // username et password sont tous deux obligatoires
            [['username', 'password'], 'required'],

            // password est validé par validatePassword()
            ['password', 'validatePassword'],
        ];
    }

    public function validatePassword()
    {
        $user = User::findByUsername($this->username);

        if (!$user || !$user->validatePassword($this->password)) {
            $this->addError('password', 'Incorrect username or password.');
        }
    }
}





Le formulaire HTML construit par le code suivant contient deux champs de saisie username et password. Si vous soumettez le formulaire sans rien saisir, vous recevrez directement les messages d’erreur vous demandant d’entrer quelque chose sans qu’aucune communication avec le serveur n’ait lieu.

<?php $form = yii\widgets\ActiveForm::begin(); ?>
    <?= $form->field($model, 'username') ?>
    <?= $form->field($model, 'password')->passwordInput() ?>
    <?= Html::submitButton('Login') ?>
<?php yii\widgets\ActiveForm::end(); ?>





En arrière plan, [[yii\widgets\ActiveForm]] lit les règles de validation déclarées dans le modèle et génère le code JavaScript approprié pour la prise en charge de la validation côté client. Lorsqu’un utilisateur modifie la valeur d’un champ de saisie ou soumet le formulaire, le code JavaScript est appelé.

Si vous désirez inhiber la validation côté client complètement, vous pouvez configurer la propriété [[yii\widgets\ActiveForm::enableClientValidation]] à false (faux). Vous pouvez aussi inhiber la validation côté client pour des champs de saisie individuels en configurant leur propriété [[yii\widgets\ActiveField::enableClientValidation]] à false. Lorsque enableClientValidation est configurée à la fois au niveau du champ et au niveau du formulaire, c’est la première configuration qui prévaut.




Mise en œuvre de la validation côté client 

Pour créer un validateur qui prend en charge la validation côté client, vous devez implémenter la méthode [[yii\validators\Validator::clientValidateAttribute()]] qui retourne un morceau de code JavaScript propre à effectuer l’examen de validation côté client. Dans ce code JavaScript, vous pouvez utiliser les variables prédéfinies suivantes :


	attribute: le nom de l’attribut en cours de validation ;


	value: la valeur en cours de validation ;


	messages: un tableau utilisé pour contenir les messages d’erreurs pour l’attribut ;


	deferred: un tableau dans lequel les objets différés peuvent être poussés (explication dans la prochaine sous-section).




Dans l’exemple suivant, nous créons un StatusValidator qui valide une entrée si elle représente l’identifiant d’une donnée existante ayant un état valide. Le validateur prend en charge à la fois la validation côté serveur et la validation côté client.

namespace app\components;

use yii\validators\Validator;
use app\models\Status;

class StatusValidator extends Validator
{
    public function init()
    {
        parent::init();
        $this->message = 'Invalid status input.';
    }

    public function validateAttribute($model, $attribute)
    {
        $value = $model->$attribute;
        if (!Status::find()->where(['id' => $value])->exists()) {
            $model->addError($attribute, $this->message);
        }
    }

    public function clientValidateAttribute($model, $attribute, $view)
    {
        $statuses = json_encode(Status::find()->select('id')->asArray()->column());
        $message = json_encode($this->message, JSON_UNESCAPED_SLASHES | JSON_UNESCAPED_UNICODE);
        return <<<JS
if ($.inArray(value, $statuses) === -1) {
    messages.push($message);
}
JS;
    }
}






Tip: le code ci-dessus est donné essentiellement pour démontrer comment prendre en charge la validation côté client. En pratique, vous pouvez utiliser le validateur du noyau in pour arriver au même résultat. Vous pouvez écrire la règle de validation comme suit :

[
    ['status', 'in', 'range' => Status::find()->select('id')->asArray()->column()],
]









Tip: si vous avez besoin de travailler à la main avec la validation côté client, c.-à-d. ajouter des champs dynamiquement ou effectuer quelque logique d’interface utilisateur, reportez-vous à Travail avec ActiveForm via JavaScript [https://github.com/samdark/yii2-cookbook/blob/master/book/forms-activeform-js.md] dans le Cookbook de Yii 2.0 .







Validation différée 

Si vous devez effectuer une validation asynchrone côté client, vous pouvez créer des objets différés [http://api.jquery.com/category/deferred-object/]. Par exemple, pour effectuer une validation AJAX personnalisée, vous pouvez utiliser le code suivant :

public function clientValidateAttribute($model, $attribute, $view)
{
    return <<<JS
        deferred.push($.get("/check", {value: value}).done(function(data) {
            if ('' !== data) {
                messages.push(data);
            }
        }));
JS;
}





Dans ce qui précède, la variable deferred est fournie par Yii, et représente un tableau de d’objets différés. La méthode $.get() crée un objet différé qui est poussé dans le tableau deferred.

Vous pouvez aussi créer explicitement un objet différé et appeler sa méthode resolve() lorsque la fonction de rappel asynchrone est activée . L’exemple suivant montre comment valider les dimensions d’une image à charger sur le serveur du côté client.

public function clientValidateAttribute($model, $attribute, $view)
{
    return <<<JS
        var def = $.Deferred();
        var img = new Image();
        img.onload = function() {
            if (this.width > 150) {
                messages.push('Image too wide!!');
            }
            def.resolve();
        }
        var reader = new FileReader();
        reader.onloadend = function() {
            img.src = reader.result;
        }
        reader.readAsDataURL(file);

        deferred.push(def);
JS;
}






Note: La méthode resolve() doit être appelée après que l’attribut a été validé. Autrement la validation principale du formulaire ne se terminera pas.




Pour faire simple, le tableau deferred est doté d’une méthode raccourci add() qui crée automatiquement un objet différé et l’ajoute au tableau deferred. En utilisant cette méthode, vous pouvez simplifier l’exemple ci-dessus comme suit :

public function clientValidateAttribute($model, $attribute, $view)
{
    return <<<JS
        deferred.add(function(def) {
            var img = new Image();
            img.onload = function() {
                if (this.width > 150) {
                    messages.push('Image too wide!!');
                }
                def.resolve();
            }
            var reader = new FileReader();
            reader.onloadend = function() {
                img.src = reader.result;
            }
            reader.readAsDataURL(file);
        });
JS;
}








Validation AJAX 

Quelques validations ne peuvent avoir lieu que côté serveur, parce que seul le serveur dispose des informations nécessaires. Par exemple, pour valider l’unicité d’un nom d’utilisateur, il est nécessaire de consulter la table des utilisateurs côté serveur. Vous pouvez utiliser la validation basée sur AJAX dans ce cas. Elle provoquera une requête AJAX en arrière plan pour exécuter l’examen de validation tout en laissant à l’utilisateur le même ressenti que lors d’une validation côté client normale.

Pour activer la validation AJAX pour un unique champ de saisie, configurez la propriété [[yii\widgets\ActiveField::enableAjaxValidation|enableAjaxValidation]] de ce champ à true et spécifiez un identifiant unique de formulaire :

use yii\widgets\ActiveForm;

$form = ActiveForm::begin([
    'id' => 'registration-form',
]);

echo $form->field($model, 'username', ['enableAjaxValidation' => true]);

// ...

ActiveForm::end();





Pour étendre la validation AJAX à tout le formulaire, configurez la propriété [[yii\widgets\ActiveForm::enableAjaxValidation|enableAjaxValidation]] à true au niveau du formulaire :

$form = ActiveForm::begin([
    'id' => 'contact-form',
    'enableAjaxValidation' => true,
]);






Note: lorsque la propriété enableAjaxValidation est configurée à la fois au niveau du champ et au niveau du formulaire, la première configuration prévaut.




Vous devez aussi préparer le serveur de façon à ce qu’il puisse prendre en charge les requêtes de validation AJAX . Cela peut se faire à l’aide d’un fragment de code comme celui qui suit dans les actions de contrôleur :

if (Yii::$app->request->isAjax && $model->load(Yii::$app->request->post())) {
    Yii::$app->response->format = Response::FORMAT_JSON;
    return ActiveForm::validate($model);
}





Le code ci-dessus vérifie si la requête courante est une requête AJAX. Si oui, il répond à la requête en exécutant l’examen de validation et en retournant les erreurs au format JSON.


Info: vous pouvez aussi utiliser la validation différée pour effectuer une validation AJAX. Néanmoins, la fonctionnalité de validation AJAX décrite ici est plus systématique et nécessite moins de codage.




Quand, à la fois enableClientValidation et enableAjaxValidation sont définies à  true, la requête de validation AJAX est déclenchée seulement après une validation réussie côté client.









          

      

      

    

  

  
    
    Mise à jour depuis la version 1.1
    

    
 
  

    
      
          
            
  
Mise à jour depuis la version 1.1

Il y a beaucoup de différences entre les versions 1.1 et 2.0 de Yii, le framework ayant été complètement réécrit pour
la 2.0. En conséquence, la mise à jour depuis la version 1.1 n’est pas aussi triviale que la mise à jour entre deux
versions mineures. Dans ce guide, vous trouverez les principales différences entre les deux versions.

Si vous n’avez pas utilisé Yii 1.1 avant, vous pouvez ignorer cette section et passer directement à la section
“Mise en route”.

Merci de noter que Yii 2.0 introduit plus de nouvelles fonctionnalités que celles abordées ici. Il est fortement
recommandé de lire tout le guide de référence pour en apprendre davantage. Il y a des chances que certaines
fonctionnalités, que vous aviez préalablement développées pour vous, fassent désormais partie du code du noyau.


Installation

Yii 2.0 exploite pleinement Composer [https://getcomposer.org/], le gestionnaire de paquet PHP. L’installation
du framework, ainsi que des extensions, sont gérées par Composer. Reportez-vous à la section
Installer Yii pour apprendre comment installer Yii 2.0. Si vous voulez
créer de nouvelles extensions, ou rendre vos extensions existantes 1.1 compatibles 2.0, reportez-vous à
la section Créer des extensions de ce guide.




Pré-requis PHP

Yii 2.0 requiert PHP 5.4 ou plus, ce qui est une grosse amélioration par rapport à PHP 5.2 qui était requis pour Yii 1.1.

Par conséquent, il y a beaucoup de différences au niveau du langage auxquelles vous devriez prêter attention.
Voici un résumé des principaux changements concernant PHP:


	Espaces de noms [http://php.net/manual/fr/language.namespaces.php].


	Fonctions anonymes [http://php.net/manual/fr/functions.anonymous.php].


	Syntaxe courte pour les tableaux : [...éléments...] est utilisé au lieu de array(...éléments...).


	Syntaxe courte pour echo : <?= est utilisé dans les vues. Cela ne pose aucun problème à partir de PHP 5.4.


	Classes SPL et interfaces [http://php.net/manual/fr/book.spl.php].


	Late Static Bindings (résolution statique à la volée) [http://php.net/manual/fr/language.oop5.late-static-bindings.php].


	Date et heure [http://php.net/manual/fr/book.datetime.php].


	Traits [http://php.net/manual/fr/language.oop5.traits.php].


	intl [http://php.net/manual/fr/book.intl.php]. Yii 2.0 utilise l’extension PHP intl pour les fonctionnalités
d’internationalisation.







Espaces de noms

Le changement le plus évident dans Yii 2.0 est l’utilisation des espaces de noms. La majorité des classes du noyau
utilise les espace de noms, par exemple, yii\web\Request. Le préfixe «C» n’est plus utilisé dans les noms de classe.
Le schéma de nommage suit maintenant la structure des répertoires. Par exemple, yii\web\Request
indique que le fichier de classe correspondant est web/Request.php dans le dossier du framework.

(Vous pouvez utiliser n’importe quelle classe du noyau sans inclure explicitement le fichier correspondant, grâce au
chargeur de classe de Yii.)




Composants et objets

Yii 2.0 décompose la classe CComponent 1.1 en deux classes: [[yii\base\BaseObject]] et [[yii\base\Component]].
Le classe [[yii\base\BaseObject|BaseObject]] est une classe de base légère qui permet de définir les
Propriétés de l’objet via des accesseurs. La classe [[yii\base\Component|Component]] est une
sous classe de [[yii\base\BaseObject|BaseObject]] et prend en charge les [Événements](concept events.md) et les
Comportements.

Si votre classe n’a pas besoin des événements et des comportements, vous devriez envisager d’utiliser
[[yii\base\BaseObject|BaseObject]] comme classe de base. C’est généralement le cas pour les classes qui représentent
une structure de données basique.




Configuration d’objets

La classe [[yii\base\BaseObject|BaseObject]] introduit une manière uniforme de configurer les objets. Toute sous-classe
de [[yii\base\BaseObject|BaseObject]] doit déclarer son constructeur (si besoin) de la manière suivante afin qu’elle
puisse être configurée correctement :

class MyClass extends \yii\base\BaseObject
{
    public function __construct($param1, $param2, $config = [])
    {
        // ... initialisation avant que la configuration ne soit appliquée

        parent::__construct($config);
    }

    public function init()
    {
        parent::init();

        // ... initialisation après que la configuration est appliquée
    }
}





Dans ce qui précède, le dernier paramètre du constructeur doit être un tableau de configuration
qui contient des entrées nom-valeur pour initialiser les propriétés à la fin du constructeur.
Vous pouvez remplacer la méthode [[yii\base\BaseObject::init()|init()]] pour le travail d’initialisation qui doit être fait
après que la configuration a été appliquée.

En suivant cette convention, vous serez en mesure de créer et de configurer de nouveaux objets en utilisant un tableau
de configuration :

$object = Yii::createObject([
    'class' => 'MyClass',
    'property1' => 'abc',
    'property2' => 'cde',
], [$param1, $param2]);





Plus de détails sur les configurations peuvent être trouvés dans la section
Configurations.




Événements

Avec Yii 1, les événements étaient créés par la définition d’une  méthode on (par exemple onBeforeSave). Avec Yii 2,
vous pouvez maintenant utiliser n’importe quel nom de l’événement. Vous déclenchez un événement en appelant
la méthode [[yii\base\Component::trigger()|trigger()]] :

$event = new \yii\base\Event;
$component->trigger($eventName, $event);





Pour attacher un gestionnaire à un événement, utilisez la méthode [[yii\base\Component::on()|on()]]:

$component->on($eventName, $handler);
// Pour détacher le gestionnaire, utilisez :
// $component->off($eventName, $handler);





Il y a de nombreuses améliorations dans la gestion des événements. Pour plus de détails, reportez-vous à la section Événements.




Alias

Yii 2.0 étend l’utilisation des alias aux fichiers/répertoires et aux URL. Yii 2.0 impose maintenant
aux alias de commencer par le caractère @, pour différencier les alias de fichiers/répertoires ou URL.
Par exemple, l’alias @yii fait référence au répertoire d’installation de Yii. Les alias ??sont
supportés dans la plupart du code de Yii. Par exemple, [[yii\caching\FileCache::cachePath]] peut prendre
à la fois un alias et un chemin de répertoire normal.

Un alias est aussi étroitement lié aux espaces de noms des classes. Il est recommandé de définir
un alias pour chaque espace de noms racine, ce qui vous permet d’utiliser le chargeur automatique de classe de Yii sans
sans devoir en faire d’avantage. Par exemple, vu que @yii fait référence au dossier d’installation de Yii,
une classe comme yii\web\Request peut être chargée automatiquement. Si vous utilisez une librairie tierce,
telle que Zend Framework, vous pouvez définir un alias de chemin @Zend qui fera référence au dossier
d’installation de Zend Framework. Une fois que vous avez fait cela, Yii sera aussi en mesure de charger automatiquement une classe de ce framework.

Pour en savoir plus, consultez la section Alias.




Vues

Le changement le plus significatif à propos des vues dans Yii 2 est que la variable spéciale $this dans une vue ne fait plus référence au
contrôleur ou à l’objet graphique. Au lieu de cela, $this correspond maintenant à un objet vue, un nouveau concept
introduit dans la version 2.0. L’objet vue est de type [[yii\web\View]], et représente la partie vue
du modèle MVC. Si vous souhaitez accéder au contrôleur ou  à l’objet graphique dans une vue, vous pouvez utiliser $this->context.

Pour afficher une vue depuis une autre vue, utilisez $this->render(), et non $this->renderPartial(). Le résultat retourné par la méthode render() doit être explicitement envoyé à la sortie, en effet render() retournera la vue au lieu de l’afficher. Par exemple :

echo $this->render('_item', ['item' => $item]);





Outre l’utilisation de PHP comme langage principal de gabarit, Yii 2.0 prend également en charge
deux moteurs de gabarit populaires : Smarty et Twig. Le moteur de gabarit Prado n’est plus pris en charge.
Pour utiliser ces moteurs de gabarit, vous devez configurer le composant view de l’application en définissant la propriété
[[yii\base\View::$renderers|View::$renderers]]. Reportez-vous à la section Moteur de gabarit pour en savoir plus.




Modèles

Yii 2.0 utilise la classe [[yii\base\Model]] comme modèle de base, similaire à la classe CModel dans la version 1.1.
La classe CFormModel a été supprimée. Vous pouvez, à la place, étendre la classe [[yii\base\Model]] afin de créer une classe modèle pour un formulaire.

Yii 2.0 introduit une nouvelle méthode appelée [[yii\base\Model::scenarios()|scenarios()]] pour déclarer
les scénarios pris en charge, indiquer dans quel scénario un attribut doit être validé et si cet attribut peut être considéré comme sûr ou non, etc. Par exemple:

public function scenarios()
{
    return [
        'backend' => ['email', 'role'],
        'frontend' => ['email', '!name'],
    ];
}





Dans ce qui précède, deux scénarios sont déclarés: backend et frontend. Pour le scénario backend les
attribut email et role sont sûrs et peuvent être affectés massivement. Pour le scénario frontend,
email peut être affecté massivement tandis que role ne le peut pas. email et rôle doivent être validées en utilisant des règles.

La méthode [[yii\base\Model::rules()|rules()]] est toujours utilisée pour déclarer les règles de validation. Remarque : suite à l’introduction de la méthode [[yii\base\Model::scenarios()|scenarios()]], le validateur unsafe n’as plus de raison d’être.

Dans la plupart des cas, vous n’avez pas besoin de surcharger la méthode [[yii\base\Model::scenarios()|scenarios()]]
lorsque les scénarios existants sont déclarés via la méthode [[yii\base\Model::rules()|rules()]], et il n’y a pas besoin de déclarer de propriétés unsafe.

Pour en savoir plus sur les modèles, reportez-vous à la section Modèles.




Contrôleurs

Yii 2.0 utilise la classe [[yii\web\Controller]] comme classe de base des contrôleurs, similaire à la classe CController dans la version Yii 1.1.
[[yii\base\Action]] est la classe de base pour les actions.

L’impact le plus évident de ces changements sur votre code est qu’une action de contrôleur doit retourner le contenu
que vous voulez afficher au lieu de l’envoyer vers la sortie :

public function actionView($id)
{
    $model = \app\models\Post::findOne($id);
    if ($model) {
        return $this->render('view', ['model' => $model]);
    } else {
        throw new \yii\web\NotFoundHttpException;
    }
}





Reportez-vous à la section Contrôleurs pour plus de détails.




Objets graphiques

Yii 2.0 utilise la classe [[yii\base\Widget]] comme classe de base pour les objets graphiques, similaire à la classe CWidget de Yii 1.1.

Pour avoir une meilleure prise en charge du framework dans les EDI, Yii 2 introduit une nouvelle syntaxe pour utiliser les objets graphiques. Les méthodes statiques
[[yii\base\Widget::begin()|begin()]], [[yii\base\Widget::end()|end()]], et [[yii\base\Widget::widget()|widget()]]
ont été créées et sont utilisables comme suit :

use yii\widgets\Menu;
use yii\widgets\ActiveForm;

// Remarque : vous devez utiliser echo pour afficher le résultat
echo Menu::widget(['items' => $items]);

// Utilisation d'un tableau pour initialiser les propriétés de l'objet
$form = ActiveForm::begin([
    'options' => ['class' => 'form-horizontal'],
    'fieldConfig' => ['inputOptions' => ['class' => 'input-xlarge']],
]);
... champs du formulaire ici ...
ActiveForm::end();





Reportez-vous à la section Objets graphiques pour en savoir plus.




Thèmes

Les thèmes fonctionnent tout à fait différemment dans la version 2.0. Ils sont maintenant basés sur un mécanisme de mise en correspondance de chemin qui met un chemin
de fichier de vue en correspondance avec un chemin de fichier de vue thématisée. Par exemple, si la mise en correspondance  pour un thème est
['/web/views' => '/web/themes/basic'], alors la version thématisée du fichier de vue
/web/views/site/index.php sera /web/themes/basic/site/index.php. Pour cette raison, les thèmes peuvent maintenant
être appliqués à n’importe quel fichier de vue, même une vue utilisée en dehors du contexte d’un contrôleur ou d’un objet graphique.

En outre, il n’y a plus de composant CThemeManager. A la place, theme est une propriété configurable du composant view
de l’application.

Reportez-vous à la section Thématisation pour plus de détails.




Applications en ligne de commande

Les applications en ligne de commande (console) sont désormais organisées en contrôleurs, comme les applications Web. ces contrôleurs
doivent étendre la classe [[yii\console\Controller]], similaire à la classe CConsoleCommand de la version 1.1.

Pour exécuter une commande console, utilisez yii <route>, où <route> correspond à une route vers un contrôleur
(par exemple sitemap/index). Les arguments anonymes supplémentaires sont passés comme paramètres à
l’action du contrôleur correspondant, alors que les arguments nommés sont analysés selon
les options déclarées dans la méthode [[yii\console\Controller::options()]].

Yii 2.0 prend en charge la génération automatique d’aide à partir des blocs de commentaire.

Reportez-vous à la section Commandes console pour plus de détails.




I18N

Yii 2.0 supprime les fonctionnalités internes de formatage des dates et des nombres, en faveur du module PHP PECL intl [http://pecl.php.net/package/intl].

La traduction des messages est désormais effectuée via le composant d’application i18n.
Ce composant gère un ensemble de sources de messages, ce qui vous permet d’utiliser différentes
sources de messages en fonction de catégories.

Reportez-vous à la section Internationalisation pour plus de détails.




Filtres d’action

Les filtres d’action sont maintenant implémentés comme des comportements. Pour définir un nouveau filtre personnalisé, étendez la classe [[yii\base\ActionFilter]]. Pour utiliser un filtre, déclarez le
comme un comportement du contrôleur.  Par exemple, pour utiliser le filtre [[yii\filters\AccessControl]], vous aurez le code suivant dans le contrôleur :

public function behaviors()
{
    return [
        'access' => [
            'class' => 'yii\filters\AccessControl',
            'rules' => [
                ['allow' => true, 'actions' => ['admin'], 'roles' => ['@']],
            ],
        ],
    ];
}





Reportez-vous à la section Filtres pour plus de détails.




Ressources

Yii 2.0 introduit un nouveau concept de paquet de ressources (asset bundle) qui remplace le concept de gestionnaire de ressources (asset manager) de la version 1.1.

Un paquet de ressources est une collection de fichiers (par exemple : fichier JavaScript, CSS, image, etc.)
dans un dossier. Chaque paquet est représenté par une classe étendant [[yii\web\AssetBundle]].
En enregistrant un paquet de ressources via [[yii\web\AssetBundle::register()]], vous rendez les ressources du paquet accessibles via le Web. Contrairement à Yii 1.1, la page enregistrant le paquet
contiendra automatiquement les références vers les fichiers déclarés dans le paquet.

Reportez-vous à la section Assets pour plus de détails.




Assistants

Yii 2.0 introduit de nombreux assistants couramment utilisés, sous la forme de classes statiques, y compris :


	[[yii\helpers\Html]]


	[[yii\helpers\ArrayHelper]]


	[[yii\helpers\StringHelper]]


	[[yii\helpers\FileHelper]]


	[[yii\helpers\Json]]




Reportez-vous à la section Assistants pour plus de détails.




Formulaires

Yii 2.0 introduit le concept de champ pour la construction d’un formulaire à l’aide de la classe [[yii\widgets\ActiveForm]]. Un champ
est un conteneur constitué d’une étiquette, d’une entrée, d’un message d’erreur, et/ou d’un texte d’aide.
Un champ est représenté comme un objet de la classe [[yii\widgets\ActiveField|ActiveField]].
En utilisant des champs, vous pouvez construire un formulaire plus proprement qu’avant:

<?php $form = yii\widgets\ActiveForm::begin(); ?>
    <?= $form->field($model, 'username') ?>
    <?= $form->field($model, 'password')->passwordInput() ?>
    <div class="form-group">
        <?= Html::submitButton('Login') ?>
    </div>
<?php yii\widgets\ActiveForm::end(); ?>





Reportez-vous à la section Créer des formulaires pour plus de détails.




Constructeur de requêtes

Dans la version 1.1, la construction des requêtes était dispersée dans plusieurs classes, y compris CDbCommand,
CDbCriteria et CDbCommandBuilder. Avec Yii 2.0, une requête de base de données est représentée par un objet de la classe [[yii\db\Query|Query]]
qui peut être transformé en une instruction SQL à l’aide de la classe [[yii\db\QueryBuilder|QueryBuilder]].
Par exemple:

$query = new \yii\db\Query();
$query->select('id, name')
      ->from('user')
      ->limit(10);

$command = $query->createCommand();
$sql = $command->sql;
$rows = $command->queryAll();





De plus, ces méthodes de construction de requête peuvent également être utilisées lorsque vous travaillez avec Active Record.

Reportez-vous à la section Constructeur de requête pour plus de détails.




Active Record

Yii 2.0 introduit beaucoup de modifications au modèle Active Record. Les deux plus évidentes concernent la construction des requêtes et la manipulation de requêtes relationnelles.

La classe CDbCriteria en 1.1 est remplacée par [[yii\db\ActiveQuery]] dans Yii 2. Cette classe étend [[yii\db\Query]],
et hérite donc de toutes les méthodes de construction de requête. Pour commencer à construire une requête il suffit d’utiliser [[yii\db\ActiveRecord::find()]] :

// Pour récupérer tous les clients *actifs* et les trier selon leur identifiant
$customers = Customer::find()
    ->where(['status' => $active])
    ->orderBy('id')
    ->all();





Pour déclarer une relation, il suffit de définir un accesseur qui renvoie un objet [[yii\db\ActiveQuery|ActiveQuery]].
Le nom de la propriété définie par l’accesseur représente le nom de la relation. Par exemple, le code suivant déclare
une relation orders (en 1.1, vous aviez à déclarer les relations dans la méthode relations()):

class Customer extends \yii\db\ActiveRecord
{
    public function getOrders()
    {
        return $this->hasMany('Order', ['customer_id' => 'id']);
    }
}





Maintenant vous pouvez utiliser $customer->orders pour accéder aux commandes du client depuis la table liée.
Vous pouvez aussi utiliser le code suivant pour effectuer une requête relationnelle à la volée avec une condition
personnalisée :

$orders = $customer->getOrders()->andWhere('status=1')->all();





Lors du chargement anticipé (eager loading) d’une relation, Yii 2.0 fonctionne différemment de la version 1.1.
En particulier avec Yii 1.1, une jointure était créée pour sélectionner à la fois l’enregistrement principal et les
enregistrements liés. Avec Yii 2.0, deux instructions SQL sont exécutées sans utiliser de jointure : la première
récupère les enregistrements principaux et la seconde récupère les enregistrements liés en filtrant selon les clés
primaires des enregistrements principaux.

Au lieu de retourner des objets [[yii\db\ActiveRecord|ActiveRecord]], vous pouvez utiliser la méthode
[[yii\db\ActiveQuery::asArray()|asArray()]] lors de la construction d’une requête pour renvoyer un grand nombre
d’enregistrements. Ainsi le résultat  sera retourné sous forme de tableaux, ce qui peut réduire considérablement le temps de calcul et la mémoire nécessaires dans le cas d’un grand nombre d’enregistrements. Par exemple:

$customers = Customer::find()->asArray()->all();





Un autre changement fait que vous ne pouvez plus définir les valeurs par défaut des attributs en utilisant des propriétés
publiques. Si vous en avez besoin, vous devez utiliser la méthode init de la classe de votre modèle.

public function init()
{
    parent::init();
    $this->status = self::STATUS_NEW;
}





Il y avait des problèmes de surcharge du constructeur de la classe ActiveRecord 1.1. Ces problèmes n’existent plus dans
la version 2.0. Notez que lorsque vous ajoutez des paramètres au constructeur, vous avez éventuellement à surcharger
la méthode [[yii\db\ActiveRecord::instantiate()]].

Il y a beaucoup d’autres modifications et améliorations à Active Record.
Reportez-vous à la section Active Record pour en savoir plus.




Comportement des Enregistrements actifs)

Dans la version 2.0, nous avons la classe de base des  behaviors (comportements)  CActiveRecordBehavior. Si vous voulez créer une classe de comportement d’enregistrement actif (Active Record), vous devez étendre directement la classe yii\base\Behavior. Si la classe de comportement doit réagir à certains événements du propriétaire, vous devez redéfinir les méthodes events() comme suit :

namespace app\components;

use yii\db\ActiveRecord;
use yii\base\Behavior;

class MyBehavior extends Behavior
{
    // ...

    public function events()
    {
        return [
            ActiveRecord::EVENT_BEFORE_VALIDATE => 'beforeValidate',
        ];
    }

    public function beforeValidate($event)
    {
        // ...
    }
}








User et IdentityInterface

La classe CWebUser 1.1 est maintenant remplacée par [[yii\web\User]], et il n’y a plus de classe CUserIdentity.
Au lieu de cela, vous devez implémenter [[yii\web\IdentityInterface]] qui est beaucoup plus simple à utiliser.
Le modèle de projet avancé fournit un exemple.

Reportez-vous aux sections Authentification, Authorisation, et
Modèle de projet avancé [https://www.yiiframework.com/extension/yiisoft/yii2-app-advanced/doc/guide] pour en savoir plus.




Gestion des URL

La gestion des URL dans Yii 2 est similaire à celle disponible dans la version 1.1. Une amélioration majeure est que la
gestion des URL prend désormais en charge les paramètres optionnels. Par exemple, si vous avez une règle déclarée comme suit,
cela fera correspondre post/popular et post/1/popular. Dans la version 1.1, il fallait utiliser deux règles pour
atteindre le même objectif.

[
    'pattern' => 'post/<page:\d+>/<tag>',
    'route' => 'post/index',
    'defaults' => ['page' => 1],
]





Reportez-vous à la section Documentation de la gestion des URL pour en savoir plus.

Un changement important dans la convention de nommage pour les routes est que les noms utilisant la casse en dos de chameau  des contrôleurs et des actions utilisent désormais uniquement des mots en bas de casse séparés par des tirets, p. ex. l’identifiant du  contrôleur  Reportez-vous à la section traitant des  Identifiants de contrôleur et  Identifiants d’action pour plus de détails.




Utiliser Yii 1.1 et 2.x ensemble

Si vous avez du code Yii 1.1 que vous souhaitez réutiliser avec Yii 2, reportez-vous à la section Utiliser Yii 1.1 et 2.0 ensemble.







          

      

      

    

  

  
    
    Qu’est ce que Yii ?
    

    
 
  

    
      
          
            
  
Qu’est ce que Yii ?

Yii est un framework PHP hautes performances à base de composants qui permet de développer rapidement des applications Web modernes.
Le nom Yii (prononcer Yee ou [ji:]) signifie “simple et évolutif” en Chinois. Il peut également
être considéré comme un acronyme de Yes It Is!


Pour quel usage Yii est il optimal ?

Yii est un framework Web générique, c’est à dire qu’il peut être utilisé pour développer tous types
d’applications Web basées sur PHP. De par son architecture à base de composants et son système de cache sophistiqué,
il est particulièrement adapté au développement d’applications à forte audience telles que des portails, des forums,
des systèmes de gestion de contenu (CMS), des sites e-commerce, des services Web RESTFul, etc.




Comment se positionne Yii vis-à-vis des autres Frameworks ?


	Comme la plupart des frameworks PHP, Yii est basé sur le modèle de conception MVC (Modèle-Vue-Contrôleur) et encourage à une
organisation du code basée sur ce modèle.


	Yii repose sur l’idée que le code doit être écrit de façon simple et élégante. Il ne sera jamais question de
compliquer le code de Yii uniquement pour respecter un modèle de conception.


	Yii est un framework complet offrant de nombreuses caractéristiques éprouvées et prêtes à l’emploi, telles que:
constructeur de requêtes et ActiveRecord, à la fois pour les bases de données relationnelles et NoSQL; prise en charge RESTful API;
prise en charge de caches multi-niveaux; et plus.


	Yii est extrêmement flexible. Vous pouvez personnaliser ou remplacer presque chaque partie du code du noyau. Vous pouvez également
profiter de son architecture extensible solide, afin d’utiliser ou développer des extensions distribuables.


	La haute performance est toujours un des principaux objectifs de Yii.




Yii n’est pas un one-man show, il est soutenu par une solide équipe de développement du noyau [http://www.yiiframework.com/about/] ainsi que d’une grande communauté
avec de nombreux professionnels qui contribuent constamment au développement de Yii. L’équipe de développeurs de Yii
garde un œil attentif sur les dernières tendances en développement Web, et sur les meilleures pratiques et caractéristiques
trouvées dans d’autres frameworks ou projets. Les meilleures pratiques et caractéristiques les plus pertinentes trouvées ailleurs sont régulièrement intégrées dans le code du noyau et utilisables
via des interfaces simples et élégantes.




Versions de Yii

Yii est actuellement disponible en deux versions majeures : 1.1 et 2.0. La version 1.1, l’ancienne génération, est désormais en mode maintenance. La version 2.0 est une réécriture complète de Yii, adoptant les dernières technologies et protocoles, y compris Composer, PSR, les espaces de noms, les traits, et ainsi de suite. La version 2.0 est la dernière génération du framework et recevra nos principaux efforts de développement dans les prochaines années.
Ce guide est principalement pour la version 2.0.




Configuration nécessaire

Yii 2.0 nécessite PHP 5.4.0 ou plus. Vous pouvez trouver plus de détails sur la configuration requise pour chaque fonctionnalité
en utilisant le script de test de la configuration inclus dans chaque distribution de Yii.

Utiliser Yii requiert des connaissances de base sur la programmation objet (OOP), en effet Yii est un framework basé sur ce type de programmation.
Yii 2.0 utilise aussi des fonctionnalités récentes de PHP, telles que les espaces de noms [http://www.php.net/manual/fr/language.namespaces.php] et les traits [http://www.php.net/manual/fr/language.oop5.traits.php].
Comprendre ces concepts vous aidera à mieux prendre en main Yii.







          

      

      

    

  

  
    
    Travail avec des scripts clients
    

    
 
  

    
      
          
            
  
Travail avec des scripts clients


Note: cette section est encore en développement.





Enregistrement des scripts

Avec l’objet [[yii\web\View]] vous êtes en mesure d’enregistrer des scripts. Il existe deux méthodes dédiées pour cela :
[[yii\web\View::registerJs()|registerJs()]] pour les scripts en ligne et [[yii\web\View::registerJsFile()|registerJsFile()]] pour les scripts externes.

Les scripts en ligne sont utiles pour la configuration et le code généré dynamiquement. La méthode pour les ajouter est la suivante :

$this->registerJs("var options = ".json_encode($options).";", View::POS_END, 'my-options');





Le premier argument est le code JS réel à insérer dans la page. Le deuxième argument détermine à quel endroit le script doit être inséré dans la page. Les valeurs possibles sont :


	[[yii\web\View::POS_HEAD|View::POS_HEAD]] pour le placer dans la section d’entête (<head></head>).


	[[yii\web\View::POS_BEGIN|View::POS_BEGIN]] pour le placer juste après la balise d’ouverture du corps de la page (<body>).


	[[yii\web\View::POS_END|View::POS_END]] pour le placer juste avant la balise de fermeture du corps de la page (</body>).


	[[yii\web\View::POS_READY|View::POS_READY]] pour l’exéuter sur l’événement  « document ready ». Cela enregistre [[yii\web\JqueryAsset|jQuery]] automatiquement.


	[[yii\web\View::POS_LOAD|View::POS_LOAD]] pour l’exécuter sur l’événement « document load » . Cela enregistre [[yii\web\JqueryAsset|jQuery]] automatiquement.




Le dernier argument est un identifiant unique du script utilisé pour identifier le bloc de code et remplacer un bloc existant de même identifiant au lieu de simplement l’ajouter. Si vous ne le fournissez pas, le code JS lui-même est utilisé en tant qu’identifiant.

Un script externe peut être ajouté comme expliqué ci-dessous :

$this->registerJsFile('http://example.com/js/main.js', ['depends' => [\yii\web\JqueryAsset::className()]]);





Les arguments pour  [[yii\web\View::registerJsFile()|registerJsFile()]] sont semblables à ceux utilisés pour [[yii\web\View::registerCssFile()|registerCssFile()]]. Dans l’exemple précédent, nous enregistrons le fichier main.js avec une dépendance sur JqueryAsset. Cela siginifie que le fichier main.js sera ajouté APRÈS jquery.js. Sans la spécification de cette dépendance, l’ordre relatif entre main.js et jquery.js resterait indéfini.

Comme pour [[yii\web\View::registerCssFile()|registerCssFile()]], il est également fortement recommandé que vous utilisiez les paquets de ressources (asset bundles) pour enregistrer des fichiers JS externes plutôt que d’utiliser [[yii\web\View::registerJsFile()|registerJsFile()]].




Enregistrement de paquets de ressources

Comme cela a été mentionné plus tôt, il est préférable d’utiliser des paquets de ressources plutôt que d’utiliser CSS et JavaScript directement. Vous pouvez obtenir des détails sur les paquets de ressources dans la section Ressources de ce guide. Comme lors de l’utilisation des paquets de ressources déjà définis, c’est très simple :

\frontend\assets\AppAsset::register($this);








Enregistrement des CSS

Vous pouvez enregistrer les CSS en utilisant [[yii\web\View::registerCss()|registerCss()]] ou [[yii\web\View::registerCssFile()|registerCssFile()]]. Le premier enregistre un bloc de code CSS tandis que le second enregistre un fichier CSS externe. Par exemple :

$this->registerCss("body { background: #f00; }");





Le code ci-dessus provoque l’ajout de ce qui suit à la section « head » :

<style>
body { background: #f00; }
</style>





Si vous désirez spécifier des propriétés additionnelles du style balise, passez un tableau des paires nom-valeur en tant que troisième argument. Si vous avez besoin de vous assurer qu’il y a seulement une balise style unique, utilisez un quatrième argument comme cela a été mentionné dans la description des balises méta.

$this->registerCssFile("http://example.com/css/themes/black-and-white.css", [
    'depends' => [BootstrapAsset::className()],
    'media' => 'print',
], 'css-print-theme');





Le code ci-dessus provoque l’ajout d’un lien vers un fichier CSS à la section « head » de la page.


	Le premier argument spécifie le fichier CSS à enregistrer.


	Le deuxième argument spécifie l’attribut HTML pour la balise <link> résultant. L’option depends fait l’objet d’une interprétation particulière. Elle spécifie de quel paquet de ressources  ce fichier dépend. Dans ce cas, le paquet de ressources dont le ficher dépend est [[yii\bootstrap\BootstrapAsset|BootstrapAsset]]. Cela veut dire que le fichier CSS sera ajouté après les fichiers CSS contenus dans [[yii\bootstrap\BootstrapAsset|BootstrapAsset]].


	Le dernier argument spécifie un identifiant pour ce fichier CSS. S’il n’est pas fourni, l’URL du fichier CSS est utilisée à sa place.




Il est fortement recommandé que vous utilisiez des paquets de ressources pour enregistrer des fichers CSS externes plutôt que [[yii\web\View::registerCssFile()|registerCssFile()]]. L’utilisation des paquets de ressources vous permet de combiner et de comprimer plusieurs fichiers CSS, ce qui est souhaitable pour les sites Web à trafic intense.







          

      

      

    

  

  
    
    Fournisseurs de données
    

    
 
  

    
      
          
            
  
Fournisseurs de données

Dans les sections Pagination et Tri, nous avons décrit comment permettre à l’utilisateur de choisir une page particulière de données à afficher et de trier ces données en fonction de certaines colonnes. Comme les tâches de pagination et de tri sont très courantes, Yii met à votre disposition un jeu de classes fournisseurs de données pour les encapsuler.

Un fournisseur de données est une classe qui implémente l’interface [[yii\data\DataProviderInterface]]. Il prend en essentiellement en charge l’extraction de données paginées et triées. Il fonctionne ordinairement avec des composants graphiques de données pour que l’utilisateur final puisse paginer et trier les données de manière interactive.

Les classes fournisseurs de données suivantes sont incluses dans les versions publiées de Yii :


	[[yii\data\ActiveDataProvider]]: utilise [[yii\db\Query]] ou [[yii\db\ActiveQuery]] pour demander des données à des bases de données et les retourner sous forme de tableaux ou d’instances d’enregistrement actif.


	[[yii\data\SqlDataProvider]]: exécute une instruction SQL et retourne les données sous forme de tableaux.


	[[yii\data\ArrayDataProvider]]: prend un gros tableau et en retourne une tranche en se basant sur les spécifications de pagination et de tri.




Tous ces fournisseurs de données sont utilisés selon un schéma commun :

// créer le fournisseur de données en configurant ses propriétés de pagination et de tri 
$provider = new XyzDataProvider([
    'pagination' => [...],
    'sort' => [...],
]);

// retrouver les données paginées et triées
$models = $provider->getModels();

// obtenir le nombre d'items de données dans la page courante
$count = $provider->getCount();

// obtenir le nombre total d'items de données de l'ensemble des pages 
$totalCount = $provider->getTotalCount();





Vous spécifiez les comportements de pagination et de tri d’un fournisseur de données en configurant ses propriétés [[yii\data\BaseDataProvider::pagination|pagination]] et [[yii\data\BaseDataProvider::sort|sort (tri)]] qui correspondent aux configurations de [[yii\data\Pagination]] et [[yii\data\Sort]], respectivement. Vous pouvez également les configurer à false pour désactiver la pagination et/ou le tri.

Les composants graphiques de données, tels que [[yii\grid\GridView]], disposent d’une propriété nommée dataProvider qui accepte une instance de fournisseur de données et affiche les données qu’il fournit. Par exemple :

echo yii\grid\GridView::widget([
    'dataProvider' => $dataProvider,
]);





Ces fournisseurs de données varient essentiellement en fonction de la manière dont la source de données est spécifiée. Dans les sections qui suivent, nous expliquons l’utilisation détaillée de chacun des ces fournisseurs de données.


Fournisseur de données actif 

Pour utiliser le [[yii\data\ActiveDataProvider|fournisseur de données actif (classe ActiveDataProvider)]], vous devez configurer sa propriété [[yii\data\ActiveDataProvider::query|query]]. Elle accepte soit un objet [[yii\db\Query]], soit un objet [[yii\db\ActiveQuery]]. Avec le premier, les données peuvent être soit des tableaux, soit des instances d’enregistrement actif. Par exemple :

use yii\data\ActiveDataProvider;

$query = Post::find()->where(['status' => 1]);

$provider = new ActiveDataProvider([
    'query' => $query,
    'pagination' => [
        'pageSize' => 10,
    ],
    'sort' => [
        'defaultOrder' => [
            'created_at' => SORT_DESC,
            'title' => SORT_ASC, 
        ]
    ],
]);

// retourne un tableau d'objets Post 
$posts = $provider->getModels();





Si la requête $query de l’exemple ci-dessus est créée en utilisant le code suivant, alors le fournisseur de données retourne des tableaux bruts.

use yii\db\Query;

$query = (new Query())->from('post')->where(['status' => 1]); 






Note: si une requête spécifie déjà la clause orderBy, les nouvelles instructions de tri données par l’utilisateur final (via la configuration sort) sont ajoutées à la clause orderBy existante. Toute clause limit et offset existante est écrasée par la requête de pagination de l’utilisateur final (via la configuration pagination).
Par défaut, [[yii\data\ActiveDataProvider]] utilise le composant d’application db comme connexion à la base de données. Vous pouvez utiliser une connexion différente en configurant la propriété [[yii\data\ActiveDataProvider::db]].







Fournisseur de données SQL 

[[yii\data\SqlDataProvider]] travaille avec des instructions SQL brutes pour aller chercher les données. Selon les spécifications de [[yii\data\SqlDataProvider::sort|sort]] et de [[yii\data\SqlDataProvider::pagination|pagination]], le fournisseur ajuste les clauses ORDER BY et LIMIT de l’instruction SQL en conséquence pour n’aller chercher que la page de données requise dans l’ordre désiré.

Pour utiliser [[yii\data\SqlDataProvider]], vous devez spécifier la propriété [[yii\data\SqlDataProvider::sql|sql]], ainsi que la propriété [[yii\data\SqlDataProvider::totalCount|totalCount]]. Par exemple :

use yii\data\SqlDataProvider;

$count = Yii::$app->db->createCommand('
    SELECT COUNT(*) FROM post WHERE status=:status
', [':status' => 1])->queryScalar();

$provider = new SqlDataProvider([
    'sql' => 'SELECT * FROM post WHERE status=:status',
    'params' => [':status' => 1],
    'totalCount' => $count,
    'pagination' => [
        'pageSize' => 10,
    ],
    'sort' => [
        'attributes' => [
            'title',
            'view_count',
            'created_at',
        ],
    ],
]);

// retourne un tableau de lignes de données
$models = $provider->getModels();






Info: la propriété [[yii\data\SqlDataProvider::totalCount|totalCount]] est requise seulement si vous avez besoin de paginer les données.Cela est dû au fait que l’instruction SQL spécifiée via [[yii\data\SqlDataProvider::sql|sql]] est modifiée par le fournisseur pour ne retourner que la page de données couramment requise. Le fournisseur a donc besoin de connaître le nombre total d’items de données pour calculer correctement le nombre de pages disponibles.







Fournisseur de données tableau 

L’utilisation de [[yii\data\ArrayDataProvider]] est préférable lorsque vous travaillez avec un grand tableau. Le fournisseur vous permet de retourner une page des données du tableau, triées selon une ou plusieurs colonnes. Pour utiliser [[yii\data\ArrayDataProvider]], vous devez spécifier la propriété [[yii\data\ArrayDataProvider::allModels|allModels (tous les modèles)]] comme un grand tableau. Les éléments dans le grand tableau peuvent être, soit des tableaux associatifs (p. ex. des résultats de requête d’objets d’accès aux données (DAO)) ou des objets (p. ex. les instances d’Active Record. Par exemple :

use yii\data\ArrayDataProvider;

$data = [
    ['id' => 1, 'name' => 'name 1', ...],
    ['id' => 2, 'name' => 'name 2', ...],
    ...
    ['id' => 100, 'name' => 'name 100', ...],
];

$provider = new ArrayDataProvider([
    'allModels' => $data,
    'pagination' => [
        'pageSize' => 10,
    ],
    'sort' => [
        'attributes' => ['id', 'name'],
    ],
]);

// obtient les lignes de la page couramment requise
$rows = $provider->getModels();






Note: comparé au fournisseur de données actif et au fournisseur de données SQL](#sql-data-provider), le fournisseur de données tableau est moins efficient car il requiert de charger toutes les données en mémoire.







Travail avec les clés de données 

Lorsque vous utilisez les items de données retournés par le fournisseur de données, vous avez souvent besoin d’identifier chacun des items de données par une clé unique. Par exemple, si les items de donnés représentent des informations sur un client, vous désirez peut-être utiliser l’identifiant du client en tant que clé pour chacun de lots d’informations sur un client. Les fournisseurs de données peuvent retourner une liste de telles clés correspondant aux items de données retournés par [[yii\data\DataProviderInterface::getModels()]]. Par exemple :

use yii\data\ActiveDataProvider;

$query = Post::find()->where(['status' => 1]);

$provider = new ActiveDataProvider([
    'query' => $query,
]);

// retourne un tableau d'objets Post
$posts = $provider->getModels();

// retourne les valeurs des clés primaires correspondant à $posts





Dans l’exemple ci-dessus, comme vous fournissez un objet [[yii\db\ActiveQuery]] à [[yii\data\ActiveDataProvider]]. Il est suffisamment intelligent pour retourner les valeurs de la clé primaire en tant que clés. Vous pouvez aussi spécifier comment les valeurs de la clé sont calculées en configurant [[yii\data\ActiveDataProvider::key]] avec un nom de colonne ou une fonction de rappel qui calcule les valeurs de la clé. Par exemple :

// utilise la colonne "slug" comme valeurs de la clé
$provider = new ActiveDataProvider([
    'query' => Post::find(),
    'key' => 'slug',
]);

// utilise le résultat de md5(id) comme valeurs de la clé
$provider = new ActiveDataProvider([
    'query' => Post::find(),
    'key' => function ($model) {
        return md5($model->id);
    }
]);








Création d’un fournisseur de données personnalisé 

Pour créer votre fournisseur de données personnalisé, vous devez implémenter [[yii\data\DataProviderInterface]]. Une manière plus facile est d’étendre [[yii\data\BaseDataProvider]],ce qui vous permet de vous concentrer sur la logique centrale du fournisseur de données. En particulier, vous devez essentiellement implémenter les méthodes suivantes :


	[[yii\data\BaseDataProvider::prepareModels()|prepareModels()]]: prépare les modèles de données qui seront disponibles dans la page courante et les retourne sous forme de tableau.


	[[yii\data\BaseDataProvider::prepareKeys()|prepareKeys()]]: accepte un tableau de modèles de données couramment disponibles et retourne les clés qui leur sont associés.


	[[yii\data\BaseDataProvider::prepareTotalCount()|prepareTotalCount]]: retourne une valeur indiquant le nombre total de modèles de données dans le fournisseur.




Nous présentons ci-dessous un exemple de fournisseur de données que lit des données CSV efficacement :

<?php
use yii\data\BaseDataProvider;

class CsvDataProvider extends BaseDataProvider
{
    /**
     * @var string name of the CSV file to read
     */
    public $filename;
    
    /**
     * @var string|callable nom de la colonne clé ou fonction de rappel la retournant
     */
    public $key;
    
    /**
     * @var SplFileObject
     */
    protected $fileObject; // SplFileObject est très pratique pour rechercher une ligne particulière dans un fichier
    
 
    /**
     * {@inheritdoc}
     */
    public function init()
    {
        parent::init();
        
        // open file
        $this->fileObject = new SplFileObject($this->filename);
    }
 
    /**
     * {@inheritdoc}
     */
    protected function prepareModels()
    {
        $models = [];
        $pagination = $this->getPagination();
 
        if ($pagination === false) {
            // dans le cas où il n'y a pas de pagination, lit toutes les lignes
            while (!$this->fileObject->eof()) {
                $models[] = $this->fileObject->fgetcsv();
                $this->fileObject->next();
            }
        } else {
            // s'il y a une pagination, ne lit qu'une seule page
            $pagination->totalCount = $this->getTotalCount();
            $this->fileObject->seek($pagination->getOffset());
            $limit = $pagination->getLimit();
 
            for ($count = 0; $count < $limit; ++$count) {
                $models[] = $this->fileObject->fgetcsv();
                $this->fileObject->next();
            }
        }
 
        return $models;
    }
 
    /**
     * {@inheritdoc}
     */
    protected function prepareKeys($models)
    {
        if ($this->key !== null) {
            $keys = [];
 
            foreach ($models as $model) {
                if (is_string($this->key)) {
                    $keys[] = $model[$this->key];
                } else {
                    $keys[] = call_user_func($this->key, $model);
                }
            }
 
            return $keys;
        } else {
            return array_keys($models);
        }
    }
 
    /**
     * {@inheritdoc}
     */
    protected function prepareTotalCount()
    {
        $count = 0;
 
        while (!$this->fileObject->eof()) {
            $this->fileObject->next();
            ++$count;
        }
 
        return $count;
    }
}











          

      

      

    

  

  
    
    Composants graphiques d’affichage de données
    

    
 
  

    
      
          
            
  
Composants graphiques d’affichage de données

Yii fournit un jeu de composants graphiques utilisables pour afficher des données. Tandis que le componsant graphique DetailView (vue détaillée) peut être utilisé pour afficher un enregistrement unique, les composants graphiques ListView (vue en liste) et GridView (vue en grille) peuvent être utilisés pour afficher plusieurs enregistrements en liste ou en grille assortis de fonctionnalités telles que la pagination, le tri et le filtrage.


Vue détaillée (classe DetailView) [bookmark: detail-view]

Le composant graphique [[yii\widgets\DetailView|DetailView]] (vue détaillée) affiche les détails d’un [[yii\widgets\DetailView::$model|modèle]] de données unique.

Il est le plus adapté à l’affichage d’un modèle dans un format courant (p. ex. chacun des attributs du modèle est affiché en tant que ligne d’une grille). Le modèle peut être, soit une instance, ou une classe fille, de [[\yii\base\Model]] telle que la classe ActiveRecord, soit un tableau associatif.

DetailView utilise la propriété [[yii\widgets\DetailView::$attributes|$attributes]] pour déterminer quels attributs du modèle doivent être affichés et comment ils doivent être formatés. Reportez-vous à la section formatage des données pour des informations sur les options de formatage.

Une utilisation typique de DetailView ressemble à ce qui suit :

echo DetailView::widget([
    'model' => $model,
    'attributes' => [
        'title',               // attribut title (en texte simple)
        'description:html',    // attribut description formaté en HTML
        [                      // le nom du propriétaire du modèle
            'label' => 'Owner',
            'value' => $model->owner->name,
        ],
        'created_at:datetime', // date de création formaté comme une date/temps
    ],
]);








Vue en liste (class ListView)[bookmark: list-view]

Le composant graphique [[yii\widgets\ListView|ListView]] (vue en liste) est utilisé pour afficher des données issues d’un fournisseur de données. Chacun des modèles est rendu en utilisant le composant [[yii\widgets\ListView::$itemView|ListView]] (vue en liste) spécifié. Comme ce composant fournit des fonctionnalités telles que la pagination, le tri et le filtrage de base, il est pratique, à la fois pour afficher des informations et pour créer des interfaces utilisateur de gestion des données.

Typiquement, on l’utilise comme ceci :

use yii\widgets\ListView;
use yii\data\ActiveDataProvider;

$dataProvider = new ActiveDataProvider([
    'query' => Post::find(),
    'pagination' => [
        'pageSize' => 20,
    ],
]);
echo ListView::widget([
    'dataProvider' => $dataProvider,
    'itemView' => '_post',
]);





Le fichier de vue,  _post, contient ce qui suit :

<?php
use yii\helpers\Html;
use yii\helpers\HtmlPurifier;
?>
<div class="post">
    <h2><?= Html::encode($model->title) ?></h2>

    <?= HtmlPurifier::process($model->text) ?>
</div>





Dans le fichier ci-dessus, le modèle de données courant est disponible comme $model. En outre, les variables suivantes sont disponibles :


	$key: mixed, la valeur de la clé associée à l’item de données


	$index: integer, l’index commençant à zéro de l’item de données dans le tableau d’items retourné par le fournisseur de données.


	$widget: ListView, l’instance de ce composant graphique.




Si vous avez besoin de passer des données additionnelles à chacune des vues, vous pouvez utiliser la propriété [[yii\widgets\ListView::$viewParams|$viewParams]] pour passer des paires clé valeur, comme ceci :

echo ListView::widget([
    'dataProvider' => $dataProvider,
    'itemView' => '_post',
    'viewParams' => [
        'fullView' => true,
        'context' => 'main-page',
        // ...
    ],
]);





Celles-ci sont alors disponibles aussi dans la vue en tant que variables.




Vue en grille (classe GridView)[bookmark: grid-view]

La vue en grille, ou composant [[yii\grid\GridView|GridView]], est un des composants les plus puissants de Yii. Ce composant est extrêmement utile si vous devez rapidement construire l’interface d’administration du système. Il accepte des données d’un fournisseur de données et rend chacune des lignes en utilisant un jeu de [[yii\grid\GridView::columns|columns]] (colonnes), présentant ainsi l’ensemble des données sous forme d’une grille.

Chacune des lignes de la grille représente un item unique de données, et une colonne représente ordinairement un attribut de l’item (quelques colonnes peuvent correspondre à des expressions complexes utilisant les attributs ou à un texte statique).

Le code minimal pour utiliser le composant GridView se présente comme suit :

use yii\grid\GridView;
use yii\data\ActiveDataProvider;

$dataProvider = new ActiveDataProvider([
    'query' => Post::find(),
    'pagination' => [
        'pageSize' => 20,
    ],
]);
echo GridView::widget([
    'dataProvider' => $dataProvider,
]);





Le code précédent crée un fournisseur de données, puis utilise le composant GridView pour afficher chacun des attributs dans une ligne en le prélevant dans le fournisseur de données. La grille affichée est doté de fonctionnalités de pagination et de tri sans autre intervention.


Colonnes de la grille

Les colonnes de la grille sont exprimées en terme de classe [[yii\grid\Column]], qui sont configurées dans la propriété [[yii\grid\GridView::columns|columns]] (colonnes) de la configuration du composant GridView. En fonction du type de colonne et des réglages, celles-ci sont en mesure de présenter les données différemment. La classe par défaut est [[yii\grid\DataColumn]] (colonne de données), qui représente un attribut de modèle et peut être triée et filtrée.

echo GridView::widget([
    'dataProvider' => $dataProvider,
    'columns' => [
        ['class' => 'yii\grid\SerialColumn'],
        // colonnes simples définies par les données contenues dans le fournisseur de données
        // les données de la colonne du modèle sont utilisées
        'id',
        'username',
        // un exemple plus complexe
        [
            'class' => 'yii\grid\DataColumn', // peut être omis car c'est la valeur par défaut
            'value' => function ($data) {
                return $data->name; // $data['name'] pour une donnée tableau p. ex. en utilisant SqlDataProvider.
            },
        ],
    ],
]);





Notez que si la partie [[yii\grid\GridView::columns|columns]] de la configuration n’est pas spécifiée, Yii essaye de montrer toutes les colonnes possibles du modèle du fournisseur de données.




Classes de colonne

Les colonnes du composant GridView peuvent être personnalisées en utilisant différentes classes de colonnes :

echo GridView::widget([
    'dataProvider' => $dataProvider,
    'columns' => [
        [
            'class' => 'yii\grid\SerialColumn', // <-- ici
            // vous pouvez configurer des propriété additionnelles ici
        ],





En plus des classes de colonne fournies par Yii que nous allons passer en revue ci-après, vous pouvez créer vos propres classes de colonne.

Chacune des classes de colonne étend la classe [[yii\grid\Column]] afin que quelques options communes soient disponibles lors de la configuration des colonnes.


	[[yii\grid\Column::header|header]] permet de définir une ligne d’entête


	[[yii\grid\Column::footer|footer]] permet de définir le contenu d’une ligne de pied de grille


	[[yii\grid\Column::visible|visible]] définit si la colonne doit être visible.


	[[yii\grid\Column::content|content]] vous permet de passer une fonction de rappel PHP valide qui retourne les données d’une ligne. Le format est le suivant :

function ($model, $key, $index, $column) {
    return 'a string';
}









Vous pouvez spécifier différentes options HTML de conteneurs en passant des tableaux à :


	[[yii\grid\Column::headerOptions|headerOptions]]


	[[yii\grid\Column::footerOptions|footerOptions]]


	[[yii\grid\Column::filterOptions|filterOptions]]


	[[yii\grid\Column::contentOptions|contentOptions]]





Colonne de données (DataColumn) 

La classe [[yii\grid\DataColumn|DataColumn]] (colonne de données) est utilisée pour afficher et trier des données. C’est le type de colonne par défaut, c’est pourquoi la spécification de la classe peut être omise.

Le réglage principal de la colonne de données est celui de sa propriété [[yii\grid\DataColumn::format|format]]. Ses valeurs correspondent aux méthodes du composant d’application formatter qui est de classe [[\yii\i18n\Formatter|Formatter]] par défaut :

echo GridView::widget([
    'columns' => [
        [
            'attribute' => 'name',
            'format' => 'text'
        ],
        [
            'attribute' => 'birthday',
            'format' => ['date', 'php:Y-m-d']
        ],
    ],
]);La valeur de la colonne est passée en tant que premier argument





Dans cet exemple, text correspond à la méthode [[\yii\i18n\Formatter::asText()]]. La valeur de la colonne est passée en tant que premier argument. Dans la deuxième définition de colonne, date correspond à la méthode [[\yii\i18n\Formatter::asDate()]]. La valeur de la colonne est passée en tant que premier argument tandis que ‘php:Y-m-d’ est utilisé en tant que valeur du deuxième argument.

Pour une liste complète de tous les formateurs, reportez-vous à la section Formatage des données.

Pour configurer des colonnes de données, il y a aussi un format raccourci qui est décrit dans la documentation de l’API de [[yii\grid\GridView::columns|columns]].




Colonne d’actions (ActionColumn)

La classe [[yii\grid\ActionColumn|ActionColumn]] (colonne d’action) affiche des boutons d’action tels que mise à jour ou supprimer pour chacune des lignes.

echo GridView::widget([
    'dataProvider' => $dataProvider,
    'columns' => [
        [
            'class' => 'yii\grid\ActionColumn',
            // vous pouvez configurer des propriétés additionnelles ici
        ],





Les propriétés additionnelles configurables sont :


	[[yii\grid\ActionColumn::controller|controller]] qui est l’identifiant du contrôleur qui prend en charge l’action. Si cette propriété n’est pas définie, le contrôleur courant est utilisé.


	[[yii\grid\ActionColumn::template|template]] qui définit le modèle utilisé pour composer chacune des cellules dans la colonne d’actions. Les marqueurs (textes à l’intérieur d’accolades) sont traités comme des identifiants d’action (aussi appelé noms de bouton dans le contexte d’une colonne d’actions. Il sont remplacés par les fonctions de rappel correspondantes spécifiées dans la propriété [[yii\grid\ActionColumn::$buttons|buttons]]. Par exemple, le marqueur {view} sera remplacé par le résultat de la fonction de rappel buttons['view']. Si une fonction de rappel n’est pas trouvée, le texte est remplacé par une chaîne vide. Les marqueurs par défaut sont {view} {update} et {delete}.


	[[yii\grid\ActionColumn::buttons|buttons]] est un tableau de fonctions de rappel pour le rendu des boutons. Les clés du tableau sont les noms des boutons (sans les accolades), et les valeurs sont les fonctions de rappel de rendu des boutons. Les fonctions de rappel ont la signature suivante :

function ($url, $model, $key) {
    // retourne le code HTML du bouton
}





dans le code qui précède, $url est l’URL que la colonne crée pour le bouton, $model est l’objet modèle qui est en train d’être rendu pour la ligne courante, et $key est la clé du modèle dans le tableau du fournisseur de données.



	[[yii\grid\ActionColumn::urlCreator|urlCreator]] est une fonction de rappel qui crée une URL de bouton en utilisant les informations spécifiées sur le modèle. La signature de la fonction de rappel doit être le même que celle de [[yii\grid\ActionColumn::createUrl()]]. Si cette propriété n’est pas définie, les URL de bouton sont créées en utilisant [[yii\grid\ActionColumn::createUrl()]].


	[[yii\grid\ActionColumn::visibleButtons|visibleButtons]] est un tableau des conditions de visibilité pour chacun des boutons. Les clés du tableau sont les noms des boutons (sans les accolades), et les valeurs sont les valeurs booleénnes true ou false (vrai ou faux) ou la fonction anonyme. Lorsque le nom du bouton n’est pas spécifié dans ce tableau, il est montré par défaut. Les fonctions de rappel utilisent la signature suivante :

function ($model, $key, $index) {
    return $model->status === 'editable';
}





Ou vous pouvez passer une valeur booléenne :

[
    'update' => \Yii::$app->user->can('update')
]












Colonne boîte à cocher (CheckboxColumn)

La classe [[yii\grid\CheckboxColumn|CheckboxColumn]] (colonne de boîtes à cocher) affiche une colonne de boîtes à cocher.

Pour ajouter une colonne de boîtes à cocher à la vue en grille (GridView), ajoutez la configuration de [[yii\grid\GridView::$columns|columns]] comme ceci :

echo GridView::widget([
    'dataProvider' => $dataProvider,
    'columns' => [
        // ...
        [
            'class' => 'yii\grid\CheckboxColumn',
            // vous pouvez configurer des propriétés additionnelles ici
        ],
    ],





L’utilisateur peut cliquer sur les boîtes à cocher pour sélectionner des lignes dans la grille. Les lignes sélectionnées peuvent être obtenues en appelant le code JavaScript suivant :

var keys = $('#grid').yiiGridView('getSelectedRows');
// keys est un tableau constitué des clés associées aux lignes sélectionnées. 








Colonne série (SerialColumn)

La classe [[yii\grid\SerialColumn|SerialColumn]] (colonne série) rend les numéros de ligne en commençant à 1 et en continuant.

L’utilisation est aussi simple que ce que nous présentons ci-après :

echo GridView::widget([
    'dataProvider' => $dataProvider,
    'columns' => [
        ['class' => 'yii\grid\SerialColumn'], // <-- ici
        // ...










Tri des données


Note: cette section est en cours de développement.


	https://github.com/yiisoft/yii2/issues/1576










Filtrage des données

Pour filtrer les données, la vue en grille (GridView) requiert un modèle qui représente le critère de recherche qui est ordinairement pris dans les champs du filtre dans la vue en grille. Une pratique courante lorsqu’on utilise des enregistrements actifs est de créer une classe modèle de recherche qui fournit les fonctionnalités nécessaires (elle peut être générée pour vous par Gii). Cette classe définit les règles de validation pour la recherche et fournit une méthode search() (recherche) qui retourne le fournisseur de données avec une requête ajustée qui respecte les critères de recherche.

Pour ajouter la fonctionnalité de recherche au modèle Post, nous pouvons créer un modèle PostSearch comme celui de l’exemple suivant :

<?php

namespace app\models;

use Yii;
use yii\base\Model;
use yii\data\ActiveDataProvider;

class PostSearch extends Post
{
    public function rules()
    {
        // seuls les champs dans rules() peuvent être recherchés
        return [
            [['id'], 'integer'],
            [['title', 'creation_date'], 'safe'],
        ];
    }

    public function scenarios()
    {
        // bypasse l'implémentation de scenarios() dans la classe parent
        return Model::scenarios();
    }

    public function search($params)
    {
        $query = Post::find();

        $dataProvider = new ActiveDataProvider([
            'query' => $query,
        ]);

        // charge les données du formulaire de recherche et valide 
        if (!($this->load($params) && $this->validate())) {
            return $dataProvider;
        }

        // ajuste la requête en ajoutant les filtres 
        $query->andFilterWhere(['id' => $this->id]);
        $query->andFilterWhere(['like', 'title', $this->title])
              ->andFilterWhere(['like', 'creation_date', $this->creation_date]);

        return $dataProvider;
    }
}






Tip: reportez-vous au Constructeur de requêtes  (Query Builder) et en particulier aux conditions de filtrage pour savoir comment construire la requête de filtrage.




Vous pouvez utiliser cette fonction dans le contrôleur pour obtenir le fournisseur de données de la vue en grille :

$searchModel = new PostSearch();
$dataProvider = $searchModel->search(Yii::$app->request->get());

return $this->render('myview', [
    'dataProvider' => $dataProvider,
    'searchModel' => $searchModel,
]);





Et dans la vue, vous assignez ensuite le fournisseur de données ($dataProvider) et le modèle de recherche ($searchModel) à la vue en grille (GridView) :

echo GridView::widget([
    'dataProvider' => $dataProvider,
    'filterModel' => $searchModel,
    'columns' => [
        // ...
    ],
]);








Formulaire de filtrage séparé

La plupart du temps, utiliser les filtres de l’entête de la vue en grille suffit, mais dans le cas où vous avez besoin d’un formulaire de filtrage séparé, vous pouvez facilement l’ajouter aussi. Vous pouvez créer une vue partielle _search.php avec le contenu suivant :

<?php

use yii\helpers\Html;
use yii\widgets\ActiveForm;

/* @var $this yii\web\View */
/* @var $model app\models\PostSearch */
/* @var $form yii\widgets\ActiveForm */
?>

<div class="post-search">
    <?php $form = ActiveForm::begin([
        'action' => ['index'],
        'method' => 'get',
    ]); ?>

    <?= $form->field($model, 'title') ?>

    <?= $form->field($model, 'creation_date') ?>

    <div class="form-group">
        <?= Html::submitButton('Search', ['class' => 'btn btn-primary']) ?>
        <?= Html::submitButton('Reset', ['class' => 'btn btn-default']) ?>
    </div>

    <?php ActiveForm::end(); ?>
</div>





et l’inclure dans la vue index.php, ainsi :

<?= $this->render('_search', ['model' => $searchModel]) ?>






Note: si vous utilisez Gii pour générer le code des méthodes CRUD, le formulaire de filtrage séparé (_search.php) est généré par défaut, mais est commenté dans la vue index.php. Il vous suffit de supprimer la marque du commentaire pour l’utiliser !




Un formulaire de filtrage séparé est utile quand vous avez besoin de filtrer selon des champs qui ne sont pas visibles dans la vue en grille, ou pour des conditions particulières de filtrage, telles qu’une plage de dates. Pour filtrer selon une plage de dates, nous pouvons ajouter les attributs non DB createdFrom etcreatedTo au modèle de recherche :

class PostSearch extends Post
{
    /**
     * @var string
     */
    public $createdFrom;

    /**
     * @var string
     */
    public $createdTo;
}





Étendez les conditions de la requête dans la méthode search() comme ceci :

$query->andFilterWhere(['>=', 'creation_date', $this->createdFrom])
      ->andFilterWhere(['<=', 'creation_date', $this->createdTo]);





Et ajoutez les champs représentatifs au formulaire de filtrage :

<?= $form->field($model, 'creationFrom') ?>

<?= $form->field($model, 'creationTo') ?>








Travail avec des relations entre modèles

Lorsque vous affichez des enregistrements actifs dans la vue en grille, vous pouvez rencontrer le cas où vous affichez des valeurs de colonne en relation telles que le nom de l’auteur de l’article (post) au lieu d’afficher simplement son identifiant (id). Vous pouvez le faire en définissant le nom de l’attribut dans [[yii\grid\GridView::$columns]] comme étant author.name lorsque le modèle de l’article (Post) possède une relation nommée author (auteur) et que le modèle possède un attribut nommé name (nom). La vue en grille affiche alors le nom de l’auteur mais le tri et le filtrage ne sont pas actifs par défaut. Vous devez ajuster le modèle PostSearch que nous avons introduit dans la section précédente pour y ajouter cette fonctionnalité.

Pour activer le tri sur une colonne en relation, vous devez joindre la table en relation et ajouter la règle de tri au composant Sort du fournisseur de données :

$query = Post::find();
$dataProvider = new ActiveDataProvider([
    'query' => $query,
]);

// joingnez avec la relation nommée `author` qui est une relation avec la table `users`
// et définissez l'alias à `author`
$query->joinWith(['author' => function($query) { $query->from(['author' => 'users']); }]);
// depuis la version 2.0.7, l'écriture ci-dessus peut être simplifiée en $query->joinWith('author AS author');
// active le tri pour la colonne en relation 
$dataProvider->sort->attributes['author.name'] = [
    'asc' => ['author.name' => SORT_ASC],
    'desc' => ['author.name' => SORT_DESC],
];

// ...





Le filtrage nécessite aussi l’appel de la fonction joinWith ci-dessus. Vous devez également autoriser la recherche sur la colonne dans les attributs et les règles comme ceci :

public function attributes()
{
    // ajoute les champs en relation avec les attributs susceptibles d'être cherchés
    return array_merge(parent::attributes(), ['author.name']);
}

public function rules()
{
    return [
        [['id'], 'integer'],
        [['title', 'creation_date', 'author.name'], 'safe'],
    ];
}





Dans search(), il vous suffit ensuite d’ajouter une autre condition de filtrage avec :

$query->andFilterWhere(['LIKE', 'author.name', $this->getAttribute('author.name')]);






Info: dans ce qui précède, nous utilisons la même chaîne de caractères pour le nom de la relation et pour l’alias de table ; cependant, lorsque votre nom de relation et votre alias diffèrent, vous devez faire attention aux endroits où vous utilisez l’alias et à ceux où vous utilisez le nom de la relation. Une règle simple pour cela est d’utiliser l’alias partout où cela sert à construire le requête de base de données et le nom de la relation dans toutes les autres définitions telles que attributes() et rules() etc.

Par exemple, si vous utilisez l’alias au pour la table auteur en relation, l’instruction joinWith ressemble à ceci :

$query->joinWith(['author au']);





Il est également possible d’appeler simplement $query->joinWith(['author']); lorsque l’alias est défini dans la définition de la relation.

L’alias doit être utilisé dans la condition de filtrage mais le nom d’attribut reste le même :

$query->andFilterWhere(['LIKE', 'au.name', $this->getAttribute('author.name')]);





La même chose est vraie pour la définition du tri :

$dataProvider->sort->attributes['author.name'] = [
     'asc' => ['au.name' => SORT_ASC],
     'desc' => ['au.name' => SORT_DESC],
];





Également, lorsque vous spécifiez la propriété [[yii\data\Sort::defaultOrder|defaultOrder]] (ordre de tri par défaut) pour le tri, vous avez besoin d’utiliser le nom de la relation au lieu de l’alias :

$dataProvider->sort->defaultOrder = ['author.name' => SORT_ASC];









Info: pour plus d’informations sur joinWith et sur les requêtes effectuées en arrière-plan, consultez la documentation sur l’enregistrement actif à la section Jointure avec des relations.





Utilisation de vues SQL pour le filtrage, le tri et l’affichage des données

Il existe une autre approche qui peut être plus rapide et plus utile – les vues SQL. Par exemple, si vous avez besoin d’afficher la vue en grille avec des utilisateurs et leur profil, vous pouvez le faire de cette manière :

CREATE OR REPLACE VIEW vw_user_info AS
    SELECT user.*, user_profile.lastname, user_profile.firstname
    FROM user, user_profile
    WHERE user.id = user_profile.user_id





Ensuite vous devez créer l’enregistrement actif qui représente cette vue :

namespace app\models\views\grid;

use yii\db\ActiveRecord;

class UserView extends ActiveRecord
{

    /**
     * {@inheritdoc}
     */
    public static function tableName()
    {
        return 'vw_user_info';
    }

    public static function primaryKey()
    {
        return ['id'];
    }

    /**
     * {@inheritdoc}
     */
    public function rules()
    {
        return [
            // définissez vos règle ici
        ];
    }

    /**
     * {@inheritdoc}
     */
    public function attributeLabels()
    {
        return [
            // définissez vos étiquettes d'attribut ici
        ];
    }


}





Après cela, vous pouvez utiliser l’enregistrement actif UserView dans vos modèle de recherche, sans spécification additionnelle d’attribut de tri et de filtrage. Tous les attributs fonctionneront directement. Notez que cette approche a ses avantages et ses inconvénients :


	vous n’avez pas besoin de spécifier des conditions de tri et de filtrage. Tout fonctionne d’emblée ;


	cela peut être beaucoup plus rapide à cause de la taille des données et du nombre de requêtes SQL effectuées (pour chacune des relations vous n’avez pas besoin de requête supplémentaire) ;


	comme cela n’est qu’une simple mise en relation de l’interface utilisateur avec la vue SQL, il lui manque un peu de la logique qui apparaît dans vos entités, ainsi, si vous avez des méthodes comme isActive, isDeleted ou autres qui influencent l’interface utilisateur, vous devez les dupliquer dans cette classe également.









Plusieurs vues en grille par page

Vous pouvez utiliser plus d’une vue en grille sur une page unique mais quelques éléments de configuration additionnels sont nécessaires afin qu’elles n’entrent pas en interférence entre elles. Lorsque vous utilisez plusieurs instances de la vue en grille, vous devez configurer des noms de paramètre différents pour les liens de tri et de pagination générés de manière à ce que chacune des vues en grille possède ses propres liens de tri et de pagination. Vous faites cela en définissant les paramètres [[yii\data\Sort::sortParam|sortParam]] (tri) et [[yii\data\Pagination::pageParam|pageParam]] (page) des instances [[yii\data\BaseDataProvider::$sort|sort]] et [[yii\data\BaseDataProvider::$pagination|pagination]] du fournisseur de données.

Supposez que vous vouliez lister les modèles Post et User pour lesquels vous avez déjà préparé deux fournisseurs de données $userProvider et $postProvider:

use yii\grid\GridView;

$userProvider->pagination->pageParam = 'user-page';
$userProvider->sort->sortParam = 'user-sort';

$postProvider->pagination->pageParam = 'post-page';
$postProvider->sort->sortParam = 'post-sort';

echo '<h1>Users</h1>';
echo GridView::widget([
    'dataProvider' => $userProvider,
]);

echo '<h1>Posts</h1>';
echo GridView::widget([
    'dataProvider' => $postProvider,
]);








Utilisation de la vue en grille avec Pjax

Le composant graphique [[yii\widgets\Pjax|Pjax]] vous permet de mettre à jour une certaine section de votre page plutôt que d’avoir à recharger la page toute entière. Vous pouvez l’utiliser pour mettre uniquement à jour le contenu de la [[yii\grid\GridView|GridView]] (vue en grille) lors de l’utilisation de filtres.

use yii\widgets\Pjax;
use yii\grid\GridView;

Pjax::begin([
    // PJax options
]);
    Gridview::widget([
        // GridView options
    ]);
Pjax::end();





Pjax fonctionne également pour les liens à l’intérieur du composant graphique [[yii\widgets\Pjax|Pjax]] et pour les liens spécifiés par [[yii\widgets\Pjax::$linkSelector|Pjax::$linkSelector]]. Mais cela peut être un problème pour les liens d’une [[yii\grid\ActionColumn|ActionColumn]] (colonne d’action). Pour empêcher cela, ajoutez l’attribut HTML data-pjax="0" aux liens lorsque vous définissez la propriété [[yii\grid\ActionColumn::$buttons|ActionColumn::$buttons]].


Vue en grille et vue en liste avec Pjax dans Gii

Depuis la version 2.0.5, le générateur d’actions CRUD de Gii dispose d’une option appelée $enablePjax qui peut être utilisée, soit via l’interface web, soit en ligne de commande.

yii gii/crud --controllerClass="backend\\controllers\PostController" \
  --modelClass="common\\models\\Post" \
  --enablePjax=1





Qui génère un composant graphique [[yii\widgets\Pjax|Pjax]] enveloppant les composants graphiques [[yii\grid\GridView|GridView]] ou [[yii\widgets\ListView|ListView]].








Lectures complémentaires


	Rendering Data in Yii 2 with GridView and ListView [http://www.sitepoint.com/rendering-data-in-yii-2-with-gridview-and-listview/] d’Arno Slatius.










          

      

      

    

  

  
    
    Formatage des données
    

    
 
  

    
      
          
            
  
Formatage des données

Pour afficher des données dans un format plus facile à lire par les utilisateurs, vous pouvez les formater en utilisant le composant d’application formatter. Par défaut, le formateur est mis en œuvre par [[yii\i18n\Formatter]] qui fournit un jeu de méthodes pour formater des données telles que des dates, des temps, des nombres, des monnaies et autres données couramment utilisées. Vous pouvez utiliser le formateur de la manière indiquée ci-dessous :

$formatter = \Yii::$app->formatter;

// affiche : January 1, 2014
echo $formatter->asDate('2014-01-01', 'long');
 
// affiche : 12.50%
echo $formatter->asPercent(0.125, 2);
 
// affiche : <a href="mailto:cebe@example.com">cebe@example.com</a>
echo $formatter->asEmail('cebe@example.com'); 

// affiche : Yes
echo $formatter->asBoolean(true); 
// il prend aussi en charge l'affichage de valeurs nulles :

// affiche : (Not set)
echo $formatter->asDate(null); 





Comme vous pouvez le voir, ces trois méthodes sont nommées selon le format suivant asXyz(), où Xyz représente un format pris en charge. En alternative, vous pouvez formater les données en utilisant la méthode générique [[yii\i18n\Formatter::format()|format()]], qui vous permet de contrôler le format désiré par programmation et qui est communément utilisé par les composants graphiques tels que [[yii\grid\GridView]] et [[yii\widgets\DetailView]]. Par exemple :

// affiche : January 1, 2014
echo Yii::$app->formatter->format('2014-01-01', 'date'); 

// vous pouvez aussi utiliser un tableau pour spécifier les paramètres de votre méthode de formatage :
// `2` est la valeur du paramètre `$decimals` (nombre de décimales) pour la méthode asPercent().
// affiche : 12.50%
echo Yii::$app->formatter->format(0.125, ['percent', 2]); 






Note: le composant de formatage est conçu pour formater des valeurs à présenter à l’utilisateur. Si vous voulez convertir des entrées utilisateur en un format lisible par la machine, ou simplement formater une date dans un format lisible par la machine, le formateur n’est pas l’outil adapté à cela. Pour convertir une entrée utilisateur pour une date et un temps, vous pouvez utiliser [[yii\validators\DateValidator]] et [[yii\validators\NumberValidator]] respectivement. Pour une simple conversion entre les formats lisibles par la machine de date et de temps, la fonction PHP date() [http://php.net/manual/en/function.date.php] suffit.





Configuration du formateur 

Vous pouvez configurer les règles de formatage en configurant le composant formatter dans la configuration de l’application. Par exemple :

return [
    'components' => [
        'formatter' => [
            'dateFormat' => 'dd.MM.yyyy',
            'decimalSeparator' => ',',
            'thousandSeparator' => ' ',
            'currencyCode' => 'EUR',
       ],
    ],
];





Reportez-vous à la classe [[yii\i18n\Formatter]] pour connaître les propriétés qui peuvent être configurées.




Formatage de valeurs de dates et de temps 

Le formateur prend en charge les formats de sortie suivants en relation avec les dates et les temps :


	[[yii\i18n\Formatter::asDate()|date]]: la valeur est formatée sous la forme d’une date, p. ex. January 01, 2014.


	[[yii\i18n\Formatter::asTime()|time]]: la valeur est formatée sous la forme d’un temps, p. ex. 14:23.


	[[yii\i18n\Formatter::asDatetime()|datetime]]: la valeur est formatée sous la forme d’une date et d’un temps, p. ex. January 01, 2014 14:23.


	[[yii\i18n\Formatter::asTimestamp()|timestamp]]: la valeur est formatée sous la forme d’un horodatage unix  [http://en.wikipedia.org/wiki/Unix_time], p. ex. 1412609982.


	[[yii\i18n\Formatter::asRelativeTime()|relativeTime]]: la valeur est formatée sous la forme d’un intervalle de temps entre un temps et le temps actuel dans une forme lisible par l’homme, p.ex. 1 hour ago.


	[[yii\i18n\Formatter::asDuration()|duration]]: la valeur est formatée comme une durée dans un format lisible par l’homme, p. ex. 1 day, 2 minutes.




Les formats par défaut pour les dates et les temps utilisés pour les méthodes [[yii\i18n\Formatter::asDate()|date]], [[yii\i18n\Formatter::asTime()|time]],
et [[yii\i18n\Formatter::asDatetime()|datetime]] peuvent être configurés globalement en configurant [[yii\i18n\Formatter::dateFormat|dateFormat]], [[yii\i18n\Formatter::timeFormat|timeFormat]], et [[yii\i18n\Formatter::datetimeFormat|datetimeFormat]].

Vous pouvez spécifier les formats de date et de temps en utilisant la syntaxe ICU [http://userguide.icu-project.org/formatparse/datetime]. Vous pouvez aussi utiliser la syntaxe date() de PHP [http://php.net/manual/en/function.date.php] avec le préfixe php: pour la différentier de la syntaxe ICU. Par exemple :

// format ICU
echo Yii::$app->formatter->asDate('now', 'yyyy-MM-dd'); // 2014-10-06

// format date() de PHP
echo Yii::$app->formatter->asDate('now', 'php:Y-m-d'); // 2014-10-06





Lorsque vous travaillez avec des applications qui requièrent une prise en charge de plusieurs langues, vous devez souvent spécifier différents formats de dates et de temps pour différentes locales. Pour simplifier cette tâche, vous pouvez utiliser les raccourcis de formats (p. ex. long, short), à la place. Le formateur transforme un raccourci de formats en un format approprié en prenant en compte la [[yii\i18n\Formatter::locale|locale]] courante. Les raccourcis de formats suivants sont pris en charge (les exemples supposent que en_GB est la locale courante) :


	short: affiche 06/10/2014 pour une date et 15:58 pour un temps;


	medium: affiche 6 Oct 2014 et 15:58:42;


	long: affiche 6 October 2014 et 15:58:42 GMT;


	full: affiche Monday, 6 October 2014 et 15:58:42 GMT.




Depuis la version 2.0.7, il est aussi possible de formater les dates dans différents systèmes calendaires. Reportez-vous à la documentation de l’API pour la propriété [[yii\i18n\Formatter::$calendar|$calendar]] des formateurs pour savoir comment définir un autre système calendaire.


Fuseaux horaires 

Lors du formatage des dates et des temps, Yii les convertit dans le [[yii\i18n\Formatter::timeZone|fuseau horaire]] cible. La valeur à formater est supposée être donnée en UTC, sauf si un fuseau horaire est explicitement défini ou si vous avez configuré [[yii\i18n\Formatter::defaultTimeZone]].

Dans les exemples qui suivent, nous supposons que la cible [[yii\i18n\Formatter::timeZone|fuseau horaire]] est définie à Europe/Berlin.

// formatage d'un horodatage UNIX comme un temps
echo Yii::$app->formatter->asTime(1412599260); // 14:41:00

// formatage d'une chaîne de caractère date-temps (en UTC) comme un temps 
echo Yii::$app->formatter->asTime('2014-10-06 12:41:00'); // 14:41:00

// formatage d'une chaîne de caractères date-temps (en CEST) comme un temps
echo Yii::$app->formatter->asTime('2014-10-06 14:41:00 CEST'); // 14:41:00






Note: comme les fuseaux horaires sont assujettis à des règles fixées par les gouvernements du monde entier, et que ces règles peuvent varier fréquemment, il est vraisemblable que vous n’ayez pas la dernière information dans la base de données des fuseaux horaires installée sur votre système. Vous pouvez vous reporter au manuel d’ICU [http://userguide.icu-project.org/datetime/timezone#TOC-Updating-the-Time-Zone-Data] pour des informations sur la manière de mettre cette base de données à jour. Reportez-vous aussi au tutoriel Configurer votre environnement PHP pour l’internationalisation.









Formatage des nombres 

Pour les nombres, le formateur prend en charge les formats de sortie suivants :


	[[yii\i18n\Formatter::asInteger()|integer]]: la valeur est formatée comme un entier, p. ex. 42.


	[[yii\i18n\Formatter::asDecimal()|decimal]]: la valeur est formatée comme un nombre décimal en portant attention aux décimales et aux séparateurs de milliers, p. ex. 2,542.123 ou 2.542,123.


	[[yii\i18n\Formatter::asPercent()|percent]]: la valeur est formatée comme un pourcentage p. ex. 42%.


	[[yii\i18n\Formatter::asScientific()|scientific]]: la valeur est formatée comme un nombre dans le format scientifique p. ex. 4.2E4.


	[[yii\i18n\Formatter::asCurrency()|currency]]: la valeur est formatée comme une valeur monétaire, p. ex. £420.00. Notez que pour que cette fonction fonctionne correctement, la locale doit inclure la partie correspondant au pays p. ex. en_GB ou en_US parce que la partie langue seulement reste ambigüe dans ce cas.


	[[yii\i18n\Formatter::asSize()|size]]: la valeur, qui est un nombre d’octets est formatée sous une forme lisible par l’homme, p. ex. 410 kibibytes.


	[[yii\i18n\Formatter::asShortSize()|shortSize]]: est la version courte de [[yii\i18n\Formatter::asSize()|size]], e.g. 410 KiB.




Le format pour un nombre peut être ajusté en utilisant [[yii\i18n\Formatter::decimalSeparator|decimalSeparator (séparateur de décimales)]] et
[[yii\i18n\Formatter::thousandSeparator|thousandSeparator (séparateur de milliers) ]], qui prennent tous les deux les valeurs par défaut déterminées par la [[yii\i18n\Formatter::locale|locale]] courante.

Pour une configuration plus avancée, [[yii\i18n\Formatter::numberFormatterOptions]] et [[yii\i18n\Formatter::numberFormatterTextOptions]] peuvent être utilisés pour configurer la classe NumberFormater (formateur de nombres) [http://php.net/manual/en/class.numberformatter.php] utilisée en interne pour implémenter le formateur. Par exemple, pour ajuster la valeur minimum et maximum des chiffres fractionnaires, vous pouvez configurer la propriété [[yii\i18n\Formatter::numberFormatterOptions]] comme ceci :

'numberFormatterOptions' => [
    NumberFormatter::MIN_FRACTION_DIGITS => 0,
    NumberFormatter::MAX_FRACTION_DIGITS => 2,
]








Autres formats 

En plus des formats de date, temps et nombre, Yii prend aussi en charge les autres formats communément utilisés, y compris :


	[[yii\i18n\Formatter::asRaw()|raw]]: la valeur est affichée telle quelle, il s’agit d’un pseudo-formateur qui n’a pas d’effet, à l’exception des valeurs null qui sont affichées en utilisant la propriété [[nullDisplay]].


	[[yii\i18n\Formatter::asText()|text]]: la valeur est encodée HTML. C’est le format par défaut utilisé par les données des colonnes du widget GridView.


	[[yii\i18n\Formatter::asNtext()|ntext]]: la valeur est formatée comme un texte simple encodé HTML avec conversion des retours à la ligne en balise break.


	[[yii\i18n\Formatter::asParagraphs()|paragraphs]]: la valeur est formatée comme un paragraphe de texte encodé HTML à l’intérieur d’une balise <p>.


	[[yii\i18n\Formatter::asHtml()|html]]: la valeur est purifiée en utilisant [[HtmlPurifier]] pour éviter les attaques XSS. Vous pouvez passer les options additionnelles telles que ['html', ['Attr.AllowedFrameTargets' => ['_blank']]].


	[[yii\i18n\Formatter::asEmail()|email]]: la valeur est encodé comme un lien mailto.


	[[yii\i18n\Formatter::asImage()|image]]: la valeur est formatée comme une balise image.


	[[yii\i18n\Formatter::asUrl()|url]]: la valeur est formatée comme un hyperlien.


	[[yii\i18n\Formatter::asBoolean()|boolean]]: la valeur est formatée comme une valeur booléenne. Par défaut true est rendu par Yes et false par No, traduit dans la langue courante de l’application. Vous pouvez ajuster cela en configurant la propriété [[yii\i18n\Formatter::booleanFormat]].







Valeurs nulles (null) 

Les valeurs null sont formatées spécialement. Au lieu d’afficher une chaîne de caractères vide, le formateur la convertit en une chaîne de caractères prédéfinie dont la valeur par défaut est (not set) traduite dans la langue courante de l’application. Vous pouvez configurer la propriété [[yii\i18n\Formatter::nullDisplay|nullDisplay]] pour personnaliser cette chaîne de caractères.




Localisation des formats de données 

Comme nous l’avons mentionné précédemment, le formateur utilise la [[yii\i18n\Formatter::locale|locale]] courante pour déterminer comment formater une valeur qui soit convenable dans la cible pays/région. Par exemple, la même valeur de date est formatée différemment pour différentes locales :

Yii::$app->formatter->locale = 'en-US';
echo Yii::$app->formatter->asDate('2014-01-01'); // affiche : January 1, 2014

Yii::$app->formatter->locale = 'de-DE';
echo Yii::$app->formatter->asDate('2014-01-01'); // affiche : 1. Januar 2014

Yii::$app->formatter->locale = 'ru-RU';
echo Yii::$app->formatter->asDate('2014-01-01'); // affiche : 1 января 2014 г.





Par défaut, la [[yii\i18n\Formatter::locale|locale]] est déterminée par la valeur de [[yii\base\Application::language]]. Vous pouvez la redéfinir en définissant la propriété [[yii\i18n\Formatter::locale]] explicitement.


Note: le formateur de Yii a besoin de l’extension intl de PHP [http://php.net/manual/en/book.intl.php] pour prendre en charge la localisation des formats de données. Parce que différentes versions de la bibliothèque ICU compilées par PHP produisent des résultats de formatage différents, il est recommandé que vous utilisiez la même version de la bibliothèque ICU pour tous vos environnements. Pour plus de détails, reportez-vous au tutoriel Configuration de votre environnement PHP pour l’internationalisation.

Si l’extension intl extension n’est pas installée, les données ne sont pas localisées.

Notez que pour les valeurs de dates qui sont antérieures à l’année 1901, ou postérieures à 2038, la localisation n’est pas faite sur les systèmes 32 bits, même si l’extension intl est installée. Cela est dû au fait que, dans ce cas, ICU utilise des horodatages UNIX 32 bits pour les valeurs de date.










          

      

      

    

  

  
    
    Pagination
    

    
 
  

    
      
          
            
  
Pagination

Lorsqu’il y a trop de données à afficher sur une seule page, une stratégie courante consiste à les afficher en de multiples pages, et sur chacune des pages, à n’afficher qu’une fraction réduite des données. Cette stratégie est connue sous le nom de pagination.

Yii utilise un objet [[yii\data\Pagination]] pour représenter les informations d’un schéma de pagination. En particulier :


	[[yii\data\Pagination::$totalCount|nombre total (total count)]] spécifie le nombre total d’items de données. Notez que cela est ordinairement beaucoup plus élevé que le nombre d’items de données que l’on a besoin d’afficher sur une unique page.


	[[yii\data\Pagination::$pageSize|taille de la page (page size)]] spécifie combien d’items de données chaque page contient. La valeur par défaut est 20.


	[[yii\data\Pagination::$page|page courante (current page)]] donne la numéro de la page courante (qui commence à zéro). La valeur par défaut est 0, ce qui indique la première page.




Avec un objet [[yii\data\Pagination]] pleinement spécifié, vous pouvez retrouver et afficher partiellement des données. Par exemple, si vous allez chercher des données dans une base de données, vous pouvez spécifier les clauses OFFSET et LIMIT de la requête de base de données avec les valeurs correspondantes fournies par l’objet pagination. Un exemple est présenté ci-dessous.

use yii\data\Pagination;

// construit une requêt de base de données pour obtenir tous les articles dont le *status* vaut 1
$query = Article::find()->where(['status' => 1]);

// obtient le nombre total d'articles (mais ne va pas chercher les données articles pour le moment)
$count = $query->count();

// crée un objet pagination en lui passant le nombre total d'items
$pagination = new Pagination(['totalCount' => $count]);

// limite la requête en utilisant l'objet pagination et va chercher les articles
$articles = $query->offset($pagination->offset)
    ->limit($pagination->limit)
    ->all();





Mais quelle page d’article est retournée par l’exemple ci-dessus ? Cela dépend d’un paramètre de la requête nommé page. Par défaut, l’objet pagination essaye de définir le paramètre page avec la valeur de la [[yii\data\Pagination::$page|page courante (current page)]]. Si le paramètre n’est pas fourni, il prend la valeur par défaut 0.

Pour faciliter la construction des élément de l’interface utilisateur qui prennent en charge la pagination, Yii fournit le composant graphique  [[yii\widgets\LinkPager]] qui affiche une liste de boutons de page sur lesquels l’utilisateur peut cliquer pour préciser quelle page de données doit être affichée. Ce composant graphique accepte en paramètre un objet pagination afin de savoir quelle est la page courante et combien de boutons de page afficher. Par exemple :

use yii\widgets\LinkPager;

echo LinkPager::widget([
    'pagination' => $pagination,
]);





Si vous voulez construire des éléments d’interface graphique à la main, vous pouvez utiliser [[yii\data\Pagination::createUrl()]] pour créer des URL qui conduisent à différentes pages. La méthode requiert un paramètre de page et crée une URL formatée correctement qui contient le paramètre de page. Par exemple :

// spécifie la route que l'URL à créer doit utiliser,
// si vous ne la spécifiez pas, la route actuellement requise est utilisée
$pagination->route = 'article/index';

// affiche : /index.php?r=article%2Findex&page=100
echo $pagination->createUrl(100);

// affiche : /index.php?r=article%2Findex&page=101
echo $pagination->createUrl(101);






Tip: vous pouvez personnaliser le nom du paramètre de requête page en configurant la propriété [[yii\data\Pagination::pageParam|pageParam]] lors de la création de l’objet pagination.








          

      

      

    

  

  
    
    Tri
    

    
 
  

    
      
          
            
  
Tri

Lors de l’affichage de multiples lignes de données, on a souvent besoin des trier les données en fonction des valeurs de certaines colonnes spécifiées par l’utilisateur. Yii utilise l’objet [[yii\data\Sort]] pour représenter les information sur le schéma de triage. En particulier :


	[[yii\data\Sort::$attributes|attributes]] spécifie les attributs grâce auxquels les données peuvent être triées. Un attribut peut être aussi simple qu’un attribut de modèle. Il peut aussi être un composite combinant le multiples attributs de modèles ou de colonnes de base de données. Nous apportons des informations plus détaillées dans la suite de cette page.


	[[yii\data\Sort::$attributeOrders|attributeOrders]] fournit la direction de l’ordre de tri pour chacun des attributs.


	[[yii\data\Sort::$orders|orders]] fournit les directions de tri en terme de colonnes de bas niveau.




Pour utiliser [[yii\data\Sort]], commencez par déclarer quels attributs peuvent être triés. Puis retrouvez les informations d’ordre de tri courantes de [[yii\data\Sort::$attributeOrders|attributeOrders]] ou [[yii\data\Sort::$orders|orders]], et utilisez-les pour personnaliser votre requête de données. Par exemple :

use yii\data\Sort;

$sort = new Sort([
    'attributes' => [
        'age',
        'name' => [
            'asc' => ['first_name' => SORT_ASC, 'last_name' => SORT_ASC],
            'desc' => ['first_name' => SORT_DESC, 'last_name' => SORT_DESC],
            'default' => SORT_DESC,
            'label' => 'Name',
        ],
    ],
]);

$articles = Article::find()
    ->where(['status' => 1])
    ->orderBy($sort->orders)
    ->all();





Dans l’exemple qui précède, deux attributs sont déclarés pour l’objet [[yii\data\Sort|Sort]] : age et name.

L’attribut age est un attribut simple correspondant à l’attribut age de la classe d’enregistrement actif Article. Il équivaut à la déclaration suivante :

'age' => [
    'asc' => ['age' => SORT_ASC],
    'desc' => ['age' => SORT_DESC],
    'default' => SORT_ASC,
    'label' => Inflector::camel2words('age'),
]





L’attribut name est un attribut composite défini par first_name et last_name de la classe Article. Il est déclaré en utilisant la structure de tableau suivante :


	Les éléments asc et desc spécifient comment trier selon l’attribut dans la direction croissante et décroissante, respectivement. Leurs valeurs représentent les colonnes réelles et les directions dans lesquelles les données sont triées. Vous pouvez spécifier une ou plusieurs colonnes pour préciser un tri simple ou un tri composite.


	L’élément default spécifie la direction dans laquelle l’attribut doit être trié lorsqu’il est initialement requis. Sa valeur par défaut est l’ordre croissant, ce qui signifie que si les données n’ont pas été triées auparavant et que vous demandez leur tri par cet attribut, elles sont triées par cette attribut dans la direction croissante.


	L’élément label spécifie quelle étiquette doit être utilisée lors de l’appel de [[yii\data\Sort::link()]] pour créer un lien de tri. Si cet élément n’est pas spécifié, la fonction [[yii\helpers\Inflector::camel2words()]] est appelée pour générer une étiquette à partir du nom de l’attribut. Notez que cette étiquette n’est pas encodée HTML.





Info: vous pouvez fournir la valeur de [[yii\data\Sort::$orders|orders]] à la requête de base de données pour construire sa clause ORDER BY. N’utilisez pas [[yii\data\Sort::$attributeOrders|attributeOrders]], parce que certains attributs peuvent être composites et ne peuvent pas être reconnus par la requête de base de données.




Vous pouvez appeler [[yii\data\Sort::link()]] pour générer un hyperlien sur lequel l’utilisateur peut cliquer pour demander le tri des données selon l’attribut spécifié. Vous pouvez aussi appeler [[yii\data\Sort::createUrl()]] pour créer une URL susceptible d’être triée. Par exemple :

// spécifie la route que l'URL à créer doit utiliser,
// si vous ne la spécifiez pas, la route couramment requise est utilisée 
$sort->route = 'article/index';

// affiche des liens conduisant à trier par *name* (nom) et *age*, respectivement
echo $sort->link('name') . ' | ' . $sort->link('age');

// affiche : /index.php?r=article%2Findex&sort=age
echo $sort->createUrl('age');





[[yii\data\Sort]] vérifie le paramètre sort pour savoir quels attributs sont requis pour le tri. Vous pouvez spécifier un ordre de tri par défaut via [[yii\data\Sort::defaultOrder]] lorsque le paramètre de requête est absent. Vous pouvez aussi personnaliser le nom du paramètre de requête en configurant la porpriété [[yii\data\Sort::sortParam|sortParam]].





          

      

      

    

  

  
    
    Amorçage
    

    
 
  

    
      
          
            
  
Amorçage

L’amorçage fait référence au processus de préparation de l’environnement avant qu’une application ne démarre, pour résoudre et traiter une requête d’entrée. L’amorçage se fait en deux endroits : le  script d’entrée et l’application.

Dans le script d’entrée, les classes de chargement automatique (autoloaders) pour différentes bibliothèques sont enregistrées. Cela inclut la classe de chargement automatique de Composer via son fichier autoload.php et la classe de chargement automatique de Yii via son fichier de classe Yii. Ensuite, le script d’entrée charge la configuration de l’application et crée une instance d’application.

Dans le constructeur de l’application, le travail d’amorçage suivant est effectué :


	La méthode [[yii\base\Application::preInit()|preInit()]] est appelée. Elle configure quelques propriétés de haute priorité de l’application, comme  [[yii\base\Application::basePath|le chemin de base (basePath)]].


	Le [[yii\base\Application::errorHandler|gestionnaire d’erreurs]] est enregistré.


	Les propriétés qui utilisent la configuration de l’application sont initialisées.


	La méthode [[yii\base\Application::init()|init()]] est appelée. À son tour elle appelle la méthode [[yii\base\Application::bootstrap()|bootstrap()]] pour exécuter les composants d’amorçage.


	Le fichier de manifeste des extensions vendor/yiisoft/extensions.php est inclus.


	Lescomposants d’amorçage déclarés par les extensions sont créés et exécutés


	Les [composants d’application(structure-application-components.md) et/ou les modules déclarés dans la propriété bootstrap de l’application sont créés et exécutés.








Comme le travail d’amorçage doit être fait avant chacune des requêtes, il est très important de conserver ce processus aussi léger et optimisé que possible.

Évitez d’enregistrer trop de composants d’amorçage. Un composant d’amorçage est seulement nécessaire s’il doit participer à tout le cycle de vie de la prise en charge des requêtes. Par exemple,si un module a besoin d’enregistrer des règles d’analyse additionnelles, il doit être listé dans la propriété bootstrap afin que les nouvelles règles d’URL prennent effet avant qu’elles ne soient utilisées pour résoudre des requêtes.

Dans le mode production, activez un cache bytecode, tel que PHP OPcache [http://php.net/manual/en/intro.opcache.php] ou APC [http://php.net/manual/en/book.apc.php], pour minimiser le temps nécessaire à l’inclusion et à l’analyse des fichiers PHP.

Quelques applications volumineuses ont des configurations d’application très complexes qui sont divisées en fichiers de configuration plus petits. Si c’est le cas, envisagez de mettre tout le tableau de configuration en cache et de le charger directement à partir cache avant la création de l’instance d’application dans le script d’entrée.





          

      

      

    

  

  
    
    Gestion des erreurs
    

    
 
  

    
      
          
            
  
Gestion des erreurs

Yii inclut un [[yii\web\ErrorHandler|gestionnaire d’erreur]] pré-construit qui rend la gestion des erreurs bien plus agréable qu’auparavant. En particulier, le gestionnaire d’erreurs de Yii possède les fonctionnalités suivantes pour améliorer la gestion des erreurs.


	Toutes les erreurs PHP non fatales (p. ex. avertissements, notifications) sont converties en exceptions susceptibles d’être interceptées.


	Les exceptions et les erreurs fatales sont affichées avec les informations détaillées de la pile des appels et les lignes de code source en mode debug.


	Prise en charge de l’utilisation d’une  action de contrôleur dédiée à l’affichage des erreurs.


	Prise en charge de différents formats de réponse d’erreur.




Le  [[yii\web\ErrorHandler|gestionnaire d’erreur]] est activé par défaut. Vous pouvez le désactiver en définissant la constante YII_ENABLE_ERROR_HANDLER à false (faux) dans le script d’entrée de votre application.


Utilisation du gestionnaire d’erreurs 

Le [[yii\web\ErrorHandler|gestionnaire d’erreurs]] est enregistré en tant que composant d’application nommé errorHandler. Vous pouvez le configurer dans la configuration de l’application comme indiqué ci-dessous :

return [
    'components' => [
        'errorHandler' => [
            'maxSourceLines' => 20,
        ],
    ],
];





Avec la configuration qui précède, le nombre de lignes de code source à afficher dans les pages d’exception est limité à 20.

Comme cela a déjà été dit, le gestionnaire d’erreur transforme toutes les erreurs PHP non fatales en exception susceptibles d’être interceptées. Cela signifie que vous pouvez utiliser le code suivant pour vous servir de cette gestion d’erreurs :

use Yii;
use yii\base\ErrorException;

try {
    10/0;
} catch (ErrorException $e) {
    Yii::warning("Division by zero.");
}

// l'exécution continue...





Si vous désirez afficher une page d’erreur disant à l’utilisateur que sa requête est invalide ou inattendue, vous pouvez simplement lever une [[yii\web\HttpException|exception HTTP]], comme l’exception [[yii\web\NotFoundHttpException]]. Le gestionnaire d’erreurs définit alors correctement le code d’état HTTP de la réponse et utilise une vue d’erreur appropriée pour afficher le message d’erreur.

use yii\web\NotFoundHttpException;

throw new NotFoundHttpException();








Personnalisation de l’affichage des erreurs 

Le [[yii\web\ErrorHandler|gestionnaire d’erreurs]] ajuste l’affichage de l’erreur en tenant compte de la valeur de la constante  YII_DEBUG. Quand YII_DEBUG est égale à true (vrai) (ce qui signifie que le mode debug est activé), le gestionnaire d’erreurs affiche les exceptions avec le détail de la pile des appels et les lignes de code apportant de l’aide au débogage. Quand  YII_DEBUG est égale à false (faux), seule le message d’erreur est affiché pour ne pas révéler des informations sensibles sur l’application.


Info: si une exception est un descendant de la classe [[yii\base\UserException]], aucune pile des appels n’est affichée, et ceci indépendamment de la valeur YII_DEBUG. Cela tient au fait que de telles exceptions résultent d’erreurs commises par l’utilisateur et que les développeurs n’ont rien à corriger.




Par défaut, le [[yii\web\ErrorHandler|gestionnaire d’erreurs]] affiche les erreurs en utilisant deux vues:


	@yii/views/errorHandler/error.php: utilisée lorsque les erreurs doivent être affichées SANS les informations sur la pile des appels. Quand YII_DEBUG est égale à false, c’est la seule vue d’erreur à afficher.


	@yii/views/errorHandler/exception.php: utilisée lorsque les erreurs doivent être affichées AVEC les informations sur la pile des appels.




Vous pouvez configurer les propriétés [[yii\web\ErrorHandler::errorView|errorView]] et [[yii\web\ErrorHandler::exceptionView|exceptionView]] du gestionnaire d’erreur pour utiliser vos propres vues afin de personnaliser l’affichage des erreurs.


Utilisation des actions d’erreurs 

Une meilleure manière de personnaliser l’affichage des erreurs est d’utiliser des actions d’erreur dédiées. Pour cela, commencez par configurer la propriété [[yii\web\ErrorHandler::errorAction|errorAction]] du composant errorHandler comme indiqué ci-après :

return [
    'components' => [
        'errorHandler' => [
            'errorAction' => 'site/error',
        ],
    ]
];





La propriété [[yii\web\ErrorHandler::errorAction|errorAction]] accepte une route vers une action. La configuration ci-dessus établit que lorsqu’une erreur doit être affichée sans information de la pile des appels, l’action site/error doit être exécutée.

Vous pouvez créer une action site/error comme ceci :

namespace app\controllers;

use Yii;
use yii\web\Controller;

class SiteController extends Controller
{
    public function actions()
    {
        return [
            'error' => [
                'class' => 'yii\web\ErrorAction',
            ],
        ];
    }
}





Le code ci-dessus définit l’action error en utilisant la classe [[yii\web\ErrorAction]] qui rend une erreur en utilisant une vue nommée error.

En plus d’utiliser  [[yii\web\ErrorAction]], vous pouvez aussi définir l’action error en utilisant une méthode d’action similaire à la suivante :

public function actionError()
{
    $exception = Yii::$app->errorHandler->exception;
    if ($exception !== null) {
        return $this->render('error', ['exception' => $exception]);
    }
}





Vous devez maintenant créer un fichier de vue views/site/error.php. Dans ce fichier de vue, vous pouvez accéder aux variables suivantes si l’action d’erreur est définie en tant que [[yii\web\ErrorAction]]:


	name: le nom de l’erreur ;


	message: le message d’erreur ;


	exception: l’objet exception via lequel vous pouvez retrouver encore plus d’informations utiles telles que le code d’état HTTP, le code d’erreur, la pile des appels de l’erreur, etc.





Info: si vous êtes en train d’utiliser le modèle de projet basic ou le modèle de projet avancé [https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/README.md], l’action d’erreur est la vue d’erreur sont déjà définies pour vous.





Note: si vous avez besoin de rediriger dans un gestionnaire d’erreur, faites-le de la manière suivante :

Yii::$app->getResponse()->redirect($url)->send();
return;











Personnalisation du format de la réponse d’erreur  

Le gestionnaire d’erreurs affiche les erreurs en respectant le réglage de format de la réponse. Si le [[yii\web\Response::format|format de la réponse]] est html, il utilise la vue d’erreur ou d’exception pour afficher les erreurs, comme c’est expliqué dans la sous-section précédente. Pour les autres formats de réponse, le gestionnaire d’erreurs assigne la représentation de l’erreur sous forme de tableau à la propriété [[yii\web\Response::data]] qui est ensuite convertie dans le format désiré. Par exemple, si le format de la réponse est json, vous pourriez voir une réponse similaire à la suivante :

HTTP/1.1 404 Not Found
Date: Sun, 02 Mar 2014 05:31:43 GMT
Server: Apache/2.2.26 (Unix) DAV/2 PHP/5.4.20 mod_ssl/2.2.26 OpenSSL/0.9.8y
Transfer-Encoding: chunked
Content-Type: application/json; charset=UTF-8

{
    "name": "Not Found Exception",
    "message": "The requested resource was not found.",
    "code": 0,
    "status": 404
}





Vous pouvez personnaliser le format de réponse d’erreur en répondant à l’événement beforeSend du composant response dans la configuration de l’application :

return [
    // ...
    'components' => [
        'response' => [
            'class' => 'yii\web\Response',
            'on beforeSend' => function ($event) {
                $response = $event->sender;
                if ($response->data !== null) {
                    $response->data = [
                        'success' => $response->isSuccessful,
                        'data' => $response->data,
                    ];
                    $response->statusCode = 200;
                }
            },
        ],
    ],
];





Le code précédent formate la réponse d’erreur comme suit :

HTTP/1.1 200 OK
Date: Sun, 02 Mar 2014 05:31:43 GMT
Server: Apache/2.2.26 (Unix) DAV/2 PHP/5.4.20 mod_ssl/2.2.26 OpenSSL/0.9.8y
Transfer-Encoding: chunked
Content-Type: application/json; charset=UTF-8

{
    "success": false,
    "data": {
        "name": "Not Found Exception",
        "message": "The requested resource was not found.",
        "code": 0,
        "status": 404
    }
}













          

      

      

    

  

  
    
    Enregistrements des messages
    

    
 
  

    
      
          
            
  
Enregistrements des messages

Yii fournit une puissante base structurée (framework) d’enregistrement des messages qui est très personnalisable et extensible. En utilisant cette base structurée, vous pouvez facilement enregistrer des types variés de messages, les filtrer et les rassembler dans différentes cibles comme les bases de données et les courriels.

L’utilisation de la base structurée d’enregistrement des messages de Yii nécessite de suivre les étapes suivantes :


	Enregistrer les  messages à différents endroits de votre code ;


	Configurer cibles d’enregistrement dans la configuration de l’application pour filtrer et exporter les messages enregistrés ;


	Examiner les messages enregistrés, filtrés et exportés par les différentes cibles (p. ex. débogueur de Yii).




Dans cette section, nous décrivons principalement les deux premières étapes.


Messages enregistrés 

Enregistrer des messages est aussi simple que d’appeler une des méthodes suivantes :


	[[Yii::debug()]]: enregistre un message pour garder une trace de comment un morceau de code fonctionne. Cela est utilisé principalement en développement.


	[[Yii::info()]]: enregistre un message qui contient quelques informations utiles.


	[[Yii::warning()]]: enregistre un message d’avertissement qui indique que quelque chose d’inattendu s’est produit.


	[[Yii::error()]]: enregistre une erreur fatale qui doit être analysée dès que possible.




Ces méthodes enregistrent les messages à différents niveaux de sévérité et dans différentes catégories. Elles partagent la même signature function ($message, $category = 'application'), où $message représente le message à enregistrer, tandis que $category est la catégorie de ce message. Le code de l’exemple qui suit enregistre un message de trace dans la catégorie application:

Yii::debug('start calculating average revenue');






Info: les messages enregistrés peuvent être des chaînes de caractères aussi bien que des données complexes telles que des tableaux ou des objets. Il est de la responsabilité des cibles d’enregistrement de traiter correctement ces messages. Par défaut, si un message enregistré n’est pas un chaîne de caractères, il est exporté comme une chaîne de caractères en appelant la méthode [[yii\helpers\VarDumper::export()]].




Pour mieux organiser et filtrer les messages enregistrés, il est recommandé que vous spécifiiez une catégorie appropriée pour chacun des messages. Vous pouvez choisir une schéma de nommage hiérarchisé pour les catégories, ce qui facilitera le filtrage des messages par les cibles d’enregistrement  sur la base de ces catégories. Un schéma de nommage simple et efficace est d’utiliser la constante magique __METHOD__ de PHP dans les noms de catégorie. Par exemple :

Yii::debug('start calculating average revenue', __METHOD__);





La constante magique __METHOD__ est évaluée comme le nom de la méthode (préfixée par le nom pleinement qualifié de la classe), là où la constante apparaît. Par exemple, elle est égale à 'app\controllers\RevenueController::calculate' si la ligne suivante est utilisée dans cette méthode.


Info: les méthodes d’enregistrement décrites plus haut sont en fait des raccourcis pour la méthode  [[yii\log\Logger::log()|log()]] de l’[[yii\log\Logger|objet logger]] qui est un singleton accessible via l’expression Yii::getLogger(). Lorsque suffisamment de messages ont été enregistrés, ou quand l’application se termine, l’objet logger appelle un [[yii\log\Dispatcher|distributeur de messages]] pour envoyer les messages enregistrés aux cibles d’enregistrement.







Cibles d’enregistrement 

Une cible d’enregistrement est une instance de la classe [[yii\log\Target]] ou d’une de ses classe filles. Elle filtre les messages enregistrés selon leur degré de sévérité et leur catégorie et les exporte vers un média donné. Par exemple, une [[yii\log\DbTarget|cible base données]] exporte les messages enregistrés et filtrés vers une base de données, tandis qu’une [[yii\log\EmailTarget|cible courriel]] exporte les messages vers l’adresse de courriel spécifiée.

Vous pouvez enregistrer plusieurs cibles d’enregistrement dans votre application en les configurant, via le composant d’applicationlog dans la configuration de l’application, de la manière suivante :

return [
    // le composant "log" doit être chargé lors de la période d'amorçage
    'bootstrap' => ['log'],
    // le composant "log" traite les messages avec un horodatage (timestamp). Définissez le fuseau horaire  PHP pour créer l'horodate correcte :
    'timeZone' => 'America/Los_Angeles',
    
    'components' => [
        'log' => [
            'targets' => [
                [
                    'class' => 'yii\log\DbTarget',
                    'levels' => ['error', 'warning'],
                ],
                [
                    'class' => 'yii\log\EmailTarget',
                    'levels' => ['error'],
                    'categories' => ['yii\db\*'],
                    'message' => [
                       'from' => ['log@example.com'],
                       'to' => ['admin@example.com', 'developer@example.com'],
                       'subject' => 'Database errors at example.com',
                    ],
                ],
            ],
        ],
    ],
];






Note: le composant log doit être chargé durant le  processus d’amorçage afin qu’il puisse distribuer les messages enregistrés aux cibles rapidement. C’est pourquoi il est listé dans le tableau bootstrap comme nous le montrons ci-dessus.




Dans le code précédent, deux cibles d’enregistrement sont enregistrées dan la propriété [[yii\log\Dispatcher::targets]] :


	la première cible sélectionne les messages d’erreurs et les avertissements et les sauvegarde dans une table de base de données ;


	la deuxième cible sélectionne les messages d’erreur dont le nom de la catégorie commence par yii\db\, et les envoie dans un courriel à la fois à admin@example.com et à developer@example.com.




Yii est fourni avec les cibles pré-construites suivantes. Reportez-vous à la documentation de l’API pour en savoir plus sur ces classes, en particulier comment les configurer et les utiliser.


	[[yii\log\DbTarget]]: stocke les messages enregistrés dans une table de base de données.


	[[yii\log\EmailTarget]]: envoie les messages enregistrés vers une adresse de courriel spécifiée préalablement.


	[[yii\log\FileTarget]]: sauvegarde les messages enregistrés dans des fichiers.


	[[yii\log\SyslogTarget]]: sauvegarde les messages enregistrés vers syslog en appelant la fonction PHP syslog().




Dans la suite de ce document, nous décrivons les fonctionnalités communes à toutes les cibles d’enregistrement.


Filtrage des messages 

Vous pouvez configurer les propriétés [[yii\log\Target::levels|levels]] et [[yii\log\Target::categories|categories]] de chacune des cibles d’enregistrement pour spécifier les niveaux de sévérité et les catégories que la cible doit traiter.

La propriété [[yii\log\Target::levels|levels]] accepte un tableau constitué d’une ou plusieurs des valeurs suivantes :


	error: correspondant aux messages enregistrés par [[Yii::error()]].


	warning: correspondant aux messages enregistrés par [[Yii::warning()]].


	info: correspondant aux messages enregistrés par [[Yii::info()]].


	trace: correspondant aux messages enregistrés par [[Yii::debug()]].


	profile: correspondant aux messages enregistrés par [[Yii::beginProfile()]] et [[Yii::endProfile()]], et qui sera expliqué en détails dans la sous-section Profilage de la performance.




Si vous ne spécifiez pas la propriété [[yii\log\Target::levels|levels]], cela signifie que la cible traitera les messages de n’importe quel niveau de sévérité.

La propriété [[yii\log\Target::categories|categories]] accepte un tableau constitué de noms ou de motifs de noms de catégorie de messages. Une cible ne traite
que les messages dont la catégorie est trouvée ou correspond aux motifs de ce tableau. Un motif de nom de catégorie est un préfixe de nom de catégorie
suivi d’une astérisque *. Un nom de catégorie correspond à un motif de nom de catégorie s’il commence par le préfixe du motif.
Par exemple, yii\db\Command::execute et yii\db\Command::query sont utilisés comme noms de catégorie pour les messages enregistrés dans la classe [[yii\db\Command]]. Ils correspondent tous deux au motif yii\db\*.

Si vous ne spécifiez pas la propriété [[yii\log\Target::categories|categories]], cela signifie que le cible traite les messages de n’importe quelle catégorie.

En plus d’inscrire des catégories en liste blanche via la propriété [[yii\log\Target::categories|categories]], vous pouvez également inscrire certaines catégories
en liste noire via la propriété [[yii\log\Target::except|except]]. Si la catégorie d’un message est trouvée ou correspond à un des motifs de cette propriété, ce message n’est PAS traité par la cible.

La configuration suivante de cible spécifie que la cible  traitera les messages d’erreur ou d’avertissement des catégories dont le nom correspond soit à yii\db\*, soit yii\web\HttpException:*, mais pas yii\web\HttpException:404.

[
    'class' => 'yii\log\FileTarget',
    'levels' => ['error', 'warning'],
    'categories' => [
        'yii\db\*',
        'yii\web\HttpException:*',
    ],
    'except' => [
        'yii\web\HttpException:404',
    ],
]






Info: lorsqu’une exception HTTP est capturée par le gestionnaire d’erreur, un message d’erreur est enregistré avec un non de catégorie dont le format est yii\web\HttpException:ErrorCode. Par exemple, l’exception [[yii\web\NotFoundHttpException]] provoque un message d’erreur de catégorie yii\web\HttpException:404.







Formatage des messages 

Les cibles d’enregistrement exportent les messages enregistrés et filtrés dans un certain format. Par exemple, si vous installez une cible d’enregistrement de classe [[yii\log\FileTarget]], vous pouvez trouver un message enregistré similaire au suivant dans le fichier runtime/log/app.log file:

2014-10-04 18:10:15 [::1][][-][trace][yii\base\Module::getModule] Loading module: debug





Par défaut, les messages enregistrés sont formatés comme suit par la méthode [[yii\log\Target::formatMessage()]]:

Horodate [adresse IP][identifiant utilisateur][identifiant de session][niveau de sévérité][catégorie] Texte du message





Vous pouvez personnaliser ce format en configurant la propriété [[yii\log\Target::prefix]] qui accepte une fonction PHP appelable qui retourne un message de préfixe personnalisé. Par exemple, le code suivant configure une cible d’enregistrement pour qu’elle préfixe chaque message enregistré avec l’identifiant de l’utilisateur courant (l’adresse IP et l’identifiant de session étant retirés pour des raisons de protection de la vie privée).

[
    'class' => 'yii\log\FileTarget',
    'prefix' => function ($message) {
        $user = Yii::$app->has('user', true) ? Yii::$app->get('user') : null;
        $userID = $user ? $user->getId(false) : '-';
        return "[$userID]";
    }
]





En plus des préfixes de messages, les cibles d’enregistrement ajoutent aussi quelques informations de contexte à chaque lot de messages enregistrés.
Par défaut, les valeurs de ces variables PHP globales sont incluses : $_GET, $_POST, $_FILES, $_COOKIE, $_SESSION et $_SERVER. Vous pouvez ajuster ce comportement en configurant la propriété [[yii\log\Target::logVars]] avec les noms des variables globales que vous voulez que la cible d’enregistrement inclue. Par exemple, la cible d’enregistrement suivante spécifie que seules les valeurs de la variable $_SERVER seront ajoutées aux messages enregistrés.

[
    'class' => 'yii\log\FileTarget',
    'logVars' => ['_SERVER'],
]





Vous pouvez configurer  logVars comme un tableau vide pour désactiver totalement l’inclusion d’informations de contexte. Ou si vous voulez mettre en œuvre votre propre façon de fournir les informations contextuelles, vous pouvez redéfinir la méthode [[yii\log\Target::getContextMessage()]].




Niveaux de la trace de message 

Lors du développement, vous cherchez souvent à voir d’où provient chacun des messages enregistrés. Cela est possible en configurant la propriété [[yii\log\Dispatcher::traceLevel|traceLevel]] du composantlog de la façon suivante :

return [
    'bootstrap' => ['log'],
    'components' => [
        'log' => [
            'traceLevel' => YII_DEBUG ? 3 : 0,
            'targets' => [...],
        ],
    ],
];





La configuration de l’application ci-dessus statue que le [[yii\log\Dispatcher::traceLevel|niveau de trace ]] sera  3 si YII_DEBUG est activé et 0 si YII_DEBUG est désactivé. Cela veut dire que, si YII_DEBUG est activé, au plus trois niveaux de la pile des appels seront ajoutés à chaque message enregistré, là où le messages est enregistré ; et, si  YII_DEBUG  est désactivé, aucune information de la pile des appels ne sera incluse.


Info: obtenir les informations de la pile des appels n’a rien de trivial. En conséquence, vous ne devriez utiliser cette fonctionnalité que durant le développement ou le débogage d’une application.







Purge et exportation des messages 

Comme nous l’avons dit plus haut, les messages enregistrés sont conservés dans un tableau par l’[[yii\log\Logger|objet logger]]. Pour limiter la consommation de mémoire par ce tableau, l’objet logger purge les messages enregistrés vers les cibles d’enregistrement chaque fois que leur nombre atteint une certaine valeur. Vous pouvez personnaliser ce nombre en configurant la propriété [[yii\log\Dispatcher::flushInterval|flushInterval]] du composant log :

return [
    'bootstrap' => ['log'],
    'components' => [
        'log' => [
            'flushInterval' => 100,   // default is 1000
            'targets' => [...],
        ],
    ],
];






Info: la purge des messages intervient aussi lorsque l’application se termine, ce qui garantit que les cibles d’enregistrement reçoivent des messages enregistrés complets.




Lorsque l’[[yii\log\Logger|objet logger]] purge les messages enregistrés vers les cibles d’enregistrement, ils ne sont pas exportés immédiatement. Au lieu de cela, l’exportation des messages ne se produit que lorsque la cible d’enregistrement a accumulé un certain nombre de messages filtrés. Vous pouvez personnaliser ce nombre en configurant la propriété [[yii\log\Target::exportInterval|exportInterval]] de chacune des cibles d’enregistrement, comme ceci :

[
    'class' => 'yii\log\FileTarget',
    'exportInterval' => 100,  // default is 1000
]





À cause des niveaux de purge et d’exportation, par défaut, lorsque vous appelez Yii::debug() ou toute autre méthode d’enregistrement, vous ne voyez PAS immédiatement le message enregistré dans la cible. Cela peut représenter un problème pour pour certaines applications de console qui durent longtemps. Pour faire en sorte que les messages apparaissent immédiatement dans les cibles d’enregistrement, vous devriez définir les propriétés [[yii\log\Dispatcher::flushInterval|flushInterval]] et [[yii\log\Target::exportInterval|exportInterval]] toutes deux à 1, comme montré ci-après :

return [
    'bootstrap' => ['log'],
    'components' => [
        'log' => [
            'flushInterval' => 1,
            'targets' => [
                [
                    'class' => 'yii\log\FileTarget',
                    'exportInterval' => 1,
                ],
            ],
        ],
    ],
];






Note: la purge et l’exportation fréquentes de vos messages dégradent la performance de votre application.







Activation, désactivation des cibles d’enregistrement 

Vous pouvez activer ou désactiver une cible d’enregistrement en configurant sa propriété [[yii\log\Target::enabled|enabled]]. Vous pouvez le faire via la configuration de la cible d’enregistrement ou en utilisant l’instruction suivante dans votre code PHP :

Yii::$app->log->targets['file']->enabled = false;





Le code ci-dessus, nécessite que nommiez une cible file, comme montré ci-dessous en utilisant des clés sous forme de chaînes de caractères  dans le tableau targets :

return [
    'bootstrap' => ['log'],
    'components' => [
        'log' => [
            'targets' => [
                'file' => [
                    'class' => 'yii\log\FileTarget',
                ],
                'db' => [
                    'class' => 'yii\log\DbTarget',
                ],
            ],
        ],
    ],
];








Création d’une cible d’enregistrement 

La création d’une classe de cible d’enregistrement est très simple. Vous devez essentiellement implémenter [[yii\log\Target::export()]] en envoyant le contenu du tableau des [[yii\log\Target::messages]] vers un média désigné. Vous pouvez appeler la méthode [[yii\log\Target::formatMessage()]] pour formater chacun des messages. Pour plus de détails, reportez-vous à n’importe quelle classe de cible de messages incluse dans la version de Yii.


Tip: au lieu de créer vos propres journaliseurs, vous pouvez essayez n’importe quel journaliseur compatible PSR-3 tel que Monolog [https://github.com/Seldaek/monolog] en utilisant
PSR log target extension [https://github.com/samdark/yii2-psr-log-target].









Profilage de la performance 

Le profilage de la performance est un type particulier d’enregistrement de messages qui est utilisé pour mesurer le temps d’exécution de certains blocs de code et pour déterminer les goulots d’étranglement. Par exemple, la classe [[yii\db\Command]] utilise le profilage de performance pour connaître le temps d’exécution de chacune des requêtes de base de données.

Pour utiliser le profilage de la  performance, commencez par identifier les blocs de code qui ont besoin d’être profilés. Puis, entourez-les de la manière suivante :

\Yii::beginProfile('myBenchmark');

...le bloc de code à profiler...

\Yii::endProfile('myBenchmark');





où myBenchmark représente un jeton unique identifiant un bloc de code. Plus tard, lorsque vous examinez le résultat du profilage, vous pouvez utiliser ce jeton pour localiser le temps d’exécution du bloc correspondant.

Il est important de vous assurer que les paires  beginProfile et endProfile sont correctement imbriquées.
Par exemple,

\Yii::beginProfile('block1');

    // du code à profiler

    \Yii::beginProfile('block2');
        // un autre bloc de code à profiler
    \Yii::endProfile('block2');

\Yii::endProfile('block1');





Si vous omettez \Yii::endProfile('block1') ou inversez l’ordre de \Yii::endProfile('block1') et de \Yii::endProfile('block2'), le profilage de performance ne fonctionnera pas.

Pour chaque bloc de code profilé, un message est enregistré avec le niveau de sévérité profile. Vous pouvez configurer une cible d’enregistrement pour collecter de tels messages et les exporter. L’outil Yii debugger comporte un panneau d’affichage pré-construit des résultats de profilage.







          

      

      

    

  

  
    
    Vue d’ensemble
    

    
 
  

    
      
          
            
  
Vue d’ensemble

À chaque fois qu’une application Yii prend en charge une requête, elle entreprend un flux de travail similaire.


	Un utilisateur effectue une requête auprès du script d’entrée web/index.php.


	Le script d’entrée charge la configuration de l’application et crée une instance d’application pour prendre en charge la requête.


	L’application résoud la route requise avec l’aide du composant d’application request.


	L’application crée une instance de contrôleur pour prendre en charge le requête.


	Le contrôleur crée une instance d’action et exécute les filtres de l’action.


	Si un filtre échoue, l’exécution de l’action est annulée.


	Si tous les filtres réussissent l’action est exécutée.


	L’action charge un modèle de données, possiblement à partir d’une base de données.


	L’action rend une vue, en lui passant le modèle de données.


	Le résultat rendu est retourné au composant d’application response.


	Le composant response envoye le résultat rendu au navigateur de l’utilisateur.
Le diagramme ci-dessous illustre comment une application prend une requête en charge.




[image: Cycle de vie d'une requête]

Dans cette section, nous décrivons en détails comment se déroulent quelques unes de ces étapes.





          

      

      

    

  

  
    
    Requêtes
    

    
 
  

    
      
          
            
  
Requêtes

Les requêtes faites à l’application sont représentées en terme d’objets [[yii\web\Request]] qui fournissent des informations telles que les paramètres de requête, les entêtes HTTP, les cookies, etc.
Pour une requête donnée, vous avez accès au composant d’applicationrequest qui, par défaut,  est une instance de [[yii\web\Request]].
Dans cette section, nous décrivons comment utiliser ce composant dans vos applications.


Paramètres de requête 

Pour obtenir les paramètres de requête, vous pouvez appeler les méthodes  [[yii\web\Request::get()|get()]] et [[yii\web\Request::post()|post()]] du composant request component.
Elles retournent les valeurs de $_GET et $_POST, respectivement. Pas exemple :

$request = Yii::$app->request;

$get = $request->get(); 
// équivalent à : $get = $_GET;

$id = $request->get('id');   
// équivalent à : $id = isset($_GET['id']) ? $_GET['id'] : null;

$id = $request->get('id', 1);   
// équivalent à : $id = isset($_GET['id']) ? $_GET['id'] : 1;

$post = $request->post(); 
// équivalent à : $post = $_POST;

$name = $request->post('name');   
// equivalent to: $name = isset($_POST['name']) ? $_POST['name'] : null;

$name = $request->post('name', '');   
// équivalent à : $name = isset($_POST['name']) ? $_POST['name'] : '';






Info: plutôt que d’accéder directement à $_GET et $_POST pour récupérer les paramètres de requête, il est recommandé de les obtenir via le composant request comme indiqué ci-dessus.
Cela rend l’écriture des tests plus facile parce que vous pouvez créer un simulacre de composant ‘request’ avec des données de requête factices.




Lorsque vous mettez en œuvre des API pleinement REST, vous avez souvent besoin de récupérer les paramètres qui sont soumis via les méthodes de requête PUT, PATCH ou autre .
Vous pouvez obtenir ces paramètres en appelant la méthode [[yii\web\Request::getBodyParam()]]. par exemple :

$request = Yii::$app->request;

// retourne tous les paramètres
$params = $request->bodyParams;

// retourne le paramètre  "id"
$param = $request->getBodyParam('id');






Info: à la différence des paramètres  de GET, les paramètres soumis via POST, PUT, PATCH etc. sont envoyés dans le corps de la requête.
Le composant request analyse ces paramètres lorsque vous y accédez via les méthodes décrites ci-dessus.
Vous pouvez personnaliser la manière dont ces paramètres sont analysés en configurant la propriété [[yii\web\Request::parsers]].







Méthodes de requête 

Vous pouvez obtenir la méthode HTTP utilisée par la requête courante via l’expression Yii::$app->request->method.
Un jeu entier de propriétés booléennes est également fourni pour que vous puissiez déterminer le type de la méthode courante. Par exemple :

$request = Yii::$app->request;

if ($request->isAjax) { /* la méthode de requête est requête AJAX */ }
if ($request->isGet)  { /* la méthode de requête est requête GET */ }
if ($request->isPost) { /* la méthode de requête est requête POST */ }
if ($request->isPut)  { /* la méthode de requête est requête PUT */ }








URL de requête 

Le composant request fournit plusieurs manières d’inspecter l’URL couramment requise.

En supposant que l’URL requise soit http://example.com/admin/index.php/product?id=100, vous pouvez obtenir différentes parties de cette URL comme c’est résumé ci-dessous :


	[[yii\web\Request::url|url]]: retourne/admin/index.php/product?id=100, qui est l’URL sans la partie hôte.


	[[yii\web\Request::absoluteUrl|absoluteUrl]]: retourne http://example.com/admin/index.php/product?id=100, qui est l’URL complète y compris la partie hôte.


	[[yii\web\Request::hostInfo|hostInfo]]: retourne http://example.com, qui est la partie hôte de l’URL.


	[[yii\web\Request::pathInfo|pathInfo]]: retourne /product, qui est la partie après le script d’entrée
et avant le point d’interrogation (chaîne de requête).


	[[yii\web\Request::queryString|queryString]]: retourne id=100, qui est la partie après le point d’interrogation.


	[[yii\web\Request::baseUrl|baseUrl]]: retourne /admin, qui est la partie après l’hôte
et avant le nom du script d’entrée.


	[[yii\web\Request::scriptUrl|scriptUrl]]: retourne /admin/index.php, qui set l’URL sans le chemin et la chaîne de requête.


	[[yii\web\Request::serverName|serverName]]: retourne example.com, qui est le nom d’hôte dans l’URL.


	[[yii\web\Request::serverPort|serverPort]]: retourne 80, qui est le numéro de port utilisé par le serveur  Web.







Enntêtes HTTP  

Vous pouvez obtenir les entêtes HTTP via la [[yii\web\HeaderCollection|collection d’entêtes]] qui est retournée par la propriété [[yii\web\Request::headers]]. Par exemple :

// $headers est un objet   yii\web\HeaderCollection 
$headers = Yii::$app->request->headers;

// retourne la valeur de l'entête  Accept
$accept = $headers->get('Accept');

if ($headers->has('User-Agent')) { /* il existe un entête User-Agent  */ }





Le composant request fournit aussi la prise en charge de l’accès rapide à quelques entêtes couramment utilisés. Cela inclut :


	[[yii\web\Request::userAgent|userAgent]]: retourne la valeur de l’entête  User-Agent.


	[[yii\web\Request::contentType|contentType]]: retourne la valeur de l’entête Content-Type qui indique le type MIME des données dans le corps de la requête.


	[[yii\web\Request::acceptableContentTypes|acceptableContentTypes]]: retourne les types MIME acceptés par l’utilisateur.
Les types retournés sont classés par ordre de score de qualité. Les types avec les plus hauts scores sont retournés en premier.


	[[yii\web\Request::acceptableLanguages|acceptableLanguages]]: retourne les langues acceptées par l’utilisateur.
Les langues retournées sont classées par niveau de préférence.
Le premier élément représente la langue préférée. Si votre application prend en charge plusieurs langues et que vous voulez afficher des pages dans la langue préférée de l’utilisateur, vous pouvez utiliser la méthode de négociation de la langue [[yii\web\Request::getPreferredLanguage()]].
Cette méthode accepte une liste des langues prises en charge par votre application, la compare avec les [[yii\web\Request::acceptableLanguages (langues acceptées)|acceptableLanguages]],
et retourne la langue la plus appropriée.





Tip: vous pouvez également utiliser le filtre [[yii\filters\ContentNegotiator|ContentNegotiator]] pour déterminer dynamiquement quel type de contenu
et quelle langue utiliser dans la réponse.
Le filtre met en œuvre la négociation de contenu en plus des propriétés
et  méthodes décrites ci-dessus.







Informations sur le client 

Vous pouvez obtenir le nom d’hôte et l’adresse IP de la machine cliente via  [[yii\web\Request::userHost|userHost]]
et [[yii\web\Request::userIP|userIP]], respectivement.
Par exemple :

$userHost = Yii::$app->request->userHost;
$userIP = Yii::$app->request->userIP;

## Mandataires de confiance et entêtes <span id="trusted-proxies"></span>

Dans la section précédente, vous avez vu comment obtenir des informations sur l'utilisateur comme le nom d'hôte et l'adresse IP.
Cela fonctionne sans aucune configuration complémentaire dans une configuration normale dans laquelle une unique serveur Web est utilisé pour servir le site.
Cependant, si votre application s'exécute derrière un mandataire inverse, vous devez compléter la configuration pour retrouver ces informations car le client direct est désormais le mandataire 
et l'adresse IP de l'utilisateur est passée à l'application Yii par une entête établie par le mandataire. 


Vous ne devez pas faire confiance aveuglément aux entêtes fournies par un mandataire sauf si vous faites explicitement confiance à ce mandataire.
Depuis sa version 2.0.13,  Yii prend en charge la configuration des mandataires de confiance via les propriétés 
[[yii\web\Request::trustedHosts|trustedHosts]],
[[yii\web\Request::secureHeaders|secureHeaders]], 
[[yii\web\Request::ipHeaders|ipHeaders]] and
[[yii\web\Request::secureProtocolHeaders|secureProtocolHeaders]]
du composant `request`.

Ce qui suit est la configuration d'une requête pour une application qui s'exécute derrière une tableau de mandataires inverses 
situés dans le réseau IP `10.0.2.0/24` IP network:

```php
'request' => [
 // ...
 'trustedHosts' => [
 '10.0.2.0/24',
],
],

L’adresse IP est envoyée par défaut par le mandataire dans l’entête X-Forwarded-For , et le protocole (http ou https) est envoyé dans X-Forwarded-Proto.

Dans le cas où vos mandataires utilisent différentes entêtes, vous pouvez utiliser la configuration de la requête pour les ajuster, p. ex. :

'request' => [
 // ...
 'trustedHosts' => [
 '10.0.2.0/24' => [
 'X-ProxyUser-Ip',
 'Front-End-Https',
],
],
 'secureHeaders' => [
 'X-Forwarded-For',
 'X-Forwarded-Host',
 'X-Forwarded-Proto',
 'X-Proxy-User-Ip',
 'Front-End-Https',
],
 'ipHeaders' => [
 'X-Proxy-User-Ip',
],
 'secureProtocolHeaders' => [
 'Front-End-Https' => ['on']
],
],

Avec la configuration précédente, toutes les entêtes listées dans secureHeaders sont filtrées de la requête à l’exception des entêtes X-ProxyUser-Ip et Front-End-Https pour le cas où la requête est élaborée par le mandataire.
Dans un tel cas, le précédent est utilisé pour retrouver l’adresse IP de l’utilisateur comme configuré dans ipHeaders et le dernier est utilisé pour déterminer le résultat de [[yii\web\Request::getIsSecureConnection()]].

 Réponses

Réponses

Quand une application a terminé la prise en charge d’une requête, elle génère un objet [[yii\web\Response|response]] et l’envoie à l’utilisateur final. L’objet response contient des informations telles que le code d’état HTTP, les entêtes HTTP et le corps. Le but ultime du développement d’applications Web est essentiellement du construire de tels objets response pour des requêtes variées.

Dans la plupart des cas, vous devez travailler avec le composant d’application response qui, par défaut, est une instance de [[yii\web\Response]]. Néanmoins, Yii vous permet également de créer vos propres objets response et de les envoyer à l’utilisateur final comme nous l’expliquons dans ce qui suit.

Dans cette section, nous décrivons comment composer et envoyer des réponses à l’utilisateur final.

Code d’état

Une des premières choses que vous devez faire lorsque vous construisez une réponse est de déclarer si la requête a été correctement prise en charge ou pas. Cela se fait en définissant la propriété[[yii\web\Response::statusCode (code d’état)]]
qui peut prendre un des codes d’état HTTP [https://tools.ietf.org/html/rfc2616#section-10] valides. Par exemple, pour indiquer que la requête a été prise en charge avec succès, vous pouvez définir le code à 200, comme ceci :

Yii::$app->response->statusCode = 200;

Néanmoins, dans la plupart des cas, vous n’avez pas besoin de définir ce code explicitement. Cela tient au fait que la valeur par défaut de [[yii\web\Response::statusCode]] est 200. Et, si vous voulez indiquer que la prise en charge de la requête a échoué vous pouvez lever une exception appropriée comme ceci :

throw new \yii\web\NotFoundHttpException;

Lorsque le gestionnaire d’erreurs intercepte l’exception, il extraie le code d’état de l’exception et l’assigne à la réponse. Concernant l’exception [[yii\web\NotFoundHttpException]] ci-dessus, elle est associée au code d’état HTTP 404. Les exception HTTP suivantes sont prédéfinies dans Yii :

	[[yii\web\BadRequestHttpException]]: code d’état 400.

	[[yii\web\ConflictHttpException]]: code d’état 409.

	[[yii\web\ForbiddenHttpException]]: code d’état 403.

	[[yii\web\GoneHttpException]]: code d’état 410.

	[[yii\web\MethodNotAllowedHttpException]]: code d’état 405.

	[[yii\web\NotAcceptableHttpException]]: code d’état 406.

	[[yii\web\NotFoundHttpException]]: code d’état 404.

	[[yii\web\ServerErrorHttpException]]: code d’état 500.

	[[yii\web\TooManyRequestsHttpException]]: code d’état 429.

	[[yii\web\UnauthorizedHttpException]]: code d’état 401.

	[[yii\web\UnsupportedMediaTypeHttpException]]: code d’état 415.

Si l’exception que vous voulez lever ne fait pas partie de cette liste, vous pouvez en créer une en étendant la classe [[yii\web\HttpException]], ou en en levant une à laquelle vous passez directement le code d’état. Par exemple :

throw new \yii\web\HttpException(402);

Entêtes HTTP

Vous pouvez envoyer les entêtes HTTP en manipulant la [[yii\web\Response::headers|collection d’entêtes]] dans le composant response. Par exemple :

$headers = Yii::$app->response->headers;

// ajoute un entête Pragma . L'entête Pragma existant n'est PAS écrasé.
$headers->add('Pragma', 'no-cache');

// définit un entête Pragma. Tout entête Pragma existant est supprimé.
$headers->set('Pragma', 'no-cache');

// retire un (des) entêtes Pragma et retourne les valeurs de l'entête Pragma retiré dans un tableau
$values = $headers->remove('Pragma');

Info: les noms d’entête ne sont pas sensibles à la casse. Les nouveaux entêtes enregistrés ne sont pas envoyés à l’utilisateur tant que la méthode [[yii\web\Response::send()]] n’est pas appelée.

Corps de la réponse

La plupart des réponses doivent avoir un corps qui transporte le contenu que vous voulez montrer à l’utilisateur final.

Si vous disposez déjà d’une chaîne de caractères formatée pour le corps, vous pouvez l’assigner à la propriété [[yii\web\Response::content]] de la réponse. Par exemple :

Yii::$app->response->content = 'hello world!';

Si vos données doivent être formatées avant l’envoi à l’utilisateur final, vous devez définir les propriétés [[yii\web\Response::format|format]] et [[yii\web\Response::data|data]]. La propriété [[yii\web\Response::format|format]] spécifie dans quel format les [[yii\web\Response::data|données]] doivent être formatées. Par exemple :

$response = Yii::$app->response;
$response->format = \yii\web\Response::FORMAT_JSON;
$response->data = ['message' => 'hello world'];

De base, Yii prend en charge les formats suivants, chacun mis en œuvre par une classe [[yii\web\ResponseFormatterInterface|formatter]]. Vous pouvez personnaliser les formateurs ou en ajouter de nouveaux en configurant la propriété [[yii\web\Response::formatters]].

	[[yii\web\Response::FORMAT_HTML|HTML]]: mise en œuvre par [[yii\web\HtmlResponseFormatter]].

	[[yii\web\Response::FORMAT_XML|XML]]: mise en œuvre par [[yii\web\XmlResponseFormatter]].

	[[yii\web\Response::FORMAT_JSON|JSON]]: mise en œuvre par [[yii\web\JsonResponseFormatter]].

	[[yii\web\Response::FORMAT_JSONP|JSONP]]: mise en œuvre par [[yii\web\JsonResponseFormatter]].

	[[yii\web\Response::FORMAT_RAW|RAW]]: utilisez ce format si vous voulez envoyer la réponse directement sans lui appliquer aucun formatage.

Bien que le corps de la réponse puisse être défini explicitement comme montré ci-dessus, dans la plupart des cas, vous pouvez le définir implicitement en utilisant la valeur retournée par les méthodes d’action. Un cas d’usage courant ressemble à ceci :

public function actionIndex()
{
 return $this->render('index');
}

L’action index ci-dessus retourne le résultat du rendu de la vue index. La valeur de retour est interceptée par le composant response, formatée et envoyée à l’utilisateur final.

Parce que le format par défaut de la réponse est [[yii\web\Response::FORMAT_HTML|HTML]], vous devez seulement retourner un chaîne de caractères dans une méthode d’action. Si vous utilisez un format de réponse différent, vous devez le définir avant de retourner les donnés. Par exemple :

public function actionInfo()
{
 \Yii::$app->response->format = \yii\web\Response::FORMAT_JSON;
 return [
 'message' => 'hello world',
 'code' => 100,
];
}

Comme mentionné plus haut, en plus d’utiliser le composant d’application response, vous pouvez également créer vos propres objets response et les envoyer à l’utilisateur final. Vous pouvez faire cela en retournant un tel objet dans une méthode d’action, comme le montre l’exemple suivant :

public function actionInfo()
{
 return \Yii::createObject([
 'class' => 'yii\web\Response',
 'format' => \yii\web\Response::FORMAT_JSON,
 'data' => [
 'message' => 'hello world',
 'code' => 100,
],
]);
}

Note : si vous êtes en train de créer vos propres objets response, vous ne pourrez par bénéficier des configurations que vous avez établies pour le composant response dans la configuration de l’application. Vous pouvez néanmoins, utiliser l’injection de dépendances pour appliquer une configuration commune à vos nouveaux objets response.

Redirection du navigateur

La redirection du navigateur s’appuie sur l’envoi d’un entête HTTP Location. Comme cette fonctionnalité est couramment utilisée, Yii fournit une prise en charge spéciale pour cela.

Vous pouvez rediriger le navigateur sur une URL en appelant la méthode [[yii\web\Response::redirect()]]. Cette méthode définit l’entête Location approprié avec l’URL donnée et retourne l’objet response lui-même. Dans une méthode d’action vous pouvez appeler sa version abrégée [[yii\web\Controller::redirect()]]. Par exemple :

public function actionOld()
{
 return $this->redirect('http://example.com/new', 301);
}

Dans le code précédent, la méthode d’action retourne le résultat de la méthode redirect(). Comme expliqué ci-dessus, l’objet response retourné par une méthode d’action est utilisé en tant que réponse à envoyer à l’utilisateur final.

Dans des endroits autres que les méthodes d’action, vous devez appeler la méthode [[yii\web\Response::redirect()]] directement, suivi d’un appel chaîné à la méthode [[yii\web\Response::send()]] pour garantir qu’aucun contenu supplémentaire ne sera ajouté à la réponse.

\Yii::$app->response->redirect('http://example.com/new', 301)->send();

Info: par défaut la méthode [[yii\web\Response::redirect()]] définit le code d’état à 302 pour indiquer au navigateur que la ressource requise est temporairement située sous un URI différent. Vous pouvez passer un code 301 pour dire au navigateur que la ressource a été déplacée de manière permanente.

Lorsque la requête courante est une requête AJAX, l’envoi d’un entête Location ne provoque pas automatiquement une redirection du navigateur. Pour pallier ce problème, la méthode [[yii\web\Response::redirect()]] définit un entête X-Redirect avec l’URL de redirection comme valeur. Du côté client, vous pouvez écrire un code JavaScript pour lire l’entête et rediriger le navigateur sur l’URL transmise.

Info: Yii est fourni avec un fichier JavaScript yii.js qui fournit un jeu d’utilitaires JavaScript, y compris l’utilitaire de redirection basé sur l’entête X-Redirect. Par conséquent, si vous utilisez ce fichier JavaScript (en enregistrant le paquet de ressources [[yii\web\YiiAsset]]), vous n’avez rien à écrire pour prendre en charge la redirection AJAX.
De l’information complémentaire sur yii.js est disponible à la section Scripts client.

Envoi de fichiers

Comme la redirection du navigateur, l’envoi de fichiers est une autre fonctionnalité qui s’appuie sur les entêtes HTTP spécifiques. Yii fournit un jeu de méthodes pour prendre en charge différents besoins d’envoi de fichiers. Elles assurent toutes la prise en charge de la plage d’entêtes HTTP.

	[[yii\web\Response::sendFile()]]: envoie un fichier existant à un client.

	[[yii\web\Response::sendContentAsFile()]]: envoie un chaîne de caractères en tant que fichier à un client.

	[[yii\web\Response::sendStreamAsFile()]]: envoie un flux de fichier existant en tant que fichier à un client.

Ces méthodes ont la même signature avec l’objet response comme valeur de retour. Si le fichier à envoyer est trop gros, vous devez envisager d’utiliser [[yii\web\Response::sendStreamAsFile()]] parce qu’elle fait un usage plus efficace de la mémoire. L’exemple qui suit montre comment envoyer un fichier dans une action de contrôleur.

public function actionDownload()
{
 return \Yii::$app->response->sendFile('path/to/file.txt');
}

Si vous appelez la méthode d’envoi de fichiers dans des endroits autres qu’une méthode d’action, vous devez aussi appeler la méthode [[yii\web\Response::send()]] immédiatement après pour garantir qu’aucun contenu supplémentaire ne sera ajouté à la réponse.

\Yii::$app->response->sendFile('path/to/file.txt')->send();

Quelques serveurs Web assurent une prise en charge spéciale de l’envoi de fichiers appelée X-Sendfile. L’idée est de rediriger la requête d’un fichier sur le serveur Web qui sert directement le fichier. En conséquence, l’application Web peut terminer plus rapidement tandis que le serveur Web est en train d’envoyer le fichier. Pour utiliser cette fonctionnalité, vous pouvez appeler la méthode [[yii\web\Response::xSendFile()]]. La liste suivante résume, comment activer la fonctionnalité X-Sendfile pour quelques serveurs Web populaires :

	Apache: X-Sendfile [http://tn123.org/mod_xsendfile]

	Lighttpd v1.4: X-LIGHTTPD-send-file [http://redmine.lighttpd.net/projects/lighttpd/wiki/X-LIGHTTPD-send-file]

	Lighttpd v1.5: X-Sendfile [http://redmine.lighttpd.net/projects/lighttpd/wiki/X-LIGHTTPD-send-file]

	Nginx: X-Accel-Redirect [http://wiki.nginx.org/XSendfile]

	Cherokee: X-Sendfile and X-Accel-Redirect [http://www.cherokee-project.com/doc/other_goodies.html#x-sendfile]

Envoi de la réponse

Le contenu d’une réponse n’est pas envoyé à l’utilisateur tant que la méthode [[yii\web\Response::send()]] n’est pas appelée. Par défaut, cette méthode est appelée automatiquement à la fin de [[yii\base\Application::run()]]. Vous pouvez néanmoins appeler cette méthode explicitement pour forcer l’envoi de la réponse immédiatement.

La méthode [[yii\web\Response::send()]] entreprend les étapes suivantes pour envoyer la réponse :

	Elle déclenche l’événement [[yii\web\Response::EVENT_BEFORE_SEND]].

	Elle appelle [[yii\web\Response::prepare()]] pour formater [[yii\web\Response::data|les données de la réponse]] du [[yii\web\Response::content|contenu de la réponse]].

	Elle déclenche l’événement [[yii\web\Response::EVENT_AFTER_PREPARE]].

	Elle appelle la méthode [[yii\web\Response::sendHeaders()]] pour envoyer les entêtes HTTP enregistrés.

	Elle appelle la méthode [[yii\web\Response::sendContent()]] pour envoyer le corps de la réponse.

	Elle déclenche l’événement [[yii\web\Response::EVENT_AFTER_SEND]].

Après que la méthode [[yii\web\Response::send()]] est appelée une fois, tout appel suivant de cette méthode est ignoré. Cela signifie qu’une fois la réponse expédiée, vous ne pouvez lui ajouter aucun contenu.

Comme vous pouvez le voir, la méthode [[yii\web\Response::send()]] déclenche plusieurs événements utiles. En répondant à ces événements, il est possible d’ajuster ou d’enjoliver la réponse.

 Routage et création d’URL

Routage et création d’URL

Lorsqu’une application Yii commence à traiter une URL objet d’une requête, sa première étape consiste à analyser cette URL
pour la résoudre en une route.
La route est ensuite utilisée pour instancier l’action de contrôleur correspondante pour la prise en charge de la requête. Ce processus est appelé routage.

Le processus inverse du routage, qui consiste à créer une URL à partir d’une route et des paramètres associés de la requête,est appelé création d’URL. Lorsque l’URL créée est ensuite requise, le processus de routage est capable de la résoudre en la route originale
avec les paramètres de requête.

L’élément central en charge du routage et de la création d’URL est le [[yii\web\UrlManager|gestionnaire d’URL]], qui est enregistré en tant que composant d’application sous le nom urlManager.
Le [[yii\web\UrlManager|gestionnaire d’URL]] fournit la méthode [[yii\web\UrlManager::parseRequest()|parseRequest()]] pour analyser une requête entrante et la résoudre en
une route et les paramètres de requête associés,
et la méthode [[yii\web\UrlManager::createUrl()|createUrl()]] pour
créer une URL en partant d’une route avec ses paramètres de requête associés.

En configurant le composant urlManager dans la configuration de l’application, vous pouvez laisser votre application reconnaître les formats d’URL arbitraires sans modifier le code existant de votre application.
Par exemple, vous pouvez utiliser le code suivant pour créer une URL pour l’action post/view :

use yii\helpers\Url;

// Url::to() appelle UrlManager::createUrl() pour créer une URL
$url = Url::to(['post/view', 'id' => 100]);

Selon la configuration de urlManager, l’URL créée peut ressembler à l’une des URL suivantes (ou autre formats).
Et si l’URL est requise plus tard, elle sera toujours analysée pour revenir à la route originale et aux valeurs des paramètres de la requête.

/index.php?r=post%2Fview&id=100
/index.php/post/100
/posts/100

Formats d’URL

Le [[yii\web\UrlManager|gestionnaire d’URL]] prend en charge deux formats d’URL :

	le format d’URL par défaut,

	le format d’URL élégantes.

Le format d’URL par défaut utilise un [[yii\web\UrlManager::$routeParam|paramètre de requête]] nommé r qui représente la route et les paramètres de requête normaux associés à la route.
Par exemple, l’URL /index.php?r=post/view&id=100 represente la route post/view et le paramètre de requête id dont la valeur est 100.
Le format d’URL par défaut ne requiert aucune configuration du [[yii\web\UrlManager|gestionnaire d’URL]
et fonctionne dans toutes les configurations de serveur Web.

Le format d’URL élégantes utilise le chemin additionnel qui suit le nom du script d’entrée pour représenter la route et les paramètres de requête associés.
Par exemple, le chemin additionnel dans l’URL /index.php/post/100 est /post/100 qui, avec une [[yii\web\UrlManager::rules|règle d’URL]] appropriée, peut représenter la route post/view et le paramètre des requête id avec une valeur de 100 .
Pour utiliser le format d’URL élégantes,
vous devez définir un jeu de [[yii\web\UrlManager::rules|règles d’URL]]
en cohérence avec les exigences réelles sur la présentation d’une URL.

Vous pouvez passer d’un format d’URL à l’autre en inversant la propriété [[yii\web\UrlManager::enablePrettyUrl|enablePrettyUrl]] du [[yii\web\UrlManager|gestionnaire d’URL]]
sans changer quoi que ce soit au code de votre application.

Routage

Le routage se fait en deux étapes :

	La requête entrante est analysée et résolue en une route et les paramètres de requête associés.

	L’action de contrôleur
correspondant à la route analysée est créée pour prendre la requête en charge.

Lors de l’utilisation du format d’URL par défaut,
la résolution d’une requête en route est aussi simple que d’obtenir le paramètre nommé r de la méthode GET.

Lors de l’utilisation du format d’URL élégantes, le [[yii\web\UrlManager|gestionnaire d’URL] examine les [[yii\web\UrlManager::rules|règles d’URL]] enregistrées pour trouver une règle qui correspond et résoudre la requête en une route.
Si une telle règle n’est pas trouvée, une exception [[yii\web\NotFoundHttpException]]
est levée.

Une fois que la requête est résolue en une route, il est temps de créer l’action de contrôleur identifiée par la route.
La route est éclatée en de multiples parties par des barres obliques de division.
Par exemple, site/index est éclatée en site et index.
Chacune des parties est considérée comme un identifiant qui peut faire référence à un module, un contrôleur ou une action.
En partant de la première partie dans la route, l’application entreprend les étapes suivantes pour créer un module (s’il en existe un), un contrôleur et une action :

	Définit l’application comme étant le module courant.

	Vérifie si la [[yii\base\Module::controllerMap|table de mise en correspondance des contrôleurs]] du module courant contient l’identifiant courant.
Si c’est le cas, un objet controller est créé en respectant la configuration du contrôleur trouvé dans la table de mise en correspondance,
et on passe à l’étape 5 pour prendre en compte le reste de la route.

	Vérifie si l’identifiant fait référence à un module listé dans la propriété [[yii\base\Module::modules|modules]] du module courant.
Si c’est le cas, un module est créé en respectant la configuration trouvée dans la liste des modules et on passe à l’étape 2
pour prendre en compte le reste de la route dans le contexte du nouveau module.

	Traite l’identifiant comme un identifiant de contrôleur, crée un objet controller
et passe à l’étape suivante avec le reste de la route.

	Le contrôleur recherche l’identifiant courant dans sa [[yii\base\Controller::actions()|table de mise en correspondance des actions]]. S’il le trouve, il crée une action respectant la configuration trouvée dans la table de mise en correspondance.
Autrement, le contrôleur essaye de créer une action en ligne dont le nom de méthode correspond à l’ identifiant d’action courant.

Si une erreur se produit dans l’une des étapes décrites ci-dessus, une exception [[yii\web\NotFoundHttpException]] est levée, indiquant l’échec du processus de routage.

Route par défaut

Quand une requête est analysée et résolue en une route vide, la route dite route par défaut est utilisée à sa place.
Par défaut, la route par défaut est site/index, qui fait référence à l’action index du contrôleur site.
Vous pouvez la personnaliser en configurant la propriété [[yii\web\Application::defaultRoute|defaultRoute]] de l’application dans la configuration de l’application comme indiqué ci-dessous :

[
 // ...
 'defaultRoute' => 'main/index',
];

De façon similaire à la route par défaut de l’application, il existe aussi une route par défaut pour les modules.
Ainsi s’il existe un module user (utilisateur) et que la requête est résolue en la route user, la propriété [[yii\base\Module::defaultRoute|defaultRoute]] du module est utilisée pour déterminer le contrôleur.
Par défaut, le nom du contrôleur est default. Si aucune action n’est spécifiée dans la propriété [[yii\base\Module::defaultRoute|defaultRoute]],
la propriété [[yii\base\Controller::defaultAction|defaultAction]] du contrôleur est utilisée pour déterminer l’action.
Dans cet exemple, la route complète serait user/default/index.

La route attrape-tout

Parfois, vous désirez mettre votre application Web en mode maintenance temporairement
et afficher la même page d’information pour toutes les requêtes. Il y a plusieurs moyens de faire cela.
L’une des manières les plus simples est de configurer la propriété [[yii\web\Application::catchAll]] dans la configuration de l’application comme indiqué ci-dessous :

[
 // ...
 'catchAll' => ['site/offline'],
];

Avec la configuration ci-dessus, l’action site/offline est utilisée pour prendre toutes les requêtes entrantes en charge.

La propriété catchAll accepte un tableau dont le premier élément spécifie une route
et le reste des éléments des couples clé-valeur pour les paramètres liés à l’action.

Info: le [panneau de débogage]](https://github.com/yiisoft/yii2-debug/blob/master/docs/guide/README.md) de l’environnement de développement
ne fonctionne pas lorsque cette propriété est activée.

Création d’URL

Yii fournit une méthode d’aide [[yii\helpers\Url::to()]] pour créer différentes sortes d’URL à partir de routes données et de leurs paramètres de requête associés.
Par exemple :

use yii\helpers\Url;

// crée une URL d'une route: /index.php?r=post%2Findex
echo Url::to(['post/index']);

// crée une URL d'une route avec paramètres : /index.php?r=post%2Fview&id=100
echo Url::to(['post/view', 'id' => 100]);

// crée une URL avec ancre : /index.php?r=post%2Fview&id=100#content
echo Url::to(['post/view', 'id' => 100, '#' => 'content']);

// crée une URL absolue : http://www.example.com/index.php?r=post%2Findex
echo Url::to(['post/index'], true);

// crée une URL absolue en utilisant le schéma https : https://www.example.com/index.php?r=post%2Findex
echo Url::to(['post/index'], 'https');

Notez que dans l’exemple ci-dessus, nous supposons que le format d’URL est le format par défaut.
Si le format d’URL élégantes est activé, les URL créées sont différentes et respectent les [[yii\web\UrlManager::rules|règles d’URL]] en cours d’utilisation.

La route passée à la méthode [[yii\helpers\Url::to()]] est sensible au contexte.
Elle peut être soit relative, soit absolue et normalisée en respect des règles suivantes :

	Si la route est une chaîne vide, la [[yii\web\Controller::route|route]] couramment requise est utilisée ;

	Si la route ne contient aucune barre oblique de division, elle est considérée comme un identifiant d’action du contrôleur courant
et est préfixée par la valeur de l’identifiant [[\yii\web\Controller::uniqueId|uniqueId]] du contrôleur courant ;

	Si la route n’a pas de barre oblique de division en tête, elle est considérée comme une route relative au module courant
et préfixée par la valeur de l’identifiant [[\yii\base\Module::uniqueId|uniqueId]] du module courant.

À partir de la version 2.0.2, vous pouvez spécifier une route en terme d’alias. Si c’est le cas,
l’alias est d’abord converti en la route réelle qui est ensuite transformée en route absolue dans le respect des règles précédentes.

Par exemple, en supposant que le module courant est admin et que le contrôleur courant est post,

use yii\helpers\Url;

// route couramment requise : /index.php?r=admin%2Fpost%2Findex
echo Url::to(['']);

// une route relative avec un identifiant d'action seulement : /index.php?r=admin%2Fpost%2Findex
echo Url::to(['index']);

// une route relative : /index.php?r=admin%2Fpost%2Findex
echo Url::to(['post/index']);

// une route absoulue : /index.php?r=post%2Findex
echo Url::to(['/post/index']);

// /index.php?r=post%2Findex suppose que l'alias "@posts" est défini comme "/post/index"
echo Url::to(['@posts']);

La méthode [[yii\helpers\Url::to()]] est mise en œuvre en appelant les méthodes [[yii\web\UrlManager::createUrl()|createUrl()]]
et [[yii\web\UrlManager::createAbsoluteUrl()|createAbsoluteUrl()]]
du [[yii\web\UrlManager|gestionnaire d’URL]].
Dans les quelques sous-sections suivantes, nous expliquons comment configurer le [[yii\web\UrlManager|gestionnaire d’URL]] pour personnaliser le format des URL créées.

La méthode [[yii\helpers\Url::to()]] prend aussi en charge la création d’URL qui n’ont pas de relation avec des routes particulières.
Au lieu de passer un tableau comme premier paramètre, vous devez, dans ce cas, passer une chaîne de caractères. Par exemple :

use yii\helpers\Url;

// URL couramment requise : /index.php?r=admin%2Fpost%2Findex
echo Url::to();

// un alias d'URL: http://example.com
Yii::setAlias('@example', 'http://example.com/');
echo Url::to('@example');

// une URL absolue : http://example.com/images/logo.gif
echo Url::to('/images/logo.gif', true);

En plus de la méthode to(), la classe d’aide [[yii\helpers\Url]] fournit aussi plusieurs méthode pratiques de création d’URL.
Par exemple :

use yii\helpers\Url;

// URL de page d'accueil: /index.php?r=site%2Findex
echo Url::home();

// URL de base, utile si l'application est déployée dans un sous-dossier du dossier Web racine
echo Url::base();

// l'URL canonique de l'URL couramment requise
// voir https://en.wikipedia.org/wiki/Canonical_link_element
echo Url::canonical();

// mémorise l'URL couramment requise et la retrouve dans les requêtes subséquentes
Url::remember();
echo Url::previous();

Utilisation des URL élégantes

Pour utiliser les URL élégantes, configurez le composant urlManager dans la configuration de l’application comme indiqué ci-dessous :

[
 'components' => [
 'urlManager' => [
 'enablePrettyUrl' => true,
 'showScriptName' => false,
 'enableStrictParsing' => false,
 'rules' => [
 // ...
],
],
],
]

La propriété [[yii\web\UrlManager::enablePrettyUrl|enablePrettyUrl]] est obligatoire car elle active/désactive le format d’URL élégantes. Le reste des propriétés est facultatif.
Néanmoins, leur configuration montrée plus haut est couramment utilisée.

	[[yii\web\UrlManager::showScriptName|showScriptName]]: cette propriété détermine si le script d’entrée doit être inclus dans l’URL créée.
Par exemple, au lieu de créer une URL /index.php/post/100,
en définissant cette propriété à false, l’URL /post/100 est générée.

	[[yii\web\UrlManager::enableStrictParsing|enableStrictParsing]]: cette propriété détermine si l’analyse stricte est activée .
Si c’est le cas, l’URL entrante doit correspondre à au moins une des [[yii\web\UrlManager::rules|règles]] afin d’être traitée comme une requête valide, sinon une exception [[yii\web\NotFoundHttpException]] est levée.
Si l’analyse stricte est désactivée, lorsqu’aucune[[yii\web\UrlManager::rules|règle]] ne correspond à l’URL requise,
la partie chemin de l’URL est considérée comme étant la route requise.

	[[yii\web\UrlManager::rules|rules]]: cette propriété contient une liste de règles spécifiant comme analyser et créer des URL.
C’est la propriété principale avec laquelle vous devez travailler afin de créer des URL dont le format satisfait les exigences particulières de votre application.

Note: afin de cacher le nom du script d’entrée dans l’URL créée, en plus de définir la propriété
[[yii\web\UrlManager::showScriptName|showScriptName]]
à false, vous pouvez aussi configurer votre serveur Web de manière à ce qu’il puisse identifier correctement quel script PHP doit être exécuté lorsqu’une URL requise n’en précise aucun explicitement.
Si vous utilisez un serveur Apache ou nginx, vous pouvez vous reporter à la configuration recommandée décrite dans la section Installation.

Règles d’URL

Une règle d’URL est une classe mettant en œuvre l’interface [[yii\web\UrlRuleInterface]], généralement une instance de la classe [[yii\web\UrlRule]].
Chaque règle d’URL consiste en un motif utilisé pour être mis en correspondance avec la partie chemin de l’URL, une route, et quelques paramètres de requête.
Une règle d’URL peut être utilisée pour analyser une requête si son motif correspond à l’URL requise.
Une règle d’URL peut être utilisée pour créer une URL si sa route et le nom de ses paramètres de requête correspondent à ceux qui sont fournis.

Quand le format d’URL élégantes est activé, le [[yii\web\UrlManager|gestionnaire d’URL]] utilise les règles d’URL déclarées dans sa propriété
[[yii\web\UrlManager::rules|rules]] pour analyser les requêtes entrantes et créer des URL.
En particulier, pour analyser une requête entrante, le [[yii\web\UrlManager|gestionnaire d’URL]] examine les règles dans l’ordre de leur déclaration et cherche la première règle qui correspond à l’URL requise.
La règle correspondante est ensuite utilisée pour analyser l’URL et la résoudre en une route et ses paramètres de requête associés.
De façon similaire, pour créer une URL, le [[yii\web\UrlManager|gestionnaire d’URL]] cherche la première règle qui correspond à la route donnée et aux paramètres et l’utilise pour créer l’URL.

Vous pouvez configurer la propriété [[yii\web\UrlManager::rules]] sous forme de tableau dont les clés sont les [[yii\web\UrlRule::$pattern|motifs]]
et les valeurs, les [[yii\web\UrlRule::$route|routes]] correspondantes.
Chacune des paires motif-route construit une règle d’URL.
Par exemple, la configuration des [[yii\web\UrlManager::rules|règles]] suivante déclare deux règles d’URL.
La première correspond à l’URL posts et la met en correspondance avec la route post/index. La seconde correspond à une URL qui correspond à l’expression régulière post/(\d+) et la met en correspondance avec la route post/view et le paramètre nommé id.

[
 'posts' => 'post/index',
 'post/<id:\d+>' => 'post/view',
]

Info: le motif dans une règle est utilisé pour correspondre à la partie chemin d’une URL.Par exemple, la partie chemin de /index.php/post/100?source=ad est post/100 (les barres obliques de division de début et de fin sont ignorées) et correspond au motif post/(\d+).

En plus de déclarer des règles d’URL sous forme de paires motif-route, vous pouvez aussi les déclarer sous forme de tableaux de configuration.
Chacun des tableaux de configuration est utilisé pour configurer un simple objet règle d’URL.
C’est souvent nécessaire lorsque vous voulez configurer d’autres propriétés d’une règle d’URL. Par exemple :

'rules' => [
 // ...autres règles d'URL...
 [
 'pattern' => 'posts',
 'route' => 'post/index',
 'suffix' => '.json',
],
]

Par défaut, si vous ne spécifiez pas l’option class pour une configuration de règle,
elle prend la valeur par défaut [[yii\web\UrlRule]] qui est la valeur par défaut définie dans
[[yii\web\UrlManager::$ruleConfig]].

Paramètres nommés

Une règle d’URL peut être associée à quelques paramètres de requête nommés qui sont spécifiés dans le motif et respectent le format <ParamName:RegExp>,
dans lequel ParamName spécifie le nom du paramètre et RegExp est une expression régulière facultative utilisée pour établir la correspondance avec une valeur de paramètre.
Si RegExp n’est pas spécifié, cela signifie que la valeur du paramètre doit être une chaîne de caractères sans aucune barre oblique de division.

Note: vous pouvez seulement spécifier des expressions régulières pour les paramètres. La partie restante du motif est considérée être du texte simple.

Lorsqu’une règle est utilisée pour analyser une URL,
elle remplit les paramètres associés avec les valeurs des parties de l’URL qui leur correspondent,
et ces paramètres sont rendus disponibles dans $_GET et plus tard dans le composant d’application request.
Lorsque la règle est utilisée pour créer une URL, elle prend les valeurs des paramètres fournis et les insère à l’endroit où ces paramètres sont déclarés.

Prenons quelques exemples pour illustrer comment les paramètres nommés fonctionnent. Supposons que nous ayons déclaré les règles d’URL suivantes :

[
 'posts/<year:\d{4}>/<category>' => 'post/index',
 'posts' => 'post/index',
 'post/<id:\d+>' => 'post/view',
]

Lorsque les règles sont utilisées pour analyser des URL :

	/index.php/posts est analysée et résolue en la route post/index en utilisant la deuxième règle ;

	/index.php/posts/2014/php est analysée et résolue en la route post/index, le paramètre year dont la valeur est 2014
et le paramètre category dont la valeur est php en utilisant la première règle ;

	/index.php/post/100 est analysée et résolue en la route post/view
et le paramètre id dont la valeur est 100 en utilisant la troisième règle ;

	/index.php/posts/php provoque la levée d’une exception [[yii\web\NotFoundHttpException]] quand la propriété [[yii\web\UrlManager::enableStrictParsing]]
est définie à true, parce qu’elle ne correspond à aucun des motifs.
Si [[yii\web\UrlManager::enableStrictParsing]] est définie à false (la valeur par défaut), la partie chemin posts/php est retournée en tant que route. Cela provoque l’exécution de l’action correspondante si elle existe, ou lève une exception [[yii\web\NotFoundHttpException]] autrement.

Et quand les règles sont utilisées pour créer des URL :

	Url::to(['post/index']) crée /index.php/posts en utilisant la deuxième règle ;

	Url::to(['post/index', 'year' => 2014, 'category' => 'php']) crée /index.php/posts/2014/php en utilisant la première règle ;

	Url::to(['post/view', 'id' => 100]) crée /index.php/post/100 en utilisant la troisième règle ;

	Url::to(['post/view', 'id' => 100, 'source' => 'ad']) crée /index.php/post/100?source=ad en utilisant la troisième règle.
Comme le paramètre source n’est pas spécifié dans la règle, il est ajouté en tant que paramètre de requête à l’URL créée.

	Url::to(['post/index', 'category' => 'php']) crée /index.php/post/index?category=php en utilisant aucune des règles.
Notez que, aucune des règles n’étant utilisée, l’URL est créée en ajoutant simplement la route en tant que partie chemin
et tous les paramètres en tant que partie de la chaîne de requête.

Paramétrage des routes

Vous pouvez inclure les noms des paramètres dans la route d’une règle d’URL. Cela permet à une règle d’URL d’être utilisée pour correspondre à de multiples routes.
Par exemple, les règles suivantes incluent les paramètres controller et action dans les routes.

'rules' => [
 '<controller:(post|comment)>/create' => '<controller>/create',
 '<controller:(post|comment)>/<id:\d+>/<action:(update|delete)>' => '<controller>/<action>',
 '<controller:(post|comment)>/<id:\d+>' => '<controller>/view',
 '<controller:(post|comment)>s' => '<controller>/index',
]

Pour analyser l’URL /index.php/comment/100/update, la deuxième règle s’applique et définit le paramètre controllercomme étant comment et le paramètre action comme étant create. La route <controller>/<action> est par conséquent résolue comme comment/update.

De façon similaire, pour créer une URL à partir de la route comment/index, la dernière règle s’applique, ce qui donne l’URL /index.php/comments.

Info: en paramétrant les routes, il est possible de réduire grandement le nombre de règles d’URL,
ce qui peut accroître significativement la performance du [[yii\web\UrlManager|gestionnaire d’URL]].

Valeur par défaut des paramètres

Par défaut, tous les paramètres déclarés dans une règle sont requis.
Si une URL requise ne contient pas un paramètre particulier, ou si une URL est créée sans un paramètre particulier, la règle ne s’applique pas.
Pour rendre certains paramètres facultatifs, vous pouvez configurer la propriété [[yii\web\UrlRule::defaults|defaults]] de la règle.
Les paramètres listés dans cette propriété sont facultatifs et prennent les valeurs spécifiées lorsqu’elles ne sont pas fournies.

Dans la déclaration suivante d’une règle, les paramètres page et tag sont tous les deux facultatifs
et prennent la valeur 1 et vide, respectivement quand ils ne sont pas fournis.

[
 // ...autres règles...
 [
 'pattern' => 'posts/<page:\d+>/<tag>',
 'route' => 'post/index',
 'defaults' => ['page' => 1, 'tag' => ''],
],
]

La règle ci-dessus peut être utilisée pour analyser ou créer l’une quelconque des URL suivantes :

	/index.php/posts: page est 1, tag est ‘’.

	/index.php/posts/2: page est 2, tag est ‘’.

	/index.php/posts/2/news: page est 2, tag est 'news'.

	/index.php/posts/news: page est 1, tag est 'news'.

Sans les paramètres facultatifs, vous devriez créer quatre règles pour arriver au même résultat.

Note: si [[yii\web\UrlRule::$pattern|pattern]] (motif) ne contient que des paramètres facultatifs et des barres obliques de division,
le premier paramètre peut être omis seulement si tous les autres paramètres le sont.

Règles avec des noms de serveur

Il est possible d’inclure des noms de serveur Web dans le motif d’une règle d’URL. Cela est principalement utilisé lorsque votre application doit se comporter différemment selon le nom du serveur Web.
Par exemple, les règles suivantes analysent et résolvent l’URL http://admin.example.com/login en la route admin/user/login
et http://www.example.com/login en la route site/login.

[
 'http://admin.example.com/login' => 'admin/user/login',
 'http://www.example.com/login' => 'site/login',
]

Vous pouvez aussi inclure des paramètres dans les noms de serveurs pour en extraire de l’information dynamique.
Par exemple, la règle suivante analyse et résout l’URL http://en.example.com/posts en la route post/index et le paramètre language=en.

[
 'http://<language:\w+>.example.com/posts' => 'post/index',
]

Depuis la version 2.0.11, vous pouvez également utiliser des motifs relatifs au protocole qui marchent à la fois pour http et https.
La syntaxe est la même que ci-dessus mais en sautant la partie http, p. ex. '//www.example.com/login' => 'site/login'.

Note: les règles avec des noms de serveur ne doivent pas comprendre le sous-dossier du script d’entrée dans leur motif.
Par exemple, si l’application est sous http://www.example.com/sandbox/blog, alors vous devez utiliser le motif http://www.example.com/posts au lieu de http://www.example.com/sandbox/blog/posts.
Cela permet à votre application d’être déployée sous n’importe quel dossier sans avoir à changer son code.
Yii détecte automatiquement l’URL de base de l’application.

Suffixes d’URL

Vous désirez peut-être ajouter des suffixes aux URL pour des raisons variées.
Par exemple, vous pouvez ajouter .html aux URL de manière à ce qu’elles ressemblent à des URL de pages HTML statiques.
Vous pouvez aussi y ajouter .json pour indiquer le type de contenu attendu pour la réponse.
Vous pouvez faire cela en configurant la propriété [[yii\web\UrlManager::suffix]] dans la configuration de l’application comme ceci :

[
 // ...
 'components' => [
 'urlManager' => [
 'enablePrettyUrl' => true,
 // ...
 'suffix' => '.html',
 'rules' => [
 // ...
],
],
],
]

La configuration ci-dessus permet au [[yii\web\UrlManager|gestionnaire d’URL]] de reconnaître les URL requises
et aussi de créer des URL avec le suffixe .html.

Tip: vous pouvez définir / en tant que suffixe des URL de manière à ce que tous les URL se terminent par la barre oblique de division.

Note: lorsque vous configurez un suffixe d’URL, si une URL requise ne contient pas ce suffixe, elle est considérée comme une URL non reconnue.
Cela est une pratique recommandée pour l’optimisation des moteurs de recherche (SE0 – Search Engine Optimization).

Parfois vous désirez utiliser des suffixes différents pour différentes URL.
Cela peut être fait en configurant la propriété [[yii\web\UrlRule::suffix|suffix]] des règles d’URL individuelles.
Lorsqu’une URL a cette propriété définie, elle écrase la valeur définie au niveau du [[yii\web\UrlManager|gestionnaire d’URL]].
Par exemple, la configuration suivante contient une règle d’URL personnalisée qui utilise .json en tant que suffixe à la place du suffixe défini globalement .html.

[
 'components' => [
 'urlManager' => [
 'enablePrettyUrl' => true,
 // ...
 'suffix' => '.html',
 'rules' => [
 // ...
 [
 'pattern' => 'posts',
 'route' => 'post/index',
 'suffix' => '.json',
],
],
],
],
]

Méthodes HTTP

En mettant en œuvre des API pleinement REST, il est couramment nécessaire que la même URL puisse être résolue en différentes routes selon la méthode HTTP utilisée par la requête.
Cela peut être fait facilement en préfixant les motifs des règles avec les méthodes HTTP prises en charge.
Si une règle prend en charge plusieurs méthodes HTTP, il faut séparer les noms de méthode par une virgule.
Par exemple, les règles suivantes ont le même motif post/<id:\d+> mais des méthodes HTTP différentes.
Une requête de PUT post/100 est résolue en la route post/update, tandis que la requête de GET post/100 en la route post/view.

'rules' => [
 'PUT,POST post/<id:\d+>' => 'post/update',
 'DELETE post/<id:\d+>' => 'post/delete',
 'post/<id:\d+>' => 'post/view',
]

Note: si une règle d’URL contient des méthodes HTTP dans son motif, la règle n’est utilisée qu’à des fins d’analyse sauf si GET fait partie des verbes spécifiés.
Elle est ignorée quand le [[yii\web\UrlManager|gestionnaire d’URL]] est sollicité pour créer une URL.

Tip: pour simplifier le routage des API pleinement REST, Yii fournit la classe spéciale de règle d’URL [[yii\rest\UrlRule]]
qui est très efficace et prend en charge quelques fonctionnalités originales comme la pluralisation automatique des identifiants de contrôleur.
Pour plus de détails, reportez-vous à la section Routage dans le chapitre API pleinement REST.

Ajout dynamique de règles

Des règles d’URL peuvent être ajoutées dynamiquement au [[yii\web\UrlManager|gestionnaire d’URL]].
Cela est souvent nécessaire pour les modules distribuables qui veulent gérer leurs propres règles d’URL.
Pour que les règles ajoutées dynamiquement prennent effet dans de processus de routage, vous devez les ajouter dans l’étape d’amorçage.
Pour les modules, cela signifie qu’ils doivent implémenter l’interface [[yii\base\BootstrapInterface]]
et ajouter les règles dans leur méthode [[yii\base\BootstrapInterface::bootstrap()|bootstrap()]] comme l’exemple suivant le montre :

public function bootstrap($app)
{
 $app->getUrlManager()->addRules([
 // rule declarations here
], false);
}

Notez que vous devez également lister ces modules dans la propriété [[yii\web\Application::bootstrap]]
afin qu’ils puissent participer au processus d’amorçage.

Création des classes règles

En dépit du fait que la classe par défaut [[yii\web\UrlRule]] est suffisamment flexible pour la majorité des projets,
il y a des situations dans lesquelles vous devez créer votre propres classes de règle.
Par exemple, dans un site Web de vendeur de voitures, vous désirerez peut-être prendre en charge des formats d’URL du type /Manufacturer/Model, où Manufacturer et Model doivent correspondre à quelques données stockées dans une base de données.
La classe de règle par défaut ne fonctionne pas dans ce cas car elle s’appuie sur des motifs déclarés de manière statique.

Vous pouvez créer les classes de règle d’URL suivantes pour résoudre ce problème :

<?php

namespace app\components;

use yii\web\UrlRuleInterface;
use yii\base\BaseObject;

class CarUrlRule extends BaseObject implements UrlRuleInterface
{
 public function createUrl($manager, $route, $params)
 {
 if ($route === 'car/index') {
 if (isset($params['manufacturer'], $params['model'])) {
 return $params['manufacturer'] . '/' . $params['model'];
 } elseif (isset($params['manufacturer'])) {
 return $params['manufacturer'];
 }
 }
 return false; // this rule does not apply
 }

 public function parseRequest($manager, $request)
 {
 $pathInfo = $request->getPathInfo();
 if (preg_match('%^(\w+)(/(\w+))?$%', $pathInfo, $matches)) {
 // vérifie $matches[1] et $matches[3] pour voir si
 // elles correspondent à un manufacturer et à un model dans la base de données
 // si oui, définit $params['manufacturer'] et/ou $params['model']
 // et retourne ['car/index', $params]
 }
 return false; // cette règle ne s'applique pas
 }
}

Et utilisez la nouvelle classe de règle dans la configuration de [[yii\web\UrlManager::rules]] :

[
 // ...other rules...

 [
 'class' => 'app\components\CarUrlRule',
 // ...configure d'autres propriétés...
],
]

Normalisation d’URL

Depuis la version 2.0.10, le [[yii\web\UrlManager|gestionnaire d’URL]] peut être configuré pour utiliser le [[yii\web\UrlNormalizer|normalisateur d’URL]] pour prendre en compte les variations de la même URL, p. ex. avec et sans la barre oblique de division de fin.

Parce que, techniquement, http://example.com/path
et http://example.com/path/ sont des URL différentes, servir le même contenu pour chacune d’elles peut dégrader le classement SEO.
Par défaut, le normalisateur fusionne les barres obliques de division consécutives, ajoute ou retire des barres de division de fin selon que le suffixe comporte une barre de division de fin ou pas, et redirige vers la version normalisée de l’URL en utilisant la redirection permanente [https://en.wikipedia.org/wiki/HTTP_301].
Le normalisateur peut être configuré globalement pour le gestionnaire d’URL ou individuellement pour chacune des règles — par défaut, chacune des règles utilise le normalisateur du gestionnaire d’URL.
Vous pouvez définir [[yii\web\UrlRule::$normalizer|UrlRule::$normalizer]] à false pour désactiver la normalisation pour une règle d’URL particulière.

Ce qui suit est un exemple de configuration pour le [[yii\web\UrlNormalizer|normalisateur d’URL]]:

'urlManager' => [
 'enablePrettyUrl' => true,
 'showScriptName' => false,
 'enableStrictParsing' => true,
 'suffix' => '.html',
 'normalizer' => [
 'class' => 'yii\web\UrlNormalizer',
 // utilise la redirection temporaire au lieu de la redirection permanente pour le débogage
 'action' => UrlNormalizer::ACTION_REDIRECT_TEMPORARY,
],
 'rules' => [
 // ...autres règles...
 [
 'pattern' => 'posts',
 'route' => 'post/index',
 'suffix' => '/',
 'normalizer' => false, // désactive le normalisateur pour cette règle
],
 [
 'pattern' => 'tags',
 'route' => 'tag/index',
 'normalizer' => [
 // ne fusionne pas les barres obliques de division consécutives pour cette règle
 'collapseSlashes' => false,
],
],
],
]

Note: par défaut [[yii\web\UrlManager::$normalizer|UrlManager::$normalizer]] est désactivé.
Vous devez le configure explicitement pour activer la normalisation d’URL.

Considérations de performance

Lors du développement d’une application Web complexe, il est important d’optimiser les règles d’URL afin que l’analyse des requêtes et la création d’URL prennent moins de temps.

En utilisant les routes paramétrées, vous pouvez réduire le nombre de règles d’URL, ce qui accroît significativement la performance.

Lors de l’analyse d’URL ou de la création d’URL, le [[yii\web\UrlManager|gestionnaire d’URL]] examine les règles d’URL dans l’ordre de leur déclaration. En conséquence, vous devez envisager d’ajuster cet ordre afin que les règles les plus spécifiques et/ou utilisées couramment soient placées avant les règles les moins utilisées.

Si quelques règles d’URL partagent le même préfixe dans leur motif ou dans leur route, vous pouvez envisager d’utiliser [[yii\web\GroupUrlRule]] pour qu’elles puissent être examinées plus efficacement par le [[yii\web\UrlManager|gestionnaire d’URL]] en tant que groupe.
Cela est souvent le cas quand votre application est composée de modules, chacun ayant son propre jeu de règles d’URL avec l’identifiant de module comme préfixe commun.

 Sessions et témoins de connexion

Sessions et témoins de connexion

Les sessions et les témoins de connexion permettent à des données d’être conservées à travers des requêtes multiples. Avec le langage PHP simple, vous pouvez y accéder via les variables globales $_SESSION et $_COOKIE, respectivement. Yii encapsule les sessions et les témoins de connexion sous forme d’objets et, par conséquent, vous permet d’y accéder d’une manière orientée objet avec des améliorations utiles.

Sessions

Comme pour les requêtes et les réponses, vous pouvez accéder aux sessions via le composant d’application session qui, par défaut, est une instance de la classe [[yii\web\Session]].

Ouverture et fermeture d’une session

Pour ouvrir et fermer une session, vous pouvez procéder comme suit :

$session = Yii::$app->session;

// vérifie si une session est déjà ouverte
if ($session->isActive) ...

// ouvre une session
$session->open();

// ferme une session
$session->close();

// détruit toutes les données enregistrées dans une session.
$session->destroy();

Vous pouvez appeler les méthodes [[yii\web\Session::open()|open()]] et [[yii\web\Session::close()|close()]] plusieurs fois sans causer d’erreur ; en interne les méthodes commencent par vérifier si la session n’est pas déjà ouverte.

Accès aux données de session

Pour accéder aux données stockées dans une session, vous pouvez procéder comme indiqué ci-après :

$session = Yii::$app->session;

// obtient une variable de session. Les utilisations suivantes sont équivalentes :
$language = $session->get('language');
$language = $session['language'];
$language = isset($_SESSION['language']) ? $_SESSION['language'] : null;

// définit une variable de session variable. Les utilisations suivantes sont équivalentes :
$session->set('language', 'en-US');
$session['language'] = 'en-US';
$_SESSION['language'] = 'en-US';

// supprime une variable session. Les utilisations suivantes sont équivalentes :
$session->remove('language');
unset($session['language']);
unset($_SESSION['language']);

// vérifie si une session possède la variable 'language'. Les utilisations suivantes sont équivalentes :
if ($session->has('language')) ...
if (isset($session['language'])) ...
if (isset($_SESSION['language'])) ...

// boucle sur toutes les sessions. Les utilisations suivantes sont équivalentes :
foreach ($session as $name => $value) ...
foreach ($_SESSION as $name => $value) ...

Info: lorsque vous accédez aux données d’une session via le composant session, une session est automatiquement ouverte si elle ne l’a pas déjà été. Cela est différent de l’accès aux données via la variable globale $_SESSION, qui réclame un appel préalable explicite de session_start().

Lorsque vous travaillez avec les données de session qui sont des tableaux, le composant session possède une limitation qui vous empêche de modifier directement un des élément de ces tableaux. Par exemple :

$session = Yii::$app->session;

// le code suivant ne fonctionne PAS
$session['captcha']['number'] = 5;
$session['captcha']['lifetime'] = 3600;

// le code suivant fonctionne :
$session['captcha'] = [
 'number' => 5,
 'lifetime' => 3600,
];

// le code suivant fonctionne également :
echo $session['captcha']['lifetime'];

Vous pouvez utiliser une des solutions de contournement suivantes pour résoudre ce problème :

$session = Yii::$app->session;

// utiliser directement $_SESSION (assurez-vous que Yii::$app->session->open() a été appelée)
$_SESSION['captcha']['number'] = 5;
$_SESSION['captcha']['lifetime'] = 3600;

// obtenir le tableau complet d'abord, le modifier et le sauvegarder
$captcha = $session['captcha'];
$captcha['number'] = 5;
$captcha['lifetime'] = 3600;
$session['captcha'] = $captcha;

// utiliser un ArrayObject au lieu d'un tableau
$session['captcha'] = new \ArrayObject;
...
$session['captcha']['number'] = 5;
$session['captcha']['lifetime'] = 3600;

// stocker les données du tableau par une clé avec un préfixe commun
$session['captcha.number'] = 5;
$session['captcha.lifetime'] = 3600;

Pour une meilleure performance et une meilleure lisibilité du code, nous recommandons la dernière solution de contournement. Elle consiste, au lieu de stocker un tableau comme une donnée de session unique, à stocker chacun des éléments du tableau comme une variable de session qui partage le même préfixe de clé avec le reste des éléments de ce tableau.

Stockage de session personnalisé

La classe par défaut [[yii\web\Session]] stocke les données de session sous forme de fichiers sur le serveur. Yii fournit également des classes de session qui mettent en œuvre des procédés de stockage différents. En voici la liste :

	[[yii\web\DbSession]]: stocke les données de session dans une base de données.

	[[yii\web\CacheSession]]: stocke les données de session dans un cache avec l’aide d’un composant cache configuré.

	[[yii\redis\Session]]: stocke les données de session en utilisant le médium de stockage redis [http://redis.io/] as the storage medium.

	[[yii\mongodb\Session]]: stocke les données de session dans une base de données de documents MongoDB [http://www.mongodb.org/].

Toutes ces classes de session prennent en charge le même jeu de méthodes d’API. En conséquence, vous pouvez changer de support de stockage sans avoir à modifier le code de votre application qui utilise ces sessions.

Note: si vous voulez accéder aux données de session via $_SESSION quand vous êtes en train d’utiliser une session à stockage personnalisé, vous devez vous assurer que cette session a été préalablement démarrée via [[yii\web\Session::open()]]. Cela est dû au fait que les gestionnaires de stockage des sessions personnalisées sont enregistrés à l’intérieur de cette méthode.

Note : si vous utilisez un stockage de session personnalisé, vous devez configurer le collecteur de déchets de session explicitement.
Quelques installations de PHP (p. ex. Debian) utilisent une probabilité de collecteur de déchets de 0 et nettoient les fichiers de session hors ligne dans une tâche de cron. Ce processus ne s’applique pas à votre stockage personnalisé, c’est pourquoi vous devez configurer[[yii\web\Session::$GCProbability]] pour utiliser une valeur non nulle.

Pour savoir comment configurer et utiliser ces classes de composant, reportez-vous à leur documentation d’API. Ci-dessous, nous présentons un exemple de configuration de [[yii\web\DbSession]] dans la configuration de l’application pour utiliser une base de données en tant que support de stockage d’une session :

return [
 'components' => [
 'session' => [
 'class' => 'yii\web\DbSession',
 // 'db' => 'mydb', // l'identifiant du composant d'application de la connexion à la base de données. Valeur par défaut : 'db'.
 // 'sessionTable' => 'my_session', // nom de la table 'session' . Valeur par défaut : 'session'.
],
],
];

Vous devez aussi créer la base de données suivante pour stocker les données de session :

CREATE TABLE session
(
 id CHAR(40) NOT NULL PRIMARY KEY,
 expire INTEGER,
 data BLOB
)

où ‘BLOB’ fait référence au type « grand objet binaire » (binary large objet — BLOB) de votre système de gestion de base de données (DBMS) préféré. Ci-dessous, vous trouverez les types de BLOB qui peuvent être utilisés par quelques DBMS populaires :

	MySQL: LONGBLOB

	PostgreSQL: BYTEA

	MSSQL: BLOB

Note: en fonction des réglages de session.hash_function dans votre fichier php.ini, vous devez peut-être ajuster la longueur de la colonne id. Par exemple, si session.hash_function=sha256, vous devez utiliser une longueur de 64 au lieu de 40.

Cela peut être accompli d’une façon alternative avec la migration suivante :

<?php

use yii\db\Migration;

class m170529_050554_create_table_session extends Migration
{
 public function up()
 {
 $this->createTable('{{%session}}', [
 'id' => $this->char(64)->notNull(),
 'expire' => $this->integer(),
 'data' => $this->binary()
]);
 $this->addPrimaryKey('pk-id', '{{%session}}', 'id');
 }

 public function down()
 {
 $this->dropTable('{{%session}}');
 }
}

Donnés flash

Les données flash sont une sorte de données de session spéciale qui, une fois définies dans une requête, ne restent disponibles que durant la requête suivante et sont détruites automatiquement ensuite. Les données flash sont le plus communément utilisées pour mettre en œuvre des messages qui doivent être présentés une seule fois, comme les messages de confirmation affichés après une soumission réussie de formulaire.

Vous pouvez définir des données flash et y accéder via le composant d’application session. Par exemple :

$session = Yii::$app->session;

// Request #1
// définit un message flash nommé "commentDeleted"
$session->setFlash('commentDeleted', 'Vous avez réussi la suppression de votre commentaire.');

// Request #2
// affiche le message flash nommé "commentDeleted"
echo $session->getFlash('commentDeleted');

// Request #3
// $result est faux puisque le message flash a été automatiquement supprimé
$result = $session->hasFlash('commentDeleted');

Comme les données de session ordinaires, vous pouvez stocker des données arbitraires sous forme de données flash.

Vous pouvez appeler [[yii\web\Session::setFlash()]], cela écrase toute donnée flash préexistante qui a le même nom. Pour ajouter une nouvelle donnée flash à un message existant, vous pouvez utiliser [[yii\web\Session::addFlash()]] à la place. Par exemple :

$session = Yii::$app->session;

// Request #1
// ajoute un message flash nommé "alerts"
$session->addFlash('alerts', 'Vous avez réussi la suppression de votre commentaire');
$session->addFlash('alerts', 'Vous avez réussi l'ajout d'un ami.');
$session->addFlash('alerts', 'Vous êtes promu.');

// Request #2
// $alerts est un tableau de messages flash nommé "alerts"
$alerts = $session->getFlash('alerts');

Note: évitez d’utiliser [[yii\web\Session::setFlash()]] en même temps que [[yii\web\Session::addFlash()]] pour des données flash de même nom. C’est parce que la deuxième méthode transforme automatiquement les données flash en tableau pour pouvoir y ajouter des données. En conséquence, quand vous appelez [[yii\web\Session::getFlash()]], vous pouvez parfois recevoir un tableau ou une chaîne de caractères selon l’ordre dans lequel ces méthodes ont été appelées.

Tip: pour afficher des messages Flash vous pouvez utiliser l’objet graphique [[yii\bootstrap\Alert|bootstrap Alert]] de la manière suivante :

echo Alert::widget([
 'options' => ['class' => 'alert-info'],
 'body' => Yii::$app->session->getFlash('postDeleted'),
]);

Témoins de connexion

Yii représente chacun des témoins de connexion sous forme d’objet de classe [[yii\web\Cookie]]. Les objets [[yii\web\Request]] et [[yii\web\Response]] contiennent une collection de témoins de connexion via la propriété nommée cookies. La collection de témoins de connexion dans le premier de ces objets est celle soumise dans une requête, tandis que celle du deuxième objet représente les témoins de connexion envoyés à l’utilisateur.

La partie de l’application qui traite la requête et la réponse directement est le contrôleur. Par conséquent, les témoins de connexion doivent être lus et envoyés dans le contrôleur.

Lecture des témoins de connexion

Vous pouvez obtenir les témoins de connexion de la requête courante en utilisant le code suivant :

// obtient la collection de témoins de connexion (yii\web\CookieCollection) du composant "request"
$cookies = Yii::$app->request->cookies;

// obtient la valeur du témoin de connexion "language". Si le témoin de connexion n'existe pas, retourne "en" par défaut.
$language = $cookies->getValue('language', 'en');

// une façon alternative d'obtenir la valeur du témoin de connexion "language"
if (($cookie = $cookies->get('language')) !== null) {
 $language = $cookie->value;
}

// vous pouvez aussi utiliser $cookies comme un tableau
if (isset($cookies['language'])) {
 $language = $cookies['language']->value;
}

// vérifie si un témoin de connexion "language" existe
if ($cookies->has('language')) ...
if (isset($cookies['language'])) ...

Envoi de témoins de connexion

Vous pouvez envoyer des témoins de connexion à l’utilisateur final avec le code suivant :

// obtient la collection de témoins de connexion (yii\web\CookieCollection) du composant "response"
$cookies = Yii::$app->response->cookies;

// ajoute un témoin de connexion à la réponse à envoyer
$cookies->add(new \yii\web\Cookie([
 'name' => 'language',
 'value' => 'zh-CN',
]));

// supprime un cookie
$cookies->remove('language');
// équivalent à
unset($cookies['language']);

En plus des propriétés [[yii\web\Cookie::name|name (nom)]], [[yii\web\Cookie::value|value (valeur)]] montrées dans les exemples ci-dessus, la classe [[yii\web\Cookie]] définit également d’autres propriétés pour représenter complètement toutes les informations de témoin de connexion disponibles, comme les propriétés [[yii\web\Cookie::domain|domain (domaine)]], [[yii\web\Cookie::expire|expire (date d’expiration)]]. Vous pouvez configurer ces propriété selon vos besoins pour préparer un témoin de connexion et ensuite l’ajouter à la collection de témoins de connexion de la réponse.

Note: pour une meilleure sécurité, la valeur par défaut de la propriété [[yii\web\Cookie::httpOnly]] est définie à true. Cela permet de limiter le risque qu’un script client n’accède à un témoin de connexion protégé (si le navigateur le prend en charge). Reportez-vous à l’article de wiki httpOnly [https://www.owasp.org/index.php/HttpOnly] pour plus de détails.

Validation des témoins de connexion

Lorsque vous lisez ou envoyez des témoins de connexion via les composants request et response comme expliqué dans les sous-sections qui précèdent, vous appréciez la sécurité additionnelle de validation des témoins de connexion qui protège vos témoins de connexion de la modification côté client. Cela est réalisé en signant chacun des témoins de connexion avec une valeur de hachage qui permet à l’application de dire si un témoin de connexion a été modifié ou pas du côté client. Si c’est le cas, le témoin de connexion n’est PLUS accessible via la [[yii\web\Request::cookies|collection de témoins de connexion]] du composant request.

Note: la validation des témoins de connexion ne protège que contre les effets de la modification des valeurs de témoins de connexion. Néanmoins, si un témoin de connexion ne peut être validé, vous pouvez continuer à y accéder via la variable globale $_COOKIE. Ceci est dû au fait que les bibliothèques de tierces parties peuvent manipuler les témoins de connexion d’une façon qui leur est propre, sans forcément impliquer la validation des témoins de connexion.

La validation des témoins de connexion est activée par défaut. Vous pouvez la désactiver en définissant la propriété [[yii\web\Request::enableCookieValidation]] à false (faux) mais nous vous recommandons fortement de ne pas le faire.

Note: les témoins de connexion qui sont lus/écrits directement via $_COOKIE et setcookie() ne seront PAS validés.

Quand vous utilisez la validation des témoins de connexion, vous devez spécifier une [[yii\web\Request::cookieValidationKey |clé de validation des témoins de connexion]] gui sera utilisée pour générer la valeur de hachage dont nous avons parlé plus haut. Vous pouvez faire ça en configurant le composant request dans la configuration de l’application configuration comme indiqué ci-après :

return [
 'components' => [
 'request' => [
 'cookieValidationKey' => 'entrez une clé secrète ici',
],
],
];

Info: la [[yii\web\Request::cookieValidationKey|clé de validation des témoins de connexion (cookieValidationKey)]] est un élément critique de la sécurité de votre application. Elle ne devrait être connue que des personnes à qui vous faites confiance. Ne le stockez pas dans le système de gestion des version.

 Authentification

Authentification

L’authentification est le processus qui consiste à vérifier l’identité d’un utilisateur. Elle utilise ordinairement un identifiant (p. ex. un nom d’utilisateur ou une adresse de courriels) et un jeton secret (p. ex. un mot de passe ou un jeton d’accès) pour juger si l’utilisateur est bien qui il prétend être. L’authentification est à la base de la fonctionnalité de connexion.

Yii fournit une base structurée d’authentification qui interconnecte des composants variés pour prendre en charge la connexion. Pour utiliser cette base structurée, vous devez essentiellement accomplir les tâches suivantes :

	Configurer le composant d’application [[yii\web\User|user]] ;

	Créer une classe qui implémente l’interface [[yii\web\IdentityInterface]].

Configuration de [[yii\web\User]]

Le composant d’application [[yii\web\User|user]] gère l’état d’authentification de l’utilisateur. Il requiert que vous spécifiiez une [[yii\web\User::identityClass|classe d’identité]] contenant la logique réelle d’authentification.
Dans la configuration suivante de l’application, la [[yii\web\User::identityClass|classe d’identité]] pour [[yii\web\User|user]] est configurée sous le nom app\models\User dont la mise en œuvre est expliquée dans la sous-section suivante :

return [
 'components' => [
 'user' => [
 'identityClass' => 'app\models\User',
],
],
];

Mise en œuvre de [[yii\web\IdentityInterface]]

La [[yii\web\User::identityClass|classe d’identité]] doit implémenter l’interface [[yii\web\IdentityInterface]] qui comprend les méthodes suivantes :

	[[yii\web\IdentityInterface::findIdentity()|findIdentity()]]: cette méthode recherche une instance de la classe d’identité à partir de l’identifiant utilisateur spécifié. Elle est utilisée lorsque vous devez conserver l’état de connexion via et durant la session.

	[[yii\web\IdentityInterface::findIdentityByAccessToken()|findIdentityByAccessToken()]]: cette méthode recherche une instance de la classe d’identité à partir du jeton d’accès spécifié. Elle est utilisée lorsque vous avez besoin d’authentifier un utilisateur par un jeton secret (p. ex. dans une application pleinement REST sans état).

	[[yii\web\IdentityInterface::getId()|getId()]]: cette méthode retourne l’identifiant de l’utilisateur que cette instance de la classe d’identité représente.

	[[yii\web\IdentityInterface::getAuthKey()|getAuthKey()]]: cette méthode retourne une clé utilisée pour vérifier la connexion basée sur les témoins de connexion (cookies). La clé est stockée dans le témoin de connexion login et est ensuite comparée avec la version côté serveur pour s’assurer que le témoin de connexion est valide.

	[[yii\web\IdentityInterface::validateAuthKey()|validateAuthKey()]]: cette méthode met en œuvre la logique de vérification de la clé de connexion basée sur les témoins de connexion.

Si une méthode particulière n’est pas nécessaire, vous devez l’implémenter avec un corps vide. Par exemple, si votre application est une application sans état et pleinement REST, vous devez seulement implémenter [[yii\web\IdentityInterface::findIdentityByAccessToken()|findIdentityByAccessToken()]] et [[yii\web\IdentityInterface::getId()|getId()]] et laisser toutes les autres méthodes avec un corps vide.

Dans l’exemple qui suit, une [[yii\web\User::identityClass|classe d’identité]] est mise en œuvre en tant que classe Active Record associée à la table de base de données user.

<?php

use yii\db\ActiveRecord;
use yii\web\IdentityInterface;

class User extends ActiveRecord implements IdentityInterface
{
 public static function tableName()
 {
 return 'user';
 }

 /**
 * Trouve une identité à partir de l'identifiant donné.
 *
 * @param string|int $id l'identifiant à rechercher
 * @return IdentityInterface|null l'objet identité qui correspond à l'identifiant donné
 */
 public static function findIdentity($id)
 {
 return static::findOne($id);
 }

 /**
 * Trouve une identité à partir du jeton donné
 *
 * @param string $token le jeton à rechercher
 * @return IdentityInterface|null l'objet identité qui correspond au jeton donné
 */
 public static function findIdentityByAccessToken($token, $type = null)
 {
 return static::findOne(['access_token' => $token]);
 }

 /**
 * @return int|string l'identifiant de l'utilisateur courant
 */
 public function getId()
 {
 return $this->id;
 }

 /**
 * @return string la clé d'authentification de l'utilisateur courant
 */
 public function getAuthKey()
 {
 return $this->auth_key;
 }

 /**
 * @param string $authKey
 * @return bool si la clé d'authentification est valide pour l'utilisateur courant
 */
 public function validateAuthKey($authKey)
 {
 return $this->getAuthKey() === $authKey;
 }
}

Comme nous l’avons expliqué précédemment, vous devez seulement implémenter getAuthKey() et validateAuthKey() si votre application utilise la fonctionnalité de connexion basée sur les témoins de connexion. Dans ce cas, vous devez utiliser le code suivant pour générer une clé d’authentification pour chacun des utilisateurs et la stocker dans la table user :

class User extends ActiveRecord implements IdentityInterface
{

 public function beforeSave($insert)
 {
 if (parent::beforeSave($insert)) {
 if ($this->isNewRecord) {
 $this->auth_key = \Yii::$app->security->generateRandomString();
 }
 return true;
 }
 return false;
 }
}

Note: ne confondez pas la classe d’identité User avec la classe [[yii\web\User]]. La première est la classe mettant en œuvre la logique d’authentification. Elle est souvent mise en œuvre sous forme de classe Active Record associée à un moyen de stockage persistant pour conserver les éléments d’authentification de l’utilisateur. La deuxième est une classe de composant d’application qui gère l’état d’authentification de l’utilisateur.

Utilisation de [[yii\web\User]]

Vous utilisez [[yii\web\User]] essentiellement en terme de composant d’application user.

Vous pouvez détecter l’identité de l’utilisateur courant en utilisant l’expression Yii::$app->user->identity. Elle retourne une instance de la [[yii\web\User::identityClass|classe d’identité]] représentant l’utilisateur connecté actuellement ou null si l’utilisateur courant n’est pas authentifié (soit un simple visiteur). Le code suivant montre comment retrouver les autres informations relatives à l’authentification à partir de [[yii\web\User]]:

// l'identité de l'utilisateur courant. Null si l'utilisateur n'est pas authentifié.
$identity = Yii::$app->user->identity;

// l'identifiant de l'utilisateur courant. Null si l'utilisateur n'est pas authentifié.
$id = Yii::$app->user->id;

// si l'utilisateur courant est un visiteur (non authentifié).
$isGuest = Yii::$app->user->isGuest;

Pour connecter un utilisateur, vous devez utiliser le code suivant :

// trouve une identité d'utilisateur à partir du nom d'utilisateur spécifié
// notez que vous pouvez vouloir vérifier le mot de passe si besoin.
$identity = User::findOne(['username' => $username]);

// connecte l'utilisateur
Yii::$app->user->login($identity);

La méthode [[yii\web\User::login()]] assigne l’identité de l’utilisateur courant à [[yii\web\User]]. Si la session est [[yii\web\User::enableSession|activée]], elle conserve l’identité de façon à ce que l’état d’authentification de l’utilisateur soit maintenu durant la session tout entière. Si la connexion basée sur les témoins de connexion (cookies) est [[yii\web\User::enableAutoLogin|activée]], elle sauvegarde également l’identité dans un témoin de connexion de façon à ce que l’état d’authentification de l’utilisateur puisse être récupéré du témoin de connexion durant toute la période de validité du témoin de connexion.

Pour activer la connexion basée sur les témoins de connexion, vous devez configurer [[yii\web\User::enableAutoLogin]] à true (vrai) dans la configuration de l’application. Vous devez également fournir une durée de vie lorsque vous appelez la méthode [[yii\web\User::login()]].

Pour déconnecter un utilisateur, appelez simplement

Yii::$app->user->logout();

Notez que déconnecter un utilisateur n’a de sens que si la session est activée. La méthode nettoie l’état d’authentification de l’utilisateur à la fois de la mémoire et de la session. Et, par défaut, elle détruit aussi toutes les données de session. Si vous voulez conserver les données de session, vous devez appeler Yii::$app->user->logout(false), à la place.

Événement d’authentification

La classe [[yii\web\User]] lève quelques événements durant le processus de connexion et celui de déconnexion.

	[[yii\web\User::EVENT_BEFORE_LOGIN|EVENT_BEFORE_LOGIN]]: levé au début de [[yii\web\User::login()]].
Si le gestionnaire d’événement définit la propriété [[yii\web\UserEvent::isValid|isValid]] de l’objet événement à false (faux), le processus de connexion avorte.

	[[yii\web\User::EVENT_AFTER_LOGIN|EVENT_AFTER_LOGIN]]: levé après une connexion réussie.

	[[yii\web\User::EVENT_BEFORE_LOGOUT|EVENT_BEFORE_LOGOUT]]: levé au début de [[yii\web\User::logout()]].
Si le gestionnaire d’événement définit la propriété [[yii\web\UserEvent::isValid|isValid]] à false (faux) le processus de déconnexion avorte.

	[[yii\web\User::EVENT_AFTER_LOGOUT|EVENT_AFTER_LOGOUT]]: levé après une déconnexion réussie.

Vous pouvez répondre à ces événements pour mettre en œuvre des fonctionnalités telles que l’audit de connexion, les statistiques d’utilisateurs en ligne. Par exemple, dans le gestionnaire pour l’événement [[yii\web\User::EVENT_AFTER_LOGIN|EVENT_AFTER_LOGIN]], vous pouvez enregistrer le temps de connexion et l’adresse IP dans la tale user.

 Autorisation

Autorisation

L’autorisation est le processus qui vérifie si un utilisateur dispose des permissions suffisantes pour faire quelque chose. Yii fournit deux méthodes d’autorisation : le filtre de contrôle d’accès (ACF — Access Control Filter) et le contrôle d’accès basé sur les rôles (RBAC — Role-Based Access Control).

Filtre de contrôle d’accès

Le filtre de contrôle d’accès (ACF) est une simple méthode d’autorisation mise en œuvre sous le nom [[yii\filters\AccessControl]] qui trouve son meilleur domaine d’application dans les applications qui n’ont besoin que d’un contrôle d’accès simplifié. Comme son nom l’indique, le filtre de contrôle d’accès est un filtre d’action qui peut être utilisé dans un contrôleur ou dans un module. Quand un utilisateur requiert l’exécution d’une action, le filtre de contrôle d’accès vérifie une liste de [[yii\filters\AccessControl::rules|règles d’accès]] pour déterminer si l’utilisateur est autorisé à accéder à l’action requise.

Le code ci-dessous montre comment utiliser le filtre de contrôle d’accès dans le contrôleur site :

use yii\web\Controller;
use yii\filters\AccessControl;

class SiteController extends Controller
{
 public function behaviors()
 {
 return [
 'access' => [
 'class' => AccessControl::className(),
 'only' => ['login', 'logout', 'signup'],
 'rules' => [
 [
 'allow' => true,
 'actions' => ['login', 'signup'],
 'roles' => ['?'],
],
 [
 'allow' => true,
 'actions' => ['logout'],
 'roles' => ['@'],
],
],
],
];
 }
 // ...
}

Dans le code précédent, le filtre de contrôle d’accès est attaché au contrôleur site en tant que comportement (behavior). C’est la manière typique d’utiliser un filtre d’action. L’option only spécifie que le filtre de contrôle d’accès doit seulement être appliqué aux actions login, logout et signup. Toutes les autres actions dans le contrôleur sitene sont pas sujettes au contrôle d’accès. L’option rules liste les [[yii\filters\AccessRule|règles d’accès]], qui se lisent comme suit :

	Autorise tous les visiteurs (non encore authentifiés) à accéder aux actions login et signup. l’option roles contient un point d’interrogation ? qui est un signe particulier représentant les « visiteurs non authentifiés ».

	Autorise les utilisateurs authentifiés à accéder à l’action logout. L’arobase @ est un autre signe particulier représentant les « utilisateurs authentifiés ».

Le filtre de contrôle d’accès effectue les vérifications d’autorisation en examinant les règles d’accès une par une en commençant par le haut, jusqu’à ce qu’il trouve une règle qui correspond au contexte d’exécution courant. La valeur allow de la règle correspondante est utilisée ensuite pour juger si l’utilisateur est autorisé ou pas. Si aucune des règles ne correspond, cela signifie que l’utilisateur n’est PAS autorisé, et le filtre de contrôle d’accès arrête la suite de l’exécution de l’action.

Quand le filtre de contrôle d’accès détermine qu’un utilisateur n’est pas autorisé à accéder à l’action courante, par défaut, il prend les mesures suivantes :

	Si l’utilisateur est un simple visiteur, il appelle [[yii\web\User::loginRequired()]] pour rediriger le navigateur de l’utilisateur sur la page de connexion.

	Si l’utilisateur est déjà authentifié, il lève une exception [[yii\web\ForbiddenHttpException]].

Vous pouvez personnaliser ce comportement en configurant la propriété [[yii\filters\AccessControl::denyCallback]] comme indiqué ci-après :

[
 'class' => AccessControl::className(),
 ...
 'denyCallback' => function ($rule, $action) {
 throw new \Exception('You are not allowed to access this page');
 }
]

Les [[yii\filters\AccessRule|règles d’accès]] acceptent beaucoup d’options. Ci-dessous, nous présentons un résumé des options acceptées. Vous pouvez aussi étendre la classe [[yii\filters\AccessRule]] pour créer vos propres classe de règles d’accès.

	[[yii\filters\AccessRule::allow|allow]]: spécifie s’il s’agit d’une règle “allow” (autorise) ou “deny” (refuse).

	[[yii\filters\AccessRule::actions|actions]]: spécifie à quelles actions cette règle correspond. Ce doit être un tableau d’identifiants d’action. La comparaison est sensible à la casse. Si cette option est vide ou non définie, cela signifie que la règle s’applique à toutes les actions.

	[[yii\filters\AccessRule::controllers|controllers]]: spécifie à quels contrôleurs cette règle correspond. Ce doit être un tableau d’identifiants de contrôleurs. Si cette option est vide ou non définie, la règle s’applique à tous les contrôleurs.

	[[yii\filters\AccessRule::roles|roles]]: spécifie à quels rôles utilisateur cette règle correspond. Deux rôles spéciaux sont reconnus, et ils sont vérifiés via [[yii\web\User::isGuest]]:

	?: correspond à un visiteur non authentifié.

	@: correspond à un visiteur authentifié.

L’utilisation d’autres noms de rôle déclenche l’appel de [[yii\web\User::can()]], qui requiert l’activation du contrôle d’accès basé sur les rôles qui sera décrit dans la prochaine sous-section. Si cette option est vide ou non définie, cela signifie que la règle s’applique à tous les rôles.

	[[yii\filters\AccessRule::ips|ips]]: spécifie à quelles [[yii\web\Request::userIP|adresses IP de client]] cette règle correspond. Une adresse IP peut contenir le caractère générique * à la fin pour indiquer que la règle correspond à des adresses IP ayant le même préfixe. Par exemple, ‘192.168.*’ correspond à toutes les adresse IP dans le segment ‘192.168.’. Si cette option est vide ou non définie, cela signifie que la règle s’applique à toutes les adresses IP.

	[[yii\filters\AccessRule::verbs|verbs]]: spécifie à quelles méthodes de requête (p. ex. GET, POST) cette règle correspond. La comparaison est insensible à la casse.

	[[yii\filters\AccessRule::matchCallback|matchCallback]]: spécifie une fonction de rappel PHP qui peut être appelée pour déterminer si cette règle s’applique.

	[[yii\filters\AccessRule::denyCallback|denyCallback]]: spécifie une fonction de rappel PHP qui peut être appelée lorsqu’une règle refuse l’accès.

Ci-dessous nous présentons un exemple qui montre comment utiliser l’option matchCallback, qui vous permet d’écrire une logique d’accès arbitraire :

use yii\filters\AccessControl;

class SiteController extends Controller
{
 public function behaviors()
 {
 return [
 'access' => [
 'class' => AccessControl::className(),
 'only' => ['special-callback'],
 'rules' => [
 [
 'actions' => ['special-callback'],
 'allow' => true,
 'matchCallback' => function ($rule, $action) {
 return date('d-m') === '31-10';
 }
],
],
],
];
 }

 // Fonction de rappel appelée ! Cette page ne peut être accédée que chaque 31 octobre
 public function actionSpecialCallback()
 {
 return $this->render('happy-halloween');
 }
}

Contrôle d’accès basé sur les rôles

Le contrôle d’accès basé sur les rôles (Role-Based Access Control – RBAC) fournit un contrôle d’accès centralisé simple mais puissant. Reportez-vous à Wikipedia [http://en.wikipedia.org/wiki/Role-based_access_control] pour des détails comparatifs entre le contrôle d’accès basé sur les rôles et d’autres schéma de contrôle d’accès plus traditionnels.

Yii met en œuvre un contrôle d’accès basé sur les rôles général hiérarchisé, qui suit le modèle NIST RBAC [http://csrc.nist.gov/rbac/sandhu-ferraiolo-kuhn-00.pdf]. Il fournit la fonctionnalité de contrôle d’accès basé sur les rôles via le composant d’application[[yii\RBAC\ManagerInterface|authManager]].

L’utilisation du contrôle d’accès basé sur les rôles implique deux partie de travail. La première partie est de construire les données d’autorisation du contrôle d’accès basé sur les rôles, et la seconde partie est d’utiliser les données d’autorisation pour effectuer les vérifications d’autorisation d’accès là où elles sont nécessaires.

Pour faciliter la description qui suit, nous allons d’abord introduire quelques concepts sur le contrôle d’accès basé sur les rôles.

Concepts de base

Un rôle représente une collection de permissions (p. ex. créer des articles, mettre des articles à jour). Un rôle peut être assigné à un ou plusieurs utilisateurs. Pour vérifier qu’un utilisateur dispose d’une permission spécifiée, nous pouvons vérifier si un rôle contenant cette permission a été assigné à l’utilisateur.

Associée à chacun des rôles, il peut y avoir une règle. Une règle représente un morceau de code à exécuter lors de l’accès pour vérifier si le rôle correspondant, ou la permission correspondante, s’applique à l’utilisateur courant. Par exemple, la permission « mettre un article à jour » peut disposer d’une règle qui vérifie si l’utilisateur courant est celui qui a créé l’article. Durant la vérification de l’accès, si l’utilisateur n’est PAS le créateur de l’article, il est considéré comme ne disposant pas la permission « mettre un article à jour ».

À la fois les rôles et les permissions peuvent être organisés en une hiérarchie. En particulier, un rôle peut être constitué d’autres rôles ou permissions ; Yii met en œuvre une hiérarchie d’ordre partiel qui inclut la hiérarchie plus spécifique dite en arbre. Tandis qu’un rôle peut contenir une permission, l’inverse n’est pas vrai.

Configuration du contrôle d’accès basé sur les rôles

Avant que nous ne nous lancions dans la définition des données d’autorisation et effectuions la vérification d’autorisation d’accès, nous devons configurer le composant d’application [[yii\base\Application::authManager|gestionnaire d’autorisations (authManager)]]. Yii fournit deux types de gestionnaires d’autorisations : [[yii\rbac\PhpManager]] et [[yii\rbac\DbManager]]. Le premier utilise un script PHP pour stocker les données d’autorisation, tandis que le second stocke les données d’autorisation dans une base de données. Vous pouvez envisager d’utiliser le premier si votre application n’a pas besoin d’une gestion des rôles et des permissions très dynamique.

Utilisation de PhpManager

Le code qui suit montre comment configurer la propriété authManager dans la configuration de l’application en utilisant la classe [[yii\rbac\PhpManager]] :

return [
 // ...
 'components' => [
 'authManager' => [
 'class' => 'yii\rbac\PhpManager',
],
 // ...
],
];

Le gestionnaire authManager peut désormais être obtenu via \Yii::$app->authManager.

Par défaut, [[yii\rbac\PhpManager]] stocke les données du contrôle d’accès basé sur les rôles dans des fichiers du dossier @app/rbac. Assurez-vous que le dossier et tous les fichiers qui sont dedans sont accessibles en écriture par le processus du serveur Web si la hiérarchie des permissions a besoin d’être changée en ligne.

Utilisation de DbManager

Le code qui suit monte comment configurer la propriété authManager dans la configuration de l’application en utilisant la classe [[yii\rbac\DbManager]] :

return [
 // ...
 'components' => [
 'authManager' => [
 'class' => 'yii\rbac\DbManager',
],
 // ...
],
];

Note: si vous utilisez le modèle d’application yii2-basic-app, il y a un fichier de configuration config/console.php où la propriété authManager doit être également déclarée en plus de config/web.php.

Dans le cas du modèle yii2-advanced-app, la propriété authManager doit être déclarée seulement une fois dans common/config/main.php.

DbManager utilise quatre tables de base de données pour stocker ses données :

	[[yii\rbac\DbManager::$itemTable|itemTable]]: la table pour stocker les items d’autorisation. Valeur par défaut « auth_item ».

	[[yii\rbac\DbManager::$itemChildTable|itemChildTable]]: la table pour stocker la hiérarchie des items d’autorisation. Valeur par défaut « auth_item_child ».

	[[yii\rbac\DbManager::$assignmentTable|assignmentTable]]: la table pour stocker les assignations d’items d’autorisation. Valeur par défaut « auth_assignment ».

	[[yii\rbac\DbManager::$ruleTable|ruleTable]]: la table pour stocker les règles. Valeur par défaut « auth_rule ».

Avant de continuer vous devez créer ces tables dans la base de données. Pour le faire , vous pouvez utiliser la migration stockée dans @yii/rbac/migrations:

yii migrate --migrationPath=@yii/rbac/migrations

Le gestionnaire d’autorisations authManager peut désormais être obtenu par \Yii::$app->authManager.

Construction des données d’autorisation

Construire les donnés d’autorisation consiste à effectuer les tâches suivantes :

	définir les rôles et les permissions ;

	établir les relations entre les rôles et les permissions ;

	définir les règles ;

	associer les règles avec les rôles et les permissions ;

	assigner des rôles aux utilisateurs.

Selon les exigences de flexibilité des autorisations, les tâches énumérées ci-dessus peuvent être accomplies de différentes manières :

Si la hiérarchie de vos permissions ne change pas du tout et que vous avez un nombre fixé d’utilisateurs, vous pouvez créer une commande de console qui initialise les données d’autorisation une fois via l’API que fournit authManager:

<?php
namespace app\commands;

use Yii;
use yii\console\Controller;

class RbacController extends Controller
{
 public function actionInit()
 {
 $auth = Yii::$app->authManager;

 // ajoute une permission "createPost"
 $createPost = $auth->createPermission('createPost');
 $createPost->description = 'Créer un article';
 $auth->add($createPost);

 // ajoute une permission "updatePost"
 $updatePost = $auth->createPermission('updatePost');
 $updatePost->description = 'Mettre à jour un article';
 $auth->add($updatePost);

 // ajoute un rôle "author" et donne à ce rôle la permission "createPost"
 $author = $auth->createRole('author');
 $auth->add($author);
 $auth->addChild($author, $createPost);

 // ajoute un rôle "admin" role et donne à ce rôle la permission "updatePost"
 // aussi bien que les permissions du rôle "author"
 $admin = $auth->createRole('admin');
 $auth->add($admin);
 $auth->addChild($admin, $updatePost);
 $auth->addChild($admin, $author);

 // Assigne des rôles aux utilisateurs. 1 et 2 sont des identifiants retournés par IdentityInterface::getId()
 // ordinairement mis en œuvre dans votre modèle User .
 $auth->assign($author, 2);
 $auth->assign($admin, 1);
 }
}

Note: si vous utilisez le modèle avancé, vous devez mettre votre RbacController dans le dossier console/controllers et changer l’espace de noms en console\controllers.

Après avoir exécuté la commande yii rbac/init vous vous retrouverez avec la hiérarchie suivante :

[image: Hiérarchie simple du contrôle d'accès basé sur les rôles]

Le rôle Author peut créer des articles, le rôle admin peut mettre les articles à jour et faire tout ce que le rôle author peut faire.

Si votre application autorise l’enregistrement des utilisateurs, vous devez assigner des rôles à ces nouveaux utilisateurs une fois. Par exemple, afin que tous les utilisateurs enregistrés deviennent des auteurs (rôle author) dans votre modèle de projet avancé, vous devez modifier la méthode frontend\models\SignupForm::signup() comme indiqué ci-dessous :

public function signup()
{
 if ($this->validate()) {
 $user = new User();
 $user->username = $this->username;
 $user->email = $this->email;
 $user->setPassword($this->password);
 $user->generateAuthKey();
 $user->save(false);

 // Ces trois lignes ont été ajoutées
 $auth = Yii::$app->authManager;
 $authorRole = $auth->getRole('author');
 $auth->assign($authorRole, $user->getId());

 return $user;
 }

 return null;
}

Pour les applications qui requièrent un contrôle d’accès complexe avec des autorisations mises à jour dynamiquement, des interfaces utilisateur spéciales (c.-à-d. un panneau d’administration) doivent être développées en utilisant l’API offerte par authManager.

Utilisation des règles

Comme mentionné plus haut, les règles ajoutent des contraintes supplémentaires aux rôles et aux permissions. Une règle est une classe qui étend la classe [[yii\rbac\Rule]]. Elle doit implémenter la méthode [[yii\rbac\Rule::execute()|execute()]]. Dans la hiérarchie, que nous avons créée précédemment le rôle author ne peut pas modifier ses propres articles. Essayons de régler ce problème. Tout d’abord, nous devons vérifier que l’utilisateur courant est l’auteur de l’article :

namespace app\rbac;

use yii\rbac\Rule;

/**
 * Vérifie si l'identifiant de l'auteur correspond à celui passé en paramètre
 */
class AuthorRule extends Rule
{
 public $name = 'isAuthor';

 /**
 * @param string|int $user l'identifiant de l'utilisateur.
 * @param Item $item le rôle ou la permission avec laquelle cette règle est associée
 * @param array $params les paramètres passés à ManagerInterface::checkAccess().
 * @return bool une valeur indiquant si la règles autorise le rôle ou la permission qui lui est associé.
 */
 public function execute($user, $item, $params)
 {
 return isset($params['post']) ? $params['post']->createdBy == $user : false;
 }
}

La règles ci-dessus vérifie si l’article post a été créé par l’utilisateur $user. Nous allons créer une permission spéciale updateOwnPost dans la commande que nous avons utilisée précédemment :

$auth = Yii::$app->authManager;

// ajoute la règle
$rule = new \app\rbac\AuthorRule;
$auth->add($rule);

// ajoute la permission "updateOwnPost" et associe lui la règle
$updateOwnPost = $auth->createPermission('updateOwnPost');
$updateOwnPost->description = 'Mettre à jour un des ses propres articles';
$updateOwnPost->ruleName = $rule->name;
$auth->add($updateOwnPost);

// "updateOwnPost" sera utilisé depuis "updatePost"
$auth->addChild($updateOwnPost, $updatePost);

// autorise les utilisateurs ayant le rôle "author" à mettre à jour leurs propres articles.
$auth->addChild($author, $updateOwnPost);

Nous nous retrouvons avec la hiérarchie suivante :

[image: Hiérarchie du contrôle d'accès basé sur les rôles avec un règle]

Vérification de l’autorisation d’accès

Avec les données d’autorisation préparées, la vérification de l’autorisation d’accès est aussi simple que d’appeler la méthode [[yii\rbac\ManagerInterface::checkAccess()]]. Étant donné que la plupart des vérification d’autorisation d’accès concernent l’utilisateur courant, pour commodité, Yii procure une méthode raccourcie [[yii\web\User::can()]], qui peut être utilisée comme suit :

if (\Yii::$app->user->can('createPost')) {
 // create post
}

Si l’utilisateur courant est Jane avec l’identifiant ID=1, nous commençons à createPost et essayons d’arriver à Jane:

[image: Vérification d'autorisation d'accès]

Afin de vérifier sur un utilisateur peut mettre un article à jour, nous devons passer un paramètre supplémentaire qui est requis par la règle AuthorRule décrite précédemment :

if (\Yii::$app->user->can('updatePost', ['post' => $post])) {
 // met à jour l'article
}

Ici que se passe-t-il si l’utilisateur courant est John:

[image: Vérification d'autorisation d'accès]

Nous commençons à updatePost et passons par updateOwnPost. Afin d’obtenir l’autorisation, la méthode execute() de AuthorRule doit retourner true (vrai). La méthode reçoit ses paramètres $params de l’appel à la méthode can() et sa valeur est ainsi ['post' => $post]. Si tout est bon, nous arrivons à author auquel John est assigné.

Dans le cas de Jane, c’est un peu plus simple puisqu’elle a le rôle admin:

[image: Vérification d'autorisation d'accès]

Dans votre contrôleur, il y a quelques façons de mettre en œuvre les autorisations. Si vous voulez des permission granulaires qui séparent l’accès entre ajouter et supprimer, alors vous devez vérifier l’accès pour chacune des actions. Vous pouvez soit utiliser la condition ci-dessus dans chacune des méthodes d’action, ou utiliser [[yii\filters\AccessControl]] :

public function behaviors()
{
 return [
 'access' => [
 'class' => AccessControl::className(),
 'rules' => [
 [
 'allow' => true,
 'actions' => ['index'],
 'roles' => ['managePost'],
],
 [
 'allow' => true,
 'actions' => ['view'],
 'roles' => ['viewPost'],
],
 [
 'allow' => true,
 'actions' => ['create'],
 'roles' => ['createPost'],
],
 [
 'allow' => true,
 'actions' => ['update'],
 'roles' => ['updatePost'],
],
 [
 'allow' => true,
 'actions' => ['delete'],
 'roles' => ['deletePost'],
],
],
],
];
}

Si toutes les opérations CRUD sont gérées ensemble, alors c’est une bonne idée que d’utiliser une permission unique comme managePost (gérer article), et de la vérifier dans [[yii\web\Controller::beforeAction()]].

Utilisation des rôles par défaut

Un rôle par défaut est un rôle qui est assigné implicitement à tous les utilisateurs. L’appel de la méthode [[yii\rbac\ManagerInterface::assign()]] n’est pas nécessaire, et les données d’autorisations ne contiennent pas ses informations d’assignation.

Un rôle par défaut est ordinairement associé à une règle qui détermine si le rôle s’applique à l’utilisateur en cours de vérification.

Les rôles par défaut sont souvent utilisés dans des applications qui ont déjà une sorte d’assignation de rôles. Par exemple, un application peut avoir une colonne « group » dans sa table des utilisateurs pour représenter à quel groupe de privilèges chacun des utilisateurs appartient. Si chaque groupe de privilèges peut être mis en correspondance avec un rôle du contrôle d’accès basé sur les rôles, vous pouvez utiliser la fonctionnalité de rôle par défaut pour assigner automatiquement un rôle du contrôle d’accès basé sur les rôles à chacun des utilisateurs. Prenons un exemple pour montrer comment cela se fait.

Supposons que dans la table des utilisateurs, il existe en colonne group qui utilise la valeur 1 pour représenter le groupe des administrateurs et la valeur 2 pour représenter le groupe des auteurs. Vous envisagez d’avoir deux rôles dans le contrôle d’accès basé sur les rôles admin etauthor pour représenter les permissions de ces deux groupes respectivement. Vous pouvez configurer le contrôle d’accès basé sur les rôles comme suit :

namespace app\rbac;

use Yii;
use yii\rbac\Rule;

/**
 * Vérifie si le groupe utilisateurs correspond
 */
class UserGroupRule extends Rule
{
 public $name = 'userGroup';

 public function execute($user, $item, $params)
 {
 if (!Yii::$app->user->isGuest) {
 $group = Yii::$app->user->identity->group;
 if ($item->name === 'admin') {
 return $group == 1;
 } elseif ($item->name === 'author') {
 return $group == 1 || $group == 2;
 }
 }
 return false;
 }
}

$auth = Yii::$app->authManager;

$rule = new \app\rbac\UserGroupRule;
$auth->add($rule);

$author = $auth->createRole('author');
$author->ruleName = $rule->name;
$auth->add($author);
// ... ajoute les permissions en tant qu'enfant de $author ...

$admin = $auth->createRole('admin');
$admin->ruleName = $rule->name;
$auth->add($admin);
$auth->addChild($admin, $author);
// ... ajoute les permissions en tant qu'enfant de $admin ...

Notez que dans ce qui est présenté ci-dessus, comme « author » est ajouté en tant qu’enfant de « admin », lorsque vous implémentez la méthode execute() de la classe de règle, vous devez respecter cette hiérarchie elle aussi. C’est pourquoi, lorsque le nom de rôle est « author », la méthode execute() retourne true (vrai) si le groupe de l’utilisateur est soit 1, soit 2 (ce qui signifie que l’utilisateur est soit dans le groupe « admin », soit dans le groupe « author »).

Ensuite, configurez authManager en listant les deux rôles dans [[yii\rbac\BaseManager::$defaultRoles]]:

return [
 // ...
 'components' => [
 'authManager' => [
 'class' => 'yii\rbac\PhpManager',
 'defaultRoles' => ['admin', 'author'],
],
 // ...
],
];

Désormais, si vous effectuez une vérification d’autorisation d’accès, les deux rôles admin et author seront vérifiés en évaluant les règles qui leur sont associées. Si les règles retournent true (vrai), cela signifie que le rôle s’applique à l’utilisateur courant. En se basant sur la mise en œuvre des règles ci-dessus, cela signifie que si la valeur du group d’un utilisateur est 1, le rôle admin s’applique à l’utilisateur, si la valeur du group est 2, le rôle author s’applique.

 Meilleures pratiques de sécurité

Meilleures pratiques de sécurité

Ci-dessous, nous passons en revue les principes de sécurité courants et décrivons comment éviter les menaces lorsque vous développez une application Yii.

Principes de base

Il y a deux principes essentiels quand on en vient à traiter de la sécurité des applications quelles qu’elles soient :

	Filtrer les entrées.

	Échapper les sorties.

Filtrer les entrées

Filtrer les entrées signifie que les entrées ne doivent jamais être considérées comme sures et que vous devriez toujours vérifier qu’une valeur que vous avez obtenue fait réellement partie de celles qui sont autorisées. Par exemple, si nous savons qu’un tri doit être fait sur la base de trois champs title, created_at et status, et que ces champs sont fournis sous forme d’entrées de l’utilisateur, il vaut mieux vérifier les valeurs exactement là où nous les recevons. En terme de PHP de base, ça devrait ressembler à ceci :

$sortBy = $_GET['sort'];
if (!in_array($sortBy, ['title', 'created_at', 'status'])) {
 throw new Exception('Invalid sort value.');
}

Dans Yii, le plus probablement, vous utilisez la validation de formulaire pour faire de telles vérifications.

Échapper les sorties

Échapper les sorties signifie que, selon le contexte dans lequel vous utilisez les données, elles doivent être échappées c.-à-d. dans le contexte de HTML vous devez échapper les caractères <, > et autres caractères similaires. Dans le contexte de JavaScript ou de SQL, il s’agira d’un jeu différent de caractères. Comme échapper tout à la main serait propice aux erreurs, Yii fournit des outils variés pour effectuer l’échappement dans différents contextes.

Éviter les injections SQL

Les injections SQL se produisent lorsque le texte d’une requête est formé en concaténant des chaînes non échappées comme la suivante :

$username = $_GET['username'];
$sql = "SELECT * FROM user WHERE username = '$username'";

Au lieu de fournir un nom d’utilisateur réel, l’attaquant pourrait donner à votre application quelque chose comme '; DROP TABLE user; --.
Ce qui aboutirait à la requête SQL suivante :

SELECT * FROM user WHERE username = ''; DROP TABLE user; --'

Cela est une requête tout à fait valide qui recherche les utilisateurs avec un nom vide et détruit probablement la table user, ce qui conduit à un site Web cassé et à une perte de données (vous faites des sauvegardes régulières, pas vrai ?).

Dans Yii la plupart des requêtes de base de données se produisent via la classe Active Record qui utilise correctement des instructions PDO préparées en interne. En cas d’instructions préparées, il n’est pas possible de manipuler la requête comme nous le montrons ci-dessus.

Cependant, parfois, vous avez encore besoin de requêtes brutes ou du constructeur de requêtes. Dans ce cas, vous devriez passer les données de manière sure. Si les données sont utilisées pour des valeurs de colonnes, il est préférable d’utiliser des instructions préparées :

// query builder
$userIDs = (new Query())
 ->select('id')
 ->from('user')
 ->where('status=:status', [':status' => $status])
 ->all();

// DAO
$userIDs = $connection
 ->createCommand('SELECT id FROM user where status=:status')
 ->bindValues([':status' => $status])
 ->queryColumn();

Si les données sont utilisées pour spécifier des noms de colonne ou des noms de table, la meilleure chose à faire est d’autoriser uniquement des jeux prédéfinis de valeurs :

function actionList($orderBy = null)
{
 if (!in_array($orderBy, ['name', 'status'])) {
 throw new BadRequestHttpException('Only name and status are allowed to order by.')
 }

 // ...
}

Dans le cas où cela n’est pas possible, les noms de colonne et de table doivent être échappés. Yii a recours à une syntaxe spéciale pour un tel échappement qui permet de le faire d’une manière identique pour toutes les bases de données prises en charge :

$sql = "SELECT COUNT([[$column]]) FROM {{table}}";
$rowCount = $connection->createCommand($sql)->queryScalar();

Vous pouvez obtenir tous les détails sur cette syntaxe dans la section Échappement des noms de colonne et de table.

Éviter le XSS

Le XSS ou scriptage inter site se produit lorsque la sortie n’est pas échappée correctement lors de l’envoi de code HTML au navigateur. Par exemple, si l’utilisateur peut entrer son nom, et qu’au lieu de saisir Alexander il saisit <script>alert('Hello!');</script>, chaque page qui émet sont nom sans échappement exécute le code JavaScript alert('Hello!'); ce qui se traduit par une boîte d’alerte jaillissant dans le navigateur. Selon le site web, au lieu de quelque chose d’aussi innocent, le script pourrait envoyer des messages en votre nom ou même effectuer des transactions bancaires. L’évitement de XSS est tout à fait facile. Il y a en général deux cas :

	Vous voulez que vos données soient transmises sous forme de texte simple.

	Vous voulez que vos données soient transmises sous forme de code HTML.

Si vous désirez seulement du texte simple, l’échappement est aussi simple à réaliser que ce qui suit :

<?= \yii\helpers\Html::encode($username) ?>

Si ce doit être du code HTML vous pouvez obtenir de l’aide de HtmlPurifier:

<?= \yii\helpers\HtmlPurifier::process($description) ?>

Notez que le processus de HtmlPurifier est très lourd, c’est pourquoi vous devez envisager la mise en cache.

Éviter le CSRF

La CSRF est une abréviation de cross-site request forgery (falsification de requête inter sites). L’idée est que beaucoup d’applications partent du principe que les requêtes provenant d’un navigateur sont fabriquées par l’utilisateur lui-même. Cela peut être faux.

Par exemple, un site web an.example.com a une URL /logout, qui, lorsqu’elle est accédée en utilisant une simple requête GET, déconnecte l’utilisateur. Tant qu’il s’agit d’une requête de l’utilisateur lui-même, tout va bien. Mais, un jour, des gens mal intentionnés, postent sur un forum que l’utilisateur visite fréquemment. Le navigateur ne fait pas de différence entre la requête d’une image et celle d’une page. C’est pourquoi, lorsque l’utilisateur ouvre une page avec une telle balise img, le navigateur envoie la requête GET vers cette URL, et l’utilisateur est déconnecté du site an.example.com.

C’est l’idée de base. D’aucuns diront que déconnecter un utilisateur n’a rien de très sérieux, mais les gens mal intentionnés peuvent faire bien plus, à partir de cette idée. Imaginez qu’un site web possède une URL http://an.example.com/purse/transfer?to=anotherUser&amount=2000. Accéder à cette URL en utilisant une requête GET, provoque le transfert de 2000 € d’un compte autorisé à l’utilisateur vers un autre compte anotherUser. Nous savons que le navigateur envoie toujours une requête GET pour charger une image. Nous pouvons donc modifier le code pour que seules des requêtes POST soient acceptées sur cette URL. Malheureusement, cela ne nous est pas d’un grand secours parce qu’un attaquant peut placer un peu le JavaScript à la place de la balise , ce qui permet d’envoyer des requêtes POST sur cette URL:

Afin d’éviter la falsification des requêtes inter-sites vous devez toujours :

	Suivre la spécification HTTP c.-à-d. GET ne doit pas changer l’état de l’application.

	Tenir la protection Yii CSRF activée.

Parfois vous avez besoin de désactiver la validation CSRF pour un contrôleur ou une action. Cela peut être fait en définissant sa propriété :

namespace app\controllers;

use yii\web\Controller;

class SiteController extends Controller
{
 public $enableCsrfValidation = false;

 public function actionIndex()
 {
 // la validation CSRF ne sera pas appliquée à cette action ainsi qu'aux autres.
 }

}

Pour désactiver la validation CSRF pour des actions personnalisées vous pouvez faire :

namespace app\controllers;

use yii\web\Controller;

class SiteController extends Controller
{
 public function beforeAction($action)
 {
 // ...définit `$this->enableCsrfValidation` ici en se basant sur quelques conditions...
 // appelle la méthode du parent qui vérifie CSRF si une telle propriété est vraie
 return parent::beforeAction($action);
 }
}

Éviter l’exposition de fichiers

Par défaut, le racine du serveur web est censé pointer sur le dossier web, là où se trouve le fichier index.php. Dans le cas d’un hébergement partagé, il peut être impossible de réaliser cela et vous pouvez vous retrouver avec tout le code, configurations et journaux sous la racine du serveur web.

Si c’est le cas, n’oubliez-pas de refuser l’accès à tout sauf au dossier web. Si cela n’est pas possible, envisagez d’héberger votre application ailleurs.

Éviter les informations et des outils de débogage en mode production

En mode débogage, Yii présente les erreurs de façon très verbeuse, ce qui s’avère très utile en développement. Le problème est que des erreurs aussi verbeuses sont pleines de renseignement pour l’attaquant lui aussi et peuvent révéler la structure de la base de données, les valeurs de configuration et des parties de votre code. Ne faites jamais tourner vos applications avec YII_DEBUG définit à true dans votre fichier index.php.

Vous ne devriez jamais activer Gii en production. Il pourrait être utilisé pour obtenir des informations sur la structure de la base de données, sur le code et tout simplement réécrire du code avec celui généré par Gii.

La barre de débogage devrait être neutralisée en production sauf si vous en avez réellement besoin. Elle expose toute l’application et les détails de configuration. Si vous avez absolument besoin de cette barre, vérifier que cet accès est correctement réservé à votre adresse IP seulement.

Utilisation de connexions sécurisées via TLS

Yii fournit des fonctionnalités qui comptent sur les témoins de connexion et/ou sur les sessions PHP. Cela peut créer des vulnérabilités dans le cas où votre connexion est compromise. Le risque est réduit si l’application utilise une connexion sécurisée via TLS.
Reportez-vous à la documentation de votre serveur web pour des instructions sur la manière de la configurer. Vous pouvez aussi jeter un coup d’œil aux exemples de configuration du projet H5BP :

	Nginx [https://github.com/h5bp/server-configs-nginx]

	Apache [https://github.com/h5bp/server-configs-apache].

	IIS [https://github.com/h5bp/server-configs-iis].

	Lighttpd [https://github.com/h5bp/server-configs-lighttpd].

 Cryptographie

Cryptographie

Dans cette section nous allons passer en revue les aspects suivants relatifs à la sécurité :

	Génération de données aléatoires

	Chiffrage et déchiffrage

	Confirmation de l’intégrité des données

Génération de données pseudo-aléatoires

Les données pseudo-aléatoires sont utiles dans de nombreuses situations. Par exemple, lors de la réinitialisation d’un mot de passe via courriel, vous devez générer un jeton, le sauvegarder dans la base de données, et l’envoyer à l’utilisateur afin qu’il puisse prouver qu’il est le détenteur du compte concerné. Il est très important que ce jeton soit unique et difficile à deviner, sinon il y aurait une possibilité que l’attaquant le devine et réinitialise le mot de passe de l’utilisateur.

Les fonctions d’aide à la sécurité de Yii facilite la création de données pseudo-aléatoires :

$key = Yii::$app->getSecurity()->generateRandomString();

Chiffrage et déchiffrage

Yii fournit des fonctions d’aide pratiques qui vous permettent de chiffrer/déchiffrer les données en utilisant une clé secrète. Les données sont passées à la fonction de chiffrage de façon à ce que, seule la personne qui possède la clé secrète soit en mesure de les déchiffrer.

Par exemple, nous avons besoin de stocker quelques informations dans notre base de données mais nous avons besoin de garantir que seul l’utilisateur qui dispose de la clé secrète soit en mesure des les visualiser (même si la base de données de l’application est compromise) :

// $data et $secretKey sont obtenues du formulaire
$encryptedData = Yii::$app->getSecurity()->encryptByPassword($data, $secretKey);
// stocke $encryptedData dans la base de données

Par la suite, lorsqu’un utilisateur désire lire les données :

// $secretKey est obtenue de la saisie de l'utilisateur, $encryptedData provient de la base de données
$data = Yii::$app->getSecurity()->decryptByPassword($encryptedData, $secretKey);

Il est également possible d’utiliser une clé à la place d’un mot de passe via [[\yii\base\Security::encryptByKey()]] et
[[\yii\base\Security::decryptByKey()]].

Confirmation de l’intégrité des données

Il y a des situations dans lesquelles vous avez besoin de vérifier que vos données n’ont pas été trafiquées par une tierce partie ou corrompue. Yii vous offre un moyen facile de confirmer l’intégrité des données sous forme d’une fonction d’aide.

Préfixez les données par une valeur de hachage obtenue à l’aide de la clé secrète et des données.

// $secretKey notre clé secrèe pour l'application ou l'utilisateur, $genuineData les données authentiques obtenues d'une source fiable.
$data = Yii::$app->getSecurity()->hashData($genuineData, $secretKey);

Vérifiez si l’intégrité des données est compromise.

// $secretKey notre clé secrèe pour l'application ou l'utilisateur, $data données obtenues d'une source peu sûre
$data = Yii::$app->getSecurity()->validateData($data, $secretKey);

 Sécurité

Sécurité

Une bonne sécurité est vitale pour la santé et le succès de toute application. Malheureusement, beaucoup de développeurs lésinent un peu quand ils en arrivent à la sécurité, soit par manque de compréhension ou parce que sa mise en œuvre n’est pas une mince affaire. Pour rendre votre application Yii aussi sûre que possible, Yii inclut plusieurs fonctionnalités de sécurité, excellentes et faciles à mettre en œuvre.

	L’authentification

	L’autorisation

	Le travail avec des mots de passe

	La cryptographie

	La sécurité des vues

	L’extension Auth Clients [https://github.com/yiisoft/yii2-authclient/blob/master/docs/guide/README.md]

	Les bonnes pratiques

 Utilisation de mots de passe

Utilisation de mots de passe

La plupart des développeurs savent que les mots de passe ne peuvent pas être stockés « en clair », mais beaucoup d’entre-eux croient qu’il est toujours sûr des les hacher avec md5 ou sha1. Il fut un temps où utiliser ces algorithmes de hachage était suffisant, mais les matériels modernes font qu’il est désormais possible de casser de tels hachages – même les plus robustes – très rapidement en utilisant des attaques en force brute.

Pour apporter une sécurité améliorée pour les mots de passe des utilisateurs, même dans le pire des scénario (une brèche est ouverte dans votre application), vous devez utiliser des algorithmes de hachage qui résistent aux attaques en force brute. Le choix le meilleur couramment utilisé est bcrypt.

En PHP, vous pouvez créer une valeur de hachage bcrypt à l’aide de la fonction crypt [http://php.net/manual/en/function.crypt.php]. Yii fournit deux fonctions d’aide qui facilitent l’utilisation de crypt pour générer et vérifier des valeurs de hachage de manière sure.

Quand un utilisateur fournit un mot de passe pour la première fois (p. ex. à l’enregistrement), le mot de passe doit être haché :

$hash = Yii::$app->getSecurity()->generatePasswordHash($password);

La valeur de hachage peut ensuite être associée à l’attribut du modèle correspondant afin de pouvoir être stockée dans la base de données pour utilisation ultérieure.

Lorsqu’un utilisateur essaye ensuite de se connecter, le mot de passe soumis est comparé au mot de passe précédemment haché et stocké :

if (Yii::$app->getSecurity()->validatePassword($password, $hash)) {
 // tout va bien, nous connectons l'utilisateur
} else {
 // wrong password
}

 Travailler avec des bases de données

Travailler avec des bases de données

Cette section décrit comment créer une nouvelle page qui affiche des données pays récupérées dans une table de base
de données nommée country. Pour ce faire, vous allez configurer une connexion à une base de données, créer une
classe Active Record, définir une action, et créer une
vue.

Au long de ce tutoriel, vous apprendrez comment :

	Configurer une connexion à une base de données

	Définir une classe Active Record

	Demander des données en utilisant la classe Active Record (enregistrement actif)

	Afficher des données dans une vue paginée

Notez que, pour finir cette section, vous aurez besoin d’avoir une connaissance basique des bases de données.
En particulier, vous devez savoir créer une base de données et exécuter des déclarations SQL en utilisant un client de
gestion de bases de données.

Préparer la Base de Données

Pour commencer, créez une base de données appelée yii2basic, depuis laquelle vous irez chercher les données dans votre application.
Vous pouvez créer une base de données SQLite, MySQL, PostgreSQL, MSSQL ou Oracle, car Yii gère nativement de nombreuses applications de base de données. Pour simplifier, nous supposerons que vous utilisez MySQL dans les descriptions qui suivent.

Note : bien que MariaDB a été un remplacement direct de MySQL, cela n’est plus complètement vrai. Dans le cas où vous auriez besoin de fonctionnalités avancées telles que la prise en charge de JSON, jetez un coup d’œil à la liste des extensions de MariaDB ci-dessous.

Créez maintenant une table nommée country dans la base de données et insérez-y quelques données exemples. Vous pouvez exécuter l’instruction SQL suivante pour le faire :

CREATE TABLE `country` (
 `code` CHAR(2) NOT NULL PRIMARY KEY,
 `name` CHAR(52) NOT NULL,
 `population` INT(11) NOT NULL DEFAULT '0'
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

INSERT INTO `country` VALUES ('AU','Australia',24016400);
INSERT INTO `country` VALUES ('BR','Brazil',205722000);
INSERT INTO `country` VALUES ('CA','Canada',35985751);
INSERT INTO `country` VALUES ('CN','China',1375210000);
INSERT INTO `country` VALUES ('DE','Germany',81459000);
INSERT INTO `country` VALUES ('FR','France',64513242);
INSERT INTO `country` VALUES ('GB','United Kingdom',65097000);
INSERT INTO `country` VALUES ('IN','India',1285400000);
INSERT INTO `country` VALUES ('RU','Russia',146519759);
INSERT INTO `country` VALUES ('US','United States',322976000);

Vous avez désormais une base de données appelée yii2basic comprenant une table country comportant trois colonnes et contenant dix lignes de données.

Configurer une Connexion à la BDD

Avant de continuer, vérifiez que vous avez installé à la fois l’extension PHP
PDO [http://www.php.net/manual/fr/book.pdo.php] et le pilote PDO pour la base de données que vous utilisez (c’est
à dire pdo_mysql pour MySQL). C’est une exigence de base si votre application utilise une base de données relationnelle.

Une fois ces éléments installés, ouvrez le fichier config/db.php et modifiez les paramètres pour qu’ils correspondent à votre base de données. Par défaut, le fichier contient ce qui suit :

<?php

return [
 'class' => 'yii\db\Connection',
 'dsn' => 'mysql:host=localhost;dbname=yii2basic',
 'username' => 'root',
 'password' => '',
 'charset' => 'utf8',
];

Le fichier config/db.php est un exemple type d’outil de configuration basé sur un fichier. Ce fichier de configuration en particulier spécifie les paramètres nécessaires à la création et l’initialisation d’une instance de [[yii\db\Connection]] grâce à laquelle vous pouvez effectuer des requêtes SQL dans la base de données sous-jacente.

On peut accéder à connexion à la BDD configurée ci-dessus depuis le code de l’application via l’expression Yii::$app->db.

Info: le fichier config/db.php sera inclus par la configuration principale de l’application config/web.php,
qui spécifie comment l’instance d’application doit être initialisée.
Pour plus d’informations, reportez-vous à la section Configurations.

Si vous avez besoin de fonctionnalités de base de données dont la prise en charge n’est pas comprise dans Yii, examinez les extensions suivantes:

	Informix [https://github.com/edgardmessias/yii2-informix]

	IBM DB2 [https://github.com/edgardmessias/yii2-ibm-db2]

	Firebird [https://github.com/edgardmessias/yii2-firebird]

	MariaDB [https://github.com/sam-it/yii2-mariadb]

Créer un Active Record

Pour représenter et aller chercher des données dans la table country, créez une classe dérivée d’Active Record appelée Country, et enregistrez-la dans le fichier models/Country.php.

<?php

namespace app\models;

use yii\db\ActiveRecord;

class Country extends ActiveRecord
{
}

La classe Country étend [[yii\db\ActiveRecord]]. Vous n’avez pas besoin d’y écrire le moindre code ! Simplement, avec le code ci-dessus, Yii devine le nom de la table associée au nom de la classe.

Info: si aucune correspondance directe ne peut être faite à partir du nom de la classe, vous pouvez outrepasser la méthode [[yii\db\ActiveRecord::tableName()]] pour spécifier explicitement un nom de table.

A l’aide de la classe Country, vous pouvez facilement manipuler les données de la table country, comme dans les bribes suivantes :

use app\models\Country;

// chercher toutes les lignes de la table pays et les trier par "name"
$countries = Country::find()->orderBy('name')->all();

// chercher la ligne dont la clef primaire est "US"
$country = Country::findOne('US');

// afficher "United States"
echo $country->name;

// remplace le nom du pays par "U.S.A." et le sauvegarde dans la base de données
$country->name = 'U.S.A.';
$country->save();

Info: Active Record (enregistrement actif) est un moyen puissant pour accéder et manipuler des données d’une base de manière orientée objet.
Vous pouvez trouver plus d’informations dans la section Active Record. Sinon, vous pouvez également interagir avec une base de données en utilisant une méthode de plus bas niveau d’accès aux données appelée Database Access Objects.

Créer une Action

Pour exposer les données pays aux utilisateurs, vous devez créer une action. Plutôt que de placer la nouvelle action
dans le contrôleur site, comme vous l’avez fait dans les sections précédentes, il est plus cohérent de créer un
nouveau contrôleur spécifique à toutes les actions liées aux données pays. Nommez ce contrôleur
CountryController, et créez-y une action index, comme suit.

<?php

namespace app\controllers;

use yii\web\Controller;
use yii\data\Pagination;
use app\models\Country;

class CountryController extends Controller
{
 public function actionIndex()
 {
 $query = Country::find();

 $pagination = new Pagination([
 'defaultPageSize' => 5,
 'totalCount' => $query->count(),
]);

 $countries = $query->orderBy('name')
 ->offset($pagination->offset)
 ->limit($pagination->limit)
 ->all();

 return $this->render('index', [
 'countries' => $countries,
 'pagination' => $pagination,
]);
 }
}

Enregistrez le code ci-dessus dans le fichier controllers/CountryController.php.

L’action index appelle Country::find(). Cette méthode Active Record construit une requête de BDD et récupère toutes
les données de la table country.
Pour limiter le nombre de pays retournés par chaque requête, la requête est paginée à l’aide d’un objet
[[yii\data\Pagination]]. L’objet Pagination dessert deux buts :

	Il ajuste les clauses offset et limit de la déclaration SQL représentée par la requête afin qu’elle en retourne
qu’une page de données à la fois (au plus 5 colonnes par page).

	Il est utilisé dans la vue pour afficher un sélecteur de pages qui consiste en une liste de boutons de page, comme nous
l’expliquerons dans la prochaine sous-section.

A la fin du code, l’action index effectue le rendu d’une vue nommée index, et lui transmet les données pays ainsi que les informations de pagination.

Créer une Vue

Dans le dossier views, commencez par créer un sous-dossier nommé country. Ce dossier sera utilisé pour contenir
toutes les vues rendues par le contrôleur country. Dans le dossier views/country, créez un fichier nommé
index.php contenant ce qui suit :

<?php
use yii\helpers\Html;
use yii\widgets\LinkPager;
?>
<h1>Countries</h1>

<?php foreach ($countries as $country): ?>

 <?= Html::encode("{$country->code} ({$country->name})") ?>:
 <?= $country->population ?>

<?php endforeach; ?>

<?= LinkPager::widget(['pagination' => $pagination]) ?>

La vue comprend deux sections relatives à l’affichage des données pays. Dans la première partie, les données pays fournies
sont parcourues et rendues sous forme de liste non ordonnée HTML.
Dans la deuxième partie, un objet graphique [[yii\widgets\LinkPager]] est rendu en utilisant les informations de pagination transmises par l’action.
L’objet graphique LinkPager affiche une liste de boutons de page. Le fait de cliquer sur l’un deux rafraichit les données pays dans la page correspondante.

Essayer

Pour voir comment tout le code ci-dessus fonctionne, pointez votre navigateur sur l’URL suivante :

http://hostname/index.php?r=country/index

[image: Liste de Pays]

Au début, vous verrez une page affichant cinq pays. En dessous des pays, vous verrez un sélecteur de pages avec quatre boutons.
Si vous cliquez sur le bouton “2”, vous verrez la page afficher cinq autres pays de la base de données : la deuxième
page d’enregistrements.
Observez plus attentivement et vous noterez que l’URL dans le navigateur devient

http://hostname/index.php?r=country/index&page=2

En coulisse, [[yii\data\Pagination|Pagination]] fournit toutes les fonctionnalités permettant de paginer un ensemble de données :

	Au départ, [[yii\data\Pagination|Pagination]] représente la première page, qui reflète la requête SELECT de country
avec la clause LIMIT 5 OFFSET 0. Il en résulte que les cinq premiers pays seront trouvés et affichés.

	L’objet graphique [[yii\widgets\LinkPager|LinkPager]] effectue le rendu des boutons de pages en utilisant les URL créées par
[[yii\data\Pagination::createUrl()|Pagination]]. Les URL contiendront le paramètre de requête page, qui représente
les différents numéros de pages.

	Si vous cliquez sur le bouton de page “2”, une nouvelle requête pour la route country/index sera déclenchée et
traitée.
[[yii\data\Pagination|Pagination]] lit le paramètre de requête page dans l’URL et met le numéro de page à 2.
La nouvelle requête de pays aura donc la clause LIMIT 5 OFFSET 5 et retournera les cinq pays suivants pour être
affichés.

Résumé

Dans cette section, vous avez appris comment travailler avec une base de données. Vous avez également appris comment
chercher et afficher des données dans des pages avec l’aide de [[yii\data\Pagination]] et de [[yii\widgets\LinkPager]].

Dans la prochaine section, vous apprendrez comment utiliser le puissant outil de génération de code, appelé
Gii [https://www.yiiframework.com/extension/yiisoft/yii2-gii/doc/guide], pour vous aider à rapidement mettre en œuvre des fonctionnalités communément requises, telles que les
opérations Créer, Lire, Mettre à Jour et Supprimer (CRUD : Create-Read-Update-Delete) pour travailler avec les données
dans une table de base de données. En fait, le code que vous venez d’écrire peut être généré automatiquement dans Yii
en utilisant l’outil Gii.

 Travailler avec les formulaires

Travailler avec les formulaires

Cette section décrit la création d’une nouvelle page comprenant un formulaire pour recevoir des données des
utilisateurs.
La page affichera un formulaire composé d’un champ de saisie nom et un champ de saisie email.
Une fois ces deux informations reçues de l’utilisateur, la page affichera les valeurs entrées pour confirmation.

Pour atteindre ce but, vous créerez non seulement une action et deux
vues, mais aussi un modèle.

Au long de ce tutoriel, vous apprendrez à :

	Créer un modèle pour représenter les données saisies par un utilisateur à travers un
formulaire

	Déclarer des règles pour valider les données entrées

	Construire un formulaire HTML dans une vue

Créer un Modèle

Les données demandées à l’utilisateur seront représentées par une classe de modèle EntryForm comme montrée ci-dessous
enregistrée dans le fichier models/EntryForm.php. Merci de vous référer à la section
Auto-chargement de Classes pour plus de détails sur la convention de nommage de fichiers
classes.

<?php

namespace app\models;

use yii\base\Model;

class EntryForm extends Model
{
 public $nom;
 public $email;

 public function rules()
 {
 return [
 [['nom', 'email'], 'required'],
 ['email', 'email'],
];
 }
}

La classe étend [[yii\base\Model]], une classe de base fournie par Yii, communément utilisée pour représenter des
données de formulaire.

Info: [[yii\base\Model]] est utilisée en tant que parent pour des classes modèles qui ne sont pas associées à des
tables de base de données.
[[yii\db\ActiveRecord]] est normalement le parent pour les classes modèles qui correspondent à des tables de bases de
données.

La classe EntryForm contient deux membres publics, nom et email, qui sont utilisés pour stocker les données
saisies par l’utilisateur. Elle contient également une méthode nommée rules(), qui renvoie un assortiment de règles
pour valider les données. Les règles de validation déclarées ci-dessus énoncent que

	à la fois les valeurs de nom et email sont requises

	la donnée email doit être une adresse email syntaxiquement valide

Si vous avez un objet EntryForm peuplé par les données saisies par un utilisateur, vous pouvez appeler sa méthode
[[yii\base\Model::validate()|validate()]] pour déclencher les routines de validation de données. Un échec de validation
de données affectera la valeur true à la propriété [[yii\base\Model::hasErrors|hasErrors]], et vous pourrez connaître
quelles erreurs de validations sont apparues via [[yii\base\Model::getErrors|errors]].

<?php
$model = new EntryForm();
$model->nom = 'Qiang';
$model->email = 'mauvais';
if ($model->validate()) {
 // Bien!
} else {
 // Echec!
 // Use $model->getErrors()
}

Créer une Action

Maintenant, vous allez créer une action entry dans le contrôleur site qui utilisera le nouveau modèle. Le processus
de création et d’utilisation d’actions a été expliqué dans la section Hello World.

<?php

namespace app\controllers;

use Yii;
use yii\web\Controller;
use app\models\EntryForm;

class SiteController extends Controller
{
 // ...code existant...

 public function actionEntry()
 {
 $model = new EntryForm;

 if ($model->load(Yii::$app->request->post()) && $model->validate()) {
 // données valides reçues dans $model

 // faire quelque chose de significatif ici avec $model ...

 return $this->render('entry-confirm', ['model' => $model]);
 } else {
 // soit la page est affichée au début soit il y a des erreurs de validation
 return $this->render('entry', ['model' => $model]);
 }
 }
}

L’action commence par créer un objet EntryForm. Puis, elle tente de peupler le modèle avec les données de $_POST,
fournies dans yii par [[yii\web\Request::post()]].
Si le modèle est peuplé avec succès (c’est à dire, si l’utilisateur a soumis le formulaire HTML), l’action appellera
[[yii\base\Model::validate()|validate()]] pour s’assurer de la validité de toutes les valeurs.

Info: L’expression Yii::$app représente l’instance d’application, qui est un singleton
accessible de manière globale. C’est aussi un annuaire de services qui fournit des
composants tels que request, response, db, etc. pour assister des fonctionnalités spécifiques. Dans le code
ci-dessus, le composant request de l’instance d’application est utilisé pour accéder aux données $_POST.

Si tout se passe bien, l’action effectuera le rendu d’une vue nommée entry-confirm pour confirmer le succès de la
soumission à l’utilisateur. Si aucune donnée n’est soumise ou si les données contiennent des erreurs, la vue entry
sera générée, dans laquelle le formulaire HTML sera affiché, ainsi que tout message d’erreur de validation.

Note: Dans cet exemple très simple, nous effectuons le rendu de la page de confirmation après soumission de données
valides. En pratique, vous devriez envisager d’utiliser [[yii\web\Controller::refresh()|refresh()]] ou
[[yii\web\Controller::redirect()|redirect()]] pour éviter les
problèmes de multiple soumission de formulaire [http://fr.wikipedia.org/wiki/Post-Redirect-Get].

Créer des Vues

Enfin, créez deux fichiers de vue nommés entry-confirm et entry. Ceux-ci seront rendus par l’action entry,
comme décrit précédemment.

La vue entry-confirm affiche simplement les données de nom et email. Elle doit être placée dans le fichier
views/site/entry-confirm.php.

<?php
use yii\helpers\Html;
?>
<p>Vous avez entré les informations suivantes :</p>

 <label>Nom</label>: <?= Html::encode($model->nom) ?>
 <label>Email</label>: <?= Html::encode($model->email) ?>

La vue entry affiche un formulaire HTML. Elle doit être stockée dans le placée views/site/entry.php.

<?php
use yii\helpers\Html;
use yii\widgets\ActiveForm;
?>
<?php $form = ActiveForm::begin(); ?>

 <?= $form->field($model, 'nom') ?>

 <?= $form->field($model, 'email') ?>

 <div class="form-group">
 <?= Html::submitButton('Soumettre', ['class' => 'btn btn-primary']) ?>
 </div>

<?php ActiveForm::end(); ?>

La vue utilise un widget puissant appelé [[yii\widgets\ActiveForm|ActiveForm]] pour construire
le formulaire HTML. Les méthodes begin() et end() du widget effectuent respectivement le rendu des tags ouvrant et
fermant du formulaire. Entre les deux appels de méthode, des champs de saisie sont créés par la méthode
[[yii\widgets\ActiveForm::field()|field()]]. Le premier champ de saisie concerne la donnée “nom”, et le second la
donnée “email”. Après les champs de saisie, la méthode [[yii\helpers\Html::submitButton()]] est appelée pour générer un
bouton de soumission.

Essayer

Pour voir comment ça fonctionne, utilisez votre navigateur pour accéder à l’URL suivante :

http://hostname/index.php?r=site/entry

Vous verrez une page affichant un formulaire comportant deux champs de saisie. Devant chaque champ de saisie, une
étiquette indique quelle donnée est attendue. Si vous cliquez sur le bouton de soumission sans entrer quoi que ce soit,
ou si vous ne fournissez pas d’adresse email valide, vous verrez un message d’erreur s’afficher à coté de chaque champ
de saisie posant problème.

[image: Formulaire Comportant des Erreurs de Validation]

Après avoir saisi un nom et une adresse email valide et cliqué sur le bouton de soumission, vous verrez une nouvelle
page affichant les données que vous venez de saisir.

[image: Confirmation de la Saisie de Données]

La Magie expliquée

Vous vous demandez peut-être comment le formulaire HTML fonctionne en coulisse, parce qu’il semble presque magique
qu’il puisse afficher une étiquette pour chaque champ de saisie et afficher sans rafraichir la page des messages
d’erreur si vous n’entrez pas les données correctement.

Oui, la validation de données est initialement faite coté client en Javascript, et ensuite effectuée coté serveur en
PHP.
[[yii\widgets\ActiveForm]] est suffisamment intelligent pour extraire les règles de validation que vous avez déclarées
dans EntryForm, le transformer en code Javascript exécutable, et utiliser le Javascript pour effectuer la validation
des données. Dans le cas où vous auriez désactivé le Javascript sur votre navigateur, la validation sera tout de même
effectuée coté serveur, comme montré dans la méthode actionEntry(). Cela garantit la validité des données en toutes
circonstances.

Warning: La validation coté client est un confort qui permet une meilleure expérience utilisateur. La validation coté serveur est toujours nécessaire, que la validation coté client soit ou non en place.

Les étiquettes des champs de saisie sont générés par la méthode field(), en utilisant les noms des propriété du
modèle.
Par exemple, l’étiquette Nom sera générée à partir de la propriété nom.

Vous pouvez personnaliser une étiquette dans une vue en employant le code suivant :

<?= $form->field($model, 'nom')->label('Votre Nom') ?>
<?= $form->field($model, 'email')->label('Votre Email') ?>

Info: Yii fournit ne nombreux widgets pour vous aider à construire rapidement des vues complexes et dynamiques.
Comme vous l’apprendrez plus tard, écrire un widget et aussi extrêmement simple. Vous voudrez sans doute transformer une grande partie de votre code de vues en widgets réutilisables pour simplifier les développements de vues futurs.

Résumé

Dans cette section du guide, vous avez touché toutes les parties du patron de conception MVC. Vous avez appris à créer
une classe modèle pour représenter les données utilisateur et valider lesdites données.

Vous avez également appris comment recevoir des données des utilisateurs et comment les réafficher dans le navigateur.
C’est une tâche qui peut prendre beaucoup de temps lors du développement d’une application, mais Yii propose des
widgets puissants pour rendre cette tâche très facile.

Dans la prochaine section, vous apprendrez comment travailler avec des bases de données, qui sont nécessaires dans presque toutes les applications.

 Générer du code avec Gii

Générer du code avec Gii

Cette section décrit comment utiliser Gii [https://www.yiiframework.com/extension/yiisoft/yii2-gii/doc/guide] pour générer du code qui met automatiquement en œuvre des fonctionnalités courantes de sites Web. Utiliser Gii pour auto-générer du code consiste simplement à saisir les bonnes informations en suivant les instructions affichées sur les pages Web de Gii.

Au long de ce tutoriel, vous apprendrez comment :

	Activer Gii dans votre application

	Utiliser Gii pour générer des classes Active Record (enregistrement actif)

	Utiliser Gii pour générer du code mettant en œuvre les opérations CRUD pour une table de BDD

	Personnaliser le code généré par Gii

Démarrer Gii

Gii [https://www.yiiframework.com/extension/yiisoft/yii2-gii/doc/guide] est fourni dans Yii en tant que module. Vous pouvez activer Gii en le
configurant dans la propriété [[yii\base\Application::modules|modules]] de l’application. En fonction de la manière dont vous avez créé votre application, il se peut que le code suivant soit déjà fourni dans le fichier de configuration config/web.php:

$config = [...];

if (YII_ENV_DEV) {
 $config['bootstrap'][] = 'gii';
 $config['modules']['gii'] = [
 'class' => 'yii\gii\Module',
];
}

La configuration ci-dessus établit que dans un environnement de développement, l’application doit inclure un module appelé gii, qui est de classe [[yii\gii\Module]].

Si vous vérifiez le script de démarrage web/index.php de votre application, vous y trouverez les lignes suivantes, qui en gros, font que YII_ENV_DEV est défini à true (vrai).

defined('YII_ENV') or define('YII_ENV', 'dev');

Grâce à cette ligne, votre application est en mode développement, et active Gii, suivant la configuration vue ci-dessus. Vous pouvez maintenant accéder à Gii via l’URL suivante :

http://hostname/index.php?r=gii

Note : si vous accédez à Gii depuis une machine autre que localhost, l’accès sera refusé par défaut pour des raisons
de sécurité. Vous pouvez configurer Gii pour ajouter les adresses IP autorisées comme suit,

'gii' => [
 'class' => 'yii\gii\Module',
 'allowedIPs' => ['127.0.0.1', '::1', '192.168.0.*', '192.168.178.20'] // ajustez cela suivant vos besoins
],

[image: Gii]

Générer une Classe Active Record

Pour générer une classe Active Record avec Gii, sélectionnez le “Model Generator” (générateur de modèle), en cliquant sur le lien dans la page d’accueil de Gii, puis complétez le formulaire comme suit :

	Table Name: country

	Model Class: Country

[image: Générateur de Modèles]

Ensuite, cliquez sur le bouton “Preview” (prévisualiser). Vous verrez que models/Country.php est listé comme fichier de classe à créer. Vous pouvez cliquer sur le nom du fichier de classe pour prévisualiser son contenu.

Si vous avez déjà créé le même fichier, il sera écrasé. Cliquez sur le bouton diff
à côté du nom de fichier pour voir les différences entre le fichier à générer et la version existante.

[image: Prévisualisation du générateur de modèle]

Pour écraser un fichier existant, cochez la case située à côté de “overwrite” (écraser), puis cliquez sur le bouton “Generate” (générer). Pour créer un nouveau fichier, il suffit de cliquer sur “Generate”.

En fin d’opération, vous verrez une page de confirmation indiquant que le code a été généré avec succès. Si vous aviez un fichier existant, vous verrez également un message indiquant qu’il a été écrasé par le code nouvellement généré.

Générer du Code CRUD

CRUD signifie Create, Read, Update, and Delete (Créer, Lire, Mettre à Jour et Supprimer), soit les quatre tâches communes concernant des données sur la plupart des sites Web. Pour créer les fonctionnalités CRUD en utilisant Gii, sélectionnez le “CRUD Generator” en cliquant sur le lien dans la page d’accueil de Gii. Pour l’exemple de “country”, remplissez le formulaire résultant comme suit :

	Model Class: app\models\Country

	Search Model Class: app\models\CountrySearch

	Controller Class: app\controllers\CountryController

[image: CRUD Generator]

Ensuite, cliquez sur le bouton “Preview” (prévisualiser). Vous verrez une liste de fichiers à générer, comme ci-dessous.

[image: CRUD Generator Preview]

Si vous aviez précédemment créé les fichiers controllers/CountryController.php et
views/country/index.php (dans la section bases de données du guide), cochez la case “overwrite” (écraser) pour les remplacer.
(Les versions précédentes ne prenaient pas totalement en charge les fonctionnalités CRUD).

Essayer

Pour voir comment ça fonctionne, utilisez votre navigateur pour accéder à l’URL suivant :

http://hostname/index.php?r=country/index

Vous verrez une grille de données montrant les pays de la table de la base de données. Vous pouvez trier la table, ou lui appliquer des filtres en entrant des conditions de filtrage dans les entêtes de colonnes.

Pour chaque pays affiché dans la grille, vous pouvez choisir de visualiser les détails, le mettre à jour ou le supprimer.
Vous pouvez aussi cliquer sur le bouton “Create Country” (créer un pays) en haut de la grille pour que Yii vous présente un formulaire permettant de créer un nouveau pays.

[image: Grille de Données Pays]

[image: Mettre à Jour un Pays]

Ce qui suit est la liste des fichiers générés par Gii, au cas où vous souhaiteriez investiguer la manière dont ces fonctionnalités sont mises en œuvre, ou les personnaliser :

	Contrôleur: controllers/CountryController.php

	Modèles: models/Country.php et models/CountrySearch.php

	Vues: views/country/*.php

Info: Gii est conçu pour être un outil de génération de code hautement personnalisable et extensible. L’utiliser avec sagesse peut grandement accélérer le développement de vos applications. Pour plus de détails, merci de vous référer à la section Gii.

Résumé

Dans cette section, vous avez appris à utiliser Gii pour générer le code qui met en œuvre une fonctionnalité CRUD complète pour des contenus stockés dans une table de base de données.

 Hello World

Hello World

Cette section decrit la méthode pour créer une nouvelle page “Hello” dans votre application.
Pour ce faire, vous allez créer une action et une vue:

	L’application distribuera la requête à l’action

	et à son tour, l’action générera un rendu de la vue qui affiche le mot “Hello” à l’utilisateur.

A travers ce tutoriel, vous apprendrez trois choses :

	Comment créer une action pour répondre aux requêtes,

	comment créer une vue pour composer le contenu de la réponse, et

	comment une application distribue les requêtes aux actions.

Créer une Action

Pour la tâche “Hello”, vous allez créer une action dire qui reçoit un paramètre
message de la requête et affiche ce message à l’utilisateur. Si la requête ne fournit pas de paramètre message, l’action affichera le message par défaut “Hello”.

Info: Les actions sont les objets auxquels les utilisateurs peuvent directement se référer pour les exécuter. Les actions sont groupées par contrôleurs. Le résultat de l’exécution d’une action est la réponse que l’utilisateur recevra.

Les actions doivent être déclarées dans des contrôleurs. Par simplicité, vous pouvez déclarer l’action dire dans le contrôleur existant SiteController. Ce contrôleur est défini dans le fichier classe controllers/SiteController.php. Voici le début de la nouvelle action :

<?php

namespace app\controllers;

use yii\web\Controller;

class SiteController extends Controller
{
 // ...code existant...

 public function actionDire($message = 'Hello')
 {
 return $this->render('dire', ['message' => $message]);
 }
}

Dans le code ci-dessous, l’action dire est définie par une méthode nommée actionDire dans la classe SiteController.
Yii utilise le préfixe action pour faire la différence entre des méthodes actions et des méthodes non-actions dans une classe contrôleur.
Le nom suivant le préfixe action est associé à l’ID de l’action.

Quand vous choisissez le nom de vos actions, gardez à l’esprit comment Yii traite les IDs d’action. Les références aux IDs d’actions sont toujours effectuées en minuscules. Si un ID d’action nécessite plusieurs mots, ils seront concaténés à l’aide de tirets (par exemple creer-commentaire). Les noms de méthodes actions sont associés aux IDs d’actions en retirant tout tiret des IDs, en mettant la première lettre de chaque mot en majuscule, et en ajoutant un préfixe action au résultat. Par exemple,
l’ID d’action creer-commentaire correspond à l’action nommée actionCreerCommentaire.

La méthode action de notre exemple prend un paramètre $message, dont la valeur par défaut est "Hello" (de la même manière qu’on affecte une valeur par défaut à n’importe quel argument de fonction ou méthode en PHP). Quand l’application reçoit une requête et détermine que l’action dire est responsable de gérer ladite requête, l’application peuplera ce paramètre avec le paramètre du même nom trouvé dans la requête. En d’autres termes, si la requête contient un paramètre message ayant pour valeur "Goodbye", la variable $message au sein de l’action recevra cette valeur.

Au sein de la méthode action, [[yii\web\Controller::render()|render()]] est appelé pour effectuer le rendu d’un fichier vue appelé dire. Le paramètre message est également transmis à la vue afin qu’il puisse y être utilisé. Le résultat du rendu est renvoyé à l’utilisateur par la méthode action. Ce résultat sera reçu par l’application et présenté à l’utilisateur dans le navigateur (en tant qu’élément d’une page HTML complète).

Créer une Vue

Les vues sont des scripts qu’on écrit pour générer le contenu d’une réponse.
Pour la tâche “Hello”, vous allez créer une vue dire qui affiche le paramètre message reçu de la méthode action, et passé par l’action à la vue :

<?php
use yii\helpers\Html;
?>
<?= Html::encode($message) ?>

La vue dire doit être enregistrée dans le fichier views/site/dire.php. Quand la méthode [[yii\web\Controller::render()|render()]]
est appelée dans une action, elle cherchera un fichier PHP nommé views/ControllerID/NomDeLaVue.php.

Notez que dans le code ci-dessus, le paramètre message est [[yii\helpers\Html::encode()|Encodé-HTML]]
avant d’être affiché. Cela est nécessaire car le paramètre vient de l’utilisateur, le rendant vulnérable aux attaques cross-site scripting (XSS) [http://fr.wikipedia.org/wiki/Cross-site_scripting] en intégrant du code Javascript malicieux dans le paramètre.

Bien entendu, vous pouvez insérer plus de contenu dans la vue dire. Le contenu peut être des tags HTMML, du texte brut, ou même des expressions PHP.
En réalité, la vue dire est simplement un script PHP exécuté par la méthode [[yii\web\Controller::render()|render()]].
Le contenu affiché par le script de vue sera renvoyé à l’application en tant que résultat de réponse. L’application renverra à son tour ce résultat à l’utilisateur.

Essayer

Après avoir créé l’action et la vue, vous pouvez accéder à la nouvelle page en accédant à l’URL suivant :

http://hostname/index.php?r=site/dire&message=Hello+World

[image: Hello World]

Le résultat de cet URL sera une page affichant “Hello World”. La page a les mêmes entête et pied de page que les autres pages de l’application.

Si vous omettez le paramètre message dans l’URL, La page devrait simplement afficher “Hello”. C’est parce que message est passé en paramètre de la méthode actionDire(), et quand il est omis, la valeur par défaut "Hello" sera employée à la place.

Info: L nouvelle page a les mêmes entête et pied de page que les autres pages parce que la méthode [[yii\web\Controller::render()|render()]] intègrera automatiquement le résultat de la vue dire dans une pseudo mise en page qui dans notre cas est située dans views/layouts/main.php.

Le paramètre r dans l’URL ci-dessus nécessite plus d’explications. Il signifie route, un ID unique commun toute l’application qui fait référence à une action. Le format de la route est IDContrôleur/IDAction. Quand l’application reçoit une requête, elle vérifie ce paramêtre, en utilisant la partie IDContrôleur pour déterminer quel classe contrôleur doit être instanciée pour traiter la requête. Ensuite, le contrôleur utilisera la partie IDAction pour déterminer quelle action doit être instanciée pour effectuer le vrait travail. Dans ce cas d’exemple, la route site/dire
sera comprise comme la classe contrôleur SiteController et l’action dire. Il en resultera que la méthode SiteController::actionDire() sera appelée pour traiter la requête.

Info: De même que les actions, les contrôleurs ont des IDs qui les identifient de manière unique dans une application.
Les IDs de contrôleurs emploie les mêmes règles de nommage que les IDs d’actions. Les noms de classes Contrôleurs dérivent
des IDs de contrôleurs en retirant les tirets des IDs, en mettant la première lettre de chaque mot en majuscule,
et en suffixant la chaîne résultante du mot Controller. Par exemple, l’ID de contrôlleur poster-commentaire correspond
au nom de classe contrôleur PosterCommentaireController.

Résumé

Dans cette section, vous avez touché aux parties contrôleur et vue du patron de conception MVC.
Vous avez créé une action au sein d’un contrôleur pour traiter une requête spécifique. Vous avez également créé une vue pour composer le contenu de la réponse. Dans ce simple exemple, aucun modèle n’a été impliqué car les seules données utilisées étaient le paramètre message.

Vous avez également appris ce que sont les routes dans Yii, qu’elles font office de pont entre les requêtes utilisateur et les actions des contrôleurs.

Dans la prochaine section, vous apprendrez comment créer un modèle, et ajouter une nouvelle page contenant un formulaire HTML.

 Installer Yii

Installer Yii

Vous pouvez installer Yii de deux façons, en utilisant le gestionnaire de paquets Composer [https://getcomposer.org/] ou en téléchargeant une archive.
La première méthode est conseillée, étant donné qu’elle permet d’installer de nouvelles extensions ou de mettre Yii à jour en exécutant simplement une commande.

Les installations standard de Yii provoquent le téléchargement et l’installation d’un modèle de projet. Un modèle de projet et un projet Yii fonctionnel qui met en œuvre quelques fonctionnalités de base, telles que la connexion, le formulaire de contact, etc.
Son code est organisé de la façon recommandée. En conséquence, c’est un bon point de départ pour vos propres projets.

Dans cette section et quelques-unes de ses suivantes, nous décrirons comment installer Yii avec le modèle baptisé Basic Project Template (modèle de projet de base) et comment mettre en œuvre de nouvelles fonctionnalités sur cette base. Yii vous offre également un autre modèle de projet appelé Advanced Project Template [https://www.yiiframework.com/extension/yiisoft/yii2-app-advanced/doc/guide] (modèle de projet avancé) qui convient mieux à un environnement de développement en équipe impliquant des tiers multiples.

Note: le modèle de projet de base conviendra à 90 pourcent des application Web. Il diffère du modèle de projet avancé essentiellement sur la manière dont le code est organisé. Si vous débutez avec Yii, nous vous conseillons fortement de vous en tenir au modèle de projet de base pour sa simplicité tout en disposant des fonctionnalités suffisantes.

Installer via Composer

###Installer Composer

Si vous n’avez pas déjà installé Composer, vous pouvez le faire en suivant les instructions du site getcomposer.org [https://getcomposer.org/download/].
Sous Linux et Mac OS X, vous pouvez exécuter les commandes :

 curl -sS https://getcomposer.org/installer | php
 mv composer.phar /usr/local/bin/composer

Sous Windows, téléchargez et exécutez Composer-Setup.exe [https://getcomposer.org/Composer-Setup.exe].

En cas de problèmes, consultez la section Troubleshooting (résolution des problèmes) de la documentation de Composer [https://getcomposer.org/doc/articles/troubleshooting.md],

Si vous débutez avec Composer, nous vous recommandons au minimum la lecture de la section Basic usage (utilisation de base) [https://getcomposer.org/doc/01-basic-usage.md] de la documentation de Composer

Dans ce guide, toutes les commandes de Composer suppose que vous avez installé Composer globalement [https://getcomposer.org/doc/00-intro.md#globally] et qu’il est disponible par la commande composer. Si, au lieu de cela, vous utilisez composer.phar depuis un dossier local, vous devez adapter les exemples fournis en conséquence.

Si Composer était déjà installé auparavant, assurez-vous d’utiliser une version à jour. Vous pouvez mettre Composer à jour avec la commande composer self-update.

Note: durant l’installation de Yii, Composer aura besoin d’obtenir de nombreuses informations de l’API de Github. Le nombre de requêtes dépend du nombre de dépendances de votre application et peut excéder la Github API rate limit. Si vous arrivez à cette limite, Composer peut vous demander vos identifiants de connexion pour obtenir un jeton d’accès à l’API de Github. Avec une connexion rapide, vous pouvez atteindre cette limite plus vite que Composer n’est capable de gérer. C’est pourquoi, nous vous recommandons de configurer ce jeton d’accès avant d’installer Yii.
Reportez-vous à la documentation de Composer sur les jetons de l’API Github [https://getcomposer.org/doc/articles/troubleshooting.md#api-rate-limit-and-oauth-tokens]
pour savoir comment procéder.

###Installer Yii

Avec Composer installé, vous pouvez installer le modèle de projet Yii en exécutant la commande suivante dans un dossier accessible via le Web :

 composer create-project --prefer-dist yiisoft/yii2-app-basic basic

Cette commande installera la dernière version stable du modèle de projet Yii dans le dossier basic. Vous êtes libre de choisir un autre dossier si vous le désirez.

Note: si la commande composer create-project échoue, reportez-vous à la section
Troubleshooting (résolution des problèmes) de la documentation de Composer [https://getcomposer.org/doc/articles/troubleshooting.md]
pour les erreurs communes. Une fois l’erreur corrigée, vous pouvez reprendre l’installation avortée en exécutant composer update dans le dossier basic (ou celui que vous aviez choisi).

Tip: si vous souhaitez installer la dernière version de développement de Yii, vous pouvez utiliser la commande suivante qui ajoutera l’option stability [https://getcomposer.org/doc/04-schema.md#minimum-stability] :

 composer create-project --prefer-dist --stability=dev yiisoft/yii2-app-basic basic

Notez que la version de développement de Yii ne doit pas être utilisée en production, vu qu’elle pourrait casser votre code existant.

Installer depuis une archive

Installer Yii depuis une archive se fait en trois étapes :

	Télécharger l’archive sur le site yiiframework.com [http://www.yiiframework.com/download/].

	Décompresser l’archive dans un dossier accessible via le Web.

	Modifier le fichier config/web.php en entrant une clé secrète pour la configuration de cookieValidationKey (cela est fait automatiquement si vous installez Yii avec Composer) :

 // !!! insert a secret key in the following (if it is empty) - this is required by cookie validation
 'cookieValidationKey' => 'enter your secret key here',

Autres options d’installation

Les instructions d’installation ci-dessus montrent comment installer Yii, ce qui installe également une application Web de base qui fonctionne out of the box (sans configuration supplémentaire).
Cette approche est un bon point de départ pour les petits projets, en particulier si vous débutez avec Yii.

Mais il y a d’autres options d’installation disponibles :

	Si vous voulez installer uniquement le framework et que vous souhaitez créer une application à partir de zéro, vous pouvez suivre les instructions dans la partie Créer votre propre structure d’application.

	Si vous voulez commencer par une application plus sophistiquée, mieux adaptée aux environnements d’équipe de développement, vous pouvez envisager l’installation du Modèle d’application avancée [https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/README.md].

Installer les Assets (ici bibliothèques CSS et JavaScript)

Yii s’appuie sur les paquets Bower [http://bower.io/] et/ou NPM [https://www.npmjs.org/] pour l’installation des bibliothèques CSS et JavaScript.

Il utilise Composer pour les obtenir, permettant ainsi aux versions de paquet de PHP et à celles de CSS/JavaScript, d’être résolues en même temps.
Cela peut être obtenue soit en utilisant asset-packagist.org [https://asset-packagist.org] ou composer asset plugin [https://github.com/francoispluchino/composer-asset-plugin/].

Reportez-vous à la documentation sur les Assets pour plus de détail.

Vous pouvez souhaiter gérer vos « assets », soit via le client natif Bower/NPM, soit via CDN, soit éviter totalement leur installation.
Afin d’empêcher l’installation des « assets » via Composer, ajoutez les lignes suivantes à votre fichier ‘composer.json’ :

"replace": {
 "bower-asset/jquery": ">=1.11.0",
 "bower-asset/inputmask": ">=3.2.0",
 "bower-asset/punycode": ">=1.3.0",
 "bower-asset/yii2-pjax": ">=2.0.0"
},

Note: en cas de neutralisation de l’installation des « assets » via Composer, c’est à vous d’en assurer l’installation et de résoudre les problèmes de collision de versions. Attendez-vous à des incohérences possibles parmi les fichiers d’assets issus de vos différentes extensions.

Vérifier l’installation

Après l’installation, vous pouvez, soit configurer votre serveur Web (voir section suivante), soit utiliser le serveur PHP web incorporé [https://secure.php.net/manual/fr/features.commandline.webserver.php] en utilisant la commande en console suivante depuis le dossier web de votre projet :

php yii serve

Note: par défaut le serveur HTTP écoute le port 8080. Néanmoins, si ce port est déjà utilisé ou si vous voulez servir plusieurs applications de cette manière, vous pouvez spécifier le port à utiliser en ajoutant l’argument –port à la commande :

php yii serve --port=8888

Pour accéder à l’application Yii pointez votre navigateur sur l’URL suivante :

http://localhost:8080/

[image: Successful Installation of Yii]

Vous devriez voir dans votre navigateur la page ci-dessus. Sinon, merci de vérifier que votre installation remplit bien les pré-requis de Yii. Vous pouvez vérifier cela en utilisant l’une des approches suivantes :

	Utilisez un navigateur pour accéder à l’URL http://localhost/basic/requirements.php

	Exécutez les commandes suivantes:

cd basic
php requirements.php

Vous devez configurer votre installation de PHP afin qu’elle réponde aux exigences minimales de Yii. Le plus important étant que vous ayez PHP 5.4 ou plus, idéalement PHP 7. Si votre application a besoin d’une base de données, vous devez également installer l’extension PHP PDO [http://www.php.net/manual/fr/pdo.installation.php] ainsi qu’un pilote correspondant à votre système de base de données (par exemple pdo_mysql pour MySQL).

Configuration du serveur Web

Note: si vous voulez juste tester Yii sans intention de l’utiliser sur un serveur de production, vous pouvez ignorer ce paragraphe.

L’application installée selon les instructions ci-dessus devrait fonctionner out of the box (sans configuration supplémentaire) avec le serveur HTTP Apache [http://httpd.apache.org/] ou le serveur HTTP Nginx [http://nginx.org/], sous Windows, Mac OX X, ou Linux avec PHP 5.4 ou plus récent. Yii 2.0 est aussi compatible avec
HHVM [http://hhvm.com/] de Facebook. Cependant, il existe des cas marginaux pour lesquels HHVM se comporte différemment du PHP natif; c’est pourquoi vous devez faire plus attention en utilisant HHVM..

Sur un serveur de production, vous pouvez configurer votre serveur Web afin que l’application soit accessible via l’URL http://www.example.com/index.php au lieu de http://www.example.com/basic/web/index.php. Cela implique que le dossier racine de votre serveur Web pointe vers le dossier basic/web.
Vous pouvez également cacher index.php dans l’URL, comme décrit dans la partie Génération et traitement des URL, vous y apprendrez comment configurer votre serveur Apache ou Nginx pour atteindre ces objectifs.

Note: en utilisant basic/web comme dossier racine, vous empêchez également aux utilisateurs finaux d’accéder à votre code d’application privé et fichiers de données sensibles qui sont stockés dans le dossier basic. Refuser l’accès à ces ressources est une amélioration de la sécurité.

Note: si votre application s’exécute dans un environnement d’hébergement mutualisé où vous n’avez pas la permission de modifier la configuration du serveur Web, vous pouvez ajuster la structure de votre application pour une meilleure sécurité. Reportez-vous à la partie Environnement d’hébergement mutualisé pour en savoir plus.

Note: si vous exécutez votre application Yii derrière un mandataire inverse, vous pourriez avoir besoin de configurer les
mandataires de confiance et entêtes dans le composant « request ».

Configuration Apache recommandée

Utilisez la configuration suivante dans le fichier httpd.conf, ou dans la configuration de votre hôte virtuel. Notez que vous devez remplacer path/to/basic/web par le chemin vers le dossier basic/web.

Configuration du dossier racine
DocumentRoot "path/to/basic/web"

<Directory "path/to/basic/web">
 # utiliser mod_rewrite pour la prise en charge des URL élégantes ("pretty URL")
 RewriteEngine on

 # Si le dossier ou fichier existe, répondre directement
 RewriteCond %{REQUEST_FILENAME} !-f
 RewriteCond %{REQUEST_FILENAME} !-d
 # Sinon on redirige vers index.php
 RewriteRule . index.php

 # si $showScriptName est à "false" dans UrlManager, ne pas autoriser l'accès aux URL incluant le nom du script
 RewriteRule ^index.php/ - [L,R=404]

 # ...other settings...
</Directory>

Configuration Nginx recommandée

Pour utiliser Nginx, vous devez avoir installé PHP en utilisant FPM SAPI [http://php.net/install.fpm].
Utilisez la configuration Nginx suivante, en remplaçant path/to/basic/web par le chemin vers le dossier basic/web et mysite.test par le nom d’hôte de votre serveur.

server {
 charset utf-8;
 client_max_body_size 128M;

 listen 80; ## listen for ipv4
 #listen [::]:80 default_server ipv6only=on; ## listen for ipv6

 server_name mysite.test;
 root /path/to/basic/web;
 index index.php;

 access_log /path/to/basic/log/access.log;
 error_log /path/to/basic/log/error.log;

 location / {
 # Rediriger tout ce qui n'est pas un fichier réel index.php
 try_files $uri $uri/ /index.php$is_args$args;
 }

 # enlevez les commentaires de ces lignes pour évitez que Yii ne gère les requêtes vers des fichiers statiques inexistants
 #location ~ \.(js|css|png|jpg|gif|swf|ico|pdf|mov|fla|zip|rar)$ {
 # try_files $uri =404;
 #}
 #error_page 404 /404.html;

 # refuser l'accès aux fichiers php pour le dossier /assets
 location ~ ^/assets/.*\.php$ {
 deny all;

 location ~ \.php$ {
 include fastcgi.conf;
 fastcgi_pass 127.0.0.1:9000;
 #fastcgi_pass unix:/var/run/php5-fpm.sock;
 }

 location ~ /\.(ht|svn|git) {
 deny all;
 }
}

Lorsque vous utilisez cette configuration, vous devez aussi mettre l’option cgi.fix_pathinfo=0 dans le fichier php.ini afin d’éviter de nombreux appels système à stat().

Notez également que lors de l’utilisation d’un serveur HTTPS, vous devez ajouter l’option fastcgi_param HTTPS on; afin que Yii puisse détecter correctement si une connexion est sécurisée.

 En savoir plus

En savoir plus

Si vous avez entièrement lu la section “Mise en Route”, vous avez maintenant créé une application Yii complète. Ce faisant, vous avez appris comment mettre en œuvre des fonctionnalités couramment utilisées, telles que recueillir des données d’un utilisateur via un formulaire HTML, chercher des données dans une base de données, et afficher des données
de manière paginée. Vous avez également appris à utiliser Gii [https://www.yiiframework.com/extension/yiisoft/yii2-gii/doc/guide] pour générer du code automatiquement.
Utiliser Gii pour générer du code rend le gros de votre processus de développement Web aussi simple que de remplir de
simples formulaires.

Cette section va résumer les ressources Yii disponibles pour vous aider à être plus productif dans l’utilisation du framework.

	Documentation

	Le Guide complet [http://www.yiiframework.com/doc-2.0/guide-README.html] :
Comme son nom l’indique, le guide définit précisément comment Yii fonctionne et fournit des instructions générales
sur l’utilisation de Yii. C’est le tutoriel pour Yii le plus important, un que vous devriez lire avant d’écrire le
moindre code Yii.

	Le référentiel des Classes [http://www.yiiframework.com/doc-2.0/index.html] :
Il spécifie le mode d’utilisation de toutes les classes fournies par Yii. Il doit être principalement utilisé lorsque
vous écrivez du code et souhaitez comprendre le mode d’utilisation d’une classe, méthode ou propriété particulière.
L’utilisation du référentiel des classes est plus appropriée quand vous avez une compréhension contextuelle du framework entier.

	Les Articles du Wiki [http://www.yiiframework.com/wiki/?tag=yii2]:
Les articles wiki sont écrits par des utilisateurs de Yii sur la base de leurs propres expériences. Ils sont en
général écrits comme des recettes de cuisine, et montrent comment résoudre des problèmes pratiques en utilisant
Yii. Bien que la qualité de ces articles puisse être moindre que celle du Guide complet, ils sont utiles du fait
qu’ils couvrent des sujets plus vastes et peuvent fournir des solutions clef-en-main.

	Livres [http://www.yiiframework.com/doc/]

	Extensions [http://www.yiiframework.com/extensions/]:
Yii est fort d’une librairie de milliers d’extensions créées par les utilisateurs, qui peuvent être facilement
ajoutées à votre application, rendant son développement encore plus facile et plus rapide.

	Communauté

	Forum : http://www.yiiframework.com/forum/

	Chat IRC : Les canal #yii sur le réseau freenode (irc://irc.freenode.net/yii)

	Slack chanel: https://yii.slack.com

	Gitter chat: https://gitter.im/yiisoft/yii2

	GitHub: https://github.com/yiisoft/yii2

	Facebook: https://www.facebook.com/groups/yiitalk/

	Twitter: https://twitter.com/yiiframework

	LinkedIn: https://www.linkedin.com/groups/yii-framework-1483367

	Stackoverflow: http://stackoverflow.com/questions/tagged/yii2

 Que devez-vous connaître

Que devez-vous connaître

La courbe d’apprentissage de Yii n’est pas aussi raide que celle des autres framework. Cependant, il y a un certain nombre de choses que vous devriez connaître avant de vous lancer avec Yii.

PHP

Yii un framework (base structurée de développement) en PHP. C’est pourquoi vous devez vous assurer de maîtriser ce langage en comprenant sa référence [http://php.net/manual/fr/langref.php].
Lors de votre développement avec Yii, vous écrirez du code dans le style « orienté objet ». Vous devez donc être familiarisé avec les Classes et Objets [https://secure.php.net/manual/fr/language.oop5.basic.php], ainsi qu’avec les espaces de noms [https://secure.php.net/manual/fr/language.namespaces.php].

Programmation orientée Objet

Une compréhension de base de la programmation orientée objet est requise. Si vous n’êtes pas familiarisé avec elle, orientez-vous vers l’un des nombreux tutoriels disponibles tels que celui de tuts+ [https://code.tutsplus.com/tutorials/object-oriented-php-for-beginners--net-12762].

Notez que plus votre application sera complexe, plus vous devrez en savoir pour gérer cette complexité avec succès.

Ligne de commande et composer

Yii utilise abondamment le gestionnaire de paquet Composer [https://getcomposer.org/] qui est un standard de fait. Vous devez donc lire et comprendre son guide [https://getcomposer.org/doc/01-basic-usage.md]. Si vous n’êtes pas encore familiarisé avec la ligne de commande, c’est le moment de vous y essayer. Une fois les bases acquises, vous ne saurez plus vous en passer.

 Fonctionnement des applications

Fonctionnement des applications

Après avoir installé Yii, vous obtenez une application Yii fonctionnelle accessible via l’URL http://hostname/basic/web/index.php ou http://hostname/index.php, en fonction
de votre configuration. Cette section vous initiera aux fonctionnalités intégrées à l’application,
à la manière dont le code est organisé et à la gestion des requêtes par l’application.

Info: pour simplifier, au long de ce tutoriel de démarrage, nous supposerons que basic/web est la racine de votre
serveur Web, et que vous avez configuré l’URL pour accéder à votre application comme suit ou de façon similaire :
http://hostname/index.php.
Pour vos besoins, merci d’ajuster les URLs dans notre description comme il convient.

Notez que contrairement au framework lui-même, après avoir installé un modèle de projet, vous êtes entièrement libre d’en disposer. Vous êtes libre d’ajouter ou de supprimer du code selon vos besoins.

Fonctionnalité

L’application basique installée contient quatre pages :

	La page d’accueil, affichée quand vous accédez à l’URL http://hostname/index.php,

	la page “About” (À Propos),

	la page “Contact”, qui présente un formulaire de contact permettant aux utilisateurs finaux de vous contacter par courriel,

	et la page “Login” (Connexion), qui présente un formulaire de connexion qui peut être utilisé pour authentifier des utilisateurs finaux. Essayez de vous connecter
avec “admin/admin”, et vous verrez l’élément “Login” du menu principal être remplacé par “Logout” (Déconnexion).

Ces pages ont en commun une entête et un pied de page. L’entête contient une barre de menu principal qui permet la navigation
entre les différentes pages.

Vous devriez également voir une barre d’outils en bas de votre fenêtre de navigation.
C’est un outil de débogage [https://github.com/yiisoft/yii2-debug/blob/master/docs/guide/README.md] utile fourni par Yii pour enregistrer et afficher de nombreuses informations de débogage, telles que des messages de journaux, les statuts de réponses, les requêtes lancées vers la base de données, etc.

En plus de l’application Web, il existe,dans le dossier de base de l’application, un script en console appelé yii. Ce script peut être utilisé pour exécuter des tâches de fond et de maintenance pour l’application; ces tâches sont décrites à la section Applications en console.

Structure de l’application

Les répertoires et fichiers les plus importants de votre application sont (en supposant que le répertoire racine de l’application est basic) :

basic/ chemin de base de l'application
 composer.json utilisé par Composer, décrit les information de paquets
 config/ contient les configurations de l'application et autres
 console.php configuration de l'application console
 web.php configuration de l'application Web
 commands/ contient les classes de commandes console
 controllers/ contient les classes de contrôleurs
 models/ contient les classes de modèles
 runtime/ contient les fichiers générés par Yii au cours de l'exécution, tels que les fichiers de logs ou de cache and cache
 vendor/ contient les paquets Composer installés, y compris le framework Yii
 views/ contient les fichiers de vues
 web/ racine Web de l'application, contient les fichiers accessibles via le Web
 assets/ contient les fichiers assets (javascript et css) publiés par Yii
 index.php le script de démarrage (ou bootstrap) pour l'application
 yii le script d'exécution de Yii en commande console

Dans l’ensemble, les fichiers de l’application peuvent être séparés en deux types : ceux situés dans basic/web et ceux situés dans d’autres répertoires. Les premiers peuvent être atteints directement en HTTP (c’est à dire dans un navigateur), tandis que les seconds ne peuvent et ne doivent pas l’être.

Yii est mis en œuvre selon le modèle de conception modèle-vue-contrôleur (MVC) [http://wikipedia.org/wiki/Model-view-controller],
ce qui se reflète dans l’organisation des répertoires ci-dessus. Le répertoire models contient toutes les classes modèles,
le répertoire views contient tous les scripts de vue, et le répertoire controllers contient toutes les classes contrôleurs.

Le schéma suivant présente la structure statique d’une application.

[image: Structure Statique d'Application]

Chaque application dispose d’un script de démarrage web/index.php qui est le seul script PHP de l’application accessible depuis le Web.
Le script de démarrage reçoit une requête entrante et crée une instance d’application pour la traiter.
L’application résout la requête avec l’aide de ses composants,
et distribue la requête aux éléments MVC. Les composants graphiques (widgets) sont utilisés dans les vues
pour aider à créer des éléments d’interface complexes et dynamiques.

Cycle de vie d’une requête

Le diagramme suivant présente la manière dont une application traite une requête.

[image: Cycle de vie d'une requête]

	Un utilisateur fait une requête au script de démarrage web/index.php.

	Le script de démarrage charge la configuration de l’application et crée une instance d’application pour traiter la requête.

	L’application résout la route requise avec l’aide du composant d’application requête.

	L’application créé une instance de contrôleur pour traiter la requête.

	Le contrôleur crée une instance d’action et applique les filtres pour l’action.

	Si un filtre échoue, l’action est annulée.

	Si tous les filtres sont validés, l’action est exécutée.

	L’action charge un modèle de données, potentiellement depuis une base de données.

	L’action génère une vue, lui fournissant le modèle de données.

	Le résultat généré est renvoyé au composant d’application response.

	Le composant « response » (réponse) envoie le résultat généré au navigateur de l’utilisateur.

 Composants d’application

Composants d’application

Les applications sont des (localisateurs de services (service locators). Elles hébergent un jeu composants appelés « composants d’application » qui procurent différents services pour la prise en charge des requêtes. Par exemple, le composant urlManager (gestionnaire d’url) est chargé de router les requêtes Web vers les contrôleurs appropriés ; le composant db (base de données) fournit les services relatifs à la base de données ; et ainsi de suite.

Chaque composant d’application possède un identifiant unique qui le distingue des autres composants d’application de la même application. Vous pouvez accéder à un composant d’application via l’expression :

\Yii::$app->componentID

Par exemple, vous pouvez utiliser \Yii::$app->db pour obtenir la [[yii\db\Connection|connexion à la base de données]], et \Yii::$app->cache pour accéder au [[yii\caching\Cache|cache primaire]] enregistré dans l’application.

Un composant d’application est créé la première fois qu’on veut y accéder en utilisant l’expression ci-dessus. Les accès ultérieurs retournent la même instance du composant.

Les composants d’application peuvent être n’importe quel objet. Vous pouvez les enregistrer en configurant la propriété [[yii\base\Application::components]] dans la configuration de l’application.

Par exemple,

[
 'components' => [
 // enregistre le composant "cache" à partir du nom de classe
 'cache' => 'yii\caching\ApcCache',

 // enregistre le composant "db" à l'aide d'un tableau de configuration
 'db' => [
 'class' => 'yii\db\Connection',
 'dsn' => 'mysql:host=localhost;dbname=demo',
 'username' => 'root',
 'password' => '',
],

 // enregistre le composant "search" en utilisant une fonction anonyme
 'search' => function () {
 return new app\components\SolrService;
 },
],
]

Info: bien que vous puissiez enregistrer autant de composants d’application que vous le désirez, vous devriez le faire avec discernement. Les composants d’application sont comme les variables globales, une utilisation trop importante de composants d’application est susceptible de rendre votre code plus difficile à tester et à maintenir. Dans beaucoup de cas, vous pouvez simplement créer un composant localement et l’utiliser lorsque vous en avez besoin.

Composants du processus d’amorçage

Comme il a été dit plus haut, un composant d’application n’est instancié que lorsqu’on y accède pour la première fois. S’il n’est pas du tout accédé dans le traitement de la requête, il n’est pas instancié. Parfois, vous désirez peut être instancier un composant d’application pour chacune des requêtes, même s’il n’est pas explicitement accédé.
Pour cela, vous pouvez lister son identifiant (ID) dans la propriété [[yii\base\Application::bootstrap|bootstrap]] de l’application.

Vous pouvez également utiliser des « Closures » (Fermetures) pour amorcer des composants personnalisés. Il n’est pas nécessaire de retourner une instance de composant. Une « Closure » peut également être utilisée pour exécuter du code après l’instanciation de [[yii\base\Application]].

Par exemple, la configuration d’application suivante garantit que le composant log est toujours chargé.

[
 'bootstrap' => [
 'log',
 function($app){
 return new ComponentX();
 },
 function($app){
 // some code
 return;
 }
],
 'components' => [
 'log' => [
 // configuration le composant "log"
],
],
]

Composants d’application du noyau

Yii définit un jeu de composants d’application dit core application components (composants d’application du noyau ou du cœur) avec des identifiants fixés et des configurations par défaut. Par exemple, le composant [[yii\web\Application::request|request (requête)]] est utilisé pour collecter les informations sur une requête utilisateur et la résoudre en une route; le composant [[yii\base\Application::db|db (base de données)]] représente une connexion à une base de données à l’aide de laquelle vous pouvez effectuer des requêtes de base de données. C’est à l’aide des ces composants d’application du noyau que les applications Yii sont en mesure de prendre en charge les requêtes des utilisateurs.

Vous trouverez ci-après la liste des composants d’application prédéfinis du noyau. Vous pouvez les configurer et les personnaliser comme tout composant d’application. Lorsque vous configurez une composant d’application du noyau, vous n’avez pas besoin de spécifier sa classe, celle par défaut est utilisée.

	[[yii\web\AssetManager|assetManager (gestionnaire de ressources]]: gère les paquets de ressources et la publication des ressources.
Reportez-vous à la section Ressources pour plus de détails.

	[[yii\db\Connection|db (base de données)]]: représente une connexion à une base de données à l’aide de laquelle vous pouvez effectuer des requêtes de base de données.
Notez que lorsque vous configurez ce composant, vous devez spécifier la classe de composant tout comme les autres propriétés de composant, telle que [[yii\db\Connection::dsn]].
Reportez-vous à la section Objets d’accès aux bases de données pour plus de détails.

	[[yii\base\Application::errorHandler|errorHandler (gestionnaire d’erreurs)]]: gère les erreurs PHP et les exceptions.
Reportez-vous à la section Gestion des erreurs pour plus de détails.

	[[yii\i18n\Formatter|formatter]]: formate les données lorsqu’elles sont présentées à l’utilisateur final. Par exemple, un nombre peut être affiché avec un séparateur de milliers, une date affichée dans un format long, etc.
Reportez-vous à la section Formatage des données pour plus de détails.

	[[yii\i18n\I18N|i18n]]: prend en charge la traduction et le formatage des messages.
Reportez-vous à la section Internationalisation pour plus de détails.

	[[yii\log\Dispatcher|log]]: gère les journaux cibles.
Reportez-vous à la section Journaux pour plus de détails.

	[[yii\swiftmailer\Mailer|mailer]]: prend en charge la composition et l’envoi des courriels.
Reportez-vous à la section Mailing pour plus de détails.

	[[yii\base\Application::response|response]]: représente la réponse qui est adressée à l’utilisateur final.
Reportez-vous à la section Réponses pour plus de détails.

	[[yii\base\Application::request|request]]: représente la requête reçue de l’utilisateur final.
Reportez-vous à la section Requests pour plus de détails.

	[[yii\web\Session|session]]: représente les informations de session. Ce composant n’est disponible que dans les [[yii\web\Application|applications Web]].
Reportez-vous à la section Sessions et Cookies pour plus de détails.

	[[yii\web\UrlManager|urlManager (gestionnaire d’url)]]: prend en charge l’analyse des URL et leur création.
Reportez-vous à la section Routage et création d’URL pour plus de détails.

	[[yii\web\User|user]]: représente les informations d’authentification de l’utilisateur. Ce composant n’est disponible que dans les [[yii\web\Application|applications Web]].
Reportez-vous à la section Authentification pour plus de détails.

	[[yii\web\View|view]]: prend en charge le rendu des vues.
Reportez-vous à la section Vues pour plus de détails.

 Applications

Applications

Les Applications sont des objets qui gouvernent la structure d’ensemble et le cycle de vie des systèmes mettant en œuvre Yii.
Chacun des systèmes mettant en œuvre Yii contient un objet Application unique qui est créé par le Script d’entrée et est globalement accessible à l’aide de l’expression \Yii::$app.

Info: selon le contexte, lorsque nous utilisons le terme « application », cela peut signifier soit un objet Application, soit un système mettant en œuvre Yii.

Il existe deux types d’application : [[yii\web\Application|les applications Web]] et
[[yii\console\Application|les applications de console]]. Comme leur nom l’indique, les premières prennent en charge des requêtes Web tandis que les deuxièmes prennent en charge des requêtes de la console.

Configurations d’application

Lorsqu’un script d’entrée crée une application, il charge une configuration et l’applique à cette application de la manière suivante :

require __DIR__ . '/../vendor/autoload.php';
require __DIR__ . '/../vendor/yiisoft/yii2/Yii.php';

// charger la configuration de l'application
$config = require __DIR__ . '/../config/web.php';

// instancier et configurer l'application
(new yii\web\Application($config))->run();

Tout comme les configurations habituelles, les configurations d’application spécifient comment initialiser les propriétés des objets Application. Comme les configurations d’application sont souvent très complexes, elles sont ordinairement conservées dans des fichiers de configuration,
tels que le fichier web.php de l’exemple précédent.

Propriétés des applications

Il y a de nombreuses propriétés importantes des applications que vous devez spécifier dans les configurations d’application.
Ces propriétés décrivent l’environnement dans lequel ces applications sont exécutées. Par exemple, les applications doivent savoir comment charger les contrôleurs, où ranger les fichiers temporaires, etc. Nous allons passer en revue ces propriétés.

Propriétés requises

Dans toute application, vous devez au moins spécifier deux propriétés :: [[yii\base\Application::id|id]] et [[yii\base\Application::basePath|basePath]].

[[yii\base\Application::id|id]]

La propriété [[yii\base\Application::id|id]] spécifie un identifiant unique qui distingue une application des autres. On l’utilise principalement dans des instructions. Bien que cela ne soit pas une exigence, l’utilisation des seuls caractères alphanumériques, pour spécifier cet identifiant, est recommandée pour assurer une meilleure interopérabilité.

[[yii\base\Application::basePath|basePath]]

La propriété [[yii\base\Application::basePath|basePath]] spécifie le dossier racine d’une application. Il s’agit du dossier qui contient tout le code source protégé d’une application mettant en œuvre Yii. Dans ce dossier, on trouve généralement des sous-dossiers tels que models, views etcontrollers, qui contiennent le code source correspondant au modèle de conception MVC.

Vous pouvez configurer la propriété [[yii\base\Application::basePath|basePath]] en utilisant un chemin de dossier
ou un alias de chemin. Dans les deux cas, le dossier correspondant doit exister,
sinon une exception est levée. Le chemin doit être normalisé à l’aide de la fonction realpath().

La propriété [[yii\base\Application::basePath|basePath]] est souvent utilisée pour dériver d’autres chemins importants
(p. ex. le chemin runtime). À cette fin, un alias nommé @app est prédéfini pour représenter ce chemin.
Les chemins dérivés peuvent être formés à l’aide de cet alias (p. ex. @app/runtime pour faire référence au dossier runtime).

Propriétés importantes

Les propriétés décrites dans cette sous-section doivent souvent être spécifiées car elles différent à travers les différentes applications.

[[yii\base\Application::aliases|alias]]

Cette propriété vous permet de définir un jeu d’ alias sous forme de tableau associatif.
Les clés du tableau représentent les noms des alias, tandis que les valeurs représentent la définition des chemins.
Par exemple :

[
 'aliases' => [
 '@name1' => 'chemin/vers/dossier1',
 '@name2' => 'chemin/vers/dossier2',
],
]

Cette propriété est mise à votre disposition pour vous éviter d’avoir à définir les alias par programme en appelant la méthode [[Yii::setAlias()]].

[[yii\base\Application::bootstrap|bootstrap (amorçage)]]

Cette propriété est très utile. Elle vous permet de spécifier un tableau de composants qui devraient être exécutés lors du [[yii\base\Application::bootstrap()|processus d’amorçage]].
Par exemple, si vous désirez utiliser un module pour personnaliser les règles d’URL,
vous pouvez indiquer son identifiant (ID) en tant qu’élément de cette propriété.

Chacun des composants listés dans cette propriété peut être spécifié sous une des formes suivantes :

	un identifiant (ID) de composant d’application comme vous le spécifieriez via components,

	un identifiant (ID) de module comme vous le spécifieriez via modules,

	un nom de classe,

	un tableau de configuration,

	une fonction anonyme qui crée et retourne un composant.

Par exemple:

[
 'bootstrap' => [
 // un identifiant de composant d'application ou de module
 'demo',

 // un nom de classe
 'app\components\Profiler',

 // un tableau de configuration
 [
 'class' => 'app\components\Profiler',
 'level' => 3,
],

 // une fonction anonyme
 function () {
 return new app\components\Profiler();
 }
],
]

Info: si un identifiant (ID) de module est identique à celui d’un composant d’application, le composant d’application est utilisé lors du processus de démarrage. Si vous désirez utiliser le module, vous pouvez le spécifier via une fonction anonyme comme le montre l’exemple suivant :

[
 function () {
 return Yii::$app->getModule('user');
 },
]

Los du processus d’amorçage, chaque composant est instancié. Si la classe du composant implémente [[yii\base\BootstrapInterface]], sa méthode [[yii\base\BootstrapInterface::bootstrap()|bootstrap()]] est également appelée.

Un autre exemple pratique se trouve dans la configuration de l’application du Modèle du projet Basic,
où les modules debug et gii sont configurés en tant que composants d’amorçage lorsque l’application est dans l’environnement de développement.

if (YII_ENV_DEV) {
 // réglages de configuration pour l'environnement 'dev'
 $config['bootstrap'][] = 'debug';
 $config['modules']['debug'] = 'yii\debug\Module';

 $config['bootstrap'][] = 'gii';
 $config['modules']['gii'] = 'yii\gii\Module';
}

Note: placer trop de composants dans bootstrap dégrade la performance de votre application car, à chaque requête, le même jeu de composants doit être exécuté. C’est pourquoi vous devez utiliser les composants de démarrage avec discernement.

[[yii\web\Application::catchAll|catchAll (ramasse tout)]]

Cette propriété est prise en charge par les [[yii\web\Application|applications Web]] uniquement. Elle spécifie une
action de contrôleur qui prend en charge toutes les requêtes de l’utilisateur. Cela est essentiellement utilisé lorsque l’application est dans le mode maintenance et doit prendre en charge toutes les requêtes avec une action unique.
La configuration est un tableau dont le premier élément spécifie la route de l’action. Le reste des éléments du tableau (paires clé-valeur) spécifie les paramètres à associer à l’action. Par exemple :

[
 'catchAll' => [
 'offline/notice',
 'param1' => 'valeur1',
 'param2' => 'valeur2',
],
]

Info: le panneau de débogage dans l’environnement de développement ne fonctionne pas lorsque cette propriété est activée.

[[yii\base\Application::components|components (composants)]]

Il s’agit de la seule plus importante propriété. Elle vous permet d’enregistrer par leur nom une liste de composants appelés composants d’application que vous pouvez utiliser partout ailleurs. Par exemple :

[
 'components' => [
 'cache' => [
 'class' => 'yii\caching\FileCache',
],
 'user' => [
 'identityClass' => 'app\models\User',
 'enableAutoLogin' => true,
],
],
]

Chaque composant d’application est spécifié sous la forme d’un couple clé-valeur dans le tableau. La clé représente l’identifiant (ID) du composant, tandis que la valeur représente le nom de la classe du composant ou un tableau de configuration.

Vous pouvez enregistrer n’importe quel composant dans une application, et vous pouvez ensuite y accéder globalement via l’expression \Yii::$app->componentID.

Reportez-vous à la section Composants d’application pour plus de détails.

[[yii\base\Application::controllerMap|controllerMap (Table de mise en correspondance des contrôleurs)]]

Cette propriété vous permet de faire correspondre un identifiant (ID) de contrôleur avec une classe de contrôleur arbitraire. Par défaut, Yii fait correspondre un identifiant de contrôleur avec une classe de contrôleur selon une convention (p. ex. l’identifiant post correspond à app\controllers\PostController). En configurant cette propriété, vous passez outre la convention pour les contrôleurs spécifiés. Dans l’exemple qui suit, account correspond à
app\controllers\UserController, tandis que article correspond à app\controllers\PostController.

[
 'controllerMap' => [
 'account' => 'app\controllers\UserController',
 'article' => [
 'class' => 'app\controllers\PostController',
 'enableCsrfValidation' => false,
],
],
]

Les clés du tableau de cette propriété représentent les identifiants des contrôleurs, tandis que les valeurs représentent les noms des classes mises en correspondance ou les tableaux de configurations.

[[yii\base\Application::controllerNamespace|controllerNamespace (espaces de noms des contrôleurs]]

Cette propriété spécifie l’espace de noms par défaut sous lequel les classes des contrôleurs sont situées. Par défaut, il s’agit de
app\controllers. Si l’identifiant d’un contrôleur est post, par convention le contrôleur correspondant (sans l’espace de noms) est PostController, et le nom de classe totalement qualifié est app\controllers\PostController.

Les classes de contrôleur peuvent aussi résider dans des sous-dossiers du dossier correspondant à cet espace de noms.
Par exemple, étant donné un identifiant de contrôleuradmin/post, le nom de classe de contrôleur totalement qualifié est app\controllers\admin\PostController.

Il est important que la classe de contrôleur totalement qualifiée puisse être auto-chargée et que l’espace de noms réel de votre classe de contrôleur corresponde à la valeur de cette propriété. Autrement, vous obtenez une erreur « Page non trouvée » quand vous accédez à votre application.

Si vous désirez passer outre la convention décrite précédemment, vous devez configurer la propriété controllerMap.

[[yii\base\Application::language|language (langue)]]

Cette propriété spécifie la langue dans laquelle l’application présente les contenus aux utilisateurs finaux.
La valeur par défaut de cette propriété est en, pour anglais. Vous devez configurer cette propriété si votre application doit prendre en charge plusieurs langues.

La valeur de cette propriété détermine des aspects variés de l’internationalisation tels que la traduction des messages, le formatage des dates et des nombres, etc. Par exemple, l’objet graphique [[yii\jui\DatePicker]] utilise la valeur de cette propriété pour déterminer dans quelle langue le calendrier doit être affiché et comment les dates doivent être formatées.

La spécification de la langue par une étiquette IETF d’identification de langue [http://en.wikipedia.org/wiki/IETF_language_tag] est recommandée. Par exemple, en signifie anglais, tandis que en-US signifie anglais (États-Unis)..

Pour plus d’informations sur cette propriété, reportez-vous à la section Internationalisation.

[[yii\base\Application::modules|modules]]

Cette propriété spécifie les modules que comprend l’application.

Cette propriété accepte un tableau de classes de module ou de tableaux de configurations dans lequel les clés sont les identifiants (ID) des modules. Par exemple :

[
 'modules' => [
 // un module "booking" (réservations) spécifié par sa classe
 'booking' => 'app\modules\booking\BookingModule',

 // un module "comment" (commentaires) spécifié par un tableau de configuration
 'comment' => [
 'class' => 'app\modules\comment\CommentModule',
 'db' => 'db',
],
],
]

Reportez-vous à la section Modules pour des informations complémentaires.

[[yii\base\Application::name|name (nom]]

Cette propriété spécifie le nom de l’application qui est présenté à l’utilisateur final. Contrairement à la propriété
[[yii\base\Application::id|id]] qui ne peut prendre qu’une valeur unique, la valeur de cette propriété, qui n’intervient que pour l’affichage, n’a pas besoin d’être unique.
Vous n’avez pas besoin de configurer cette propriété si vous ne l’utilisez pas dans votre code.

[[yii\base\Application::params|params (paramètres)]]

Cette propriété spécifie un tableau de paramètres de l’application accessibles globalement. Plutôt que de parsemer votre code des mêmes nombres et chaînes de caractères formulées en dur, une bonne pratique consiste à les définir une fois pour toute sous forme de paramètres et à utiliser ces paramètres ici et là, ce qui évite, si vous devez en modifier la valeur, d’intervenir en de multiples endroits de votre code. À titre d’exemple, vous pouvez définir la taille des vignettes d’images en tant que paramètre de la façon suivante :

[
 'params' => [
 'thumbnail.size' => [128, 128],
],
]

puis dans votre code, là où vous devez utiliser cette taille, procéder de la façon suivante :

$size = \Yii::$app->params['thumbnail.size'];
$width = \Yii::$app->params['thumbnail.size'][0];

Plus tard, si vous changez d’avis à propos de la taille de ces vignettes, il vous suffit de modifier la valeur du paramètre dans la configuration de l’application sans avoir à toucher à votre code.

[[yii\base\Application::sourceLanguage|sourceLanguage (langue source)]]

Cette propriété spécifie la langue dans laquelle l’application est écrite. La valeur par défaut est 'en-US',
pour (anglais — États-Unis). Vous devriez configurer cette propriété si les textes dans votre code ne sont pas en anglais US.

Comme pour la propriété language (langue), vous devez configurer cette propriété à l’aide d’une étiquette IETF d’identification de langue [http://en.wikipedia.org/wiki/IETF_language_tag]. Par exemple, en signifie anglais,
tandis que en-US signifie for anglais-États-Unis).

Pour plus d’informations sur cette propriété, reportez-vous à la section Internationalisation.

[[yii\base\Application::timeZone|timeZone (fuseau horaire)]]

Cette propriété est fournie comme une manière alternative de définir le fuseau horaire par défaut au moment de l’exécution du script PHP.
En configurant cette propriété, vous ne faites essentiellement qu’appeler la fonction PHP
date_default_timezone_set() [http://php.net/manual/en/function.date-default-timezone-set.php]. Par exemple :

[
 'timeZone' => 'America/Los_Angeles',
]

[[yii\base\Application::version|version]]

Cette propriété spécifie la version de l’application. Sa valeur par défaut est '1.0'. Il n’est pas nécessaire que vous définissiez cette propriété si vous ne l’utilisez pas dans votre code.

Propriétés utiles

Les propriétés décrites dans cette sous-section ne sont en général pas spécifiées car leur valeur par défaut dérive de conventions ordinaires. Néanmoins, vous pouvez les spécifier pour outrepasser les conventions.

[[yii\base\Application::charset|charset (jeu de caractères)]]

Cette propriété spécifie le jeu de caractères que l’application utilise. La valeur par défaut est 'UTF-8', qui devrait être gardée telle quelle dans la plupart des applications sauf si vous travaillez avec un système ancien qui utilise de nombreuses données non Unicode.

[[yii\base\Application::defaultRoute|defaultRoute (route par défaut)]]

Cette propriété spécifie la route qu’une application devrait utiliser lorsqu’une requête n’en spécifie aucune. La route peut être constituée à partir d’un identifiant de module, d’un identifiant de contrôleur et/ou d’un identifiant d’action. Par exemple, help, post/create ou admin/post/create. Si un identifiant d’action n’est pas fourni, cette propriété prend la valeur par défaut spécifiée dans [[yii\base\Controller::defaultAction]]

Pour les [[yii\web\Application|applications Web]], la valeur par défaut de cette propriété est 'site', ce qui donne le contrôleur
SiteController et son action par défaut est utilisée. En conséquence, si vous accédez à l’application sans spécifier de route, vous aboutissez à ce que retourne l’action app\controllers\SiteController::actionIndex().

Pour les [[yii\console\Application|applications de console]], la valeur par défaut est 'help' (aide), ce qui conduit à
[[yii\console\controllers\HelpController::actionIndex()]]. Par conséquent, si vous exécutez la commande yii sans lui fournir d’argument, l’application affiche l’information d’aide.

[[yii\base\Application::extensions|extensions]]

Cette propriété spécifie la liste des extensions installées et utilisées par l’application.
Par défaut, elle reçoit le tableau retourné par le fichier @vendor/yiisoft/extensions.php. Le fichier extensions.php est généré et maintenu automatiquement lorsque vous faites appel à Composer [https://getcomposer.org] pour installer des extensions. Ainsi, dans la plupart des cas, vous n’avez pas besoin de spécifier cette propriété.

Dans le cas particulier où vous souhaitez maintenir les extensions à la main, vous pouvez configurer cette propriété de la manière suivante :

[
 'extensions' => [
 [
 'name' => 'extension name', //nom de l'extension
 'version' => 'version number',//numéro de version
 'bootstrap' => 'BootstrapClassName', // facultatif, peut aussi être un tableau de configuration
 'alias' => [// facultatif
 '@alias1' => 'vers/chemin1',
 '@alias2' => 'vers/chemin2',
],
],

 // ... configuration d'autres extensions similaires à ce qui précède ...

],
]

Comme vous pouvez le constater, la propriété reçoit un tableau de spécifications d’extension. Chacune des extensions est spécifiée par un tableau constitué du
nom (name) et de la version de l’extension. Si une extension doit être exécutée durant le processus d’amorçage, un élément bootstrap doit être spécifié par un nom de classe d’amorçage (bootstrap) ou un tableau de configuration. Une extension peut aussi définir quelques alias.

[[yii\base\Application::layout|layout (disposition de page)]]

Cette propriété spécifie le nom de la disposition de page par défaut (layout) qui doit être utilisée lors du rendu d’une vue. La valeur par défaut est 'main', ce qui signifie que le fichier de disposition de page main.php sous le chemin layout path est utilisé.
Si, à la fois, le chemin de la disposition de page layout path et le chemin de la vue view path prennent leur valeur par défaut, le fichier de disposition de page par défaut peut être représenté par l’alias @app/views/layouts/main.php.

Vous pouvez définir cette propriété à la valeur false pour désactiver la disposition de page par défaut, bien que cela se fasse rarement.

[[yii\base\Application::layoutPath|layoutPath (chemin de la disposition de page)]]

Cette propriété spécifie le chemin du dossier où rechercher les fichiers de disposition de page. La valeur par défaut layouts correspond à un sous-dossier de view path. Si view path prend sa valeur par défaut, le chemin de la disposition de page par défaut peut être représenté par l’alias @app/views/layouts.

Vous pouvez le définir comme un dossier ou un alias de chemin.

[[yii\base\Application::runtimePath|runtimePath (chemin du dossier d’exécution)]]

Cette propriété spécifie le chemin du dossier où les fichiers temporaires, tels que les journaux et les fichiers de cache, sont placés. La valeur par défaut est @app/runtime.

Vous pouvez configurer cette propriété comme un dossier ou un alias de chemin. Notez que le dossier d’exécution runtimePath doit être accessible en écriture par le processus qui exécute l’application et rendu inaccessible aux utilisateurs finaux, parce que les fichiers temporaires qu’il contient peuvent contenir des informations sensibles.

Pour simplifier l’accès à ce chemin, Yii a prédéfini un alias de chemin nommé @runtime.

[[yii\base\Application::viewPath|viewPath (chemin des vues)]]

Cette propriété spécifie le dossier racine des fichiers de vues. La valeur par défaut est le dossier représenté par l’alias @app/views. Vous pouvez le définir sous forme de dossier ou comme un alias de chemin.

[[yii\base\Application::vendorPath|vendorPath (chemin des vendeurs)]]

Cette propriété spécifie le dossier des vendeurs gérés par Composer [https://getcomposer.org]. Il contient toutes les bibliothèques de tierces parties utilisées par l’application, y compris le framework Yii. La valeur par défaut est le dossier représenté par @app/vendor.

Vous pouvez configurer cette propriété comme un dossier ou un alias de chemin. Lorsque vous modifiez cette propriété, assurez-vous d’ajuster la configuration de Composer en conséquence.

Pour simplifier l’accès à ce chemin, Yii a prédéfini un alias de chemin nommé @vendor.

[[yii\console\Application::enableCoreCommands|enableCoreCommands (activer les commandes du noyau)]]

Cette propriété est prise en charge par les [[yii\console\Application|applications de console]] uniquement. Elle spécifie si les commandes du noyau de la version de Yii sont activées ou pas. La valeur par défaut est true (vrai).

Événements d’application

Une application déclenche plusieurs événements tout au long de son cycle de vie pour prendre en compte une requête. Vous pouvez attacher des gestionnaires d’événement à ces événements dans la configuration de l’application de la manière suivante :

[
 'on beforeRequest' => function ($event) {
 // ...
 },
]

L’utilisation de la syntaxe on eventName (on Non d’événement) est décrite dans la section Configurations.

En alternative, vous pouvez attacher les gestionnaires d’événement lors du processus d’amorçage après que l’objet Application a été instancié. Par exemple :

\Yii::$app->on(\yii\base\Application::EVENT_BEFORE_REQUEST, function ($event) {
 // ...
});

[[yii\base\Application::EVENT_BEFORE_REQUEST|EVENT_BEFORE_REQUEST]]

Cette événement est déclenché avant que l’application ne prenne la requête en charge. Le nom réel de l’événement est beforeRequest.

Lorsque cet événement est déclenché, l’objet Application a été configuré et initialisé. C’est donc un bon endroit pour insérer votre code personnalisé via le mécanisme événementiel pour intercepter le processus de prise en charge de la requête. Par exemple, dans le gestionnaire d’événement, vous pouvez définir dynamiquement la propriété [[yii\base\Application::language (langue)]] en fonction de certains paramètres.

[[yii\base\Application::EVENT_AFTER_REQUEST|EVENT_AFTER_REQUEST]]

Cet événement est déclenché après que l’application a fini de prendre la requête en charge mais avant que la réponse ne soit envoyée. Le nom réel de l’événement est afterRequest.

Lorsque cet événement est déclenché, la prise en charge de la requête est terminée et vous pouvez profiter de cette opportunité pour effectuer quelques post-traitements de la requête et personnaliser la réponse.

Notez que le composant [[yii\web\Response|response (réponse)]] déclenche également quelques événements tandis qu’il envoie la réponse au navigateur. Ces événements sont déclenchés après cet événement.

[[yii\base\Application::EVENT_BEFORE_ACTION|EVENT_BEFORE_ACTION]]

Cet événement est déclenché avant d’exécuter toute action de contrôleur.
Le nom réel de l’événement est beforeAction.
Le paramètre de l’événement est une instance de [[yii\base\ActionEvent]]. Un gestionnaire d’événement peut définir la propriété [[yii\base\ActionEvent::isValid (est valide)]] à false pour arrêter l’exécution de l’action.
Par exemple:

[
 'on beforeAction' => function ($event) {
 if (some condition) {
 $event->isValid = false;
 } else {
 }
 },
]

Notez que le même événement beforeAction est également déclenché par les modules
et les contrôleurs.L’objet Application est le premier à déclencher cet événement, suivis des modules (s’il en existe) et, pour finir, des contrôleurs. Si un gestionnaire d’événement défini la propriété [[yii\base\ActionEvent::isValid]] à false, tous les événements qui devraient suivre ne sont PAS déclenchés.

[[yii\base\Application::EVENT_AFTER_ACTION|EVENT_AFTER_ACTION]]

Cet événement est déclenché après que chacune des actions de contrôleur a été exécutée.
Le paramètre de l’événement est [[yii\base\ActionEvent]]. Un gestionnaire d’événement peut accéder au résultat de l’action et le modifier via la propriété [[yii\base\ActionEvent::result]].
Par exemple:

[
 'on afterAction' => function ($event) {
 if (some condition) {
 // modify $event->result
 } else {
 }
 },
]

Notez que le même événement afterAction est également déclenché par les modules
et les contrôleurs. Ces objets déclenchent ces événements dans l’ordre inverse de celui des événements déclenchés par beforeAction. En clair, les contrôleurs sont les premiers objets à déclencher cet événement, suivis des modules (s’il en existe) et, finalement, de l’application.

Cycle de vie d’une application

[image: Application Lifecycle]

Lorsqu’un script d’entrée est exécuté pour prendre en compte une requête, une application entame le cycle de vie suivant :

	Le script d’entrée charge la configuration de l’application sous forme de tableau.

	Le script d’entrée crée un nouvel objet Application :

	Sa méthode [[yii\base\Application::preInit()|preInit()]] est appelée pour configurer quelques propriétés de haute priorité de cette application, comme [[yii\base\Application::basePath|basePath]].

	Il enregistre [[yii\base\Application::errorHandler|le gestionnaire d’erreurs]].

	Il configure les propriétés de l’application.

	Sa méthode [[yii\base\Application::init()|init()]] est appelée qui appelle ensuite la méthode
[[yii\base\Application::bootstrap()|bootstrap()]] pour exécuter les composants du processus d’amorçage.

	Le script d’entrée appelle la méthode [[yii\base\Application::run()]] pour exécuter l’application qui :

	déclenche l’événement [[yii\base\Application::EVENT_BEFORE_REQUEST|EVENT_BEFORE_REQUEST]] ;

	prend en charge la requête: résout la requête en une route et ses paramètres associés ;

	crée le module, le contrôleur et l’action spécifiés par la route et exécute l’action ;

	déclenche l’événement [[yii\base\Application::EVENT_AFTER_REQUEST|EVENT_AFTER_REQUEST]] ;

	renvoie la réponse au navigateur.

	Le script d’entrée reçoit l’état de sortie de l’exécution de l’application et complète le processus de prise en charge de la requête.

 Ressources

Ressources

Une ressource dans Yii est un fichier qui peut être référencé dans une page Web. Ça peut être un fichier CSS, un fichier JavaScript, une image, un fichier vidéo, etc.
Les ressources sont situées dans un dossier accessible du Web et sont servies directement par les serveurs Web.

Il est souvent préférable de gérer les ressources par programmation.
Par exemple, lorsque vous utilisez l’objet graphique [[yii\jui\DatePicker]] dans une page, il inclut automatiquement les fichiers CSS et JavaScript dont il a besoin, au lieu de vous demander de les inclure à la main.

De plus, lorsque vous mettez à jour l’objet graphique, il utilise une nouvelle version des fichiers de ressources.
Dans ce tutoriel, nous décrivons les puissantes possibilités de la gestion des ressources de Yii.

Paquets de ressources

Yii gère les ressources sous forme de paquets de ressources.
Un paquet de ressources est simplement une collection de ressources situées dans un dossier.
Lorsque vous enregistrez un paquet de ressources dans une vue, cette vue inclut les fichiers CSS et JavaScript du paquet dans la page Web rendue.

Définition de paquets de ressources

Les paquets de ressources sont spécifiés comme des classes PHP qui étendent [[yii\web\AssetBundle]].
Le nom du paquet est simplement le nom pleinement qualifié de la classe PHP correspondante (sans la barre oblique inversée de tête).
Une classe de paquet de ressources doit être auto-chargeable.
Généralement, elle spécifie où les ressources sont situées, quels fichiers CSS et JavaScript le paquet contient, et si le paquet dépend d’autres paquets de ressources.

Le code suivant définit le paquet de ressources principal utilisé par le modèle de projet basic:

<?php

namespace app\assets;

use yii\web\AssetBundle;

class AppAsset extends AssetBundle
{
 public $basePath = '@webroot';
 public $baseUrl = '@web';
 public $css = [
 'css/site.css',
 ['css/print.css', 'media' => 'print'],
];
 public $js = [
];
 public $depends = [
 'yii\web\YiiAsset',
 'yii\bootstrap\BootstrapAsset',
];
}

La classe AppAsset ci-dessus spécifie que les fichiers de ressources sont situés dans le dossier @webroot qui correspond à l’URL @web;
le paquet contient un unique fichier CSS css/site.css et aucun fichier JavaScript ;
le paquet dépend de deux autres paquets : [[yii\web\YiiAsset]] et [[yii\bootstrap\BootstrapAsset]].
Des explications plus détaillées sur les propriétés d’[[yii\web\AssetBundle]] sont disponibles dans les ressources suivantes :

	[[yii\web\AssetBundle::sourcePath|sourcePath]] (chemin des sources): spécifie le dossier racine qui contient les fichiers de ressources dans ce paquet.
Cette propriété doit être définie si le dossier
racine n’est pas accessible du Web.
Autrement, vous devez définir les propriétés [[yii\web\AssetBundle::basePath|basePath]] et [[yii\web\AssetBundle::baseUrl|baseUrl]]. Des alias de chemin sont utilisables ici.

	[[yii\web\AssetBundle::basePath|basePath]] (chemin de base): spécifie un dossier accessible du Web qui contient les fichiers de ressources dans ce paquet.
Lorsque vous spécifiez la propriété[[yii\web\AssetBundle::sourcePath|sourcePath (chemin des sources)]], le gestionnaire de ressources publie les ressources de ce paquet dans un dossier accessible du Web et redéfinit cette propriété en conséquence.
Vous devez définir cette propriété si vos fichiers de ressources sont déjà
dans un dossier accessible du Web et n’ont pas besoin d’être publiés.
Les alias de chemin sont utilisables ici.

	[[yii\web\AssetBundle::baseUrl|baseUrl]] (URL de base): spécifie l’URL qui correspond au dossier
[[yii\web\AssetBundle::basePath|basePath]].
Comme pour [[yii\web\AssetBundle::basePath|basePath]] (chemin de base),
si vous spécifiez la propriété [[yii\web\AssetBundle::sourcePath|sourcePath]], le gestionnaire de ressources publie les ressources et redéfinit cette propriété en conséquence. Les alias de chemin sont utilisables ici.

	[[yii\web\AssetBundle::css|css]]: un tableau listant les fichiers CSS contenu dans ce paquet de ressources.
Notez que seul la barre oblique “/” doit être utilisée en tant que séparateur de dossier. Chaque fichier peut être spécifié en lui-même comme une chaîne de caractères ou dans un tableau avec les balises attributs et leur valeur.

	[[yii\web\AssetBundle::js|js]]: un tableau listant les fichiers JavaScript contenus dans ce paquet.
Notez que seule la barre oblique de division “/” peut être utilisée en tant que séparateur de dossiers.
Chaque fichier JavaScript peut être spécifié dans l’un des formats suivants :

	Un chemin relatif représentant un fichier JavaScript local (p. ex. js/main.js).
Le chemin réel du fichier peut être déterminé en préfixant le chemin relatif avec le [[yii\web\AssetManager::basePath| chemin de base]],
et l’URL réelle du fichier peut être déterminée en préfixant le chemin relatif avec l’[[yii\web\AssetManager::baseUrl|URL de base]].

	Une URL absolue représentant un fichier JavaScript externe.
Par exemple , http://ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js ou
//ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js.

	[[yii\web\AssetBundle::depends|depends (dépendances)]]:
un tableau listant les paquets de ressources dont ce paquet dépend (brièvement expliqué).

	[[yii\web\AssetBundle::jsOptions|jsOptions]]: spécifie les options qui sont passées à la méthode [[yii\web\View::registerJsFile()]]
lorsqu’elle est appelée pour enregistrer chacun des fichiers JavaScript de ce paquet.

	[[yii\web\AssetBundle::cssOptions|cssOptions]]: spécifie les options qui sont passées à la méthode
[[yii\web\View::registerCssFile()]] lorsqu’elle est appelée pour enregistrer chacun des fichiers CSS de ce paquet.

	[[yii\web\AssetBundle::publishOptions|publishOptions]]: spécifie les options qui sont passées à la méthode
[[yii\web\AssetManager::publish()]] lorsqu’elle est appelée pour publier les fichiers de ressources sources dans un dossier accessible du Web.Cela n’est utilisé que si vous spécifiez la propriété [[yii\web\AssetBundle::sourcePath|sourcePath]].

Emplacement des ressources

En se basant sur leur emplacement, les ressources peuvent être classifiées comme suit :

	Les ressources sources : les fichiers de ressources qui sont situés avec du code source PHP et qui ne peuvent être accéder directement depuis le Web.
Afin de pouvoir être utilisées dans une page, elles doivent être copiées dans un dossier accessible du Web et transformées en ressources publiées.
Ce processus est appelé publication des ressources et il sera décrit en détail bientôt.

	Les ressources publiées : les fichiers de ressources sont situés dans un dossier accessible du Web et peuvent par conséquent être accédés directement depuis le Web.

	Les ressources externes : les fichiers de ressources sont situés sur un serveur Web différent de celui qui héberge l’application Web.

Lors de la définition de classes de paquet de ressources, si vous spécifiez la propriété
[[yii\web\AssetBundle::sourcePath|sourcePath (chemin des sources)]], cela veut dire que les ressources listées en utilisant des chemins relatifs sont considérées comme des ressources sources.
Si vous ne spécifiez pas cette propriété, cela signifie que ces ressources sont des ressources publiées (vous devez en conséquence spécifier [[yii\web\AssetBundle::basePath (chemin de base)|basePath]] et [[yii\web\AssetBundle::baseUrl|baseUrl (URL de base)]]
pour faire connaître à Yii l’emplacement où elles se trouvent).

Il est recommandé de placer les ressources appartenant à une application dans un dossier accessible du Web de manière à éviter une publication non nécessaire de ressources.
C’est pourquoi AppAsset dans l’exemple précédent spécifie le [[yii\web\AssetBundle::basePath|chemin de base]]
plutôt que le [[yii\web\AssetBundle::sourcePath|chemin des sources]].

Quant aux extensions, comme leurs ressources sont situées avec le code source dans des dossiers non accessibles depuis le Web, vous devez spécifier la propriété
[[yii\web\AssetBundle::sourcePath|sourcePath]]
lorsque vous définissez des classes de paquet de ressources pour elles.

Note: n’utilisez pas @webroot/assets en tant que [[yii\web\AssetBundle::sourcePath|chemin des sources]].
Ce dossier est utilisé par défaut par le
[[yii\web\AssetManager|gestionnaire de ressources]] pour sauvegarder les fichiers de ressources publiés depuis leur emplacement source.
Tout contenu dans ce dossier est considéré temporaire et sujet à suppression.

Dépendances de ressources

Lorsque vous incluez plusieurs fichiers CSS ou JavaScript dans une page Web, ils doivent respecter un certain ordre pour éviter des problèmes de redéfinition.
Par exemple, si vous utilisez l’objet graphique jQuery Ui dans une page Web, vous devez vous assurer que le fichier JavaScript jQuery est inclus avant le fichier JavaScript jQuery UI.
Nous appelons un tel ordre : « dépendances entre ressources ».

Les dépendances entre ressources sont essentiellement spécifiées via la propriété
[[yii\web\AssetBundle::depends]].
Dans l’exemple AppAsset, le paquet de ressources dépend de deux autres paquets de ressources : [[yii\web\YiiAsset]] et [[yii\bootstrap\BootstrapAsset]],
ce qui veut dire que les fichiers CSS et JavaScript dans AppAsset sont inclus après les fichiers contenus dans ces deux paquets de ressources dont ils dépendent.

Les dépendances entre ressources sont transitives. Cela veut dire que si un paquet de ressources A dépend d’un paquet B qui lui-même dépend de C, A dépend de C également.

Options des ressources

Vous pouvez spécifier les propriétés [[yii\web\AssetBundle::cssOptions|cssOptions]] et [[yii\web\AssetBundle::jsOptions|jsOptions]]
pour personnaliser la manière dont les fichiers CSS et JavaScript sont inclus dans une page.
Les valeurs de ces propriétés sont passées aux méthodes [[yii\web\View::registerCssFile()]] et [[yii\web\View::registerJsFile()]], respectivement, lorsqu’elles sont appelées par la
vue pour inclure les fichiers CSS et JavaScript.

Note: les options que vous définissez dans une classe de paquet de ressources s’appliquent à chacun des fichiers CSS/JavaScript du paquet.
Si vous voulez utiliser des options différentes entre fichiers, vous devez utiliser le format indiqué [[yii\web\AssetBundle::css|ci-dessus]]
ou créer des paquets de ressources séparés et utiliser un jeu d’options dans chacun des paquets.

Par exemple, pour inclure un fichier CSS sous condition que le navigateur soit IE9 ou inférieur, vous pouvez utiliser l’option suivante :

public $cssOptions = ['condition' => 'lte IE9'];

Avec cela, le fichier CSS du paquet pourra être inclus avec le code HTML suivant :

<!--[if lte IE9]>
<link rel="stylesheet" href="path/to/foo.css">
<![endif]-->

Pour envelopper le lien CSS généré dans une balise <noscript>, vous pouvez configurer cssOptions comme ceci :

public $cssOptions = ['noscript' => true];

Pour inclure un fichier JavaScript dans la section d’entête d’une page (par défaut les fichiers JavaScript sont inclus à la fin de la section body), utilisez l’option suivante :

public $jsOptions = ['position' => \yii\web\View::POS_HEAD];

Par défaut, lorsqu’un paquet de ressources est publié, tous les contenus dans le dossier spécifié par la propriété [[yii\web\AssetBundle::sourcePath]]
sont publiés.
Vous pouvez personnaliser ce comportement en configurant la propriété [[yii\web\AssetBundle::publishOptions|publishOptions]].
Par exemple, pour publier seulement un ou quelques sous-dossiers du dossier spécifié par la propriété [[yii\web\AssetBundle::sourcePath]],
vous pouvez procéder comme ceci dans la classe du paquet de ressources :

<?php
namespace app\assets;

use yii\web\AssetBundle;

class FontAwesomeAsset extends AssetBundle
{
 public $sourcePath = '@bower/font-awesome';
 public $css = [
 'css/font-awesome.min.css',
];
 public $publishOptions = [
 'only' => [
 'fonts/',
 'css/',
]
];
}

L’exemple ci-dessus définit un paquet de ressources pour le paquet “fontawesome” [http://fontawesome.io/]. En spécifiant l’option de publication only, seuls les sous-dossiers fonts et css sont publiés.

Installation des ressources Bower et NPM

La plupart des paquets JavaScript/CSS sont gérés par le gestionnaire de paquets Bower [http://bower.io/] et/ou le gestionnaire de paquets NPM [https://www.npmjs.org/]. Dans le monde PHP, nous disposons de Composer, qui gère les dépendances, mais il est possible de charger des paquets Bower et NPM comme des paquets PHP en utilisant composer.json.

Pour cela, nous devons configurer quelque peu notre composer. Il y a deux options possibles :

En utilisant le dépôt asset-packagist

Cette façon de faire satisfera les exigences de la majorité des projets qui ont besoin de paquets Bower ou NPM.

Note: depuis la version 2.0.13, les modèles de projet Basic et Advanced sont tous deux configuré pour utiliser asset-packagist par défaut, c’est pourquoi, vous pouvez sauter cette section.

Dans le fichier composer.json de votre projet, ajoutez les lignes suivantes :

"repositories": [
 {
 "type": "composer",
 "url": "https://asset-packagist.org"
 }
]

Ajustez les aliases @npm et @bower dans la configuration de votre application :

$config = [
 ...
 'aliases' => [
 '@bower' => '@vendor/bower-asset',
 '@npm' => '@vendor/npm-asset',
],
 ...
];

Visitez asset-packagist.org [https://asset-packagist.org] pour savoir comment il fonctionne.

En utilisant le fxp/composer-asset-plugin

Comparé à asset-packagist, composer-asset-plugin ne nécessite aucun changement dans la configuration de l’application. Au lieu de cela, il nécessite l’installation globale d’un greffon spécifique de Composer en exécutant la commande suivante :

composer global require "fxp/composer-asset-plugin:^1.4.1"

Cette commande installe composer asset plugin [https://github.com/francoispluchino/composer-asset-plugin/] globalement, ce qui permet de gérer les dépendances des paquets Bower et NPM via Composer. Après l’installation du greffon, tout projet de votre ordinateur prendra en charge les paquets Bower et NPM via composer.json.

Ajoutez les lignes suivantes au fichier composer.json de votre projet pour préciser les dossiers où seront installés les paquets, si vous voulez les publier en utilisant Yii :

"config": {
 "asset-installer-paths": {
 "npm-asset-library": "vendor/npm",
 "bower-asset-library": "vendor/bower"
 }
}

Note: fxp/composer-asset-plugin ralentit significativement la commande composer update en comparaison avec asset-packagist.

Après avoir configuré Composer pour qu’il prenne en charge Bower et NPM :

	Modifiez le fichier the composer.json de votre application ou extension et listez le paquet dans l’entrée require.
Vous devez utiliser bower-asset/PackageName (pour les paquets Bower) ou npm-asset/PackageName (pour les paquets NPM) pour faire référence à la bibliothèque.

	Exécutez composer update

	Créez une classe de paquet de ressources et listez les fichiers JavaScript/CSS que vous envisagez d’utiliser dans votre application ou extension.
Vous devez spécifier la propriété [[yii\web\AssetBundle::sourcePath|sourcePath]] comme @bower/PackageName ou @npm/PackageName.
Cela parce que Composer installera le paquet Bower ou NPM dans le dossier correspondant à cet alias.

Note: quelques paquets peuvent placer tous leurs fichiers distribués dans un sous-dossier. Si c’est le cas, vous devez spécifier le sous-dossier en tant que valeur de [[yii\web\AssetBundle::sourcePath|sourcePath]]. Par exemple, utilisez [[yii\web\JqueryAsset]] @bower/jquery/dist au lieu de @bower/jquery.

Utilisation des paquets de ressources

Pour utiliser un paquet de ressources, enregistrez-le dans une vue en appelant la méthode [[yii\web\AssetBundle::register()]]. Par exemple, dans un modèle de vue, vous pouvez enregistrer un paquet de ressources de la manière suivante :

use app\assets\AppAsset;
AppAsset::register($this); // $this représente l'objet *view* (vue)

Info: la méthode [[yii\web\AssetBundle::register()]] retourne un objet paquet de ressources contenant les informations sur les ressources publiées, telles que le [[yii\web\AssetBundle::basePath|chemin de base]] ou l’[[yii\web\AssetBundle::baseUrl|URL de base]].

Si vous êtes en train d’enregistrer un paquet de ressources dans d’autres endroits, vous devez fournir l’objet view requis. Par exemple, pour enregistrer un paquet de ressources dans une classe d’objet graphique, vous pouvez obtenir l’objet view avec l’expression $this->view.

Lorsqu’un paquet de ressources est enregistré avec une vue, en arrière plan. Yii enregistre tous les paquets de ressources dont il dépend. Et si un paquet de ressources est situé dans un dossier inaccessible depuis le Web, il est publié dans un dossier accessible depuis le Web. Plus tard, lorsque la vue rend une page, elle génère les balises <link> et <script> pour les fichiers CSS et JavaScript listés dans le paquet de ressources enregistré. L’ordre des ces balises est déterminé par les dépendances entre paquets enregistrés et l’ordre des ressources listées dans les propriétés [[yii\web\AssetBundle::css]] et [[yii\web\AssetBundle::js]].

Paquets de ressources dynamiques

Une classe PHP ordinaire de paquet de ressources peut comporter sa propre logique et peut ajuster ses paramètres internes dynamiquement.
Par exemple : il se peut que vous utilisiez une bibliothèque JavaScript sophistiquée qui des ressources d’internationalisation dans des fichiers séparés pour chacune des langues. En conséquence de quoi, vous devez ajouter certains fichiers ‘.js’ particuliers à votre page pour la fonction de traduction de la bibliothèque fonctionne. Cela peut être fait en redéfinissant la méthode [[yii\web\AssetBundle::init()]] :

namespace app\assets;

use yii\web\AssetBundle;
use Yii;

class SophisticatedAssetBundle extends AssetBundle
{
 public $sourcePath = '/path/to/sophisticated/src';
 public $js = [
 'sophisticated.js' // fichier toujours utilisé
];

 public function init()
 {
 parent::init();
 $this->js[] = 'i18n/' . Yii::$app->language . '.js'; // fichier dynamique ajouté
 }
}

Un paquet de ressources particuliers peut aussi être ajusté via son instance retourné par [[yii\web\AssetBundle::register()]].
Par exemple :

use app\assets\SophisticatedAssetBundle;
use Yii;

$bundle = SophisticatedAssetBundle::register(Yii::$app->view);
$bundle->js[] = 'i18n/' . Yii::$app->language . '.js'; // fichier dynamique ajouté

Note : bien que l’ajustement dynamique des paquets de ressources soit pris e charge, c’est une mauvaise pratique qui peut conduire à des effets de bord inattendus et qui devrait être évité si possible.

Personnalisation des paquets de ressources

Yii gère les paquets de ressources à l’aide d’un composant d’application nommé assetManager (gestionnaire de ressources) qui est mis œuvre par [[yii\web\AssetManager]]. En configurant la propriété [[yii\web\AssetManager::bundles]], il est possible de personnaliser le comportement d’un paquet de ressources. Par exemple, le paquet de ressources par défaut [[yii\web\JqueryAsset]] utilise le fichier jquery.js du paquet Bower installé. Pour améliorer la disponibilité et la performance, vous désirez peut-être utiliser une version hébergée par Google. Vous pouvez le faire en configurant assetManager dans la configuration de l’application comme ceci :

return [
 // ...
 'components' => [
 'assetManager' => [
 'bundles' => [
 'yii\web\JqueryAsset' => [
 'sourcePath' => null, // ne pas publier le paquet
 'js' => [
 '//ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js',
]
],
],
],
],
];

Vous pouvez configurer de multiples paquets de ressources de manière similaire via [[yii\web\AssetManager::bundles]]. Les clés du tableau doivent être les nom des classes (sans la barre oblique inversée de tête) des paquets de ressources, et les valeurs du tableau doivent être les tableaux de configuration correspondants.

Tip: vous pouvez choisir quelles ressources utiliser dans un paquet en fonction d’une condition. L’exemple suivant montre comment utiliser jquery.js dans l’environnement de développement et jquery.min.js autrement :

'yii\web\JqueryAsset' => [
 'js' => [
 YII_ENV_DEV ? 'jquery.js' : 'jquery.min.js'
]
],

Vous pouvez désactiver un ou plusieurs paquets de ressources en associant false (faux) aux noms des paquets de ressources que vous voulez désactiver. Lorsque vous enregistrez un paquet de ressources dans une vue, aucun des paquets dont il dépend n’est enregistré, et la vue, elle non plus, n’inclut aucune des ressources du paquet dans la page qu’elle rend. Par exemple, pour désactiver [[yii\web\JqueryAsset]], vous pouvez utiliser la configuration suivante :

return [
 // ...
 'components' => [
 'assetManager' => [
 'bundles' => [
 'yii\web\JqueryAsset' => false,
],
],
],
];

Vous pouvez aussi désactiver tous les paquets de ressources en définissant [[yii\web\AssetManager::bundles]] à la valeur false.

Mise en correspondance des ressources

Parfois, vous désirez « corriger » des chemins de fichiers de ressources incorrects ou incompatibles utilisés par plusieurs paquets de ressources. Par exemple, un paquet A utilise jquery.min.js version 1.11.1, et un paquet B utilise jquery.js version 2.1.1. Bien que vous puissiez corriger le problème en personnalisant chacun des paquets, une façon plus facile est d’utiliser la fonctionnalité mise en correspondance des ressources pour mettre en correspondance les ressources incorrectes avec celles désirées. Pour le faire, configurez la propriété [[yii\web\AssetManager::assetMap (table de mise en correspondance des ressources)]] comme indiqué ci-après :

return [
 // ...
 'components' => [
 'assetManager' => [
 'assetMap' => [
 'jquery.js' => '//ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js',
],
],
],
];

Les clés de la [[yii\web\AssetManager::assetMap|table de mise en correspondance des ressources]] sont les noms des ressources que vous voulez corriger, et les valeurs sont les chemins des ressources désirées. Lorsque vous enregistrez un paquet de ressources dans une vue, chacune des ressources relatives dans ses tableaux [[yii\web\AssetBundle::css|css]] et [[yii\web\AssetBundle::js|js]] sont examinées dans cette table. Si une des clés est trouvée comme étant la dernière partie d’un chemin de fichier de ressources (qui est préfixé par le [[yii\web\AssetBundle::chemin des sources si disponible)]], la valeur correspondante remplace la ressource et est enregistrée avec la vue.
For exemple, le fichier de ressources my/path/to/jquery.js correspond à la clé jquery.js.

Note: seules les ressources spécifiées en utilisant des chemins relatifs peuvent faire l’objet d’une mise en correspondance. Les chemins de ressources cibles doivent être soit des URL absolues, soit des chemins relatifs à [[yii\web\AssetManager::basePath]].

Publication des ressources

Comme mentionné plus haut, si un paquet de ressources est situé dans un dossier non accessible depuis le Web, ses ressources sont copiées dans un dossier Web lorsque le paquet est enregistré dans une vue. Ce processus est appelé publication des ressources et est accompli automatiquement par le [[yii\web\AssetManager|gestionnaire de ressources]].

Par défaut, les ressources sont publiées dans le dossier @webroot/assets qui correspond à l’URL @web/assets. Vous pouvez personnaliser cet emplacement en configurant les propriétés [[yii\web\AssetManager::basePath|basePath]] et [[yii\web\AssetManager::baseUrl|baseUrl]].

Au lieu de publier les ressources en copiant les fichiers, vous pouvez envisager d’utiliser des liens symboliques, si votre système d’exploitation et votre serveur Web le permettent. Cette fonctionnalité peut être activée en définissant la propriété [[yii\web\AssetManager::linkAssets|linkAssets]] à true (vrai).

return [
 // ...
 'components' => [
 'assetManager' => [
 'linkAssets' => true,
],
],
];

Avec la configuration ci-dessus, le gestionnaire de ressources crée un lien symbolique vers le chemin des sources d’un paquet de ressources lors de sa publication. Cela est plus rapide que la copie de fichiers et peut également garantir que les ressources publiées sont toujours à jour.

Fonctionnalité d’affranchissement du cache

Pour les application Web tournant en mode production, une pratique courante consiste à activer la mise en cache HTTP pour les ressources statiques. Un inconvénient de cette pratique est que si vous modifiez une ressource et la republiez en production, le navigateur peut toujours utiliser l’ancienne version à cause de la mise en cache HTTP. Pour s’affranchir de cet inconvénient, vous pouvez utiliser la fonctionnalité d’affranchissement du cache qui a été introduite dans la version 2.0.3 en configurant le gestionnaire de ressources [[yii\web\AssetManager]] comme suit :

return [
 // ...
 'components' => [
 'assetManager' => [
 'appendTimestamp' => true,
],
],
];

Ce faisant, l’horodatage de la dernière modification du fichier est ajoutée en fin d’URL de la ressource publiée. Par exemple, l’URL vers yii.js ressemble à /assets/5515a87c/yii.js?v=1423448645", où v représente l’horodatage de la dernière modification du fichier yii.js. Désormais, si vous modifiez une ressource, son URL change également ce qui force le navigateur à aller chercher la dernière version de la ressource.

Paquets de ressources couramment utilisés

Le code du noyau de Yii a défini de nombreux paquets de ressources. Parmi eux, les paquets suivants sont couramment utilisés et peuvent être référencés dans le code de votre application ou de votre extension.

	[[yii\web\YiiAsset]]: ce paquet comprend essentiellement le fichier yii.js qui met en œuvre un mécanisme d’organisation du code JavaScript en modules. Il fournit également une prise en charge spéciale des attributs data-method et data-confirm et autres fonctionnalités utiles.

	[[yii\web\JqueryAsset]]: ce paquet comprend le fichier jquery.js du paquet Bower de jQuery.

	[[yii\bootstrap\BootstrapAsset]]: ce paquet inclut le fichier CSS du framework Twitter Bootstrap.

	[[yii\bootstrap\BootstrapPluginAsset]]: ce paquet inclut le fichier JavaScript du framework Twitter Bootstrap pour la prise en charge des greffons JavaScript de Bootstrap.

	[[yii\jui\JuiAsset]]: ce paquet inclut les fichiers CSS et JavaScript de la bibliothèque jQuery UI.

Si votre code dépend de jQuery, jQuery UI ou Bootstrap, vous devriez utiliser les paquets de ressources prédéfinis plutôt que de créer vos propres versions. Si les réglages par défaut des ces paquets de ressources prédéfinis ne répondent pas à vos besoins, vous pouvez les personnaliser comme expliqué à la sous-section Personnalisation des paquets de ressources.

Conversion de ressources

Au lieu d’écrire directement leur code CSS et/ou JavaScript, les développeurs l’écrivent souvent dans une syntaxe étendue et utilisent des outils spéciaux pour le convertir en CSS/JavaScript. Par exemple, pour le code CSS vous pouvez utiliser LESS [http://lesscss.org/] ou SCSS [http://sass-lang.com/]; et pour JavaScript, vous pouvez utiliser TypeScript [http://www.typescriptlang.org/].

Vous pouvez lister les fichiers de ressources écrits dans une syntaxe étendue dans les propriétés [[yii\web\AssetBundle::css|css]] et [[yii\web\AssetBundle::js|js]] d’un paquet de ressources.

class AppAsset extends AssetBundle
{
 public $basePath = '@webroot';
 public $baseUrl = '@web';
 public $css = [
 'css/site.less',
];
 public $js = [
 'js/site.ts',
];
 public $depends = [
 'yii\web\YiiAsset',
 'yii\bootstrap\BootstrapAsset',
];
}

Lorsque vous enregistrez une tel paquet de ressources dans une vue, le [[yii\web\AssetManager|gestionnaire de ressources]] exécute automatiquement l’outil de pré-traitement pour convertir les ressources, écrites dans une syntaxe reconnue, en CSS/JavaScript. Lorsque la vue rend finalement la page, elle inclut les fichiers CSS/JavaScript dans la page, au lieu des ressources originales écrites dans la syntaxe étendue.

Yii utilise l’extension du nom de fichier pour identifier dans quelle syntaxe une ressource est écrite. Par défaut, il reconnaît les syntaxes et les extensions de nom suivants :

	LESS [http://lesscss.org/]: .less

	SCSS [http://sass-lang.com/]: .scss

	Stylus [http://learnboost.github.io/stylus/]: .styl

	CoffeeScript [http://coffeescript.org/]: .coffee

	TypeScript [http://www.typescriptlang.org/]: .ts

Yii se fie aux outils de pré-traitement installés pour convertir les ressources. Par exemple, pour utiliser LESS [http://lesscss.org/], vous devriez utiliser la commande de pré-traitement lessc.

Vous pouvez personnaliser les commandes de pré-traitement et la syntaxe étendue prise en charge en configurant [[yii\web\AssetManager::converter]] comme ci-après :

return [
 'components' => [
 'assetManager' => [
 'converter' => [
 'class' => 'yii\web\AssetConverter',
 'commands' => [
 'less' => ['css', 'lessc {from} {to} --no-color'],
 'ts' => ['js', 'tsc --out {to} {from}'],
],
],
],
],
];

Dans la syntaxe précédente, nous spécifions les syntaxes étendues prises en charge via la propriété [[yii\web\AssetConverter::commands]]. Les clés du tableau sont les extensions de nom de fichier (sans le point de tête), et les valeurs sont les extensions des fichiers de ressources résultants ainsi que les commandes pour effectuer les conversions. Les valeurs à remplacer {from} et {to} dans les commandes doivent être remplacées par les chemins de fichiers de ressources sources et les chemins de fichiers de ressources cibles.

Info: il y a d’autres manières de travailler avec les ressources en syntaxe étendue, en plus de celle décrite ci-dessus. Par exemple, vous pouvez utiliser des outils de compilation comme grunt [http://gruntjs.com/] pour surveiller et convertir automatiquement des ressources écrites en syntaxe étendue. Dans ce cas, vous devez lister les fichiers CSS/JavaScript résultants dans des paquets de ressources plutôt que les fichiers originaux.

Combinaison et compression de ressources

Une page Web peut inclure plusieurs fichiers CSS et/ou JavaScript. Pour réduire le nombre de requêtes HTTP et la taille des fichiers téléchargés, une pratique courante est de combiner et compresser ces fichiers CSS/JavaScript multiples en un ou très peu de fichiers, et d’inclure ces fichiers compressés dans les pages Web à la place des fichiers originaux.

Info: la combinaison et la compression de ressources sont généralement nécessaires lorsqu’une application est dans le mode production. En mode développement, l’utilisation des fichiers CSS/JavaScript originaux est souvent plus pratique pour des raisons de débogage plus facile.

Dans ce qui est présenté ci-dessous, nous introduisons une approche pour combiner et compresser les fichiers de ressources sans avoir besoin de modifier le code existant.

	Identifier tous les paquets de ressources dans l’application que vous envisagez de combiner et de compresser.

	Diviser ces paquets en un ou quelques groupes. Notez que chaque paquet ne peut appartenir qu’à un seul groupe.

	Combiner/compresser les fichiers CSS de chacun des groupes en un fichier unique. Faire de même avec les fichiers JavaScript.

	Définir un nouveau paquet de ressources pour chacun des groupes :

	Définir les propriétés [[yii\web\AssetBundle::css|css]] et [[yii\web\AssetBundle::js|js]] comme étant les fichiers CSS et JavaScript combinés, respectivement.

	Personnaliser les paquets de ressources dans chacun des groupes en définissant leurs propriétés [[yii\web\AssetBundle::css|css]] et
[[yii\web\AssetBundle::js|js]] comme étant vides, et en définissant leur propriété [[yii\web\AssetBundle::depends|depends]] comme étant le nouveau paquet de ressources créé pour le groupe.

En utilisant cette approche, lorsque vous enregistrez un paquet de ressources dans une vue, cela engendre un enregistrement automatique du nouveau paquet de ressources pour le groupe auquel le paquet original appartient. Et, en conséquence, les fichiers de ressources combinés/compressés sont inclus dans la page à la place des fichiers originaux.

Un exemple

Examinons ensemble un exemple pour expliquer plus précisément l’approche ci-dessus.

Supposons que votre application possède deux pages X et Y. La page X utilise les paquets de ressources A, B et C, tandis que la page Y utilise les paquets des ressources B, C et D.

Vous avez deux possibilités pour diviser ces paquets de ressources. La première consiste à utiliser un groupe unique pour y inclure tous les paquets de ressources, la seconde est de mettre A dans un groupe X, D dans un groupe Y et (B,C) dans un groupe S. Laquelle des deux est la meilleure ? Cela dépend. La première possibilité offre l’avantage que les deux pages partagent les mêmes fichiers CSS et JavaScript combinés, ce qui rend la mise en cache HTTP plus efficace. Cependant, comme le groupe unique contient tous les paquets, la taille des fichiers combinés CSS et JavaScript est plus importante et accroît donc le temps de transmission initial. Par souci de simplification, dans cet exemple, nous utiliserons la première possibilité, c’est à dire, un groupe unique contenant tous les paquets.

Info: la division des paquets de ressources en groupes, n’est pas une tâche triviale. Cela requiert généralement une analyse du trafic réel des données des différentes ressources sur différentes pages. Au début, vous pouvez démarrer avec un groupe unique par souci de simplification.

Utilisez les outils existants (p. ex. Closure Compiler [https://developers.google.com/closure/compiler/], YUI Compressor](https://github.com/yui/yuicompressor/)) pour combiner et compresser les fichiers CSS et JavaScript dans tous les paquets. Notez que les fichiers doivent être combinés dans l’ordre qui permet de satisfaire toutes les dépendances entre paquets. Par exemple, si le paquet A dépend du paquet B, qui dépend lui-même du paquet C et du paquet D, alors vous devez lister les fichiers de ressources en commençant par C et D, suivi de B et, pour finir, A.

Après avoir combiné et compressé, nous obtenons un fichier CSS et un fichier JavaScript. Supposons qu’ils s’appellent all-xyz.css et all-xyz.js, où xyz est un horodatage ou une valeur de hachage qui est utilisé pour rendre le nom de fichier unique afin d’éviter les problèmes de mise en cache HTTP.

Nous en sommes au dernier stade maintenant. Configurez le [[yii\web\AssetManager|gestionnaire de ressources]] dans la configuration de l’application comme indiqué ci-dessous :

return [
 'components' => [
 'assetManager' => [
 'bundles' => [
 'all' => [
 'class' => 'yii\web\AssetBundle',
 'basePath' => '@webroot/assets',
 'baseUrl' => '@web/assets',
 'css' => ['all-xyz.css'],
 'js' => ['all-xyz.js'],
],
 'A' => ['css' => [], 'js' => [], 'depends' => ['all']],
 'B' => ['css' => [], 'js' => [], 'depends' => ['all']],
 'C' => ['css' => [], 'js' => [], 'depends' => ['all']],
 'D' => ['css' => [], 'js' => [], 'depends' => ['all']],
],
],
],
];

Comme c’est expliqué dans la sous-section Personnalisation des paquets de ressources, la configuration ci-dessus modifie le comportement par défaut des chacun des paquets. En particulier, les paquets A, B, C et D ne possèdent plus aucun fichier de ressources. Ils dépendent tous du paquet all qui contient les fichiers combinés all-xyz.css et all-xyz.js.
Par conséquent, pour la page X, au lieu d’inclure les fichiers sources originaux des paquets A, B et C, seuls ces deux fichiers combinés sont inclus ; la même chose se passe par la page Y.

Il y a un truc final pour rendre l’approche ci-dessus plus lisse. Au lieu de modifier directement le fichier de configuration de l’application, vous pouvez mettre le tableau de personnalisation dans un fichier séparé et l’inclure dans la configuration de l’application en fonction d’une condition. Par exemple :

return [
 'components' => [
 'assetManager' => [
 'bundles' => require __DIR__ . '/' . (YII_ENV_PROD ? 'assets-prod.php' : 'assets-dev.php'),
],
],
];

Cela veut dire que le tableau de configuration du paquet de ressources est sauvegardé dans assets-prod.php pour le mode production, et assets-dev.php pour les autres modes.

Utilisation de la commande asset

Yii fournit une commande de console nommée asset pour automatiser l’approche que nous venons juste de décrire.

Pour utiliser cette commande, vous devez d’abord créer un fichier de configuration pour décrire quels paquets de ressources seront combinés et comment ils seront regroupés. Vous pouvez utiliser la sous-commande asset/template pour créer d’abord un modèle, puis le modifier pour l’adapter à vos besoins.

yii asset/template assets.php

La commande génère un fichier assets.php dans le dossier courant. Le contenu de ce fichier ressemble à ce qui suit :

<?php
/**
 * Fichier de configuration pour la commande de console "yii asset".
 * Notez que dans l'environnement console, quelques alias de chemin comme '@webroot' et '@web' peuvent ne pas exister.
 * Pensez à définir ces alias de chemin manquants.
 */
return [
 // Ajuste la commande/fonction de rappel pour la compression des fichiers JavaScript :
 'jsCompressor' => 'java -jar compiler.jar --js {from} --js_output_file {to}',
 // Ajuste la commande/fonction de rappel pour la compression des fichiers CSS :
 'cssCompressor' => 'java -jar yuicompressor.jar --type css {from} -o {to}',
 // La liste des paquets de ressources à compresser :
 'bundles' => [
 // 'yii\web\YiiAsset',
 // 'yii\web\JqueryAsset',
],
 // Paquets de ressources par la sortie de compression :
 'targets' => [
 'all' => [
 'class' => 'yii\web\AssetBundle',
 'basePath' => '@webroot/assets',
 'baseUrl' => '@web/assets',
 'js' => 'js/all-{hash}.js',
 'css' => 'css/all-{hash}.css',
],
],
 // Configuration du gestionnaire de ressources :
 'assetManager' => [
],
];

Vous devez modifier ce fichier et spécifier quels paquets vous envisagez de combiner dans l’option bundles. Dans l’option targets vous devez spécifier comment les paquets sont divisés en groupes. Vous pouvez spécifier un ou plusieurs groupes, comme nous l’avons déjà dit.

Note: comme les alias @webroot et @web ne sont pas disponibles dans l’application console, vous devez les définir explicitement dans la configuration.

Les fichiers JavaScript sont combinés, compressés et écrits dans js/all-{hash}.js où {hash} est une valeur à remplacer par la valeur de hachage du fichier résultant.

Les options jsCompressor et cssCompressor spécifient les commandes de console ou les fonctions de rappel PHP pour effectuer la combinaison/compression des fichiers JavaScript et CSS. Par défaut, Yii utilise Closure Compiler [https://developers.google.com/closure/compiler/] pour combiner les fichiers JavaScript et YUI Compressor [https://github.com/yui/yuicompressor/] pour combiner les fichiers CSS. Vous devez installer ces outils à la main ou ajuster ces options pour utiliser vos outils favoris.

Avec le fichier de configuration, vous pouvez exécuter la commande asset pour combiner et compresser les fichiers de ressources et générer un nouveau fichier de configuration de paquet de ressources assets-prod.php:

yii asset assets.php config/assets-prod.php

Le fichier de configuration peut être inclus dans la configuration de l’application comme décrit dans la dernière sous-section .

Info: l’utilisation de la commande asset n’est pas la seule option pour automatiser la combinaison et la compression des ressources. Vous pouvez utiliser l’excellent outil d’exécution de tâches grunt [http://gruntjs.com/] pour arriver au même résultat.

Regroupement des paquets de ressources

Dans la dernière sous-section présentée, nous avons expliqué comment combiner tous les paquets de ressources en un seul de manière à minimiser les requêtes HTTP pour les fichiers de ressources utilisés par l’application. Ce n’est pas toujours une pratique souhaitable. Par exemple, imaginez que votre application dispose d’une interface utilisateur (frontend) et d’une interface d’administration (backend), lesquelles utilisent un jeu différent de fichiers CSS et JavaScript. Dans un tel cas, combiner les paquets de ressources des deux interfaces en un seul n’a pas beaucoup de sens, parce que les paquets de ressources pour l’interface utilisateur ne sont pas utilisés par l’interface d’administration, et parce que cela conduit à un gâchis de bande passante du réseau d’envoyer les ressources de l’interface d’administration lorsqu’une page du l’interface utilisateur est demandée.

Pour résoudre ce problème, vous pouvez diviser les paquets de ressources en groupes et combiner les paquets de ressources de chacun des groupes. La configuration suivante montre comment vous pouvez grouper les paquets de ressources :

return [
 ...
 // Specifie les paquets de sortie par groupe :
 'targets' => [
 'allShared' => [
 'js' => 'js/all-shared-{hash}.js',
 'css' => 'css/all-shared-{hash}.css',
 'depends' => [
 // Include all assets shared between 'backend' and 'frontend'
 'yii\web\YiiAsset',
 'app\assets\SharedAsset',
],
],
 'allBackEnd' => [
 'js' => 'js/all-{hash}.js',
 'css' => 'css/all-{hash}.css',
 'depends' => [
 // Include only 'backend' assets:
 'app\assets\AdminAsset'
],
],
 'allFrontEnd' => [
 'js' => 'js/all-{hash}.js',
 'css' => 'css/all-{hash}.css',
 'depends' => [], // Include all remaining assets
],
],
 ...
];

Comme vous le voyez, les paquets de ressources sont divisés en trois groupes : allShared, allBackEnd et allFrontEnd. Ils dépendent tous d’un jeu approprié de paquets de ressources. Par exemple, allBackEnd dépend de app\assets\AdminAsset. En exécutant la commande asset avec cette configuration, les paquets de ressources sont combinés en respectant les spécifications ci-dessus.

Info: vous pouvez laisser la configuration de depends vide pour l’un des paquets cible. Ce faisant, ce paquet de ressources dépendra de tous les paquets de ressources dont aucun autre paquet de ressources ne dépend.

 Contrôleurs

Contrôleurs

Les contrôleurs font partie du modèle d’architecture MVC [http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller] (Modèle Vue Contrôleur). Ce sont des objets dont la classe étend [[yii\base\Controller]]. Ils sont chargés de traiter les requêtes et de générer les réponses. En particulier, après que l’objet application leur a passé le contrôle, ils analysent les données de la requête entrante, les transmettent aux modèles, injectent le résultat des modèles dans les vues et, pour finir, génèrent les réponses sortantes.

Actions

Les contrôleurs sont constitués d’actions qui sont les unités les plus élémentaires dont l’utilisateur final peut demander l’exécution. Un contrôleur comprend une ou plusieurs actions.

L’exemple qui suit présente un contrôleur post avec deux actions : view et create:

namespace app\controllers;

use Yii;
use app\models\Post;
use yii\web\Controller;
use yii\web\NotFoundHttpException;

class PostController extends Controller
{
 public function actionView($id)
 {
 $model = Post::findOne($id);
 if ($model === null) {
 throw new NotFoundHttpException;
 }

 return $this->render('view', [
 'model' => $model,
]);
 }

 public function actionCreate()
 {
 $model = new Post;

 if ($model->load(Yii::$app->request->post()) && $model->save()) {
 return $this->redirect(['view', 'id' => $model->id]);
 } else {
 return $this->render('create', [
 'model' => $model,
]);
 }
 }
}

Dans l’action view (définie par la méthode actionView()), le code commence par charger le modèle en fonction de l’identifiant (ID) du modèle requis. Si le chargement du modèle réussit, l’action l’affiche en utilisant une vue nommée view. Autrement, elle lève une exception.

Dans l’action create (définie par le méthode actionCreate()), le code est similaire. Elle commence par essayer de peupler une nouvelle instance du modèle avec les données de la requête et sauvegarde le modèle. Si les deux opérations réussissent, elle redirige le navigateur vers l’action view en lui passant l’identifiant (ID) du nouveau modèle. Autrement, elle affiche la vue create dans laquelle l’utilisateur peut saisir les entrées requises.

Routes

L’utilisateur final demande l’exécution des actions via ce qu’on appelle des routes. Une route est une chaîne de caractères constituée des parties suivantes :

	un identifiant (ID) de module : cette partie n’est présente que si le contrôleur appartient à un module qui n’est pas en soi une application ;

	un identifiant de contrôleur : une chaîne de caractères qui distingue le contrôleur des autres contrôleurs de la même application — ou du même module si le contrôleur appartient à un module ;

	un identifiant d’action : une chaîne de caractères qui distingue cette action des autres actions du même contrôleur.

Les routes se présentent dans le format suivant :

identifiant_de_contrôleur/identifiant_d_action

ou dans le format suivant si le contrôleur appartient à un module :

identifiant_de_module/identifiant_de_contrôleur/identifiant_d_action

Ainsi si un utilisateur requiert l’URL http://hostname/index.php?r=site/index, l’action index dans le contrôleur site sera exécutée. Pour plus de détails sur la façon dont les routes sont résolues, reportez-vous à la section Routage et génération d’URL.

Création des contrôleurs

Dans les [[yii\web\Application|applications Web]], les contrôleur doivent étendre la classe [[yii\web\Controller]] ou ses classes filles. De façon similaire, dans les [[yii\console\Application|applications de console]], les contrôleurs doivent étendre la classe [[yii\console\Controller]] ou ses classes filles. Le code qui suit définit un contrôleur nommé site :

namespace app\controllers;

use yii\web\Controller;

class SiteController extends Controller
{
}

Identifiant des contrôleurs

Généralement, un contrôleur est conçu pour gérer les requêtes concernant un type particulier de ressource. Pour cette raison, l’identifiant d’un contrôleur est souvent un nom faisant référence au type de ressources que ce contrôleur gère.
Par exemple, vous pouvez utiliser article comme identifiant d’un contrôleur qui gère des données d’articles.

Par défaut, l’identifiant d’un contrôleur ne peut contenir que les caractères suivants : lettres de l’alphabet anglais en bas de casse, chiffres, tiret bas, trait d’union et barre oblique de division. Par exemple, article et post-comment sont tous deux des identifiants de contrôleur valides, tandis que article?, PostComment et admin\post ne le sont pas.
Un identifiant de contrôleur peut aussi contenir un préfixe de sous-dossier. Par exemple admin/article représente un contrôleur article dans le dossier admin dans l’[[yii\base\Application::controllerNamespace|espace de noms du contrôleur]].
Les caractères valides pour le préfixe des sous-dossiers incluent : les lettres de l’alphabet anglais dans les deux casses, les chiffres, le tiret bas et la barre oblique de division, parmi lesquels les barres obliques de division sont utilisées comme séparateurs pour les sous-dossiers à plusieurs niveaux (p. ex. panels/admin).

Nommage des classes de contrôleur

Les noms de classe de contrôleur peut être dérivés de l’identifiant du contrôleur selon la procédure suivante :

	Mettre la première lettre de chacun des mots séparés par des trait d’union en capitale. Notez que si l’identifiant du contrôleur contient certaines barres obliques, cette règle ne s’applique qu’à la partie après la dernière barre oblique dans l’identifiant.

	Retirer les traits d’union et remplacer toute barre oblique de division par une barre oblique inversée.

	Ajouter le suffixe Controller.

	Préfixer avec l’[[yii\base\Application::controllerNamespace|espace de noms du contrôleur]].

Ci-après sont présentés quelques exemples en supposant que l’[[yii\base\Application::controllerNamespace|espace de noms du contrôleur]] prend la valeur par défaut, soit app\controllers:

	article donne app\controllers\ArticleController;

	post-comment donne app\controllers\PostCommentController;

	admin/post-comment donne app\controllers\admin\PostCommentController;

	adminPanels/post-comment donne app\controllers\adminPanels\PostCommentController.

Les classes de contrôleur doivent être auto-chargeables. Pour cette raison, dans les exemples qui précèdent, la classe de contrôleur article doit être sauvegardée dans le fichier dont l’alias est @app/controllers/ArticleController.php; tandis que la classe de contrôleur admin/post-comment doit se trouver dans @app/controllers/admin/PostCommentController.php.

Info: dans le dernier exemple, admin/post-comment montre comment placer un contrôleur dans un sous-dossier de l’[[yii\base\Application::controllerNamespace|espace de noms du contrôleur]]. Cela est utile lorsque vous voulez organiser vos contrôleurs en plusieurs catégories et que vous ne voulez pas utiliser de modules.

Table de mise en correspondance des contrôleurs

Vous pouvez configurer [[yii\base\Application::controllerMap|controller map (table de mise en correspondance des contrôleurs)]] pour outrepasser les contraintes concernant les identifiants de contrôleur et les noms de classe décrites plus haut. Cela est principalement utile lorsque vous utilisez des contrôleurs de tierces parties et que vous n’avez aucun contrôle sur le nommage de leur classe.
Vous pouvez configurer [[yii\base\Application::controllerMap|controller map]] dans la configuration de l’application. Par exemple :

[
 'controllerMap' => [
 // declares "account" controller using a class name
 'account' => 'app\controllers\UserController',

 // declares "article" controller using a configuration array
 'article' => [
 'class' => 'app\controllers\PostController',
 'enableCsrfValidation' => false,
],
],
]

Contrôleur par défaut

Chaque application possède un contrôleur par défaut spécifié via la propriété [[yii\base\Application::defaultRoute]]. Lorsqu’une requête ne précise aucune route, c’est la route spécifiée par cette propriété qui est utilisée. Pour les [[yii\web\Application|applications Web]], sa valeur est 'site', tandis que pour les [[yii\console\Application|applications de console]], c’est help. Par conséquent, si une URL est de la forme http://hostname/index.php, c’est le contrôleur site qui prend la requête en charge.

Vous pouvez changer de contrôleur par défaut en utilisant la configuration d’application suivante :

[
 'defaultRoute' => 'main',
]

Création d’actions

Créer des actions est aussi simple que de définir ce qu’on appelle des méthodes d’action dans une classe de contrôleur. Une méthode d’action est une méthode publique dont le nom commence par le mot action. La valeur retournée par une méthode d’action représente les données de la réponse à envoyer à l’utilisateur final. Le code qui suit définit deux actions, index et hello-world:

namespace app\controllers;

use yii\web\Controller;

class SiteController extends Controller
{
 public function actionIndex()
 {
 return $this->render('index');
 }

 public function actionHelloWorld()
 {
 return 'Hello World';
 }
}

Identifiants d’action

Une action est souvent conçue pour effectuer une manipulation particulière d’une ressource. Pour cette raison, les identifiants d’action sont habituellement des verbes comme view (voir), update (mettre à jour), etc.

Par défaut, les identifiants d’action ne doivent contenir rien d’autre que les caractères suivants : les lettres de l’alphabet anglais en bas de casse, les chiffres, le tiret bas et le trait d’union. Vous pouvez utiliser le trait d’union pour séparer les mots. Par exemple :
view, update2, et comment-post sont des identifiants d’action valides, tandis que view? et Update ne le sont pas.

Vous pouvez créer des actions sous deux formes : les actions en ligne (inline) et les actions autonomes (standalone). Une action en ligne est définie en tant que méthode dans un contrôleur, alors qu’une action autonome est une classe qui étend la classe [[yii\base\Action]] ou une des ses classes filles. La définition d’une action en ligne requiert moins d’efforts et est souvent préférée lorsqu’il n’y a pas d’intention de réutiliser cette action. Par contre, les actions autonomes sont essentiellement créées pour être utilisées dans différents contrôleurs ou pour être redistribuées dans des extensions.

Actions en ligne

Les actions en ligne sont les actions qui sont définies en terme de méthodes d’action comme nous l’avons décrit plus haut.

Les noms des méthodes d’action sont dérivés des identifiants d’action selon la procédure suivante :

	Mettre la première lettre de chaque mot de l’identifiant en capitale.

	Supprimer les traits d’union.

	Préfixer le tout par le mot action.

Par exemple, index donne actionIndex, et hello-world donne actionHelloWorld.

Note: les noms des méthodes d’action sont sensibles à la casse. Si vous avez une méthode nommée ActionIndex, elle ne sera pas considérée comme étant une méthode d’action et, par conséquent, la requête de l’action index aboutira à une exception. Notez également que les méthodes d’action doivent être publiques. Une méthode privée ou protégée ne définit PAS une action en ligne.

Les actions en ligne sont les actions les plus communément définies parce qu’elle ne requièrent que peu d’efforts pour leur création. Néanmoins, si vous envisagez de réutiliser la même action en différents endroits, ou si vous voulez redistribuer cette action, vous devriez envisager de la définir en tant qu’action autonome.

Actions autonomes

Les actions autonomes sont définies comme des classes d’action qui étendent la classe [[yii\base\Action]] ou une de ses classes filles.
Par exemple, dans les versions de Yii, il y a [[yii\web\ViewAction]] et [[yii\web\ErrorAction]], qui sont toutes les deux des actions autonomes.

Pour utiliser une action autonome, vous devez la déclarer dans la table de mise en correspondance des actions en redéfinissant les méthodes de la classe [[yii\base\Controller::actions()]] dans la classe de votre contrôleur de la manière suivante :

public function actions()
{
 return [
 // déclare une action "error" en utilisant un nom de classe
 'error' => 'yii\web\ErrorAction',

 // déclare une action "view" action en utilisant un tableau de configuration
 'view' => [
 'class' => 'yii\web\ViewAction',
 'viewPrefix' => '',
],
];
}

Comme vous pouvez l’observer, les méthodes actions() doivent retourner un tableau dont les clés sont les identifiants d’action et les valeurs le nom de la classe d’action correspondant ou des tableaux de configuration. Contrairement aux actions en ligne, les identifiants d’action autonomes peuvent comprendre n’importe quels caractères du moment qu’ils sont déclarés dans la méthode actions().

Pour créer une classe d’action autonome, vous devez étendre la classe [[yii\base\Action]] ou une de ses classes filles, et implémenter une méthode publique nommée run(). Le rôle de la méthode run() est similaire à celui d’une méthode d’action. Par exemple :

<?php
namespace app\components;

use yii\base\Action;

class HelloWorldAction extends Action
{
 public function run()
 {
 return "Hello World";
 }
}

Valeur de retour d’une action

Le valeur de retour d’une méthode d’action, ou celle de la méthode run() d’une action autonome, représente le résultat de l’action correspondante.

La valeur de retour peut être un objet response qui sera transmis à l’utilisateur final en tant que réponse.

	Pour les [[yii\web\Application|applications Web]], la valeur de retour peut également être des données arbitraires qui seront assignées à l’objet [[yii\web\Response::data]] et converties ensuite en une chaîne de caractères représentant le corps de la réponse.

	Pour les [[yii\console\Application|applications de console]], la valeur de retour peut aussi être un entier représentant l’[[yii\console\Response::exitStatus|état de sortie]] de l’exécution de la commande.

Dans les exemples ci-dessus, les valeurs de retour des actions sont toutes des chaînes de caractères qui seront traitées comme le corps de la réponse envoyée à l’utilisateur final. Les exemples qui suivent montrent comment une action peut rediriger le navigateur vers une nouvelle URL en retournant un objet response (parce que la méthode [[yii\web\Controller::redirect()|redirect()]] retourne un objet response) :

public function actionForward()
{
 // redirect the user browser to http://example.com
 return $this->redirect('http://example.com');
}

Paramètres d’action

Les méthodes d’action pour les actions en ligne et la méthode run() d’une action autonome acceptent des paramètres appelés paramètres d’action. Leurs valeurs sont tirées des requêtes. Pour les [[yii\web\Application|applications Web]], la valeur de chacun des paramètres d’action est obtenue de la méthode $_GET en utilisant le nom du paramètre en tant que clé. Pour les [[yii\console\Application|applications de console]], les valeurs des paramètres correspondent aux argument de la commande.
Dans d’exemple qui suit, l’action view (une action en ligne) déclare deux paramètres : $id et $version.

namespace app\controllers;

use yii\web\Controller;

class PostController extends Controller
{
 public function actionView($id, $version = null)
 {
 // ...
 }
}

En fonction de la requête, les paramètres de l’action seront établis comme suit :

	http://hostname/index.php?r=post/view&id=123: le paramètre $id reçoit la valeur '123', tandis que le paramètre $version reste null (sa valeur par défaut) car la requête ne contient aucun paramètre version.

	http://hostname/index.php?r=post/view&id=123&version=2: les paramètres $id et $version reçoivent les valeurs '123' et '2', respectivement.

	http://hostname/index.php?r=post/view: une exception [[yii\web\BadRequestHttpException]] est levée car le paramètre obligatoire $id n’est pas fourni par la requête.

	http://hostname/index.php?r=post/view&id[]=123: une exception [[yii\web\BadRequestHttpException]] est levée car le paramètre $id reçoit, de manière inattendue, un tableau (['123']).

Si vous voulez que votre paramètre d’action accepte un tableau, il faut, dans la définition de la méthode, faire allusion à son type, avec array, comme ceci :

public function actionView(array $id, $version = null)
{
 // ...
}

Désormais, si la requête est http://hostname/index.php?r=post/view&id[]=123, le paramètre $id accepte la valeur ['123']. Si la requête est http://hostname/index.php?r=post/view&id=123, le paramètre $id accepte également la valeur transmise par la requête parce que les valeurs scalaires sont automatiquement convertie en tableau (array).

Les exemples qui précèdent montrent essentiellement comment les paramètres d’action fonctionnent dans les applications Web. Pour les applications de console, reportez-vous à la section Commandes de console pour plus de détails.

Action par défaut

Chaque contrôleur dispose d’une action par défaut spécifiée par la propriété [[yii\base\Controller::defaultAction]].
Lorsqu’une route ne contient que l’identifiant du contrôleur, cela implique que l’action par défaut de ce contrôleur est requise.

Par défaut, l’action par défaut est définie comme étant index. Si vous désirez changer cette valeur par défaut, contentez-vous de redéfinir cette propriété dans la classe du contrôleur, comme indiqué ci-après :

namespace app\controllers;

use yii\web\Controller;

class SiteController extends Controller
{
 public $defaultAction = 'home';

 public function actionHome()
 {
 return $this->render('home');
 }
}

Cycle de vie d’un contrôleur

Lors du traitement d’une requête, une application crée un contrôleur en se basant sur la route requise. Le contrôleur entame alors le cycle de vie suivant pour satisfaire la requête :

	La méthode [[yii\base\Controller::init()]] est appelée après que le contrôleur est créé et configuré.

	Le contrôleur crée un objet action en se basant sur l’identifiant d’action de la requête :

	Si l’identifiant de l’action n’est pas spécifié, l’[[yii\base\Controller::defaultAction|identifiant de l’action par défaut]] est utilisé.

	Si l’identifiant de l’action est trouvé dans la [[yii\base\Controller::actions()|table de mise en correspondance des actions]], une action autonome est créée.

	Si l’identifiant de l’action est trouvé et qu’il correspond à une méthode d’action, une action en ligne est créée.

	Dans les autres cas, une exception [[yii\base\InvalidRouteException]] est levée.

	Le contrôleur appelle consécutivement la méthode beforeAction() de l’application, celle du module (si module si le contrôleur appartient à un module) et celle du contrôleur.

	Si l’un des appels retourne false, les appels aux méthodes beforeAction() qui devraient suivre ne sont pas effectués et l’exécution de l’action est annulée.

	Par défaut, chacun des appels à la méthode beforeAction() déclenche un événement beforeAction auquel vous pouvez attacher un gestionnaire d’événement.

	Le contrôleur exécute l’action.

	Les paramètres de l’action sont analysés et définis à partir des données transmises par la requête.

	Le contrôleur appelle successivement la méthode afterAction() du contrôleur, du module (si le contrôleur appartient à un module) et de l’application.

	Par défaut, chacun des appels à la méthode afterAction() déclenche un événement afterAction auquel vous pouvez attacher un gestionnaire d’événement.

	L’application assigne le résultat de l’action à l’objet response.

Meilleures pratiques

Dans une application bien conçue, les contrôleurs sont souvent très légers avec des actions qui ne contiennent que peu de code. Si votre contrôleur est plutôt compliqué, cela traduit la nécessité de remanier le code pour en déplacer certaines parties dans d’autres classes.

Voici quelques meilleures pratiques spécifiques. Les contrôleurs :

	peuvent accéder aux données de la requête ;

	peuvent appeler les méthodes des modèles et des autres composants de service avec les données de la requête ;

	peuvent utiliser des vues pour composer leurs réponses ;

	ne devraient PAS traiter les données de la requête — cela devrait être fait dans la couche modèle ;

	devraient éviter d’encapsuler du code HTML ou tout autre code relatif à la présentation — cela est plus avantageusement fait dans les vues.

 Scripts d’entrée

Scripts d’entrée

Le script d’entrée est le premier rencontré dans le processus d’amorçage de l’application. Une application (qu’elle
soit une application Web ou une application console) a un unique script d’entrée. Les utilisateurs font des
requêtes au script d’entrée qui instancie un objet Application et lui transmet les requêtes.

Les scripts d’entrée des applications Web doivent être placés dans des dossiers accessibles par le Web pour que les
utilisateurs puissent y accéder. Ils sont souvent nommés index.php, mais peuvent également avoir tout autre nom,
du moment que les serveurs Web peuvent les trouver.

Les scripts d’entrée des applications console sont généralement placés dans le répertoire de base
des applications et sont nommés yii (avec le suffixe .php). Ils doivent être rendus exécutables afin que les
utilisateurs puissent lancer des applications console grâce à la commande ./yii <route> [arguments] [options].

Les scripts d’entrée effectuent principalement les tâches suivantes :

	Définir des constantes globales;

	Enregistrer le chargeur automatique Composer [https://getcomposer.org/doc/01-basic-usage.md#autoloading];

	Inclure le fichier de classe de [[Yii]];

	Charger la configuration de l’application;

	Créer et configurer une instance d’application;

	Appeler [[yii\base\Application::run()]] pour traiter la requête entrante.

Applications Web

Ce qui suit est le code du script d’entrée du Modèle Basique d’Application Web.

<?php

defined('YII_DEBUG') or define('YII_DEBUG', true);
defined('YII_ENV') or define('YII_ENV', 'dev');

// register Composer autoloader
require __DIR__ . '/../vendor/autoload.php';

// include Yii class file
require __DIR__ . '/../vendor/yiisoft/yii2/Yii.php';

// load application configuration
$config = require __DIR__ . '/../config/web.php';

// create, configure and run application
(new yii\web\Application($config))->run();

Applications Console

De même, le code qui suit est le code du script de démarrage d’une application console :

#!/usr/bin/env php
<?php
/**
 * Yii console bootstrap file.
 *
 * @link http://www.yiiframework.com/
 * @copyright Copyright (c) 2008 Yii Software LLC
 * @license http://www.yiiframework.com/license/
 */

defined('YII_DEBUG') or define('YII_DEBUG', true);

// register Composer autoloader
require __DIR__ . '/vendor/autoload.php';

// include Yii class file
require __DIR__ . '/vendor/yiisoft/yii2/Yii.php';

// load application configuration
$config = require __DIR__ . '/config/console.php';

$application = new yii\console\Application($config);
$exitCode = $application->run();
exit($exitCode);

Définir des Constantes

Les scripts d’entrée sont l’endroit idéal pour définir des constantes globales. Yii prend en charge les trois constantes suivantes :

	YII_DEBUG : spécifie si une application tourne en mode de débogage. Si elle est en mode de débogage, une
application enregistrera des journaux plus détaillés, et révélera des piles d’appels d’erreurs détaillées si des exceptions
sont levées. C’est pour cette raison que le mode de débogage doit être utilisé principalement pendant la phase
de développement. La valeur par défaut de YII_DEBUG est false (faux).

	YII_ENV : spécifie dans quel environnement l’application est en train de tourner. Cela est décrit plus en détails
dans la section Configurations. La valeur par défaut de YII_ENV
est 'prod', ce qui signifie que l’application tourne dans l’environnement de production.

	YII_ENABLE_ERROR_HANDLER : spécifie si le gestionnaire d’erreurs fourni par Yii doit être activé. La valeur par
défaut de cette constante est true (vrai).

Quand on définit une constante, on utilise souvent le code suivant :

defined('YII_DEBUG') or define('YII_DEBUG', true);

qui est l’équivalent du code suivant :

if (!defined('YII_DEBUG')) {
 define('YII_DEBUG', true);
}

Clairement, le premier est plus succinct et plus aisé à comprendre.

Les définitions de constantes doivent être faites au tout début d’un script d’entrée pour qu’elles puissent prendre
effet quand d’autres fichiers PHP sont inclus.

 Extensions

Extensions

Les extensions sont des paquets logiciels distribuables, spécialement conçus pour être utilisés dans des applications, et qui procurent des fonctionnalités prêtes à l’emploi. Par exemple, l’extension yiisoft/yii2-debug [https://github.com/yiisoft/yii2-debug] ajoute une barre de débogage très pratique au pied de chaque page dans votre application pour vous aider à comprendre plus aisément comment les pages sont générées. Vous pouvez utiliser des extensions pour accélérer votre processus de développement. Vous pouvez aussi empaqueter votre code sous forme d’extensions pour partager votre travail avec d’autres personnes.

Info: nous utilisons le terme “extension” pour faire référence à des paquets logiciels spécifiques à Yii. Quant aux paquets à but plus général, qui peuvent être utilisés en dehors de Yii, nous y faisons référence en utilisant les termes « paquet » ou « bibliothèque ».

Utilisation des extensions

Pour utiliser une extension, vous devez d’abord l’installer. La plupart des extensions sont distribuées en tant que paquets Composer [https://getcomposer.org/] qui peuvent être installés en suivant les deux étapes suivantes :

	Modifier le fichier composer.json de votre application et spécifier quelles extensions (paquets Composer) vous désirez installer.

	Exécuter la commande composer install pour installer les extensions spécifiées.

Notez que devez installer Composer [https://getcomposer.org/] si vous ne l’avez pas déjà fait.

Par défaut, Composer installe les paquets enregistrés sur Packagist [https://packagist.org/] — le plus grand dépôt pour les paquets Composer Open Source. Vous pouvez rechercher des extensions sur Packagist. Vous pouvez aussi créer votre propre dépôt [https://getcomposer.org/doc/05-repositories.md#repository] et configurer Composer pour l’utiliser. Ceci est utile si vous développez des extensions privées que vous ne voulez partager que dans vos propres projets seulement.

Les extensions installées par Composer sont stockées dans le dossier BasePath/vendor, où BasePath fait référence au chemin de base de l’application. Comme Composer est un gestionnaire de dépendances, quand il installe un paquet, il installe aussi automatiquement tous les paquets dont le paquet dépend.

Par exemple, pour installer l’extension yiisoft/yii2-imagine, modifier votre fichier composer.json comme indiqué ci-après :

{
 // ...

 "require": {
 // ... autres dépendances

 "yiisoft/yii2-imagine": "~2.0.0"
 }
}

Après l’installation, vous devriez apercevoir le dossier yiisoft/yii2-imagine dans le dossier BasePath/vendor. Vous devriez également apercevoir un autre dossier imagine/imagine contenant les paquets dont l’extension dépend et qui ont été installés.

Info: l’extension yiisoft/yii2-imagine est une extension du noyau développée et maintenue par l’équipe de développement de Yii. Toutes les extensions du noyau sont hébergées sur Packagist [https://packagist.org/] et nommées selon le format yiisoft/yii2-xyz, où xyz varie selon l’extension.

Vous pouvez désormais utiliser les extensions installées comme si elles faisaient partie de votre application. L’exemple suivant montre comment vous pouvez utiliser la classe yii\imagine\Image que l’extension yiisoft/yii2-imagine fournit :

use Yii;
use yii\imagine\Image;

// generate a thumbnail image
Image::thumbnail('@webroot/img/test-image.jpg', 120, 120)
 ->save(Yii::getAlias('@runtime/thumb-test-image.jpg'), ['quality' => 50]);

Info: les classes d’extension sont chargées automatiquement par la classe de chargement automatique de Yii (autoloader).

Installation manuelle d’extensions

Dans quelques cas rares, vous désirez installer quelques, ou toutes les, extensions manuellement, plutôt que de vous en remettre à Composer. Pour le faire, vous devez :

	Télécharger les archives des extensions et les décompresser dans le dossier vendor.

	Installer la classe autoloader procurée par les extensions, si elles en possèdent.

	Télécharger et installer toutes les extensions dont vos extensions dépendent selon les instructions.

Si une extension ne possède pas de classe autoloader mais obéit à la norme PSR-4 [http://www.php-fig.org/psr/psr-4/], vous pouvez utiliser la classe autoloader procurée par Yii pour charger automatiquement les classes d’extension. Tout ce que vous avez à faire, c’est de déclarer un alias racine pour le dossier racine de l’extension. Par exemple, en supposant que vous avez installé une extension dans le dossier vendor/mycompany/myext, et que les classes d’extension sont sous l’espace de noms myext, alors vous pouvez inclure le code suivant dans la configuration de votre application :

[
 'aliases' => [
 '@myext' => '@vendor/mycompany/myext',
],
]

Création d’extensions

Vous pouvez envisager de créer une extension lorsque vous ressentez l’envie de partager votre code avec d’autres personnes. Une extension pour contenir n’importe quel code à votre goût, comme une classe d’aide, un objet graphique, un module, etc.

Il est recommandé de créer une extension sous la forme d’un paquet Composer [https://getcomposer.org/] de façon à ce qu’elle puisse être installée facilement par d’autres utilisateurs, comme nous l’avons expliqué dans la sous-section précédente.

Ci-dessous, nous présentons les étapes de base à suivre pour créer une extension en tant que paquet Composer.

	Créer un projet pour votre extension et l’héberger dans un dépôt VCS, tel que github.com [https://github.com]. Le travail de développement et de maintenance pour cette extension doit être fait sur ce dépôt.

	Dans le dossier racine du projet, créez un fichier nommé composer.json comme le réclame Composer. Reportez-vous à la sous-section suivante pour plus de détails.

	Enregistrez votre extension dans un dépôt Composer tel que Packagist [https://packagist.org/], afin que les autres utilisateurs puissent la trouver et l’installer avec Composer.

composer.json

Tout paquet Composer doit disposer d’un fichier composer.json dans son dossier racine. Ce fichier contient les méta-données à propos du paquet. Vous pouvez trouver une spécification complète de ce fichier dans le manuel de Composer [https://getcomposer.org/doc/01-basic-usage.md#composer-json-project-setup].
L’exemple suivant montre le fichier composer.json de l’extension yiisoft/yii2-imagine :

{
 // package name (nom du paquet)
 "name": "yiisoft/yii2-imagine",

 // package type (type du paquet)
 "type": "yii2-extension",

 "description": "l'intégration d'Imagine pour le framework Yii ",
 "keywords": ["yii2", "imagine", "image", "helper"],
 "license": "BSD-3-Clause",
 "support": {
 "issues": "https://github.com/yiisoft/yii2/issues?labels=ext%3Aimagine",
 "forum": "http://www.yiiframework.com/forum/",
 "wiki": "http://www.yiiframework.com/wiki/",
 "irc": "irc://irc.freenode.net/yii",
 "source": "https://github.com/yiisoft/yii2"
 },
 "authors": [
 {
 "name": "Antonio Ramirez",
 "email": "amigo.cobos@gmail.com"
 }
],

 // dépendances du paquet
 "require": {
 "yiisoft/yii2": "~2.0.0",
 "imagine/imagine": "v0.5.0"
 },

 // class autoloading specs
 "autoload": {
 "psr-4": {
 "yii\\imagine\\": ""
 }
 }
}

Nommage des paquets

Chaque paquet Composer doit avoir un nom de paquet qui le distingue des autres paquets. Le format d’un nom de paquet est vendorName/projectName. Par exemple, dans le nom de paquet yiisoft/yii2-imagine, le nom de vendeur et le nom du projet sont, respectivement, yiisoft etyii2-imagine.

N’utilisez PAS yiisoft comme nom de vendeur car il est réservé pour le noyau de Yii.

Nous recommandons que vous préfixiez votre nom de projet par yii2- pour les paquets qui sont des extensions de Yii, par exemple,myname/yii2-mywidget. Cela permet aux utilisateurs de distinguer plus facilement les extensions de Yii 2.

Types de paquet

Il est important de spécifier le type de paquet de votre extension comme yii2-extension afin que le paquet puisse être reconnu comme une extension de Yii lors de son installation.

Losqu’un utilisateur exécute composer install pour installer une extension, le fichier vendor/yiisoft/extensions.php est automatiquement mis à jour pour inclure les informations sur la nouvelle extension. Grâce à ce fichier, les application Yii peuvent connaître quelles extensions sont installées (l’information est accessible via [[yii\base\Application::extensions]]).

Dépendances

Bien sûr, votre extension dépend de Yii. C’est pourquoi, vous devez lister (yiisoft/yii2) dans l’entrée require dans composer.json. Si votre extension dépend aussi d’autres extensions ou bibliothèques de tierces parties, vous devez les lister également. Assurez-vous que vous de lister également les contraintes de versions appropriées (p. ex. 1.*, @stable) pour chacun des paquets dont votre extension dépend. Utilisez des dépendances stables lorsque votre extension est publiée dans une version stable.

La plupart des paquets JavaScript/CSS sont gérés par Bower [http://bower.io/] et/ou NPM [https://www.npmjs.org/],
plutôt que par Composer. Yii utilise le [greffon assets de Composer(https://github.com/francoispluchino/composer-asset-plugin) pour activer la gestion de ce genre de paquets par Composer. Si votre extension dépend d’un paquet Bower, vous pouvez simplement lister la dépendance dans composer.json comme ceci :

{
 // paquets dépendances
 "require": {
 "bower-asset/jquery": ">=1.11.*"
 }
}

Le code ci-dessus établit que l’extension dépend de paquet Bower jquery. En général, vous pouvez utiliser le nom bower-asset/PackageName — où PackageName est le nom du paquet — pour faire référence à un paquet Bower dans composer.json, et utiliser npm-asset/PackageName pour faire référence à un paquet NPM. Quand Composer installe un paquet Bower ou NPM, par défaut, le contenu du paquet est installé dans le dossier @vendor/bower/PackageName ou @vendor/npm/Packages, respectivement. On peut aussi faire référence à ces dossier en utilisant les alias plus courts @bower/PackageName et @npm/PackageName.

Pour plus de détails sur la gestion des ressources, reportez-vous à la section sur les Ressources.

Chargement automatique des classes

Afin que vos classes soient chargées automatiquement par la classe autoloader de Yii ou celle de Composer, vous devez spécifier l’entrée autoload dans le fichier composer.json, comme précisé ci-après :

{
 //

 "autoload": {
 "psr-4": {
 "yii\\imagine\\": ""
 }
 }
}

Vous pouvez lister un ou plusieurs espaces de noms racines et leur chemin de fichier correspondant.

Lorsque l’extension est installée dans une application, Yii crée un alias pour chacun des espaces de noms racines. Cet alias fait référence au dossier correspondant à l’espace de noms. Par exemple, la déclaration autoload ci-dessus correspond à un alias nommé @yii/imagine.

Pratiques recommandées

Parce que les extensions sont prévues pour être utilisées par d’autres personnes, vous avez souvent besoin de faire un effort supplémentaire pendant le développement. Ci-dessous nous introduisons quelques pratiques courantes et recommandées pour créer des extensions de haute qualité.

Espaces de noms

Pour éviter les collisions de noms et rendre le chargement des classes de votre extension automatique, vous devez utiliser des espaces de noms et nommer les classes de votre extension en respectant la norme PSR-4 [http://www.php-fig.org/psr/psr-4/] ou la norme PSR-0 [http://www.php-fig.org/psr/psr-0/].

Vos noms de classe doivent commencer par vendorName\extensionName, où extensionName est similaire au nom du projet dans le nom du paquet sauf qu’il doit contenir le préfixe yii2-. Par exemple, pour l’extension yiisoft/yii2-imagine, nous utilisons l’espace de noms yii\imagine pour ses classes.

N’utilisez pas yii, yii2 ou yiisoft en tant que nom de vendeur. Ces noms sont réservés au code du noyau de Yii.

Classes d’amorçage

Parfois, vous désirez que votre extension exécute un certain code durant le processus d’amorçage d’une application. Par exemple, votre extension peut vouloir répondre à l’événement beginRequest pour ajuster quelques réglages d’environnement. Bien que vous puissiez donner des instructions aux utilisateurs de l’extension pour qu’ils attachent explicitement votre gestionnaire d’événement dans l’extension à l’événement beginRequest, c’est mieux de le faire automatiquement.

Pour ce faire, vous pouvez créer une classe dite classe du processus d’amorçage en implémentant l’interface [[yii\base\BootstrapInterface]].
Par exemple :

namespace myname\mywidget;

use yii\base\BootstrapInterface;
use yii\base\Application;

class MyBootstrapClass implements BootstrapInterface
{
 public function bootstrap($app)
 {
 $app->on(Application::EVENT_BEFORE_REQUEST, function () {
 // do something here
 });
 }
}

ensuite, listez cette classe dans le fichier composer.json de votre extension de cette manière :

{
 // ...

 "extra": {
 "bootstrap": "myname\\mywidget\\MyBootstrapClass"
 }
}

Lorsque l’extension est installée dans l’application, Yii instancie automatiquement la classe d’amorçage et appelle sa méthode [[yii\base\BootstrapInterface::bootstrap()|bootstrap()]] durant le processus de démarrage pour chacune des requêtes.

Travail avec des bases de données

Votre extension peut avoir besoin d’accéder à des bases de données. Ne partez pas du principe que les applications qui utilisent votre extension utilisent toujours Yii::$db en tant que connexion à la base de données. Déclarez plutôt une propriété db pour les classes qui requièrent un accès à une base de données. Cette propriété permettra aux utilisateurs de votre extension de personnaliser la connexion qu’ils souhaitent que votre extension utilise. Pour un exemple, reportez-vous à la classe [[yii\caching\DbCache]] et voyez comment elle déclare et utilise la propriétédb.

Si votre extension a besoin de créer des tables de base de données spécifiques, ou de faire des changements dans le schéma de la base de données, vous devez :

	fournir des migrations pour manipuler le schéma de base de données, plutôt que d’utiliser des fichiers SQL ;

	essayer de rendre les migrations applicables à différents systèmes de gestion de bases de données ;

	éviter d’utiliser Active Record dans les migrations.

Utilisation des ressources

Si votre extension est un objet graphique ou un module, il est probable qu’elle ait besoin de quelques ressources pour fonctionner. Par exemple, un module peut afficher quelques pages qui contiennent des images, du code JavaScript et/ou CSS. Comme les fichiers d’une extension sont tous dans le même dossier, qui n’est pas accessible depuis le Web lorsque l’extension est installée dans une application, vous avez deux possibilités pour rendre ces ressources accessibles depuis le Web.

	demander aux utilisateurs de l’extension de copier les ressources manuellement dans un dossier spécifique accessible depuis le Web ;

	déclarer un paquet de ressources et compter sur le mécanisme de publication automatique des ressources pour copier les fichiers listés dans le paquet de ressources dans un dossier accessible depuis le Web.

Nous recommandons la deuxième approche de façon à ce que votre extension puisse être plus facilement utilisée par d’autres personnes. Reportez-vous à la section Ressources pour plus de détails sur la manière de travailler avec des ressources en général.

Internationalisation et Localisation

Votre extension peut être utilisée par des applications prenant en charge différentes langues ! Par conséquent, si votre extension affiche des contenus pour l’utilisateur final, vous devez essayer de traiter à la fois internationalisation et localisation. Plus spécialement :

	Si l’extension affiche des messages pour l’utilisateur final, les messages doivent être enveloppés dans la méthode Yii::t() afin de pouvoir être traduits. Les messages à l’attention des développeurs (comme les messages d’exceptions internes) n’ont pas besoin d’être traduits.
-Si l’extension affiche des nombres, des dates, etc., ils doivent être formatés en utilisant [[yii\i18n\Formatter]] avec les règles de formatage appropriées.

Pour plus de détails, reportez-vous à la section Internationalisation.

Tests

Vous souhaitez que votre extension s’exécute sans créer de problème à ses utilisateurs. Pour atteindre ce but vous devez la tester avant de la publier.

Il est recommandé que créiez des cas de test variés pour tester votre extension plutôt que de vous fier à des tests manuels. À chaque fois que vous vous apprêterez à publier une nouvelle version de votre extension, vous n’aurez plus qu’à exécuter ces cas de test pour garantir que tout est en ordre. Yii fournit une prise en charge des tests qui peut vous aider à écrire facilement des unités de test, des tests d’acceptation et des tests de fonctionnalités. Pour plus de détails, reportez-vous à la section Tests.

Numérotation des versions

Vous devriez donner à chacune des versions publiées de votre extension un numéro (p. ex. 1.0.1). Nous recommandons de suivre la pratique de la numérotation sémantique des versions [http://semver.org] lors de la détermination d’un numéro de version.

Publication

Pour permettre aux autres personnes de connaître votre extension, vous devez la publier. Si c’est la première fois que vous publiez l’extension, vous devez l’enregistrer sur un dépôt Composer tel que Packagist [https://packagist.org/]. Ensuite, tout ce que vous avez à faire, c’est de créer une balise de version (p. ex. v1.0.1) sur le dépôt VCS de votre extension et de notifier au dépôt Composer la nouvelle version. Les gens seront capables de trouver votre nouvelle version et, soit de l’installer, soit de la mettre à jour via le dépôt Composer.

Dans les versions de votre extension, en plus des fichiers de code, vous devez envisager d’inclure ce qui suit par aider les gens à connaître votre extension et à l’utiliser :

	Un ficher readme (lisez-moi) dans le dossier racine du paquet : il doit décrire ce que fait votre extension, comment l’installer et l’utiliser. Nous vous recommandons de l’écrire dans le format Markdown [http://daringfireball.net/projects/markdown/] et de nommer ce fichier readme.md.

	Un fichier changelog (journal des modifications) dans le dossier racine du paquet : il liste les changements apportés dans chacune des versions. Ce fichier peut être écrit dans le format Markdown et nommé changelog.md.

	Un fichier upgrade (mise à jour) dans le dossier racine du paquet : il donne les instructions sur la manière de mettre l’extension à jour en partant d’une version précédente. Ce fichier peut être écrit dans le format Markdown et nommé upgrade.md.

	Tutorials, demos, screenshots, etc.: ces derniers sont nécessaires si votre extension fournit de nombreuses fonctionnalités qui ne peuvent être couvertes dans le fichier readme.

	Une documentation de l’API : votre code doit être bien documenté pour permettre aux autres personnes de le lire plus facilement et de le comprendre. Vous pouvez faire référence au fichier de la classe BaseObject [https://github.com/yiisoft/yii2/blob/master/framework/base/BaseObject.php] pour savoir comment documenter votre code.

Info: les commentaires de votre code peuvent être écrits dans le format Markdown. L’extension yiisoft/yii2-apidoc vous fournit un outil pour générer une documentation d’API agréable et basée sur les commentaires de votre code.

Info: bien que cela ne soit pas une exigence, nous suggérons que votre extension respecte un certain style de codage. Vous pouvez vous reporter au document style du codage du noyau du framework [https://github.com/yiisoft/yii2/wiki/Core-framework-code-style].

Extensions du noyau

Yii fournit les extensions du noyau suivantes (ou “les extensions officielles” [https://www.yiiframework.com/extensions/official]) qui sont développées et maintenues par l’équipe de développement de Yii. Elles sont toutes enregistrées surPackagist [https://packagist.org/] et peuvent être facilement installées comme décrit dans la sous-section Utilisation des extensions.

	yiisoft/yii2-apidoc [https://www.yiiframework.com/extension/yiisoft/yii2-apidoc] : fournit un générateur d’API extensible et de haute performance. Elle est aussi utilisée pour générer l’API du noyau du framework.

	yiisoft/yii2-authclient [https://www.yiiframework.com/extension/yiisoft/yii2-authclient] : fournit un jeu de clients d’authentification courants tels que Facebook OAuth2 client, GitHub OAuth2 client.

	yiisoft/yii2-bootstrap [https://www.yiiframework.com/extension/yiisoft/yii2-bootstrap] : fournit un jeu d’objets graphiques qui encapsulent les composants et les greffons de Bootstrap [http://getbootstrap.com/].

	yiisoft/yii2-codeception [https://github.com/yiisoft/yii2-codeception](obsolète) : fournit la prise en charge des fonctionnalités de test basées sur Codeception [http://codeception.com/].

	yiisoft/yii2-debug [https://www.yiiframework.com/extension/yiisoft/yii2-debug] : fournit la prise en charge du débogage des applications Yii. Lorsque cette extension est utilisée, une barre de débogage apparaît au pied de chacune des pages. Cette extension fournit aussi un jeu de pages autonomes pour afficher des informations de débogage plus détaillées.

	yiisoft/yii2-elasticsearch [https://www.yiiframework.com/extension/yiisoft/yii2-elasticsearch] : fournit la prise en charge d’Elasticsearch [http://www.elasticsearch.org/]. Elle inclut un moteur de requêtes/recherches de base et met en œuvre le motif Active Record qui permet de stocker des enregistrement actifs dans Elasticsearch.

	yiisoft/yii2-faker [https://www.yiiframework.com/extension/yiisoft/yii2-faker] : fournit la prise en charge de Faker [https://www.yiiframework.com/extension/fzaninotto/Faker] pour générer des données factices pour vous.

	yiisoft/yii2-gii [https://www.yiiframework.com/extension/yiisoft/yii2-gii] : fournit un générateur de code basé sur le Web qui est hautement extensible et peut être utilisé pour générer rapidement des modèles, des formulaires, des modules, des requêtes CRUD, etc.

	yiisoft/yii2-httpclient [https://www.yiiframework.com/extension/yiisoft/yii2-httpclient] : provides an HTTP client.

	yiisoft/yii2-imagine [https://github.com/yiisoft/yii2-imagine] : fournit des fonctionnalités couramment utilisées de manipulation d’images basées sur Imagine [https://www.yiiframework.com/extension/yiisoft/yii2-imagine].

	yiisoft/yii2-jui [https://www.yiiframework.com/extension/yiisoft/yii2-jui] : fournit un jeu d’objets graphiques qui encapsulent les interactions et les objets graphiques de JQuery UI [http://jqueryui.com/].

	yiisoft/yii2-mongodb [https://www.yiiframework.com/extension/yiisoft/yii2-mongodb] : fournit la prise en charge de MongoDB [http://www.mongodb.org/]. Elle inclut des fonctionnalités telles que les requêtes de base, les enregistrements actifs, les migrations, la mise en cache, la génération de code, etc.

	yiisoft/yii2-queue [https://www.yiiframework.com/extension/yiisoft/yii2-queue]: fournit la prise en charge pour exécuter des tâches en asynchrone via des queues. Il prend en charge les queues en se basant sur, DB, Redis, RabbitMQ, AMQP, Beanstalk et Gearman.

	yiisoft/yii2-redis [https://github.com/yiisoft/yii2-redis] : fournit la prise en charge de redis [http://redis.io/]. Elle inclut des fonctionnalités telles que les requêtes de base, les enregistrements actifs, la mise en cache, etc.

	yiisoft/yii2-shell [https://www.yiiframework.com/extension/yiisoft/yii2-shell]: fournit un interprète de commandes (shell) basé sur psysh [http://psysh.org/].

	yiisoft/yii2-smarty [https://www.yiiframework.com/extension/yiisoft/yii2-smarty] : fournit un moteur de modèles basé sur Smarty [http://www.smarty.net/].

	yiisoft/yii2-sphinx [https://github.com/yiisoft/yii2-sphinx] : fournit la prise en charge de Sphinx [https://www.yiiframework.com/extension/yiisoft/yii2-sphinx]. Elle inclut des fonctionnalités telles que les requêtes de base, les enregistrements actifs, la génération de code, etc.

	yiisoft/yii2-swiftmailer [https://www.yiiframework.com/extension/yiisoft/yii2-swiftmailer] : fournit les fonctionnalités d’envoi de courriels basées sur swiftmailer [http://swiftmailer.org/].

	yiisoft/yii2-twig [https://www.yiiframework.com/extension/yiisoft/yii2-twig] : fournit un moteur de modèles basé sur Twig [http://twig.sensiolabs.org/].

Les extensions officielles suivantes sont valables pour les versions Yii 2.1 et plus récentes. Vous n’avez pas besoin de les installer car elles sont incluse dans le cœur du framework.

	yiisoft/yii2-captcha [https://www.yiiframework.com/extension/yiisoft/yii2-captcha]:
fournit un CAPTCHA.

	yiisoft/yii2-jquery [https://www.yiiframework.com/extension/yiisoft/yii2-jquery]:
fournit une prise en charge de jQuery [https://jquery.com/].

	yiisoft/yii2-maskedinput [https://www.yiiframework.com/extension/yiisoft/yii2-maskedinput]:
fournit un composant graphique de saisie masqué basé sur jQuery Input Mask plugin [http://robinherbots.github.io/Inputmask/].

	yiisoft/yii2-mssql [https://www.yiiframework.com/extension/yiisoft/yii2-mssql]:
fournit la prise en charge de MSSQL [https://www.microsoft.com/sql-server/].

	yiisoft/yii2-oracle [https://www.yiiframework.com/extension/yiisoft/yii2-oracle]:
fournit la prise en charge de Oracle [https://www.oracle.com/].

	yiisoft/yii2-rest [https://www.yiiframework.com/extension/yiisoft/yii2-rest]:
fournit le support pour l’API REST.

 Filtres

Filtres

Les filtres sont des objets qui sont exécutés avant et/ou après les actions de contrôleurs. Par exemple, un filtre de contrôle d’accès peut être exécuté avant les actions pour garantir qu’un utilisateur final particulier est autorisé à y accéder. Un filtre de compression de contenu peut être exécuté après les actions pour compresser la réponse avant de l’envoyer à l’utilisateur final.

Un filtre peut être constitué d’‘un pré-filtre (logique de filtrage appliquée avant les actions) et/ou un post-filtre (logique appliquée après les actions).

Utilisation des filtres

Pour l’essentiel, les filtres sont des sortes de comportements. Par conséquent, leur utilisation est identique à l’ utilisation des comportements. Vous pouvez déclarer des filtres dans une classe de contrôleur en redéfinissant sa méthode [[yii\base\Controller::behaviors()|behaviors()]] de la manière suivante :

public function behaviors()
{
 return [
 [
 'class' => 'yii\filters\HttpCache',
 'only' => ['index', 'view'],
 'lastModified' => function ($action, $params) {
 $q = new \yii\db\Query();
 return $q->from('user')->max('updated_at');
 },
],
];
}

Par défaut, les filtres déclarés dans une classe de contrôleur sont appliqués à toutes les action de ce contrôleur. Vous pouvez cependant, spécifier explicitement à quelles actions ils s’appliquent en configurant la propriété [[yii\base\ActionFilter::only|only]]. Dans l’exemple précédent, le filtre HttpCache s’applique uniquement aux actions index et view. Vous pouvez également configurer la propriété [[yii\base\ActionFilter::except|except]] pour empêcher quelques actions d’être filtrées.

En plus des contrôleurs, vous pouvez également déclarer des filtres dans un module ou dans une application. Lorsque vous faites cela, les filtres s’appliquent à toutes les actions de contrôleur qui appartiennent à ce module ou à cette application, sauf si vous configurez les propriétés des filtres [[yii\base\ActionFilter::only|only]] et [[yii\base\ActionFilter::except|except]] comme expliqué précédemment.

Note: lorsque vous déclarez des filtres dans des modules ou des applications, vous devriez utiliser des routes plutôt que des identifiants d’action dans les propriétés [[yii\base\ActionFilter::only|only]] et [[yii\base\ActionFilter::except|except]]. Cela tient au fait qu’un identifiant d’action seul ne peut pas pleinement spécifier une action dans le cadre d’un module ou d’une application.

Lorsque plusieurs filtres sont configurés pour une même action, ils sont appliqués en respectant les règles et l’ordre qui suivent :

	Pré-filtrage

	Les filtres déclarés dans l’application sont appliqués dans l’ordre dans lequel ils sont listés dans la méthode behaviors().

	Les filtres déclarés dans le module sont appliqués dans l’ordre dans lequel ils sont listés dans la méthode behaviors().

	Les filtres déclarés dans le contrôleur sont appliqués dans l’ordre dans lequel ils sont listés dans la méthode behaviors().

	Si l’un quelconque des filtres annule l’exécution de l’action, les filtres subséquents (à la fois de pré-filtrage et de post-fitrage) ne sont pas appliqués.

	L’action est exécutée si les filtres de pré-filtrage réussissent.

	Post-filtrage

	Les filtres déclarés dans le contrôleur sont appliqués dans l’ordre dans lequel ils sont listés dans la méthode behaviors().

	Les filtres déclarés dans le module sont appliqués dans l’ordre dans lequel ils sont listés dans la méthode behaviors().

	Les filtres déclarés dans l’application sont appliqués dans l’ordre dans lequel ils sont listés dans la méthode behaviors().

Création de filtres

Pour créer un filtre d’action, vous devez étendre la classe [[yii\base\ActionFilter]] et redéfinir la méthode [[yii\base\ActionFilter::beforeAction()|beforeAction()]] et/ou la méthode [[yii\base\ActionFilter::afterAction()|afterAction()]]. La première est exécutée avant l’exécution de l’action, tandis que la seconde est exécutée après l’exécution de l’action. Le valeur de retour de la méthode [[yii\base\ActionFilter::beforeAction()|beforeAction()]] détermine si une action doit être exécutée ou pas. Si c’est false (faux), les filtres qui suivent sont ignorés et l’action n’est pas exécutée.

L’exemple qui suit montre un filtre qui enregistre dans un journal le temps d’exécution de l’action :

namespace app\components;

use Yii;
use yii\base\ActionFilter;

class ActionTimeFilter extends ActionFilter
{
 private $_startTime;

 public function beforeAction($action)
 {
 $this->_startTime = microtime(true);
 return parent::beforeAction($action);
 }

 public function afterAction($action, $result)
 {
 $time = microtime(true) - $this->_startTime;
 Yii::debug("Action '{$action->uniqueId}' spent $time second.");
 return parent::afterAction($action, $result);
 }
}

Filtres du noyau

Yii fournit un jeu de filtres couramment utilisés, que l’on trouve en premier lieu dans l’espace de noms yii\filters. Dans ce qui suit, nous introduisons brièvement ces filtres.

[[yii\filters\AccessControl|AccessControl]]

AccessControl (contrôle d’accès) fournit un contrôle d’accès simple basé sur un jeu de [[yii\filters\AccessControl::rules|règles]]. En particulier, avant qu’une action ne soit exécutée, AccessControl examine les règles listées et trouve la première qui correspond aux variables du contexte courant (comme l’adresse IP, l’état de connexion de l’utilisateur, etc.). La règle qui correspond détermine si l’exécution de l’action requise doit être autorisée ou refusée. Si aucune des règles ne correspond, l’accès est refusé.

L’exemple suivant montre comment autoriser les utilisateurs authentifiés à accéder aux actions create et update tout en refusant l’accès à ces actions aux autres utilisateurs.

use yii\filters\AccessControl;

public function behaviors()
{
 return [
 'access' => [
 'class' => AccessControl::className(),
 'only' => ['create', 'update'],
 'rules' => [
 // autoriser les utilisateurs authentifiés
 [
 'allow' => true,
 'roles' => ['@'],
],
 // tout autre chose est interdite d'accès par défaut
],
],
];
}

Pour plus de détails sur le contrôle d’accès en général, reportez-vous à la section Authorization.

Filtres de méthodes d’authentification

Les filtres de méthodes d’authentification sont utilisés pour authentifier un utilisateur qui utilise des méthodes d’authentification variées comme
HTTP Basic Auth [http://en.wikipedia.org/wiki/Basic_access_authentication] ou OAuth 2 [http://oauth.net/2/]. Les classes de filtre sont dans l’espace de noms yii\filters\auth.

L’exemple qui suit montre comment vous pouvez utiliser [[yii\filters\auth\HttpBasicAuth]] pour authentifier un utilisateur qui utilise un jeton d’accès basé sur la méthode HTTP Basic Auth. Notez qu’afin que cela fonctionne, votre [[yii\web\User::identityClass|classe identity de l’utilisateur]] doit implémenter l’interface [[yii\web\IdentityInterface::findIdentityByAccessToken()|findIdentityByAccessToken()]].

use yii\filters\auth\HttpBasicAuth;

public function behaviors()
{
 return [
 'basicAuth' => [
 'class' => HttpBasicAuth::className(),
],
];
}

Les filtres de méthode d’authentification sont communément utilisés dans la mise en œuvre des API pleinement REST. Pour plus de détails, reportez-vous à la section Authentification REST.

[[yii\filters\ContentNegotiator|ContentNegotiator]]

ContentNegotiator (négociateur de contenu) prend en charge la négociation des formats de réponse et la négociation de langue d’application. Il essaye de déterminer le format de la réponse et/ou la langue en examinant les paramètres de la méthode GET et ceux de l’entête HTTP Accept.

Dans l’exemple qui suit, le filtre ContentNegotiator est configuré pour prendre en charge JSON et XML en tant que formats de réponse, et anglais (États-Unis) et allemand en tant que langues.

use yii\filters\ContentNegotiator;
use yii\web\Response;

public function behaviors()
{
 return [
 [
 'class' => ContentNegotiator::className(),
 'formats' => [
 'application/json' => Response::FORMAT_JSON,
 'application/xml' => Response::FORMAT_XML,
],
 'languages' => [
 'en-US',
 'de',
],
],
];
}

Les formats de réponse et les langues nécessitent souvent d’être déterminés bien plus tôt durant le cycle de vie de l’application. Pour cette raison, ContentNegotiator est conçu de manière à être également utilisé en tant que composant du processus d’amorçage. Par exemple, vous pouvez le configurer dans la configuration de l’application de la manière suivante :

use yii\filters\ContentNegotiator;
use yii\web\Response;

[
 'bootstrap' => [
 [
 'class' => ContentNegotiator::className(),
 'formats' => [
 'application/json' => Response::FORMAT_JSON,
 'application/xml' => Response::FORMAT_XML,
],
 'languages' => [
 'en-US',
 'de',
],
],
],
];

Info: dans le cas où le type de contenu et la langue préférés ne peuvent être déterminés à partir de la requête, le premier format et la première langue listés dans [[formats]] et[[languages]], respectivement, sont utilisés.

[[yii\filters\HttpCache|HttpCache]]

HttpCache met en œuvre la mise en cache côté client en utilisant les entêtes HTTP Last-Modified (dernier modifié) et Etag.
Par exemple :

use yii\filters\HttpCache;

public function behaviors()
{
 return [
 [
 'class' => HttpCache::className(),
 'only' => ['index'],
 'lastModified' => function ($action, $params) {
 $q = new \yii\db\Query();
 return $q->from('user')->max('updated_at');
 },
],
];
}

Reportez-vous à la section Mise en cache HTTP pour plus de détails sur l’utilisation de HttpCache.

[[yii\filters\PageCache|PageCache]]

PageCache met en œuvre la mise en cache de pages entières côté serveur. Dans l’exemple qui suit, *PageCache0 est appliqué à l’action index pour mettre la page entière en cache pendant un maximum de 60 secondes ou jusqu’à un changement du nombre d’entrées dans la table post. Il stocke également différentes versions de la page en fonction de la langue choisie.

use yii\filters\PageCache;
use yii\caching\DbDependency;

public function behaviors()
{
 return [
 'pageCache' => [
 'class' => PageCache::className(),
 'only' => ['index'],
 'duration' => 60,
 'dependency' => [
 'class' => DbDependency::className(),
 'sql' => 'SELECT COUNT(*) FROM post',
],
 'variations' => [
 \Yii::$app->language,
]
],
];
}

Reportez-vous à la section Page Caching pour plus de détails sur l’utilisation de PageCache.

[[yii\filters\RateLimiter|RateLimiter]]

RateLimiter met en œuvre un algorithme de limitation de débit basé sur l’algorithme leaky bucket [http://en.wikipedia.org/wiki/Leaky_bucket]. On l’utilise en premier lieu dans la mise en œuvre des API pleinement REST. Reportez-vous à la section limitation de débit pour plus de détails sur l’utilisation de ce filtre.

[[yii\filters\VerbFilter|VerbFilter]]

VerbFilter vérifie si les méthodes de requête HTTP sont autorisées par l’action requise. Si ce n’est pas le cas, une exception HTTP 405 est levée. Dans l’exemple suivant, VerbFilter est déclaré pour spécifier un jeu typique de méthodes de requête pour des actions CRUD — Create (créer), Read (lire), Update (mettre à jour), DELETE (supprimer).

use yii\filters\VerbFilter;

public function behaviors()
{
 return [
 'verbs' => [
 'class' => VerbFilter::className(),
 'actions' => [
 'index' => ['get'],
 'view' => ['get'],
 'create' => ['get', 'post'],
 'update' => ['get', 'put', 'post'],
 'delete' => ['post', 'delete'],
],
],
];
}

[[yii\filters\Cors|Cors]]

Cross-origin resource sharing CORS [https://developer.mozilla.org/en-US/docs/HTTP/Access_control_CORS] est un mécanisme qui permet à des ressource (e.g. fonts, JavaScript, etc.) d’être requises d’un autre domaine en dehors du domaine dont la ressource est originaire. En particulier, les appels AJAX de Javascript peuvent utiliser le mécanisme XMLHttpRequest. Autrement, de telles requêtes “cross-domain” (inter domaines) seraient interdites par les navigateurs, à cause de la politique de sécurité dite d’origine identique (same origin). CORS définit une manière par laquelle le navigateur et le serveur interagissent pour déterminer si, oui ou non, la requête cross-origin (inter-site) est autorisée.

Le [[yii\filters\Cors|filtre Cors]] doit être défini avant les filtres d’authentification et/ou d’autorisation pour garantir que les entêtes CORS sont toujours envoyés.

use yii\filters\Cors;
use yii\helpers\ArrayHelper;

public function behaviors()
{
 return ArrayHelper::merge([
 [
 'class' => Cors::className(),
],
], parent::behaviors());
}

Consultez également la section sur les contrôleurs REST si vous voulez ajouter le filtre CORS à une classe
[[yii\rest\ActiveController]] dans votre API.

Les filtrages Cors peuvent être peaufinés via la propriété [[yii\filters\Cors::$cors|$cors]].

	cors['Origin']: un tableau utilisé pour définir les origines autorisées. Peut être ['*'] (tout le monde) ou ['http://www.myserver.net', 'http://www.myotherserver.com']. Valeur par défaut ['*'].

	cors['Access-Control-Request-Method']: un tableau des verbes autorisés tel que ['GET', 'OPTIONS', 'HEAD']. Valeur par défaut ['GET', 'POST', 'PUT', 'PATCH', 'DELETE', 'HEAD', 'OPTIONS'].

	cors['Access-Control-Request-Headers']: un tableau des entêtes autorisés. Peut être['*'] tous les entêtes ou certains spécifiquement ['X-Request-With']. Valeur par défaut ['*'].

	cors['Access-Control-Allow-Credentials']: définit si la requête courante peut être faite en utilisant des identifiants de connexion. Peut être true (vrai), false (faux) ou null (non défini). Valeur par défaut null.

	cors['Access-Control-Max-Age']: définit la durée de vie des requêtes de pré-vérification (preflight requests). Valeur par défaut 86400.

Par exemple, autoriser CORS pour l’origine http://www.myserver.net avec les méthodes GET, HEAD et OPTIONS :

use yii\filters\Cors;
use yii\helpers\ArrayHelper;

public function behaviors()
{
 return ArrayHelper::merge([
 [
 'class' => Cors::className(),
 'cors' => [
 'Origin' => ['http://www.myserver.net'],
 'Access-Control-Request-Method' => ['GET', 'HEAD', 'OPTIONS'],
],
],
], parent::behaviors());
}

Vous pouvez peaufiner les entêtes CORS en redéfinissant les paramètres par défaut action par action. Par exemple, ajouter les Access-Control-Allow-Credentials (autoriser les identifiants de contrôle d’accès) pour l’actionlogin pourrait être réalisé comme ceci :

use yii\filters\Cors;
use yii\helpers\ArrayHelper;

public function behaviors()
{
 return ArrayHelper::merge([
 [
 'class' => Cors::className(),
 'cors' => [
 'Origin' => ['http://www.myserver.net'],
 'Access-Control-Request-Method' => ['GET', 'HEAD', 'OPTIONS'],
],
 'actions' => [
 'login' => [
 'Access-Control-Allow-Credentials' => true,
]
]
],
], parent::behaviors());
}

 Modèles

Modèles

Les modèles font partie du modèle d’architecture MVC [http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller] (Modèle Vue Contrôleur).
Ces objets représentent les données à traiter, les règles et la logique de traitement.

Vous pouvez créer des classes de modèle en étendant la classe [[yii\base\Model]] ou ses classe filles. La classe de base [[yii\base\Model]] prend en charge des fonctionnalités nombreuses et utiles :

	Les attributs : ils représentent les données à traiter et peuvent être accédés comme des propriétés habituelles d’objets ou des éléments de tableaux.

	Les étiquettes d’attribut : elles spécifient les étiquettes pour l’affichage des attributs.

	L’assignation massive : elle permet l’assignation de multiples attributs en une seule étape.

	Les règles de validation : elles garantissent la validité des données saisies en s’appuyant sur des règles de validation déclarées.

	L’exportation des données : elle permet au modèle de données d’être exporté sous forme de tableaux dans des formats personnalisables.

La classe Model est également la classe de base pour des modèles plus évolués, comme la classe class Active Record (enregistrement actif). Reportez-vous à la documentation ad hoc pour plus de détails sur ces modèles évolués.

Info: vous n’êtes pas forcé de baser vos classes de modèle sur la classe [[yii\base\Model]]. Néanmoins, comme il y a de nombreux composants de Yii conçus pour prendre en charge la classe [[yii\base\Model]], il est généralement préférable de baser vos modèles sur cette classe.

Attributs

Les modèles représentent les données de l’application en termes d’attributs. Chaque attribut est comme un propriété publiquement accessible d’un modèle. La méthode [[yii\base\Model::attributes()]] spécifie quels attributs une classe de modèle possède.

Vous pouvez accéder à un attribut comme vous accédez à une propriété d’un objet ordinaire :

$model = new \app\models\ContactForm;

// "name" is an attribute of ContactForm
$model->name = 'example';
echo $model->name;

Vous pouvez également accéder aux attributs comme aux éléments d’un tableau, grâce à la prise en charge de ArrayAccess [http://php.net/manual/en/class.arrayaccess.php] et ArrayIterator [http://php.net/manual/en/class.arrayiterator.php]
par la classe [[yii\base\Model]]:

$model = new \app\models\ContactForm;

// accès aux attributs comme à des éléments de tableau
$model['name'] = 'example';
echo $model['name'];

// itération sur les attributs avec foreach
foreach ($model as $name => $value) {
 echo "$name: $value\n";
}

Définition d’attributs

Par défaut, si votre classe de modèle étend directement la classe [[yii\base\Model]], toutes ses variables membres non statiques et publiques sont des attributs. Par exemple, la classe de modèle ContactForm ci-dessous possède quatre attributs : name, email,
subject et body. Le modèle ContactForm est utilisé pour représenter les données saisies dans un formulaire HTML.

namespace app\models;

use yii\base\Model;

class ContactForm extends Model
{
 public $name;
 public $email;
 public $subject;
 public $body;
}

Vous pouvez redéfinir la méthode [[yii\base\Model::attributes()]] pour spécifier les attributs d’une autre manière. La méthode devrait retourner le nom des attributs d’un modèle. Par exemple, [[yii\db\ActiveRecord]] fait cela en retournant le nom des colonnes de la base de données associée en tant que noms d’attribut. Notez que vous pouvez aussi avoir besoin de redéfinir les méthodes magiques telles que __get() et __set() afin que les attributs puissent être accédés comme les propriétés d’un objet ordinaire.

Étiquettes d’attribut

Lors de l’affichage de la valeur d’un attribut ou lors de la saisie d’une entrée pour une telle valeur, il est souvent nécessaire d’afficher une étiquette associée à l’attribut. Par exemple, étant donné l’attribut nommé firstName (prénom), vous pouvez utiliser une étiquette de la forme First Name qui est plus conviviale lorsqu’elle est présentée à l’utilisateur final dans un formulaire ou dans un message d’erreur.

Vous pouvez obtenir l’étiquette d’un attribut en appelant la méthode [[yii\base\Model::getAttributeLabel()]]. Par exemple :

$model = new \app\models\ContactForm;

// displays "Name"
echo $model->getAttributeLabel('name');

Par défaut, les étiquettes d’attribut sont automatiquement générées à partir des noms d’attribut. La génération est faite en appelant la méthode [[yii\base\Model::generateAttributeLabel()]]. Cette méthode transforme un nom de variable avec une casse en dos de chameau en de multiples mots, chacun commençant par une capitale. Par exemple, username donne Username et firstName donne First Name.

Si vous ne voulez pas utiliser les étiquettes à génération automatique, vous pouvez redéfinir la méthode [[yii\base\Model::attributeLabels()]] pour déclarer explicitement les étiquettes d’attribut. Par exemple :

namespace app\models;

use yii\base\Model;

class ContactForm extends Model
{
 public $name;
 public $email;
 public $subject;
 public $body;

 public function attributeLabels()
 {
 return [
 'name' => 'Nom',
 'email' => 'Adresse de courriel',
 'subject' => 'Subjet',
 'body' => 'Contenu',
];
 }
}

Pour les application prenant en charge de multiples langues, vous désirez certainement traduire les étiquettes d’attribut. Cela peut être fait dans la méthode [[yii\base\Model::attributeLabels()|attributeLabels()]] également, en procédant comme ceci :

public function attributeLabels()
{
 return [
 'name' => \Yii::t('app', 'Your name'),
 'email' => \Yii::t('app', 'Your email address'),
 'subject' => \Yii::t('app', 'Subject'),
 'body' => \Yii::t('app', 'Content'),
];
}

Vous pouvez même définir les étiquettes en fonction de conditions. Par exemple, en fonction du scénario dans lequel le modèle est utilisé, vous pouvez retourner des étiquettes différentes pour le même attribut.

Info: strictement parlant, les étiquettes d’attribut font partie des vues. Mais la déclaration d’étiquettes dans les modèles est souvent très pratique et conduit à un code propre et réutilisable.

Scénarios

Un modèle peut être utilisé dans différents scénarios. Par exemple, un modèle User (utilisateur) peut être utilisé pour collecter les données d’un utilisateur, mais il peut aussi être utilisé à des fins d’enregistrement d’enregistrement de l’utilisateur. Dans différents scénarios, un modèle peut utiliser des règles de traitement et une logique différente. Par exemple, email peut être nécessaire lors de l’enregistrement de l’utilisateur mais pas utilisé lors de sa connexion.

Un modèle utilise la propriété [[yii\base\Model::scenario]] pour conserver un trace du scénario dans lequel il est utilisé.

Par défaut, un modèle prend en charge un unique scénario nommé default. Le code qui suit montre deux manières de définir le scénario d’un modèle :

// le scénario est défini comme une propriété
$model = new User;
$model->scenario = User::SCENARIO_LOGIN;

// le scénario est défini via une configuration
$model = new User(['scenario' => User::SCENARIO_LOGIN]);

Par défaut, les scénarios pris en charge par un modèle sont déterminés par les règles de validation déclarées dans le modèle. Néanmoins, vous pouvez personnaliser ce comportement en redéfinissant la méthode [[yii\base\Model::scenarios()]], de la manière suivante :

namespace app\models;

use yii\db\ActiveRecord;

class User extends ActiveRecord
{
 const SCENARIO_LOGIN = 'login';
 const SCENARIO_REGISTER = 'register';

 public function scenarios()
 {
 return [
 self::SCENARIO_LOGIN => ['username', 'password'],
 self::SCENARIO_REGISTER => ['username', 'email', 'password'],
];
 }
}

Info: dans ce qui précède et dans l’exemple qui suit, les classes de modèle étendent la classe [[yii\db\ActiveRecord]] parce que l’utilisation de multiples scénarios intervient ordinairement dans les classes Active Record.

La méthode scenarios() retourne un tableau dont les clés sont les noms de scénario et les valeurs les attributs actifs correspondants. Les attributs actifs peuvent être assignés massivement et doivent respecter des règles de validation. Dans l’exemple ci-dessus, les attributs username et password sont actifs dans le scénario login, tandis que dans le scénario register , email est, en plus de username etpassword, également actif.

La mise en œuvre par défaut des scenarios() retourne tous les scénarios trouvés dans la méthode de déclaration des règles de validation [[yii\base\Model::rules()]]. Lors de la redéfinition des scenarios(), si vous désirez introduire de nouveaux scénarios en plus des scénarios par défaut, vous pouvez utiliser un code similaire à celui qui suit :

namespace app\models;

use yii\db\ActiveRecord;

class User extends ActiveRecord
{
 const SCENARIO_LOGIN = 'login';
 const SCENARIO_REGISTER = 'register';

 public function scenarios()
 {
 $scenarios = parent::scenarios();
 $scenarios[self::SCENARIO_LOGIN] = ['username', 'password'];
 $scenarios[self::SCENARIO_REGISTER] = ['username', 'email', 'password'];
 return $scenarios;
 }
}

La fonctionnalité scénarios est d’abord utilisée pour la validation et dans l’assignation massive des attributs. Vous pouvez, cependant l’utiliser à d’autres fins. Par exemple, vous pouvez déclarer des étiquettes d’attribut différemment en vous basant sur le scénario courant.

Règles de validation

Losque les données pour un modèle sont reçues de l’utilisateur final, elles doivent être validées pour être sûr qu’elles respectent certaines règles (appelées règles de validation). Par exemple, étant donné un modèle pour un formulaire de contact (ContactForm), vous voulez vous assurer qu’aucun des attributs n’est vide et que l’attribut email contient une adresse de courriel valide. Si les valeurs pour certains attributs ne respectent pas les règles de validation, les messages d’erreur appropriés doivent être affichés pour aider l’utilisateur à corriger les erreurs.

Vous pouvez faire appel à la méthode [[yii\base\Model::validate()]] pour valider les données reçues. La méthode utilise les règles de validation déclarées dans [[yii\base\Model::rules()]] pour valider chacun des attributs concernés. Si aucune erreur n’est trouvée, elle retourne true (vrai). Autrement, les erreurs sont stockées dans la propriété [[yii\base\Model::errors]] et la méthode retourne false (faux). Par exemple :

$model = new \app\models\ContactForm;

// définit les attributs du modèle avec les entrées de l'utilisateur final
$model->attributes = \Yii::$app->request->post('ContactForm');

if ($model->validate()) {
 // toutes les entrées sont valides
} else {
 // la validation a échoué : le tableau $errors contient les messages d'erreur
 $errors = $model->errors;
}

Pour déclarer des règles de validation associées à un modèle, redéfinissez la méthode [[yii\base\Model::rules()]] en retournant les règles que le modèle doit respecter. L’exemple suivant montre les règles de validation déclarées pour le modèle *formulaire de contact ContactForm :

public function rules()
{
 return [
 // the name, email, subject and body attributes are required
 [['name', 'email', 'subject', 'body'], 'required'],

 // the email attribute should be a valid email address
 ['email', 'email'],
];
}

Une règle peut être utilisée pour valider un ou plusieurs attributs, et un attribut peut être validé par une ou plusieurs règles. Reportez-vous à la section validation des entrées pour plus de détails sur la manière de déclarer les règles de validation.

Parfois, vous désirez qu’une règle ne soit applicable que dans certains scénarios. Pour cela, vous pouvez spécifier la propriété on d’une règle, comme ci-dessous :

public function rules()
{
 return [
 // username, email et password sont tous requis dans le scénario "register"
 [['username', 'email', 'password'], 'required', 'on' => self::SCENARIO_REGISTER],

 // username et password sont requis dans le scénario "login"
 [['username', 'password'], 'required', 'on' => self::SCENARIO_LOGIN],
];
}

Si vous ne spécifiez pas la propriété on, la règle sera appliquée dans tous les scénarios. Une règle est dite règle active si elle s’applique au scénario courant [[yii\base\Model::scenario|scenario]].

Un attribut n’est validé que si, et seulement si, c’est un attribut actif déclaré dans scenarios() et s’il est associé à une ou plusieurs règles actives déclarées dans rules().

Assignation massive

L’assignation massive est une façon pratique de peupler un modèle avec les entrées de l’utilisateur final en utilisant une seule ligne de code . Elle peuple les attributs d’un modèle en assignant directement les données d’entrée à la propriété [[yii\base\Model::$attributes]]. Les deux extraits de code suivants sont équivalent. Ils tentent tous deux d’assigner les données du formulaire soumis par l’utilisateur final aux attributs du modèle ContactForm. En clair, le premier qui utilise l’assignation massive, est plus propre et moins sujet aux erreurs que le second :

$model = new \app\models\ContactForm;
$model->attributes = \Yii::$app->request->post('ContactForm');

$model = new \app\models\ContactForm;
$data = \Yii::$app->request->post('ContactForm', []);
$model->name = isset($data['name']) ? $data['name'] : null;
$model->email = isset($data['email']) ? $data['email'] : null;
$model->subject = isset($data['subject']) ? $data['subject'] : null;
$model->body = isset($data['body']) ? $data['body'] : null;

Attributs sûr

L’assignation massive ne s’applique qu’aux attributs dits attributs sûrs qui sont les attributs listés dans la méthode [[yii\base\Model::scenarios()]] pour le [[yii\base\Model::scenario|scénario]] courant d’un modèle.
Par exemple, si le modèle User contient la déclaration de scénarios suivante, alors, lorsque le scénario courant est login, seuls les attributs username et password peuvent être massivement assignés. Tout autre attribut n’est pas touché par l’assignation massive.

public function scenarios()
{
 return [
 self::SCENARIO_LOGIN => ['username', 'password'],
 self::SCENARIO_REGISTER => ['username', 'email', 'password'],
];
}

Info: la raison pour laquelle l’assignation massive ne s’applique qu’aux attributs sûrs est de vous permettre de contrôler quels attributs peuvent être modifiés par les données envoyées par l’utilisateur final. Par exemple, si le modèle User possède un attribut permission qui détermine les permissions accordées à l’utilisateur, vous préférez certainement que cet attribut ne puisse être modifié que par un administrateur via l’interface d’administration seulement.

Comme la mise en œuvre par défaut de la méthode [[yii\base\Model::scenarios()]] retourne tous les scénarios et tous les attributs trouvés dans la méthode [[yii\base\Model::rules()]], si vous ne redéfinissez pas cette méthode, cela signifie qu’un attribut est sûr tant qu’il apparaît dans une des règles de validation actives.

Pour cette raison, un validateur spécial dont l’alias est safe est fourni pour vous permettre de déclarer un attribut sûr sans réellement le valider. Par exemple, les règles suivantes déclarent que title
et description sont tous deux des attributs sûrs.

public function rules()
{
 return [
 [['title', 'description'], 'safe'],
];
}

Attributs non sûr

Comme c’est expliqué plus haut, la méthode [[yii\base\Model::scenarios()]] remplit deux objectifs : déterminer quels attributs doivent être validés, et déterminer quels attributs sont sûrs. Dans certains cas, vous désirez valider un attribut sans le marquer comme sûr. Vous pouvez le faire en préfixant son nom par un point d’exclamation ! lorsque vous le déclarez dans la méthode scenarios(), comme c’est fait pour l’attribut secret dans le code suivant :

public function scenarios()
{
 return [
 self::SCENARIO_LOGIN => ['username', 'password', '!secret'],
];
}

Lorsque le modèle est dans le scénario login, les trois attributs sont validés. Néanmoins, seuls les attributs username
et password peuvent être massivement assignés. Pour assigner une valeur d’entrée à l’attribut secret, vous devez le faire explicitement, comme montré ci-dessous :

$model->secret = $secret;

La même chose peut être faite dans la méthode rules() :

public function rules()
{
 return [
 [['username', 'password', '!secret'], 'required', 'on' => 'login']
];
}

Dans ce cas, les attributs username, password et secret sont requis, mais secret doit être assigné explicitement.

Exportation de données

On a souvent besoin d’exporter les modèles dans différents formats. Par exemple, vous désirez peut-être convertir une collection de modèles dans le format JSON ou dans le format Excel. Le processus d’exportation peut être décomposé en deux étapes indépendantes :

	les modèles sont convertis en tableaux,

	les tableaux sont convertis dans les formats cibles.

Vous pouvez vous concentrer uniquement sur la première étape, parce que la seconde peut être accomplie par des formateurs génériques de données, tels que [[yii\web\JsonResponseFormatter]].

La manière la plus simple de convertir un modèle en tableau est d’utiliser la propriété [[yii\base\Model::$attributes]]. Par exemple :

$post = \app\models\Post::findOne(100);
$array = $post->attributes;

Par défaut, la propriété [[yii\base\Model::$attributes]] retourne les valeurs de tous les attributs déclarés dans la méthode [[yii\base\Model::attributes()]].

Une manière plus souple et plus puissante de convertir un modèle en tableau est d’utiliser la méthode [[yii\base\Model::toArray()]]. Son comportement par défaut est de retourner la même chose que la propriété [[yii\base\Model::$attributes]]. Néanmoins, elle vous permet de choisir quelles données, appelées champs, doivent être placées dans le tableau résultant et comment elles doivent être formatées. En fait, c’est la manière par défaut pour exporter les modèles dans le développement d’un service Web respectant totalement l’achitecture REST, telle que décrite à la section Formatage de la réponse.

Champs

Un champ n’est rien d’autre qu’un élément nommé du tableau qui est obtenu en appelant la méthode [[yii\base\Model::toArray()]] d’un modèle.

Par défaut, les noms de champ sont équivalents aux noms d’attribut. Cependant, vous pouvez changer ce comportement en redéfinissant la méthode [[yii\base\Model::fields()|fields()]] et/ou la méthode [[yii\base\Model::extraFields()|extraFields()]]. Ces deux méthodes doivent retourner une liste de définitions de champ. Les champs définis par fields() sont des champs par défaut, ce qui signifie que toArray() retourne ces champs par défaut. La méthode extraFields() définit des champs additionnels disponibles qui peuvent également être retournés par toArray() du moment que vous les spécifiez via le paramètre $expand. Par exemple, le code suivant retourne tous les champs définis dans la méthode fields() ainsi que les champs prettyName et fullAddress, s’ils sont définis dans extraFields().

$array = $model->toArray([], ['prettyName', 'fullAddress']);

Vous pouvez redéfinir la méthode fields() pour ajouter, retirer, renommer ou redéfinir des champs. La valeur de retour de la méthode fields() doit être un tableau associatif. Les clés du tableau sont les noms des champs et les valeurs sont les définitions de champ correspondantes qui peuvent être, soit des noms d’attribut/propriété, soit des fonctions anonymes retournant les valeurs de champ correspondantes. Dans le cas particulier où un nom de champ est identique à celui du nom d’attribut qui le définit, vous pouvez omettre la clé du tableau. Par exemple :

// liste explicitement chaque champ ; à utiliser de préférence quand vous voulez être sûr
// que les changements dans votre table de base de données ou dans les attributs de votre modèle
// ne créent pas de changement dans vos champs (pour conserver la rétro-compatibilité de l'API).
public function fields()

{
 return [
 // le nom du champ est identique à celui de l'attribut
 'id',

 // le nom du champ est "email", le nom d'attribut correspondant est "email_address"
 'email' => 'email_address',

 // le nom du champ est "name", sa valeur est définie par une fonction PHP de rappel
 'name' => function () {
 return $this->first_name . ' ' . $this->last_name;
 },
];
}

// filtre quelques champs ; à utiliser de préférence quand vous voulez hériter de l'implémentation du parent
// et mettre quelques champs sensibles en liste noire.
public function fields()
{
 $fields = parent::fields();

 // retire les champs contenant des informations sensibles
 unset($fields['auth_key'], $fields['password_hash'], $fields['password_reset_token']);

 return $fields;
}

Warning: étant donné que, par défaut, tous les attributs d’un modèle sont inclus dans le tableau exporté,
vous devez vous assurer que vos données ne contiennent pas d’information sensible.
Si de telles informations existent, vous devriez redéfinir la méthode fields() pour les filtrer.
Dans l’exemple ci-dessus, nous avons choisi d’exclure auth_key, auth_key, password_hash et password_reset_token.

Meilleures pratiques

Les modèles sont les endroits centraux pour représenter les données de l’application, les règles et la logique. Ils doivent souvent être réutilisés à différents endroits. Dans une application bien conçue, les modèles sont généralement plus volumineux que les contrôleurs.

En résumé, voici les caractéristiques essentielles des modèles :

	Ils peuvent contenir des attributs pour représenter les données de l’application.

	Ils peuvent contenir des règles de validation pour garantir la validité et l’intégrité des données.

	Ils peuvent contenir des méthodes assurant le traitement logique des données de l’application.

	Ils ne devraient PAS accéder directement à la requête, à la session ou à n’importe quelle autre donnée environnementale. Ces données doivent être injectées dans les modèles par les contrôleurs.

	Ils devraient éviter d’inclure du code HTML ou tout autre code relatif à la présentation — cela est fait de manière plus avantageuse dans les vues.

	Il faut éviter d’avoir trop de scénarios dans un même modèle.

Vous pouvez ordinairement considérer cette dernière recommandation lorsque vous développez des systèmes importants et complexes. Dans ces systèmes, les modèles pourraient être très volumineux parce que, étant utilisés dans de nombreux endroits, ils doivent contenir de nombreux jeux de règles et de traitement logiques. Cela se termine le plus souvent en cauchemar pour la maintenance du code du modèle parce que le moindre changement de code est susceptible d’avoir de l’effet en de nombreux endroits. Pour rendre le modèle plus maintenable, vous pouvez adopter la stratégie suivante :

	Définir un jeu de classes de base du modèle qui sont partagées par différentes applications ou
modules. Ces classes de modèles devraient contenir un jeu minimal de règles et de logique qui sont communes à tous les usages.

	Dans chacune des applications ou modules qui utilise un modèle, définir une classe de modèle concrète en étendant la classe de base de modèle correspondante. Les classes de modèles concrètes devraient contenir certaines règles et logiques spécifiques à cette application ou à ce module.

Par exemple, dans le Modèle avancé de projet [https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/README.md], vous pouvez définir une classe de modèle de base common\models\Post. Puis, pour l’application « interface utilisateur » (frontend) vous pouvez définir une classe de base concrète frontend\models\Post qui étend la classe common\models\Post. De manière similaire, pour l’application « interface d’administration » (backend) vous pouvez définir une classe backend\models\Post. Avec cette stratégie, vous êtes sûr que le code de frontend\models\Post est seulement spécifique à l’application « interface utilisateur », et si vous y faite un changement, vous n’avez à vous soucier de savoir si cela à une influence sur l’application « interface d’administration ».

 Modules

Modules

Les modules sont des unités logicielles auto-suffisantes constituées de modèles, vues,
contrôleurs et autres composants de prise en charge. L’utilisateur final peut accéder aux contrôleurs dans un module lorsqu’il est installé dans une application. Pour ces raisons, les modules sont souvent regardés comme de mini-applications. Les modules diffèrent des applications par le fait que les modules ne peuvent être déployés seuls et doivent résider dans une application.

Création de modules

Un module est organisé comme un dossier qui est appelé le [[yii\base\Module::basePath|dossier de base (basePath)]] du module. Dans ce dossier, se trouvent des sous-dossiers, tels que controllers, models et views, qui contiennent les contrôleurs, les modèles , les vues et d’autres parties de code, juste comme une application. L’exemple suivant présente le contenu d’un module :

forum/
 Module.php le fichier de classe du module
 controllers/ contient les fichiers de classe des contrôleurs
 DefaultController.php le fichier de classe de contrôleur par défaut
 models/ contient les fichiers de classe des modèles
 views/ contient les fichiers de contrôleur, de vue et de disposition
 layouts/ contient les fichiers de diposition
 default/ contient les fichiers de vues pour le contrôleur par défaut
 index.php le fichier de vue index

Classes de module

Chacun des modules doit avoir une classe unique de module qui étend [[yii\base\Module]]. La classe doit être située directement dans le [[yii\base\Module::basePath|dossier de base]] du module et doit être auto-chargeable. Quand un module est accédé, une instance unique de la classe de module correspondante est créée. Comme les instances d’application, les instances de module sont utilisées pour partager des données et des composants.

L’exemple suivant montre à quoi une classe de module peut ressembler :

namespace app\modules\forum;

class Module extends \yii\base\Module
{
 public function init()
 {
 parent::init();

 $this->params['foo'] = 'bar';
 // ... other initialization code ...
 }
}

La méthode init() contient un code volumineux pour initialiser les propriétés du module. Vous pouvez également les sauvegarder sous forme de configuration et charger cette configuration avec le code suivant dans la méthode init():

public function init()
{
 parent::init();
 // initialise le module à partir de la configuration chargée depuis config.php
 \Yii::configure($this, require __DIR__ . '/config.php');
}

où le fichier de configuration config.php peut avoir le contenu suivant, similaire à celui d’une configuration d’application.

<?php
return [
 'components' => [
 // liste des configurations de composant
],
 'params' => [
 // liste des paramètres
],
];

Contrôleurs dans les modules

Lorsque vous créez des contrôleurs dans un module, une convention est de placer les classes de contrôleur dans le sous-espace de noms controllers dans l’espace de noms de la classe du module. Cela signifie également que les fichiers de classe des contrôleur doivent être placés dans le dossier controllers dans le [[yii\base\Module::basePath|dossier de base]] du module. Par exemple, pour créer un contrôleur post dans le module forum présenté dans la section précédente, vous devez déclarer la classe de contrôleur comme ceci :

namespace app\modules\forum\controllers;

use yii\web\Controller;

class PostController extends Controller
{
 // ...
}

Vous pouvez personnaliser l’espace de noms des classes de contrôleur en configurant la propriété [[yii\base\Module::controllerNamespace]]. Dans le cas où certains contrôleurs sont en dehors de cet espace de noms, vous pouvez les rendre accessibles en configurant la propriété [[yii\base\Module::controllerMap]] comme vous le feriez dans une application.

Vues dans les modules

Les vues dans les modules doivent être placées dans le dossier views du [[yii\base\Module::basePath|dossier de base (base path)]] du module. Quant aux vues rendues par un contrôleur du module, elles doivent être placées dans le dossier views/ControllerID, où ControllerID fait référence à l’identifiant du contrôleur. Par exemple, si la classe du contrôleur est PostController, le dossier doit être views/post dans le [[yii\base\Module::basePath|dossier de base]] du module.

Un module peut spécifier une disposition qui s’applique aux vues rendues par les contrôleurs du module. La disposition doit être mise dans le dossier views/layouts par défaut, et vous devez configurer la propriété [[yii\base\Module::layout]] pour qu’elle pointe sur le nom de la disposition. Si vous ne configurez pas la propriété layout c’est la disposition de l’application qui est utilisée à sa place.

Commande de console dans les modules

Votre module peut aussi déclarer des commandes, qui sont accessibles via le mode Console.

Afin que l’utilitaire de ligne de commande reconnaisse vos commandes, vous devez changer la propriété [[yii\base\Module::controllerNamespace (espace de noms du contrôleur)]] lorsque Yii est exécuté en mode console, et le diriger sur votre espace de noms de commandes.

Une manière de réaliser cela est de tester le type d’instance de l’application Yii dans la méthode init du module :

public function init()
{
 parent::init();
 if (Yii::$app instanceof \yii\console\Application) {
 $this->controllerNamespace = 'app\modules\forum\commands';
 }
}

Vos commandes seront disponibles en ligne de commande en utilisant la route suivante :

yii <module_id>/<command>/<sub_command>

Utilisation des modules

Pour utiliser un module dans une application, il vous suffit de configurer l’application en listant le module dans la propriété [[yii\base\Application::modules|modules]] de l’application. Le code qui suit dans la configuration de l’application permet l’utilisation du module forum :

[
 'modules' => [
 'forum' => [
 'class' => 'app\modules\forum\Module',
 // ... autres éléments de configuration pour le module ...
],
],
]

La propriété [[yii\base\Application::modules|modules]] accepte un tableau de configurations de module. Chaque clé du tableau représente un identifiant de module qui distingue ce module parmi les autres modules de l’application, et la valeur correspondante est une configuration pour la création du module.

Routes

Les routes sont utilisées pour accéder aux contrôleurs d’un module comme elles le sont pour accéder aux contrôleurs d’une application. Une route, pour un contrôleur d’un module, doit commencer par l’identifiant du module, suivi de l’identifiant du contrôleur et de identifiant de l’action. Par exemple, si une application utilise un module nommé forum, alors la route forum/post/index représente l’action index du contrôleur post du module. Si la route ne contient que l’identifiant du module, alors la propriété [[yii\base\Module::defaultRoute]], dont la valeur par défaut est default, détermine quel contrôleur/action utiliser. Cela signifie que la route forum représente le contrôleur default dans le module forum.

Le gestionnaire d’URL du module doit être ajouté avant que la fonction [[yii\web\UrlManager::parseRequest()]] ne soit exécutée. Cela siginifie que le faire dans la fonction init() du module ne fonctionne pas parce que le module est initialisé après que les routes ont été résolues. Par conséquent, les règles doivent être ajoutées à l’étape d’amorçage. C’est également une bonne pratique d’empaqueter les règles d’URL du module dans [[\yii\web\GroupUrlRule]].

Dans le cas où un module est utilisé pour versionner une API, ses règles d’URL doivent être ajoutées directement dans la section urlManager de la configuration de l’application.

Accès aux modules

Dans un module, souvent, il arrive que vous ayez besoin d’une instance de la classe du module de façon à pouvoir accéder à l’identifiant du module, à ses paramètres, à ses composants, etc. Vous pouvez le faire en utilisant l’instruction suivante :

$module = MyModuleClass::getInstance();

dans laquelle MyModuleClass fait référence au nom de la classe du module qui vous intéresse. La méthode getInstance() retourne l’instance de la classe du module actuellement requis. Si le module n’est pas requis, la méthode retourne null. Notez que vous n’avez pas besoin de créer manuellement une nouvelle instance de la classe du module parce que celle-ci serait différente de celle créée par Yii en réponse à la requête.

Info: lors du développement d’un module, vous ne devez pas supposer que le module va utiliser un identifiant fixe. Cela tient au fait qu’un module peut être associé à un identifiant arbitraire lorsqu’il est utilisé dans une application ou dans un autre module. Pour obtenir l’identifiant du module, vous devez utiliser l’approche ci-dessus pour obtenir d’abord une instance du module, puis obtenir l’identifiant via $module->id.

Vous pouvez aussi accéder à l’instance d’un module en utilisant les approches suivantes :

// obtenir le module fils dont l'identifiant est "forum"
$module = \Yii::$app->getModule('forum');

// obtenir le module auquel le contrôleur actuellement requis appartient
$module = \Yii::$app->controller->module;

La première approche n’est utile que lorsque vous connaissez l’identifiant du module, tandis que la seconde est meilleure lorsque vous connaissez le contrôleur actuellement requis.

Une fois que vous disposez de l’instance du module, vous pouvez accéder aux paramètres et aux composants enregistrés avec le module. Par exemple :

$maxPostCount = $module->params['maxPostCount'];

Modules faisant partie du processus d’amorçage

Il se peut que certains modules doivent être exécutés pour chacune des requêtes. Le module [[yii\debug\Module|debug]] en est un exemple. Pour que des modules soit exécutés pour chaque requête, vous devez les lister dans la propriété [[yii\base\Application::bootstrap|bootstrap]] de l’application.

Par exemple, la configuration d’application suivante garantit que le module debug est chargé à chaque requête :

[
 'bootstrap' => [
 'debug',
],

 'modules' => [
 'debug' => 'yii\debug\Module',
],
]

Modules imbriqués

Les modules peuvent être imbriqués sur un nombre illimité de niveaux. C’est à dire qu’un module pour contenir un autre module qui contient lui-même un autre module. Nous parlons alors de module parent pour le module englobant, et de module enfant pour le module contenu. Les modules enfants doivent être déclarés dans la propriété [[yii\base\Module::modules|modules]] de leur module parent. Par exemple :

namespace app\modules\forum;

class Module extends \yii\base\Module
{
 public function init()
 {
 parent::init();

 $this->modules = [
 'admin' => [
 // Vous devriez envisager l'utilisation d'un espace de noms plus court ici !
 'class' => 'app\modules\forum\modules\admin\Module',
],
];
 }
}

La route vers un contrôleur inclus dans un module doit inclure les identifiants de tous ses modules ancêtres. Par exemple, la route forum/admin/dashboard/index représente l’action index du contrôleur dashboard dans le module admin qui est un module enfant du module forum.

Info: la méthode [[yii\base\Module::getModule()|getModule()]] ne retourne que le module enfant appartenant directement à son parent. La propriété [[yii\base\Application::loadedModules]] tient à jour une liste des modules chargés, y compris les enfant directs et les enfants des générations suivantes, indexée par le nom de classe.

Accès aux composants depuis l’intérieur des modules

Depuis la version 2.0.13, les modules prennent en charge la traversée des arbres. Cela permet aux développeurs de modules de faire référence à des composants (d’application) via le localisateur de services qui se trouve dans leur module.
Cela signifie qu’il est préférable d’utiliser $module->get('db') plutôt que Yii::$app->get('db').
L’utilisateur d’un module est capable de spécifier un composant particulier pour une utilisation dans le module dans le cas où une configuration différente du composant est nécessaire.

Par exemple, considérons cette partie de la configuration d’une application :

'components' => [
 'db' => [
 'tablePrefix' => 'main_',
 'class' => Connection::class,
 'enableQueryCache' => false
],
],
'modules' => [
 'mymodule' => [
 'components' => [
 'db' => [
 'tablePrefix' => 'module_',
 'class' => Connection::class
],
],
],
],

Les tables de base de données de l’application seront préfixées par main_, tandis que les tables de tous les modules seront préfixées par module_.
Notez cependant que la configuration ci-dessus n’est pas fusionnée; le composant des modules par exemple aura le cache de requêtes activé puisque c’est la valeur par défaut.

Meilleures pratiques

L’utilisation des modules est préférable dans les grosses applications dont les fonctionnalités peuvent être réparties en plusieurs groupes, consistant chacun en un jeu de fonctionnalités liées d’assez près. Chacune de ces fonctionnalités peut être conçue comme un module développé et maintenu par un développeur ou une équipe spécifique.

Les modules sont aussi un bon moyen de réutiliser du code au niveau des groupes de fonctionnalités. Quelques fonctionnalité d’usage courant, telles que la gestion des utilisateurs, la gestion des commentaires, etc. peuvent être développées en tant que modules ce qui facilite leur réutilisation dans les projets suivants.

 Vue d’ensemble

Vue d’ensemble

Les applications Yii sont organisées suivant le modèle de conception
model-view-controller (MVC) [http://wikipedia.org/wiki/Model-view-controller]. Les Modèles
représentent les données, la logique métier et les règles; les vues sont les représentations
visuelles des modèles, et les contrôleurs prennent une entrée et la convertissent en
commandes pour les modèles et les vues.

En plus du MVC, les applications Yii ont les entités suivantes :

	scripts d’entrée: ce sont des scripts PHP qui sont directement accessibles aux
utilisateurs. Ils sont responsables de l’amorçage d’un cycle de gestion de requête.

	applications: ce sont des objets globalement accessibles qui gèrent les composants
d’application et les coordonnent pour satisfaire des requêtes.

	composants d’application: ce sont des objets enregistrés avec des applications et
qui fournissent différents services pour satisfaire des requêtes.

	modules: ce sont des paquets auto-contenus qui contiennent du MVC complet. Une application peut
être organisée en de multiples modules.

	filtres: ils représentent du code qui doit être invoqué avant et après la gestion effective
de chaque requête par des contrôleurs.

	objets graphiques: ce sont des objets qui peuvent être intégrés dans des vues. Ils
peuvent contenir de la logique contrôleur et peuvent être réutilisés dans différentes vues.

Le diagramme suivant montre la structure statique d’une application :

[image: Static Structure of Application]

 Vues

Vues

Les vues font partie du modèle d’architecture MVC [http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller] (Modèle Vue Contrôleur).
Elles sont chargées de présenter les données à l’utilisateur final. Dans une application Web, les vues sont ordinairement créées en termes de modèles de vue qui sont des script PHP contenant principalement du code HTML et du code PHP relatif à la présentation.

Elles sont gérées par le [[yii\web\View|view]] composant application qui fournit des méthodes d’usage courant pour faciliter la composition des vues et leur rendu. Par souci de simplicité, nous appellerons vues les modèles de vue et les fichiers de modèle de vue.

Création des vues

Comme nous l’avons dit ci-dessus, une vue n’est rien d’autre qu’un script PHP incluant du code HTML et du code PHP. Le script ci-dessous correspond à la vue d’un formulaire de connexion. Comme vous pouvez le voir le code PHP est utilisé pour générer le contenu dynamique, dont par exemple le titre de la page et le formulaire, tandis que le code HTML les organise en une page présentable.

<?php
use yii\helpers\Html;
use yii\widgets\ActiveForm;

/* @var $this yii\web\View */
/* @var $form yii\widgets\ActiveForm */
/* @var $model app\models\LoginForm */

$this->title = 'Login';
?>
<h1><?= Html::encode($this->title) ?></h1>

<p>Veuillez remplir les champs suivants pour vous connecter:</p>

<?php $form = ActiveForm::begin(); ?>
 <?= $form->field($model, 'username') ?>
 <?= $form->field($model, 'password')->passwordInput() ?>
 <?= Html::submitButton('Login') ?>
<?php ActiveForm::end(); ?>

À l’intérieur d’une vue, vous avez accès à $this qui fait référence au [[yii\web\View|composant view (vue)]] responsable de le gestion et du rendu de ce modèle de vue.

En plus de $this, il peut aussi y avoir d’autres variables prédéfinies dans une vue, telles que $model dans l’exemple précédent. Ces variables représentent les données qui sont poussées dans la vue par les contrôleurs ou par d’autres objets qui déclenche le rendu d’une vue.

Tip: les variables prédéfinies sont listées dans un bloc de commentaires au début d’une vue de manière à être reconnues par les EDI. C’est également une bonne manière de documenter vos vues.

Sécurité

Lors de la création de vues qui génèrent des pages HTML, il est important que vous encodiez et/ou filtriez les données en provenance de l’utilisateur final avant des les présenter. Autrement, votre application serait sujette aux attaques par injection de scripts (cross-site scripting) [http://en.wikipedia.org/wiki/Cross-site_scripting].

Pour afficher du texte simple, commencez par l’encoder en appelant la méthode [[yii\helpers\Html::encode()]]. Par exemple, le code suivant encode le nom d’utilisateur (username) avant de l’afficher :

<?php
use yii\helpers\Html;
?>

<div class="username">
 <?= Html::encode($user->name) ?>
</div>

Pour afficher un contenu HTML, utilisez l’objet [[yii\helpers\HtmlPurifier]] pour d’abord en filtrer le contenu. Par exemple, le code suivant filtre le contenu de la variable post avant de l’afficher :

<?php
use yii\helpers\HtmlPurifier;
?>

<div class="post">
 <?= HtmlPurifier::process($post->text) ?>
</div>

Tip: bien que l’objet HTMLPurifier effectue un excellent travail en rendant vos sorties sûres, il n’est pas rapide. Vous devriez envisager de mettre le résultat en cache lorsque votre application requiert une performance élevée.

Organisation des vues

Comme les contrôleurs et les modèles, il existe certaines conventions pour organiser les vues.

	Pour les vues rendues par un contrôleur, elles devraient être placées par défaut dans le dossier @app/views/ControllerID où ControllerID doit être remplacé par l’identifiant du contrôleur. Par exemple, si la classe du contrôleur est PostController, le dossier est @app/views/post; si c’est PostCommentController le dossier est @app/views/post-comment. Dans le cas où le contrôleur appartient à un module, le dossier s’appelle views/ControllerID et se trouve dans le [[yii\base\Module::basePath|dossier de base du module]].

	Pour les vues rendues dans un objet graphique, elles devraient être placées par défaut dans le dossier WidgetPath/views où WidgetPath est le dossier contenant le fichier de la classe de l’objet graphique.

	Pour les vues rendues par d’autres objets, il est recommandé d’adopter une convention similaire à celle utilisée pour les objets graphiques.

Vous pouvez personnaliser ces dossiers par défaut en redéfinissant la méthode [[yii\base\ViewContextInterface::getViewPath()]] des contrôleurs ou des objets graphiques.

Rendu des vues

Vous pouvez rendre les vues dans des contrôleurs, des objets graphiques, ou dans d’autres endroits en appelant les méthodes de rendu des vues. Ces méthodes partagent un signature similaire comme montré ci-dessous :

/**
 * @param string $view nom de la vue ou chemin du fichier, selon la méthode réelle de rendu
 * @param array $params les données injectées dans la vue
 * @return string le résultat du rendu
 */
methodName($view, $params = [])

Rendu des vues dans des contrôleurs

Dans les contrôleurs, vous pouvez appeler la méthode de contrôleur suivante pour rendre une vue :

	[[yii\base\Controller::render()|render()]]: rend une vue nommée et applique une disposition
au résultat du rendu.

	[[yii\base\Controller::renderPartial()|renderPartial()]]: rend une vue nommée sans disposition.

	[[yii\web\Controller::renderAjax()|renderAjax()]]: rend une vue nommée sans disposition et injecte tous les scripts et fichiers JS/CSS enregistrés. Cette méthode est ordinairement utilisée en réponse à une requête Web AJAX.

	[[yii\base\Controller::renderFile()|renderFile()]]: rend une vue spécifiée en terme de chemin ou d’alias de fichier de vue.

	[[yii\base\Controller::renderContent()|renderContent()]]: rend un chaîne statique en l’injectant dans la disposition courante. Cette méthode est disponible depuis la version 2.0.1.

Par exemple :

namespace app\controllers;

use Yii;
use app\models\Post;
use yii\web\Controller;
use yii\web\NotFoundHttpException;

class PostController extends Controller
{
 public function actionView($id)
 {
 $model = Post::findOne($id);
 if ($model === null) {
 throw new NotFoundHttpException;
 }

 // rend une vue nommée "view" et lui applique une disposition de page
 return $this->render('view', [
 'model' => $model,
]);
 }
}

Rendu des vues dans les objets graphiques

Dans les objets graphiques, vous pouvez appeler les méthodes suivantes de la classe widget pour rendre une vue :

	[[yii\base\Widget::render()|render()]]: rend une vue nommée.

	[[yii\base\Widget::renderFile()|renderFile()]]: rend une vue spécifiée en terme de chemin ou d’alias de fichier de vue.

Par exemple :

namespace app\components;

use yii\base\Widget;
use yii\helpers\Html;

class ListWidget extends Widget
{
 public $items = [];

 public function run()
 {
 // rend une vue nommée "list"
 return $this->render('list', [
 'items' => $this->items,
]);
 }
}

Rendu des vues dans des vues

Vous pouvez rendre une vue dans une autre vue en appelant les méthodes suivantes du [[yii\base\View|composant view]]:

	[[yii\base\View::render()|render()]]: rend une vue nommée.

	[[yii\web\View::renderAjax()|renderAjax()]]: rend une vue nommée et injecte tous les fichiers et scripts JS/CSS enregistrés. On l’utilise ordinairement en réponse à une requête Web AJAX.

	[[yii\base\View::renderFile()|renderFile()]]: rend une vue spécifiée en terme de chemin ou d’alias de fichier de vue.

Par exemple, le code suivant dans une vue, rend le fichier de vue _overview.php qui se trouve dans le même dossier que la vue courante. Rappelez-vous que $this dans une vue fait référence au composant [[yii\base\View|view]] :

<?= $this->render('_overview') ?>

Rendu de vues en d’autres endroits

Dans n’importe quel endroit, vous pouvez accéder au composant d’application [[yii\base\View|view]] à l’aide de l’expression Yii::$app->view et ensuite appeler une de ses méthodes mentionnées plus haut pour rendre une vue. Par exemple :

// displays the view file "@app/views/site/license.php"
echo \Yii::$app->view->renderFile('@app/views/site/license.php');

Vues nommées

Lorsque vous rendez une vue, vous pouvez spécifier la vue en utilisant soit un nom de vue, soit un chemin/alias de fichier de vue. Dans la plupart des cas, vous utilisez le nom car il est plus concis et plus souple. Nous appelons les vues spécifiées par leur nom, des vues nommées.

Un nom de vue est résolu en le chemin de fichier correspondant en appliquant les règles suivantes :

	Un nom de vue peut omettre l’extension du nom de fichier. Dans ce cas, .php est utilisé par défaut en tant qu’extension. Par exemple, le nom de vue about correspond au nom de fichier about.php.

	Si le nom de vue commence par une double barre de division //, le chemin de fichier correspondant est @app/views/ViewName où ViewName est le nom de la vue. Dans ce cas la vue est recherchée dans le dossier [[yii\base\Application::viewPath|chemin des vues de l’application]]. Par exemple, //site/about est résolu en @app/views/site/about.php.

	Si le nom de la vue commence par une unique barre de division /, le chemin de fichier de la vue est formé en préfixant le nom de vue avec [[yii\base\Module::viewPath|chemin des vues]] du module actif courant . Si aucun module n’est actif, @app/views/ViewName — où ViewName est le nom de la vue — est utilisé. Par exemple, /user/create est résolu en @app/modules/user/views/user/create.php, si le module actif courant est user et en @app/views/user/create.phpsi aucun module n’est actif.

	Si la vue est rendue avec un [[yii\base\View::context|contexte]] et que le contexte implémente [[yii\base\ViewContextInterface]],le chemin de fichier de vue est formé en préfixant le nom de vue avec le [[yii\base\ViewContextInterface::getViewPath()|chemin des vues]] du contexte. Cela s’applique principalement aux vues rendues dans des contrôleurs et dans des objets graphiques. Par exemple, about est résolu en @app/views/site/about.php si le contexte est le contrôleur SiteController.

	Si une vue est rendue dans une autre vue, le dossier contenant le nom de la nouvelle vue est préfixé avec le chemin du dossier contenant l’autre vue. Par exemple, la vue item est résolue en @app/views/post/item.php lorsqu’elle est rendue dans @app/views/post/index.php.

Selon les règles précédentes, l’appel de $this->render('view') dans le contrôleur app\controllers\PostController rend réellement le fichier de vue @app/views/post/view.php, tandis que l’appel de $this->render('_overview') dans cette vue rend le fichier de vue @app/views/post/_overview.php.

Accès aux données dans les vues

Il existe deux approches pour accéder aux données à l’intérieur d’une vue : pousser et tirer.

En passant les données en tant que second paramètre des méthodes de rendu de vues, vous utilisez la méthode pousser. Les données doivent être présentées sous forme de tableau clé-valeur. Lorsque la vue est rendue, la fonction PHP extract() est appelée sur ce tableau pour que le tableau soit restitué sous forme de variables dans la vue. Par exemple, le code suivant de rendu d’une vue dans un contrôleur pousse deux variables dans la vue report :

$foo = 1 et $bar = 2.

echo $this->render('report', [
 'foo' => 1,
 'bar' => 2,
]);

L’approche tirer retrouve les données de manière plus active à partir du [[yii\base\View|composant view]] ou à partir d’autres objets accessibles dans les vues (p. ex. Yii::$app). En utilisant le code exemple qui suit, vous pouvez, dans une vue, obtenir l’objet contrôleur $this->context. Et, en conséquence, il vous est possible d’accéder à n’importe quelle propriété ou méthode du contrôleur, comme la propriété id du contrôleur :

The controller ID is: <?= $this->context->id ?>

L’approche pousser est en général le moyen préféré d’accéder aux données dans les vues, parce qu’elle rend les vues moins dépendantes des objets de contexte. Son revers, et que vous devez construire le tableau de données à chaque fois, ce qui peut devenir ennuyeux et sujet aux erreurs si la vue est rendue en divers endroits.

Partage de données entre vues

Le [[yii\base\View|composant view]] dispose de la propriété [[yii\base\View::params|params]] que vous pouvez utiliser pour partager des données entre vues.

Par exempe, dans une vue about (à propos), vous pouvez avoir le code suivant qui spécifie le segment courant du fil d’Ariane.

$this->params['breadcrumbs'][] = 'About Us';

Ainsi, dans le fichier de la disposition, qui est également une vue, vous pouvez afficher le fil d’Ariane en utilisant les données passées par [[yii\base\View::params|params]] :

<?= yii\widgets\Breadcrumbs::widget([
 'links' => isset($this->params['breadcrumbs']) ? $this->params['breadcrumbs'] : [],
]) ?>

Dispositions

Les dispositions (layouts) sont des types spéciaux de vues qui représentent les parties communes de multiples vues. Par exemple, les pages de la plupart des applications Web partagent le même entête et le même pied de page. Bien que vous puissiez répéter le même entête et le même pied de page dans chacune des vues, il est préférable de le faire une fois dans une disposition et d’inclure le résultat du rendu d’une vue de contenu à l’endroit approprié de la disposition.

Création de dispositions

Parce que les dispositions sont aussi des vues, elles peuvent être créées de manière similaire aux vues ordinaires. Par défaut, les dispositions sont stockées dans le dossier @app/views/layouts. Les dispositions utilisées dans un module doivent être stockées dans le dossier views/layouts du [[yii\base\Module::basePath|dossier de base du module]]. Vous pouvez personnaliser le dossier par défaut des dispositions en configurant la propriété [[yii\base\Module::layoutPath]] de l’application ou du module.

L’exemple qui suit montre à quoi ressemble une disposition. Notez que dans un but illustratif, nous avons grandement simplifié le code à l’intérieur de cette disposition. En pratique, vous désirerez ajouter à ce code plus de contenu, comme des balises head, un menu principal, etc.

<?php
use yii\helpers\Html;

/* @var $this yii\web\View */
/* @var $content string */
?>
<?php $this->beginPage() ?>
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8"/>
 <?= Html::csrfMetaTags() ?>
 <title><?= Html::encode($this->title) ?></title>
 <?php $this->head() ?>
</head>
<body>
<?php $this->beginBody() ?>
 <header>My Company</header>
 <?= $content ?>
 <footer>© 2014 by My Company</footer>
<?php $this->endBody() ?>
</body>
</html>
<?php $this->endPage() ?>

Comme vous pouvez le voir, la disposition génère les balises HTML qui sont communes à toutes les pages. Dans la section <body> la disposition rend la variable $content qui représente le résultat de rendu d’une vue de contenu qui est poussée dans la disposition par l’appel à la fonction [[yii\base\Controller::render()]].

La plupart des dispositions devraient appeler les méthodes suivantes, comme illustré dans l’exemple précédent. Ces méthodes déclenchent essentiellement des événements concernant le processus de rendu de manière à ce que des balises et des scripts enregistrés dans d’autres endroits puissent être injectés à l’endroit où ces méthodes sont appelées.

	[[yii\base\View::beginPage()|beginPage()]]: cette méthode doit être appelée au tout début de la disposition. Elle déclenche l’événement [[yii\base\View::EVENT_BEGIN_PAGE|EVENT_BEGIN_PAGE]] qui signale le début d’une page.

	[[yii\base\View::endPage()|endPage()]]: cette méthode doit être appelée à la fin de la disposition. Elle déclenche l’événement [[yii\base\View::EVENT_END_PAGE|EVENT_END_PAGE]] qui signale la fin d’une page.

	[[yii\web\View::head()|head()]]: cette méthode doit être appelée dans la section <head> d’une page HTML. Elle génère une valeur à remplacer qui sera remplacée par le code d’entête HTML (p. ex. des balises liens, des balises meta, etc.) lorsqu’une page termine son processus de rendu.

	[[yii\web\View::beginBody()|beginBody()]]: cette méthode doit être appelée au début de la section <body>. Elle déclenche l’événement [[yii\web\View::EVENT_BEGIN_BODY|EVENT_BEGIN_BODY]] et génère une valeur à remplacer qui sera remplacée par le code HTML enregistré (p. ex. Javascript) dont la cible est le début du corps de la page.

	[[yii\web\View::endBody()|endBody()]]: cette méthode doit être appelée à la fin de la section <body>. Elle déclenche l’événement [[yii\web\View::EVENT_END_BODY|EVENT_END_BODY]] et génère une valeur à remplacer qui sera remplacée par le code HTML enregistré (p. ex. Javascript) dont la cible est la fin du corps de la page.

Accès aux données dans les dispositions

Dans une disposition, vous avez accès à deux variables prédéfinies : $this et $content. La première fait référence au composant [[yii\base\View|view]], comme dans les vues ordinaires, tandis que la seconde contient le résultat de rendu d’une vue de contenu qui est rendue par l’appel de la méthode [[yii\base\Controller::render()|render()]] dans un contrôleur.

Si vous voulez accéder à d’autres données dans les dispositions, vous devez utiliser l’approche tirer comme c’est expliqué à la sous-section Accès aux données dans les vues. Si vous voulez passer des données d’une vue de contenu à une disposition, vous pouvez utiliser la méthode décrite à la sous-section Partage de données entre vues.

Utilisation des dispositions

Comme c’est décrit à la sous-section Rendu des vues dans les contrôleurs, lorsque vous rendez une vue en appelant la méthode [[yii\base\Controller::render()|render()]] dans un contrôleur, une disposition est appliquée au résultat du rendu. Par défaut, la disposition @app/views/layouts/main.php est utilisée.

Vous pouvez utiliser une disposition différente en configurant soit [[yii\base\Application::layout]], soit [[yii\base\Controller::layout]]. La première gouverne la disposition utilisée par tous les contrôleurs, tandis que la deuxième redéfinit la première pour les contrôleurs individuels. Par exemple, le code suivant fait que le contrôleur post utilise @app/views/layouts/post.php en tant qu disposition lorsqu’il rend ses vues. Les autres contrôleurs, en supposant que leur propriété layout n’est pas modifiée, continuent d’utiliser la disposition par défaut @app/views/layouts/main.php.

namespace app\controllers;

use yii\web\Controller;

class PostController extends Controller
{
 public $layout = 'post';

 // ...
}

Pour les contrôleurs appartenant à un module ,vous pouvez également configurer la propriété [[yii\base\Module::layout|layout]] pour utiliser une disposition particulière pour ces contrôleurs.

Comme la propriété layout peut être configurée à différents niveaux (contrôleurs, modules, application), en arrière plan, Yii opère en deux étapes pour déterminer quel est le fichier de disposition réel qui doit être utilisé pour un contrôleur donné.

Dans la première étape, il détermine la valeurs de la disposition et le module du contexte :

	Si la propriété [[yii\base\Controller::layout]] du contrôleur n’est pas nulle, il l’utilise en tant que valeur de disposition et le [[yii\base\Controller::module|module]] du contrôleur en tant que module du contexte.

	Si la propriété [[yii\base\Controller::layout|layout]] est nulle, il cherche, à travers tous les modules ancêtres (y compris l’application elle-même) du contrôleur, le premier module dont la propriété [[yii\base\Module::layout|layout]] n’est pas nulle. Il utilise alors ce module et la valeur de sa [[yii\base\Module::layout|disposition]] comme module du contexte et valeur de disposition, respectivement. Si un tel module n’est pas trouvé, cela signifie qu’aucune disposition n’est appliquée.

Dans la seconde étape, il détermine le fichier de disposition réel en fonction de la valeur de disposition et du module du contexte déterminés dans la première étape. La valeur de disposition peut être :

	Un alias de chemin (p. ex. @app/views/layouts/main).

	Un chemin absolu (p. ex. /main): la valeur de disposition commence par une barre oblique de division. Le fichier réel de disposition est recherché dans le [[yii\base\Application::layoutPath|chemin des disposition (layoutPath)]] (par défaut @app/views/layouts).

	Un chemin relatif (p. ex. main): le fichier réel de disposition est recherché dans le [[yii\base\Module::layoutPath|chemin des dispositions (layoutPath)]] du module du contexte (par défautviews/layouts) dans le [[yii\base\Module::basePath|dossier de base du module]].

	La valeur booléenne false: aucune disposition n’est appliquée.

Si la valeur de disposition ne contient pas d’extension de fichier, l’extension par défaut .php est utilisée.

Dispositions imbriquées

Parfois, vous désirez imbriquer une disposition dans une autre. Par exemple, dans les différentes sections d’un site Web, vous voulez utiliser des dispositions différentes, bien que ces dispositions partagent la même disposition de base qui génère la structure d’ensemble des pages HTML5. Vous pouvez réaliser cela en appelant la méthode [[yii\base\View::beginContent()|beginContent()]] et la méthode
[[yii\base\View::endContent()|endContent()]] dans les dispositions filles comme illustré ci-après :

<?php $this->beginContent('@app/views/layouts/base.php'); ?>

...contenu de la disposition fille ici...

<?php $this->endContent(); ?>

Comme on le voit ci-dessus, le contenu de la disposition fille doit être situé entre les appels des méthodes [[yii\base\View::beginContent()|beginContent()]] et [[yii\base\View::endContent()|endContent()]]. Le paramètre passé à la méthode [[yii\base\View::beginContent()|beginContent()]] spécifie quelle est la disposition parente. Ce peut être un fichier de disposition ou un alias. En utilisant l’approche ci-dessus, vous pouvez imbriquer des dispositions sur plusieurs niveaux.

Utilisation des blocs

Les blocs vous permettent de spécifier le contenu de la vue à un endroit et l’afficher ailleurs. Ils sont souvent utilisés conjointement avec les dispositions. Par exemple, vous pouvez définir un bloc dans une vue de contenu et l’afficher dans la disposition.

Pour définir un bloc, il faut appeler les méthodes [[yii\base\View::beginBlock()|beginBlock()]] et [[yii\base\View::endBlock()|endBlock()]]. Vous pouvez accéder au bloc via son identifiant avec $view->blocks[$blockID], où $blockID représente l’identifiant unique que vous assignez au bloc lorsque vous le définissez.

L’exemple suivant montre comment utiliser les blocs pour personnaliser des parties spécifiques dans la disposition d’une vue de contenu.

Tout d’abord, dans une vue de contenu, définissez un ou de multiples blocs :

...

<?php $this->beginBlock('block1'); ?>

...contenu de block1...

<?php $this->endBlock(); ?>

...

<?php $this->beginBlock('block3'); ?>

...contenu de block3...

<?php $this->endBlock(); ?>

Ensuite, dans la vue de la disposition, rendez les blocs s’ils sont disponibles, ou affichez un contenu par défaut si le bloc n’est pas défini.

...
<?php if (isset($this->blocks['block1'])): ?>
 <?= $this->blocks['block1'] ?>
<?php else: ?>
 ... contenu par défaut de block1 ...
<?php endif; ?>

...

<?php if (isset($this->blocks['block2'])): ?>
 <?= $this->blocks['block2'] ?>
<?php else: ?>
 ... contenu par défaut de block2 ...
<?php endif; ?>

...

<?php if (isset($this->blocks['block3'])): ?>
 <?= $this->blocks['block3'] ?>
<?php else: ?>
 ... contenu par défaut de block3 ...
<?php endif; ?>
...

Utilisation des composants view

Les composants [[yii\base\View|view]] fournissent de nombreuses fonctionnalités relatives aux vues. Bien que vous puissiez créer des composants view en créant des instances de la classe [[yii\base\View]] ou de ses classes filles, dans la plupart des cas, vous utilisez principalement le composant d’application view . Vous pouvez configurer ce composant dans les configuration d’application, comme l’illustre l’exemple qui suit :

[
 // ...
 'components' => [
 'view' => [
 'class' => 'app\components\View',
],
 // ...
],
]

Les composants View fournissent les fonctionnalités utiles suivantes relatives aux vues, chacune décrite en détails dans une section séparée :

	gestion des thèmes: vous permet des développer et de changer les thèmes pour votre site Web.

	mise en cache de fragments: vous permet de mettre en cache un fragment de votre page Web.

	gestion des scripts client: prend en charge l’enregistrement et le rendu de code CSS et JavaScript.

	gestion de paquets de ressources: prend en charge l’enregistrement et le rendu de paquets de ressources.

	moteurs de modèle alternatif: vous permet d’utiliser d’autres moteur de modèles tels que Twig [http://twig.sensiolabs.org/] et Smarty [http://www.smarty.net/].

Vous pouvez aussi utiliser les fonctionnalités suivantes qui, bien que mineures, sont néanmoins utiles, pour développer vos pages Web.

Définition du titre des pages

Chaque page Web doit avoir un titre. Normalement la balise titre est affichée dans une disposition. Cependant, en pratique, le titre est souvent déterminé dans les vues de contenu plutôt que dans les dispositions. Pour résoudre ce problème,[[yii\web\View]] met à votre disposition la propriété [[yii\web\View::title|title]] qui vous permet de passer l’information de titre de la vue de contenu à la disposition.

Pour utiliser cette fonctionnalité, dans chacune des vues de contenu, vous pouvez définir le titre de la page de la manière suivante :

<?php
$this->title = 'Le titre de ma page';
?>

Ensuite dans la disposition, assurez-vous qui vous avez placé le code suivant dans la section <head> :

<title><?= Html::encode($this->title) ?></title>

Enregistrement des balises “meta”

Généralement, les pages Web, ont besoin de générer des balises “meta” variées dont ont besoin diverses parties. Comme le titre des pages, les balises “meta” apparaissent dans la section <head> et sont généralement générées dans les dispositions.

Si vous désirez spécifier quelles balises “meta” générer dans les vues de contenu, vous pouvez appeler [[yii\web\View::registerMetaTag()]] dans une vue de contenu comme illustrer ci-après :

<?php
$this->registerMetaTag(['name' => 'keywords', 'content' => 'yii, framework, php']);
?>

Le code ci-dessus enregistre une balise “meta” “mot clé” dans le composant view. La balise “meta” enregistrée est rendue après que le rendu de la disposition est terminé. Le code HTML suivant est généré et inséré à l’endroit où vous appelez [[yii\web\View::head()]] dans la disposition :

<meta name="keywords" content="yii, framework, php">

Notez que si vous appelez [[yii\web\View::registerMetaTag()]] à de multiples reprises, elle enregistrera de multiples balises meta, que les balises soient les mêmes ou pas.

Pour garantir qu’il n’y a qu’une instance d’un type de balise meta, vous pouvez spécifier une clé en tant que deuxième paramètre lors de l’appel de la méthode.
Par exemple, le code suivant, enregistre deux balises “meta” « description ». Cependant, seule la seconde sera rendue.
F

$this->registerMetaTag(['name' => 'description', 'content' => 'This is my cool website made with Yii!'], 'description');
$this->registerMetaTag(['name' => 'description', 'content' => 'This website is about funny raccoons.'], 'description');

Enregistrement de balises liens

Comme les balises meta, les balises liens sont utiles dans de nombreux cas, comme la personnalisation de favicon, le pointage sur les flux RSS ou la délégation d’OpenID à un autre serveur. Vous pouvez travailler avec les balises liens comme avec les balises “meta” en utilisant [[yii\web\View::registerLinkTag()]]. Par exemple, dans une vue de contenu, vous pouvez enregistrer une balise lien de la manière suivante :

$this->registerLinkTag([
 'title' => 'Live News for Yii',
 'rel' => 'alternate',
 'type' => 'application/rss+xml',
 'href' => 'http://www.yiiframework.com/rss.xml/',
]);

Le code suivant produit le résultat suivant :

<link title="Live News for Yii" rel="alternate" type="application/rss+xml" href="http://www.yiiframework.com/rss.xml/">

Comme avec [[yii\web\View::registerMetaTag()|registerMetaTag()]], vous pouvez spécifier un clé lors de l’appel de [[yii\web\View::registerLinkTag()|registerLinkTag()]] pour éviter de générer des liens identiques.

Événements de vues

Les [[yii\base\View|composants View]] déclenchent plusieurs événements durant le processus de rendu des vues. Vous pouvez répondre à ces événements pour injecter du contenu dans des vues ou traiter les résultats du rendu avant leur transmission à l’utilisateur final.

	[[yii\base\View::EVENT_BEFORE_RENDER|EVENT_BEFORE_RENDER]]: déclenché au début du rendu d’un fichier dans un contrôleur. Les gestionnaires de cet événement peuvent définir [[yii\base\ViewEvent::isValid]] à false (faux) pour arrêter le processus de rendu.

	[[yii\base\View::EVENT_AFTER_RENDER|EVENT_AFTER_RENDER]]: déclenché après le rendu d’un fichier par appel de [[yii\base\View::afterRender()]]. Les gestionnaires de cet événement peuvent obtenir le résultat du rendu via [[yii\base\ViewEvent::output]] et peuvent modifier cette propriété pour modifier le résultat du rendu.

	[[yii\base\View::EVENT_BEGIN_PAGE|EVENT_BEGIN_PAGE]]: déclenché par l’appel de [[yii\base\View::beginPage()]] dans une disposition.

	[[yii\base\View::EVENT_END_PAGE|EVENT_END_PAGE]]: déclenché par l’appel de [[yii\base\View::endPage()]] dans une disposition.

	[[yii\web\View::EVENT_BEGIN_BODY|EVENT_BEGIN_BODY]]: déclenché par l’appel de [[yii\web\View::beginBody()]] dans une disposition.

	[[yii\web\View::EVENT_END_BODY|EVENT_END_BODY]]: déclenché par l’appel de [[yii\web\View::endBody()]] dans une disposition.

Par exemple, le code suivant injecte la date courante à la fin du corps de la page.

\Yii::$app->view->on(View::EVENT_END_BODY, function () {
 echo date('Y-m-d');
});

Rendu des pages statiques

Les pages statiques font références aux pages dont le contenu principal est essentiellement statique sans recours à des données dynamiques poussées par les contrôleurs.

Vous pouvez renvoyer des pages statiques en plaçant leur code dans des vues, et en utilisant un code similaire à ce qui suit dans un contrôleur :

public function actionAbout()
{
 return $this->render('about');
}

Si un site Web contient beaucoup de pages statiques, ce serait très ennuyeux de répéter un code similaire de nombreuses fois. Pour résoudre ce problème, vous pouvez introduire une action autonome appelée [[yii\web\ViewAction]] dans un contrôleur. Par exemple :

namespace app\controllers;

use yii\web\Controller;

class SiteController extends Controller
{
 public function actions()
 {
 return [
 'page' => [
 'class' => 'yii\web\ViewAction',
],
];
 }
}

Maintenant, si vous créez une vue nommée about dans le dossier @app/views/site/pages, vous pourrez afficher cette vue via l’URL suivante :

http://localhost/index.php?r=site%2Fpage&view=about

Le paramètre view de la méthode GET dit à [[yii\web\ViewAction]] quelle est la vue requise. L’action recherche alors cette vue dans le dossier @app/views/site/pages. Vous pouvez configurer la propriété [[yii\web\ViewAction::viewPrefix]] pour changer le dossier dans lequel la vue est recherchée.

Meilleures pratiques

Les vues sont chargées de présenter les modèles dans le format désiré par l’utilisateur final. En général :

	Elles devraient essentiellement contenir du code relatif à la présentation, tel que le code HTML, du code PHP simple pour parcourir, formater et rendre les données.

	Elles ne devraient pas contenir de code qui effectue des requêtes de base de données. Un tel code devrait être placé dans les modèles.

	Elles devraient éviter d’accéder directement aux données de la requête, telles que $_GET, $_POST. C’est le rôle des contrôleurs. Si les données de la requête sont nécessaires, elles devraient être poussées dans les vues par les contrôleurs.

	Elles peuvent lire les propriétés des modèles, mais ne devraient pas les modifier.

Pour rendre les vues plus gérables, évitez de créer des vues qui sont trop complexes ou qui contiennent trop de code redondant. Vous pouvez utiliser les techniques suivantes pour atteindre cet but :

	Utiliser des dispositions pour représenter les sections communes de présentation (p. ex. l’entête de page, le pied de page).

	Diviser une vue complexe en plusieurs vues plus réduites. Les vues plus réduites peuvent être rendue et assemblées dans une plus grande en utilisant les méthodes de rendu que nous avons décrites.

	Créer et utiliser des objets graphiques en tant que blocs de construction des vues.

	Créer et utiliser des classes d’aide pour transformer et formater les données dans les vues.

 Objets graphiques

Objets graphiques

Les objets graphiques (widgets) sont des blocs de construction réutilisables dans des vues pour créer des éléments d’interface utilisateur complexes et configurables d’une manière orientée objet. Par exemple, un composant d’interface graphique de sélection de date peut générer un sélecteur de date original qui permet aux utilisateurs de sélectionner une date en tant qu’entrée. Tout ce que vous avez besoin de faire, c’est d’insérer le code dans une vue comme indiqué ci-dessous :

<?php
use yii\jui\DatePicker;
?>
<?= DatePicker::widget(['name' => 'date']) ?>

Il existe un grand nombre d’objets graphiques fournis avec Yii, tels que les[[yii\widgets\ActiveForm|active form]], [[yii\widgets\Menu|menu]], jQuery UI widgets [https://www.yiiframework.com/extension/yiisoft/yii2-jui], Twitter Bootstrap widgets [https://www.yiiframework.com/extension/yiisoft/yii2-bootstrap]. Dans ce qui suit, nous introduisons les connaissances de base sur les objets graphiques. Reportez-vous à la documentation de la classe dans l’API si vous désirez en apprendre davantage sur un objet graphique particulier.

Utilisation des objets graphiques

Les objets graphiques sont utilisés en premier lieu dans des vues. Vous pouvez appeler la méthode [[yii\base\Widget::widget()]] pour utiliser un objet graphique dans une vue. Cette méthode accepte un tableau de configuration pour initialiser l’objet graphique d’interface et retourne le résultat du rendu de cet objet. Par exemple, le code suivant insère un objet graphique de sélection de date qui est configuré dans la langue russe et conserve l’entrée dans l’attribut from_date du $model.

<?php
use yii\jui\DatePicker;
?>
<?= DatePicker::widget([
 'model' => $model,
 'attribute' => 'from_date',
 'language' => 'ru',
 'dateFormat' => 'php:Y-m-d',
]) ?>

Quelques objets graphiques peuvent accepter un bloc de contenu qui doit être compris entre l’appel des méthodes [[yii\base\Widget::begin()]] et [[yii\base\Widget::end()]]. Par exemple, le code suivant utilise l’objet graphique [[yii\widgets\ActiveForm]] pour générer une ouverture de balise <form> à l’endroit de l’appel de begin() et une fermeture de la même balise à l’endroit de l’appel de end(). Tout ce qui se trouve entre les deux est rendu tel quel.

<?php
use yii\widgets\ActiveForm;
use yii\helpers\Html;
?>

<?php $form = ActiveForm::begin(['id' => 'login-form']); ?>

 <?= $form->field($model, 'username') ?>

 <?= $form->field($model, 'password')->passwordInput() ?>

 <div class="form-group">
 <?= Html::submitButton('Login') ?>
 </div>

<?php ActiveForm::end(); ?>

Notez que contrairement à la méthode [[yii\base\Widget::widget()]] qui retourne le résultat du rendu d’un objet graphique, la méthode [[yii\base\Widget::begin()]] retourne une instance de l’objet graphique que vous pouvez utiliser pour construire le contenu de l’objet d’interface.

Note: quelques objets graphiques utilisent la mise en tampon de sortie [http://php.net/manual/en/book.outcontrol.php]
pour ajuster le contenu inclus quand la méthode [[yii\base\Widget::end()]] est appelée.
Pour cette raison, l’appel des méthodes [[yii\base\Widget::begin()]] et
[[yii\base\Widget::end()]] est attendu dans le même fichier de vue.
Ne pas respecter cette règle peut conduire à des résultats inattendus.

Configuration des variables globales par défaut

Les variables globales par défaut pour un objet graphique peuvent être configurées via le conteneur d’injection de dépendances (DI container) :

\Yii::$container->set('yii\widgets\LinkPager', ['maxButtonCount' => 5]);

Voir la section “Utilisation pratique ” dans le Guide du conteneur d’injection de dépendances pour les détails.

Création d’objets graphiques

Pour créer un objet graphique, étendez la classe [[yii\base\Widget]] et redéfinissez sa méthode [[yii\base\Widget::init()]] et/ou sa méthode [[yii\base\Widget::run()]]. Ordinairement, la méthode init() devrait contenir le code qui initialise les propriétés de l’objet graphique, tandis que la méthode run() devrait contenir le code qui génère le résultat du rendu de cet objet graphique. Le résultat du rendu peut être “renvoyé en écho” directement ou retourné comme une chaîne de caractères par la méthode run().

Dans l’exemple suivant, HelloWidget encode en HTML et affiche le contenu assigné à sa propriété message.
Si la propriété n’est pas définie, il affiche “Hello World” par defaut.

namespace app\components;

use yii\base\Widget;
use yii\helpers\Html;

class HelloWidget extends Widget
{
 public $message;

 public function init()
 {
 parent::init();
 if ($this->message === null) {
 $this->message = 'Hello World';
 }
 }

 public function run()
 {
 return Html::encode($this->message);
 }
}

Pour utiliser cet objet graphique, contentez-vous d’insérer le code suivant dans une vue :

<?php
use app\components\HelloWidget;
?>
<?= HelloWidget::widget(['message' => 'Good morning']) ?>

Ce-dessous, nous présentons une variante de HelloWidget qui prend le contenu inséré entre les appels des méthodes begin() et end(), l’encode en HTML et l’affiche.

namespace app\components;

use yii\base\Widget;
use yii\helpers\Html;

class HelloWidget extends Widget
{
 public function init()
 {
 parent::init();
 ob_start();
 }

 public function run()
 {
 $content = ob_get_clean();
 return Html::encode($content);
 }
}

Comme vous pouvez le voir, le tampon de sortie de PHP est démarré dans init() de manière à ce que toute sortie entre les appels de init() et de run()
puisse être capturée, traitée et retournée dans run().

Info: lorsque vous appelez [[yii\base\Widget::begin()]], une nouvelle instance de l’objet graphique est créé et sa méthode init() est appelée à la fin de la construction de l’objet. Lorsque vous appelez [[yii\base\Widget::end()]], la méthode run() est appelée et sa valeur de retour est renvoyée en écho par end().

Le code suivant montre comment utiliser cette nouvelle variante de HelloWidget:

<?php
use app\components\HelloWidget;
?>
<?php HelloWidget::begin(); ?>

 content that may contain <tag>'s

<?php HelloWidget::end(); ?>

Parfois, un objet graphique peut avoir à rendre un gros bloc de contenu. Bien que vous puissiez incorporer le contenu dans la méthode run(), une meilleure approche consiste à le mettre dans une vue et à appeler la méthode [[yii\base\Widget::render()]] pour obtenir son rendu. Par exemple :

public function run()
{
 return $this->render('hello');
}

Par défaut, les vues pour un objet graphique doivent être stockées dans le dossier WidgetPath/views, où WidgetPath représente le dossier contenant la classe de l’objet graphique. Par conséquent, l’exemple ci-dessus rend le fichier de vue @app/components/views/hello.php, en supposant que la classe de l’objet graphique est située dans le dossier @app/components. Vous pouvez redéfinir la méthode [[yii\base\Widget::getViewPath()]] pour personnaliser le dossier qui contient les fichiers de vue des objets graphiques.

Meilleures pratiques

Les objets graphiques sont une manière orientée objets de réutiliser du code de vues.

Lors de la création d’objets graphiques, vous devriez continuer de suivre le modèle d’architecture MVC. En général, vous devriez conserver la logique dans les classes d’objets graphiques et la présentation dans les vues.

Les objets graphiques devraient également être conçus pour être auto-suffisants. Cela veut dire que, lors de l’utilisation d’un tel objet, vous devriez être en mesure de vous contenter de le placer dans une vue sans rien faire d’autre. Cela peut s’avérer délicat si un objet graphique requiert des ressources externes, comme du CSS, du JavaScript, des images, etc. Heureusement, Yii fournit une prise en charge des paquets de ressources que vous pouvez utiliser pour résoudre le problème.

Quand un objet graphique contient du code de vue seulement, il est très similaire à une vue. En fait, dans ce cas, la seule différence est que l’objet graphique est une classe distribuable, tandis qu’une vue est juste un simple script PHP que vous préférez conserver dans votre application.

 Internationalisation

Internationalisation

Le terme Internationalisation (I18N) fait référence au processus de conception d’une application logicielle qui permet son adaptation à diverses langues et régions sans intervenir dans le code. Pour des applications Web, la chose est particulièrement importante puisque celle-ci peut concerner des utilisateurs potentiels répartis sur toute la surface de la terre. Yii met à votre disposition tout un arsenal de fonctionnalités qui prennent en charge la traduction des messages et des vues, ainsi que le formatage des nombres et des dates.

Locale et Langue

Une locale est un jeu de paramètres qui définissent la langue de l’utilisateur, son pays et des préférences spéciales que celui-ci désire voir dans l’interface utilisateur.

Elle est généralement identifiée par un identifiant (ID), lui-même constitué par un identifiant de langue et un identifiant de région. Par exemple, l’identifiant en-US représente la locale anglais pour la langue et États-Unis pour la région.

Pour assurer la cohérence, tous les identifiants utilisés par les application Yii doivent être présentés sous leur forme canonique ll-CC, où ll est un code à 2 ou 3 lettres pour la langue conforme à la norme ISO-639 [http://www.loc.gov/standards/iso639-2/] et CC est un code à deux lettres pour le pays conforme à la norme ISO-3166 [http://www.iso.org/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html].
Pour plus de détails sur les locales, reportez-vous à la documentation du projet ICU [http://userguide.icu-project.org/locale#TOC-The-Locale-Concept].

Dans Yii, nous utilisons souvent le mot « langue » pour faire référence à la locale.

Une application Yii utilise deux langues : la [[yii\base\Application::$sourceLanguage|langue source]] et la [[yii\base\Application::$language|langue cible]]. La première fait référence à la langue dans laquelle les messages sont rédigés dans le code source, tandis que la deuxième est celle qui est utilisée pour présenter les textes à l’utilisateur final.
Pour l’essentiel, le service appelé message translation service(service de traduction des messages) assure la traduction d’un message textuel de la langue source vers la langue cible.

Vous pouvez configurer les langues de l’application dans la configuration de la manière suivante :

return [
 // définit la langue cible comme étant le français-France
 'language' => 'fr-FR',

 // définit la langue source comme étant l'anglais États-Unis
 'sourceLanguage' => 'en-US',

];

La valeur par défaut pour la [[yii\base\Application::$sourceLanguage|langue source]] est en-US, qui signifie « anglais États-Unis ». Il est recommandé de conserver cette valeur sans la changer car il est généralement plus facile de trouver des gens capables de traduire de l’anglais vers d’autres langues que d’une langue non anglaise vers une autre langue.

Il est souvent nécessaire de définir la [[yii\base\Application::$language|langue cible]] de façon dynamique en se basant sur différents facteurs tels que, par exemple, les préférences linguistiques de l’utilisateur final. Au lieu de la définir dans la configuration de l’application vous pouvez utiliser l’instruction suivante pour changer la langue cible :

// modifier la langue cible pour qu'elle soit français-FRANCE
\Yii::$app->language = 'fr-FR';

Tip: si votre langue source change selon les différentes parties de votre code, vous pouvez modifier la valeur de la langue source localement comme c’est expliqué dans la section suivante.

Traduction des messages

Le service de traduction des messages traduit un message textuel d’une langue (généralement la [[yii\base\Application::$sourceLanguage|langue source]]) vers une autre langue (généralement la [[yii\base\Application::$language|langue cible]]). Il effectue la traduction en recherchant le message à traduire dans une source de messages qui stocke les messages originaux et les messages traduits.
Si le message est trouvé, le message traduit correspondant est renvoyé ; dans le cas contraire, le message original est renvoyé sans traduction.

Pour utiliser le service de traduction des messages, vous devez principalement effectuer les opérations suivantes :

	Envelopper le message textuel à traduire dans un appel à la méthode [[Yii::t()]] ;

	Configurer une ou plusieurs sources de messages dans lesquelles le service de traduction des messages peut rechercher des traductions ;

	Confier aux traducteurs le soin de traduire les messages et de les stocker dans les sources de messages.

La méthode [[Yii::t()]] peut être utilisée comme le montre l’exemple suivant :

echo \Yii::t('app', 'This is a string to translate!');

où le deuxième paramètre fait référence au message textuel à traduire, tandis que le premier paramètre fait référence au nom de la catégorie à laquelle le message appartient.

La méthode [[Yii::t()]] appelle la méthode translate du composant d’application i18n pour assurer le travail réel de traduction. Le composant peut être configuré dans la configuration de l’application de la manière suivante :

'components' => [
 // ...
 'i18n' => [
 'translations' => [
 'app*' => [
 'class' => 'yii\i18n\PhpMessageSource',
 //'basePath' => '@app/messages',
 //'sourceLanguage' => 'en-US',
 'fileMap' => [
 'app' => 'app.php',
 'app/error' => 'error.php',
],
],
],
],
],

Dans le code qui précède, une source de messages prise en charge par [[yii\i18n\PhpMessageSource]] est configurée. Le motif app* indique que toutes les catégories de messages dont les noms commencent par app doivent être traduites en utilisant cette source de messages. La classe [[yii\i18n\PhpMessageSource]] utilise des fichiers PHP pour stocker les traductions de messages. Chacun des fichiers PHP correspond aux messages d’une même catégorie. Par défaut, le nom du fichier doit être celui de la catégorie. Néanmoins, vous pouvez configurer [[yii\i18n\PhpMessageSource::fileMap|fileMap (table de mise en correspondance de fichiers)]] pour faire correspondre une catégorie à un fichier PHP dont le nom obéit à une autre approche de nommage. Dans l’exemple qui précède, la catégorie app/error correspond au fichier PHP @app/messages/fr-FR/error.php (en supposant que fr-FR est la langue cible). Sans cette configuration, la catégorie correspondrait à @app/messages/fr-FR/app/error.php.

En plus de la possibilité de stocker les messages dans des fichiers PHP, vous pouvez aussi utiliser les sources de messages suivantes pour stocker vos traductions sous une autre forme :

	[[yii\i18n\GettextMessageSource]] utilise des fichiers GNU Gettext, MO ou PO pour maintenir les messages traduits.

	[[yii\i18n\DbMessageSource]] utilise une base de donnée pour stocker les messages traduits.

Format des messages

Lorsque vous traduisez un message, vous pouvez inclure dans le messages des « valeurs à remplacer » qui seront remplacées dynamiquement en fonction de la valeur d’un paramètre. Vous pouvez même utiliser une syntaxe spéciale des « valeurs à remplacer » pour que les valeurs de remplacement soient formatées en fonction de la langue cible.
Dans cette sous-section, nous allons décrire différentes manières de formater un message.

Valeurs à remplacer des message

Dans un message à traduire, vous pouvez inclure une ou plusieurs « valeurs à remplacer » pour qu’elles puissent être remplacées par les valeurs données. En spécifiant différents jeux de valeurs, vous pouvez faire varier le message dynamiquement. Dans l’exemple qui suit, la valeur à remplacer {username} du message 'Hello, {username}!' sera remplacée par 'Alexander' et 'Qiang', respectivement.

$username = 'Alexander';
// affiche un message traduit en remplaçant {username} par "Alexander"
echo \Yii::t('app', 'Hello, {username}!', [
 'username' => $username,
]);

$username = 'Qiang';
// affiche un message traduit en remplaçant {username} par "Qiang"
echo \Yii::t('app', 'Hello, {username}!', [
 'username' => $username,
]);

Lorsque le traducteur traduit un message contenant une valeur à remplacer, il doit laisser la valeur à remplacer telle quelle. Cela tient au fait que les valeurs à remplacer seront remplacées par les valeurs réelles au moment de l’appel de Yii::t() pour traduire le message.

Dans un même message, vous pouvez utiliser, soit des « valeurs à remplacer nommées », soit des « valeurs à remplacer positionnelles », mais pas les deux types.

L’exemple précédent montre comment utiliser des valeurs à remplacer nommées, c’est à dire, des valeurs à remplacer écrites sous la forme {nom}, et pour lesquelles vous fournissez un tableau associatif dont les clés sont les noms des valeurs à remplacer (sans les accolades) et les valeurs, les valeurs de remplacement.

Les valeurs à remplacer positionnelles utilisent une suite d’entiers démarrant de zéro en tant que noms de valeurs à remplacer qui seront remplacées par les valeurs de remplacement, fournies sous forme d’un tableau, en fonction de leur position dans le tableau lors de l’appel de la méthode Yii::t(). Dans l’exemple suivant, les valeurs à remplacer positionnelles {0}, {1} et {2} seront remplacées respectivement par les valeurs de $price, $count et $subtotal.

$price = 100;
$count = 2;
$subtotal = 200;
echo \Yii::t('app', 'Price: {0}, Count: {1}, Subtotal: {2}', [$price, $count, $subtotal]);

Dans le cas d’une seule valeur à remplacer, la valeur de remplacement peut être donnée sans la placer dans un tableau :

echo \Yii::t('app', 'Price: {0}', $price);

Tip: dans la plupart des cas, vous devriez utiliser des valeurs à remplacer nommées, parce que les noms permettent aux traducteurs de
mieux comprendre le sens des messages qu’ils doivent traduire.

Formatage des valeurs de remplacement

Vous pouvez spécifier des règles de formatage additionnelles dans les valeurs à remplacer qui seront appliquées aux valeurs de remplacement. Dans l’exemple suivant, la valeur de remplacement price est traitée comme un nombre et formatée comme une valeur monétaire :

$price = 100;
echo \Yii::t('app', 'Price: {0,number,currency}', $price);

Note: le formatage des valeurs de remplacement nécessite l’installation de extension intl de PHP [http://www.php.net/manual/en/intro.intl.php].

Vous pouvez utiliser, soit la forme raccourcie, soit la forme complète pour spécifier une valeur à remplacer avec un format :

forme raccourcie : {name,type}
forme complète : {name,type,style}

Note: si vous avez besoin des caractères spéciaux tels que {, }, ', #, entourez-les de ':

echo Yii::t('app', "Example of string with ''-escaped characters'': '{' '}' '{test}' {count,plural,other{''count'' value is # '#{}'}}", ['count' => 3]);

Le format complet est décrit dans la documentation ICU [http://icu-project.org/apiref/icu4c/classMessageFormat.html].

Dans ce qui suit, nous allons présenter quelques usages courants.

Nombres

La valeur de remplacement est traitée comme un nombre. Par exemple,

$sum = 42;
echo \Yii::t('app', 'Balance: {0,number}', $sum);

Vous pouvez spécifier un style facultatif pour la valeur de remplacement integer (entier), currency (valeur monétaire), ou percent (pourcentage) :

$sum = 42;
echo \Yii::t('app', 'Balance: {0,number,currency}', $sum);

Vous pouvez aussi spécifier un motif personnalisé pour formater le nombre. Par exemple,

$sum = 42;
echo \Yii::t('app', 'Balance: {0,number,,000,000000}', $sum);

Les caractères à utiliser dans les formats personnalisés sont présentés dans le document ICU API reference [http://icu-project.org/apiref/icu4c/classicu_1_1DecimalFormat.html] à la section “Special Pattern Characters” (Caractères pour motifs spéciaux).

La valeur de remplacement est toujours formatée en fonction de la locale cible c’est à dire que vous ne pouvez pas modifier les séparateurs de milliers et de décimales, les symboles monétaires, etc. sans modifier la locale de traduction. Si vous devez personnaliser ces éléments vous pouvez utiliser [[yii\i18n\Formatter::asDecimal()]] et [[yii\i18n\Formatter::asCurrency()]].

Date

La valeur de remplacement doit être formatée comme une date. Par exemple,

echo \Yii::t('app', 'Today is {0,date}', time());

Vous pouvez spécifier des styles facultatifs pour la valeur de remplacement comme short (court), medium (moyen), long (long) ou full (complet) :

echo \Yii::t('app', 'Today is {0,date,short}', time());

Vous pouvez aussi spécifier un motif personnalisé pour formater la date :

echo \Yii::t('app', 'Today is {0,date,yyyy-MM-dd}', time());

Voir Formatting reference [http://icu-project.org/apiref/icu4c/classicu_1_1SimpleDateFormat.html#details].

Heure

La valeur de remplacement doit être formatée comme une heure (au sens large heure minute seconde). Par exemple,

echo \Yii::t('app', 'It is {0,time}', time());

Vous pouvez spécifier des styles facultatifs pour la valeur de remplacement comme short (court), medium (moyen), long (long) ou full (complet) :

echo \Yii::t('app', 'It is {0,time,short}', time());

Vous pouvez aussi spécifier un motif personnalisé pour formater l’heure :

echo \Yii::t('app', 'It is {0,date,HH:mm}', time());

Voir Formatting reference [http://icu-project.org/apiref/icu4c/classicu_1_1SimpleDateFormat.html#details].

Prononciation

La valeur de remplacement doit être traitée comme un nombre et formatée comme une prononciation. Par exemple,

// produit "42 is spelled as forty-two"
echo \Yii::t('app', '{n,number} is spelled as {n,spellout}', ['n' => 42]);

Par défaut le nombre est épelé en tant que cardinal. Cela peut être modifié :

// produit "I am forty-seventh agent"
echo \Yii::t('app', 'I am {n,spellout,%spellout-ordinal} agent', ['n' => 47]);

Notez qu’il ne doit pas y avoir d’espace après spellout, et avant %.

Pour trouver une liste des options disponibles pour votre locale, reportez-vous à
“Numbering schemas, Spellout” à http://intl.rmcreative.ru/.

Nombre ordinal

La valeur de remplacement doit être traitée comme un nombre et formatée comme un nombre ordinal. Par exemple,

// produit "You are the 42nd visitor here!" (vous êtes le 42e visiteur ici !)
echo \Yii::t('app', 'You are the {n,ordinal} visitor here!', ['n' => 42]);

Les nombres ordinaux acceptent plus de formats pour des langues telles que l’espagnol :

// produit 471ª
echo \Yii::t('app', '{n,ordinal,%digits-ordinal-feminine}', ['n' => 471]);

Notez qu’il ne doit pas y avoir d’espace après ordinal, et avant %.

Pour trouver une liste des options disponibles pour votre locale, reportez-vous à
“Numbering schemas, Ordinal” à http://intl.rmcreative.ru/.

Durée

La valeur de remplacement doit être traitée comme un nombre de secondes et formatée comme une durée. Par exemple,

// produit "You are here for 47 sec. already!" (Vous êtes ici depuis 47sec. déjà !)
echo \Yii::t('app', 'You are here for {n,duration} already!', ['n' => 47]);

La durée accepte d’autres formats :

// produit 130:53:47
echo \Yii::t('app', '{n,duration,%in-numerals}', ['n' => 471227]);

Notez qu’il ne doit pas y avoir d’espace après duration, et avant %.

Pour trouver une liste des options disponibles pour votre locale, reportez-vous à
“Numbering schemas, Duration” à http://intl.rmcreative.ru/.

Pluriel

Les langues diffèrent dans leur manière de marquer le pluriel. Yii fournit un moyen pratique pour traduire les messages dans différentes formes de pluriel qui fonctionne même pour des règles très complexes. Au lieu de s’occuper des règles d’inflexion directement, il est suffisant de fournir la traductions des mots infléchis dans certaines situations seulement. Par exemple,

// Lorsque $n = 0, produit "There are no cats!"
// Losque $n = 1, produit "There is one cat!"
// Lorsque $n = 42, produit "There are 42 cats!"
echo \Yii::t('app', 'There {n,plural,=0{are no cats} =1{is one cat} other{are # cats}}!', ['n' => $n]);

Dans les arguments des règles de pluralisation ci-dessus, = signifie valeur exacte. Ainsi =0 signifie exactement zéro, =1 signifie exactement un. other signifie n’importe quelle autre valeur. # est remplacé par la valeur de n formatée selon la langue cible.

Les formes du pluriel peuvent être très compliquées dans certaines langues. Dans l’exemple ci-après en russe, =1 correspond exactement à n = 1
tandis que one correspond à 21 ou 101:

Здесь {n,plural,=0{котов нет} =1{есть один кот} one{# кот} few{# кота} many{# котов} other{# кота}}!

Ces noms d’arguments spéciaux tels que other, few, many et autres varient en fonction de la langue. Pour savoir lesquels utiliser pour une locale particulière, reportez-vous aux “Plural Rules, Cardinal” à http://intl.rmcreative.ru/.
En alternative, vous pouvez vous reporter aux rules reference at unicode.org [http://cldr.unicode.org/index/cldr-spec/plural-rules].

Note: le message en russe ci-dessus est principalement utilisé comme message traduit, pas comme message source, sauf si vous définissez la [[yii\base\Application::$sourceLanguage|langue source]] de votre application comme étant ru-RU et traduisez à partir du russe.

Lorsqu’une traduction n’est pas trouvée pour un message source spécifié dans un appel de Yii::t(), les règles du pluriel pour la
[[yii\base\Application::$sourceLanguage|langue source]] seront appliquées au message source.
Il existe un paramètre offset dans le cas où la chaîne est de la forme suivante :

$likeCount = 2;
echo Yii::t('app', 'You {likeCount,plural,
 offset: 1
 =0{did not like this}
 =1{liked this}
 one{and one other person liked this}
 other{and # others liked this}
}', [
 'likeCount' => $likeCount
]);

// You and one other person liked this

Sélection ordinale

 Panduan Definitif Untuk Yii 2.0

Panduan Definitif Untuk Yii 2.0

Tutorial ini dirilis di bawah Persyaratan Dokumentasi Yii [http://www.yiiframework.com/doc/terms/].

Seluruh hak cipta dilindungi.

2014 (c) Yii Software LLC.

Pengantar

	Tentang Yii

	Upgrade dari Versi 1.1

Mulai

	Instalasi Yii

	Menjalankan Aplikasi

	Mengatakan Hello

	Bekerja dengan Form

	Bekerja dengan Database

	Membuat Kode Otomatis dengan Gii

	Menatap ke Depan

Struktur Aplikasi

	Tinjauan

	Script Masuk

	Aplikasi

	Komponen Aplikasi

	Controller

	Model

	Views

	Modul

	Filter

	Widgets

	Aset

	Ekstensi

Penanganan Permintaan

	Tinjauan

	Bootstrap

	Routing dan Pembuatan URL

	Permintaan

	Tanggapan

	Sesi dan Cookies

	Penanganan Kesalahan

	Logging

Konsep Pokok

	Komponen

	Properti

	Event

	Perilaku

	Konfigurasi

	Alias

	Class Autoloading

	Layanan Locator

	Dependency Injection

Bekerja dengan Database

	Data Access Objects: Menghubungkan ke database, query dasar, transaksi, dan manipulasi skema

	Query Builder: Query database menggunakan lapisan abstraksi sederhana

	Active Record: ORM Active Record, mengambil dan memanipulasi catatan, dan mendefinisikan hubungan

	Migrasi: Terapkan kontrol versi untuk database Anda dalam lingkungan pengembangan tim

	Sphinx [https://github.com/yiisoft/yii2-sphinx/blob/master/docs/guide/README.md]

	Redis [https://github.com/yiisoft/yii2-redis/blob/master/docs/guide/README.md]

	MongoDB [https://github.com/yiisoft/yii2-mongodb/blob/master/docs/guide/README.md]

	ElasticSearch [https://github.com/yiisoft/yii2-elasticsearch/blob/master/docs/guide/README.md]

Mendapatkan Data dari Pengguna

	Membuat Formulir

	Memvalidasi Masukan

	Mengunggah File

	Mengumpulkan Masukan Tabel

	Mendapatkan Data untuk Beberapa Model

Menampilkan Data

	Pemformatan Data

	Pagination

	Pengurutan

	Penyedia Data

	Data Widget

	Bekerja dengan Script Client

	Tema

Keamanan

	Tinjauan

	Otentikasi

	Otorisasi

	Bekerja dengan Kata Sandi

	Kriptografi

	Otentikasi Klien [https://github.com/yiisoft/yii2-authclient/blob/master/docs/guide/README.md]

	Praktik Terbaik

Caching

	Tinjauan

	Caching Data

	Caching Fragmen

	Caching Halaman

	Caching HTTP

Layanan Web RESTful

	Quick Start

	Sumber Daya

	Controller

	Routing

	Penformatan Respon

	Otentikasi

	Pembatasan Laju

	Versi

	Penanganan Kesalahan

Alat Pengembangan

	Debug Toolbar dan Debugger [https://github.com/yiisoft/yii2-debug/blob/master/docs/guide/README.md]

	Membuat Kode Otomatis dengan Gii [https://github.com/yiisoft/yii2-gii/blob/master/docs/guide/README.md]

	Membuat API Documentation [https://github.com/yiisoft/yii2-apidoc]

Pengujian

	Tinjauan

	Persiapan Lingkungan Pengujian

	Tes Satuan

	Tes Fungsional

	Tes Penerimaan

	Jadwal

Topik Khusus

	Cetakan Proyek Lanjutan [https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/README.md]

	Membangun Aplikasi dari Awal

	Console Commands

	Validator Inti

	Internasionalisasi

	Mailing

	Penyetelan Performa

	Lingkungan Shared Hosting

	Template Engine

	Bekerja dengan Kode Pihak Ketiga

Widget

	GridView [http://www.yiiframework.com/doc-2.0/yii-grid-gridview.html]

	ListView [http://www.yiiframework.com/doc-2.0/yii-widgets-listview.html]

	DetailView [http://www.yiiframework.com/doc-2.0/yii-widgets-detailview.html]

	ActiveForm [http://www.yiiframework.com/doc-2.0/guide-input-forms.html#activerecord-based-forms-activeform]

	Pjax [http://www.yiiframework.com/doc-2.0/yii-widgets-pjax.html]

	Menu [http://www.yiiframework.com/doc-2.0/yii-widgets-menu.html]

	LinkPager [http://www.yiiframework.com/doc-2.0/yii-widgets-linkpager.html]

	LinkSorter [http://www.yiiframework.com/doc-2.0/yii-widgets-linksorter.html]

	Bootstrap Widgets [https://github.com/yiisoft/yii2-bootstrap/blob/master/docs/guide/README.md]

	JQuery UI Widgets [https://github.com/yiisoft/yii2-jui/blob/master/docs/guide/README.md]

Alat Bantu

	Tinjauan

	ArrayHelper

	Html

	Url

 Upgrade dari Versi 1.1

Upgrade dari Versi 1.1

Ada banyak perbedaan antara versi 1.1 dan 2.0 karena Yii Framework benar-benar ditulis ulang di versi 2.0.
Akibatnya, upgrade dari versi 1.1 tidak mudah seperti upgrade untuk versi minor. Dalam panduan ini Anda akan
menemukan perbedaan utama antara dua versi.

Jika Anda belum pernah menggunakan Yii 1.1 sebelumnya, Anda dapat dengan aman melewati bagian ini dan menuju ke “Persiapan”.

Harap dicatat bahwa Yii 2.0 memperkenalkan lebih banyak fitur baru dari yang tercakup dalam ringkasan ini. Sangat dianjurkan
Anda membaca keseluruhan panduan definitif untuk mempelajari hal tersebut. Kemungkinannya adalah bahwa
beberapa fitur yang sebelumnya harus anda kembangkan sendiri kini menjadi bagian dari kode inti.

Instalasi

Yii 2.0 sepenuhnya menggunakan composer [https://getcomposer.org/], yaitu dependency manager yang sudah diakui oleh PHP. Instalasi
dari kerangka inti serta ekstensi, ditangani melalui Composer. Silakan merujuk ke
bagian Instalasi Yii untuk belajar cara menginstal Yii 2.0. Jika Anda menghendaki
membuat ekstensi baru, atau mengubah ekstensi 1.1 yang sudah ke ekstensi 2.0 yang kompatibel, silakan
merujuk panduan Membuat Ekstensi.

Persyaratan PHP

Yii 2.0 membutuhkan PHP 5.4 atau versi lebih tinggi, yang merupakan perbaikan besar atas PHP versi 5.2 yang dibutuhkan oleh Yii 1.1.
Akibatnya, ada banyak perbedaan pada tingkat bahasa yang harus Anda perhatikan.
Di bawah ini adalah ringkasan perubahan utama mengenai PHP:

	Namespaces [http://php.net/manual/en/language.namespaces.php].

	Anonymous fungsi [http://php.net/manual/en/functions.anonymous.php].

	Sintaks array pendek [... elemen ...] digunakan sebagai pengganti array (... elemen ...).

	Tags echo pendek <= digunakan dalam tampilan file. Ini aman digunakan mulai dari PHP 5.4.

	Class SPL dan interface [http://php.net/manual/en/book.spl.php].

	Late Static Bindings [http://php.net/manual/en/language.oop5.late-static-bindings.php].

	Tanggal dan Waktu [http://php.net/manual/en/book.datetime.php].

	Traits [http://php.net/manual/en/language.oop5.traits.php].

	Intl [http://php.net/manual/en/book.intl.php]. Yii 2.0 menggunakan ekstensi PHP intl
 untuk mendukung fitur internasionalisasi.

Namespace

Perubahan yang paling jelas dalam Yii 2.0 adalah penggunaan namespace. Hampir setiap kelas inti
menggunakan namespace, misalnya, yii\web\Request. Awalan “C” tidak lagi digunakan dalam nama kelas.
Skema penamaan sekarang mengikuti struktur direktori. Misalnya, yii\web\Request
menunjukkan bahwa file kelas yang sesuai adalah web/Request.php bawah folder framework Yii.

(Anda dapat menggunakan setiap kelas inti tanpa menyertakannya secara eksplisit berkat Yiiclass loader.)

Komponen dan Object

Yii 2.0 membagi kelas CComponent di 1.1 menjadi dua kelas: [[yii\base\BaseObject]] dan [[yii\base\Component]].
Class [[yii\base\BaseObject|BaseObject]] adalah class dasar ringan yang memungkinkan mendefinisikan objek properti
melalui getter dan setter. Class [[yii\base\Component|Component]] adalah perluasan dari [[yii\base\BaseObject|BaseObject]] dengan dukungan
Event dan behavior.

Jika class Anda tidak perlu fitur event atau behavior, Anda harus mempertimbangkan menggunakan
[[yii\base\BaseObject|BaseObject]] sebagai class dasar. Hal ini biasanya terjadi untuk class yang mewakili
struktur data dasar.

Konfigurasi objek

Class [[yii\base\BaseObject|BaseObject]] memperkenalkan cara seragam untuk mengkonfigurasi objek. Setiap class turunan
dari [[yii\base\BaseObject|BaseObject]] harus menyatakan konstruktor (jika diperlukan) dengan cara berikut agar
dapat dikonfigurasi dengan benar:

class MyClass extends \yii\base\BaseObject
{
 public function __construct($param1, $param2, $config = [])
 {
 // ... inisialisasi sebelum konfigurasi diterapkan

 parent::__construct($config);
 }

 public function init()
 {
 parent::init();

 // ... inisialisasi setelah konfigurasi diterapkan
 }
}

Dalam contoh di atas, parameter terakhir dari konstruktor harus mengambil array konfigurasi
yang berisi pasangan nama-nilai untuk menginisialisasi properti pada akhir konstruktor.
Anda dapat menimpa method [[yii\base\BaseObject::init()|init()]] untuk melakukan pekerjaan inisialisasi yang harus dilakukan setelah
konfigurasi telah diterapkan.

Dengan mengikuti konvensi ini, Anda akan dapat membuat dan mengkonfigurasi objek baru menggunakan array konfigurasi:

$object = Yii::createObject([
 'class' => 'MyClass',
 'property1' => 'abc',
 'property2' => 'cde',
], [$param1, $param2]);

Rincian lebih lanjut tentang konfigurasi dapat ditemukan di bagian Konfigurasi.

Event

Di Yii 1, event dibuat dengan mendefinisikan method on (misalnya,onBeforeSave). Di Yii 2, Anda sekarang dapat menggunakan semua nama sebagai event.
Anda memicu suatu event dengan memanggil method [[yii\base\Component::trigger()|trigger()]]:

$event = new \yii\base\Event;
$component->trigger($eventName, $event);

Untuk melampirkan penanganan event, mengunakan method [[yii\base\Component::on()|on()]]:

$component->on($eventName, $handler);
// To detach the handler, use:
// $component->off($eventName, $handler);

Ada banyak pengembangan dari fitur event. Untuk lebih jelasnya, silakan lihat bagian Event.

Path Alias

Yii 2.0 memperluas penggunaan alias path baik untuk file/direktori maupun URL. Yii 2.0 juga sekarang mensyaratkan
nama alias dimulai dengan karakter @.
Misalnya, alias @yii mengacu pada direktori instalasi Yii. Alias path
didukung di sebagian besar tempat di kode inti Yii. Misalnya, [[yii\caching\FileCache::cachePath]] dapat mengambil
baik alias path maupun direktori normal.

Sebuah alias juga terkait erat dengan namespace kelas. Disarankan alias didefinisikan untuk setiap akar namespace,
sehingga memungkinkan Anda untuk menggunakan autoloader class Yii tanpa konfigurasi lebih lanjut.
Misalnya, karena @yii mengacu pada direktori instalasi Yii, class seperti yii\web\Request dapat otomatis diambil.
Jika Anda menggunakan librari pihak ketiga seperti Zend Framework. Anda dapat menentukan alias path @Zend yang mengacu pada
direktori instalasi framework direktori. Setelah Anda selesai melakukannya, Yii akan dapat menload setiap class dalam librari Zend Framework.

Lebih jauh tentang alias path dapat ditemukan di bagian Alias.

View

Perubahan yang paling signifikan tentang view di Yii 2 adalah bahwa variabel khusus $this dalam sebuah view tidak lagi mengacu
controller saat ini atau widget. Sebaliknya, $this sekarang mengacu pada objek view, konsep baru
yang diperkenalkan di 2.0. Objek view adalah [[yii\web\View]], yang merupakan bagian view
dari pola MVC. Jika Anda ingin mengakses controller atau widget di tampilan, Anda dapat menggunakan $this->context.

Untuk membuat tampilan parsial dalam view lain, Anda menggunakan $this->render(), tidak lagi $this->renderPartial().
Panggilan untuk render juga sekarang harus secara eksplisit di-echo), mengingat method render() sekarang mengembalikan nilai
yang dirender, bukan langsung menampilkannya. Sebagai contoh:

echo $this->render('_item', ['item' => $item]);

Selain menggunakan PHP sebagai bahasa template utama, Yii 2.0 juga dilengkapi dengan dukungan resmi
dua mesin template populer: Smarty dan Twig. Mesin template Prado tidak lagi didukung.
Untuk menggunakan mesin template ini, Anda perlu mengkonfigurasi komponen aplikasi view dengan menetapkan
properti [[yii\base\View::$renderers|View::$renderers]]. Silakan merujuk ke bagian Template Engine
untuk lebih jelasnya.

Model

Yii 2.0 menggunakan [[yii\base\Model]] sebagai model dasar, mirip dengan CModel di 1.1.
class CFormModel telah dibuang seluruhnya. Sebaliknya, di Yii 2 Anda harus memperluas [[yii\base\Model]] untuk membuat class model formulir.

Yii 2.0 memperkenalkan metode baru yang disebut [[yii\base\Model::scenario()|scenario()]] untuk menyatakan
skenario yang didukung, dan untuk menunjukkan di mana skenario atribut perlu divalidasi serta atribut yang dapat dianggap sebagai aman atau tidak
dll Sebagai contoh:

public function scenarios()
{
 return [
 'backend' => ['email', 'role'],
 'frontend' => ['email', '!role'],
];
}

Dalam contoh di atas, dua skenario dinyatakan: backend danfrontend. Untuk skenario backend, baik
atribut email maupunrole aman dan dapat diassign secara masal. Untuk skenario frontend,
email dapat diassign secara masal sementararole tidak bisa. Kedua email danrole harus divalidasi sesuai aturan.

Method [[yii\base\Model::rules()|rules()]] ini masih digunakan untuk menyatakan aturan validasi. Perhatikan bahwa dengan dikenalkannya
[[yii\base\Model::scenario()|scenario()]] sekarang tidak ada lagi validator unsafe.

Dalam kebanyakan kasus, Anda tidak perlu menimpa [[yii\base\Model::scenario()|scenario()]]
jika method [[yii\base\Model::rules()|rules()]] sepenuhnya telah menentukan skenario yang akan ada dan jika tidak ada kebutuhan untuk menyatakan
atribut unsafe.

Untuk mempelajari lebih lanjut tentang model, silakan merujuk ke bagian Model.

Controller

Yii 2.0 menggunakan [[yii\web\Controller]] sebagai kelas dasar controller, yang mirip dengan CController di Yii 1.1.
[[Yii\base\Action]] adalah kelas dasar untuk kelas action.

Dampak paling nyata dari perubahan ini pada kode Anda adalah bahwa aksi kontroler harus mengembalikan nilai konten
alih-alih menampilkannya:

public function actionView($id)
{
 $model = \app\models\Post::findOne($id);
 if ($model) {
 return $this->render('view', ['model' => $model]);
 } else {
 throw new \yii\web\NotFoundHttpException;
 }
}

Silakan merujuk ke bagian Controller untuk rincian lebih lanjut tentang controller.

widget

Yii 2.0 menggunakan [[yii\base\Widget]] sebagai kelas dasar widget, mirip dengan CWidget di Yii 1.1.

Untuk mendapatkan dukungan yang lebih baik untuk kerangka di IDE, Yii 2.0 memperkenalkan sintaks baru untuk menggunakan widget.
Metode statis [[yii\base\Widget::begin()|begin()]], [[yii\base\Widget::end()|end()]], dan [[yii\base\Widget::widget()|widget()]]
mulai diperkenalkan, yang akan digunakan seperti:

use yii\widgets\Menu;
use yii\widgets\ActiveForm;

// Note that you have to "echo" the result to display it
echo Menu::widget(['items' => $items]);

// Passing an array to initialize the object properties
$form = ActiveForm::begin([
 'options' => ['class' => 'form-horizontal'],
 'fieldConfig' => ['inputOptions' => ['class' => 'input-xlarge']],
]);
... form input fields here ...
ActiveForm::end();

Silakan merujuk ke bagian Widget untuk lebih jelasnya.

Tema

Tema bekerja benar-benar berbeda di 2.0. Mereka sekarang berdasarkan mekanisme pemetaan path yang memetakan
file sumber ke file tema. Misalnya, jika peta path untuk tema adalah
['/web/views' => '/web/themes/basic'], maka versi tema dari file view
/web/views/site/index.php akan menjadi /web/themes/basic/site/index.php. Untuk alasan ini, tema sekarang bisa
diterapkan untuk setiap file view, bahkan view diberikan di luar controller atau widget.

Juga, tidak ada lagi komponen CThemeManager. Sebaliknya, theme adalah properti dikonfigurasi dari komponen view
aplikasi.

Silakan merujuk ke bagian Theming untuk lebih jelasnya.

Aplikasi konsol

Aplikasi konsol sekarang diatur sebagai controller seperti pada aplikasi Web. kontroler konsol
harus diperluas dari [[yii\console\Controller]], mirip dengan CConsoleCommand di 1.1.

Untuk menjalankan perintah konsol, menggunakan yii <route>, di mana <route> adalah rute kontroler
(Misalnya sitemap/index). Argumen anonim tambahan dilewatkan sebagai parameter ke
action controller yang sesuai, sedangkan argumen bernama diurai menurut
deklarasi pada [[yii\console\Controller::options()]].

Yii 2.0 mendukung pembuatan informasi bantuan command secara otomatis berdasarkan blok komentar.

Silakan lihat bagian Console Commands untuk lebih jelasnya.

I18N

Yii 2,0 menghilangkan formater tanggal dan angka terpasang bagian dari PECL modul intl PHP [http://pecl.php.net/package/intl].

Penterjemahan pesan sekarang dilakukan melalui komponen aplikasi i18n.
Komponen ini mengelola satu set sumber pesan, yang memungkinkan Anda untuk menggunakan pesan yang berbeda
sumber berdasarkan kategori pesan.

Silakan merujuk ke bagian Internasionalisasi untuk rincian lebih lanjut.

Action Filter

Action Filter sekarang diimplementasikan melalui behavior. Untuk membuat baru, filter diperluas dari [[yii\base\ActionFilter]].
Untuk menggunakan filter, pasang Kelas filter untuk controller sebagai behavior. Misalnya, untuk menggunakan filter [[yii\filters\AccessControl]],
Anda harus mengikuti kode berikut di kontroler:

public function behaviors()
{
 return [
 'access' => [
 'class' => 'yii\filters\AccessControl',
 'rules' => [
 ['allow' => true, 'actions' => ['admin'], 'roles' => ['@']],
],
],
];
}

Silakan merujuk ke bagian Filtering untuk lebih jelasnya.

Aset

Yii 2.0 memperkenalkan konsep baru yang disebut bundel aset yang menggantikan konsep paket script di Yii 1.1.

Bundel aset adalah kumpulan file asset (misalnya file JavaScript, file CSS, file gambar, dll)
dalam direktori. Setiap bundel aset direpresentasikan sebagai kelas turunan dari [[yii\web\AssetBundle]].
Dengan mendaftarkan bundel aset melalui [[yii\web\AssetBundle::register()]], Anda membuat
aset dalam bundel diakses melalui Web. Tidak seperti di Yii 1, halaman yang mendaftarkan bundel akan secara otomatis
berisi referensi ke JavaScript dan file CSS yang ditentukan dalam bundel itu.

Silakan merujuk ke bagian Managing Aset untuk lebih jelasnya.

Helper

Yii 2.0 memperkenalkan banyak helper umum untuk digunakan, termasuk.

	[[yii\helpers\Html]]

	[[yii\helpers\ArrayHelper]]

	[[yii\helpers\StringHelper]]

	[[yii\helpers\FileHelper]]

	[[yii\helpers\Json]]

Silakan lihat bagian Tinjauan Helper untuk lebih jelasnya.

Formulir

Yii 2.0 memperkenalkan konsep field untuk membangun formulir menggunakan [[yii\widgets\ActiveForm]]. Field
adalah wadah yang terdiri dari label, masukan, pesan kesalahan, dan atau teks petunjuk.
Field diwakili sebagai objek [[yii\widgets\ActiveField|ActiveField]].
Menggunakan field, Anda dapat membangun formulir yang lebih bersih dari sebelumnya:

<?php $form = yii\widgets\ActiveForm::begin(); ?>
 <?= $form->field($model, 'username') ?>
 <?= $form->field($model, 'password')->passwordInput() ?>
 <div class="form-group">
 <?= Html::submitButton('Login') ?>
 </div>
<?php yii\widgets\ActiveForm::end(); ?>

Silakan merujuk ke bagian Membuat Formulir untuk lebih jelasnya.

Query Builder

Dalam 1.1, query builder itu tersebar di antara beberapa kelas, termasuk CDbCommand,
CDbCriteria, danCDbCommandBuilder. Yii 2.0 merepresentasikan sebuah query DB sebagai objek [[yii\db\Query|Query]]
yang dapat berubah menjadi sebuah pernyataan SQL dengan bantuan [[yii\db\QueryBuilder|QueryBuilder]].
Sebagai contoh:

$query = new \yii\db\Query();
$query->select('id, name')
 ->from('user')
 ->limit(10);

$command = $query->createCommand();
$sql = $command->sql;
$rows = $command->queryAll();

Yang terbaik dari semua itu adalah, query builder juga dapat digunakan ketika bekerja dengan Active Record.

Silakan lihat bagian Query Builder untuk lebih jelasnya.

Active Record

Yii 2.0 memperkenalkan banyak perubahan Active Record. Dua yang paling jelas melibatkan
query builder dan penanganan permintaan relasional.

Kelas CDbCriteria di 1.1 digantikan oleh [[yii\db\ActiveQuery]] di Yii 2. Karena kelas tersebut adalah perluasan dari [[yii\db\Query]], dengan demikian
mewarisi semua metode query builder. Anda bisa memanggil [[yii\db\ActiveRecord::find()]] untuk mulai membangun query:

// Untuk mengambil semua customer yang *active* diurutkan sesuai ID:
$customers = Customer::find()
 ->where(['status' => $active])
 ->orderBy('id')
 ->all();

Untuk menyatakan suatu relasi, hanya dengan menentukan metod getter yang mengembalikan sebuah objek [[yii\db\ActiveQuery|ActiveQuery]].
Nama properti yang didefinisikan oleh getter akan menjadi nama relasi. Misalnya, kode berikut mendeklarasikan
sebuah relasi orders (di 1.1, Anda akan harus menyatakan relasi di tempat relations()):

class Customer extends \yii\db\ActiveRecord
{
 public function getOrders()
 {
 return $this->hasMany('Order', ['customer_id' => 'id']);
 }
}

Sekarang Anda dapat menggunakan $customer->orders untuk mengakses pesanan pelanggan dari tabel terkait. Anda juga dapat menggunakan kode berikut
untuk melakukan permintaan relasi secara cepat dengan kondisi permintaan yang disesuaikan:

$orders = $customer->getOrders()->andWhere('status=1')->all();

Ketika ingin memuat relasi, Yii 2.0 melakukannya secara berbeda dari 1.1. Secara khusus, di 1.1 query JOIN
akan dibuat untuk memilih data utama dan data relasi. Di Yii 2.0, dua pernyataan SQL dijalankan
tanpa menggunakan JOIN: pernyataan pertama membawa kembali data utama dan yang kedua membawa kembali data relasi
dengan menyaring sesuai kunci primer dari data utama.

Alih-alih mengembalikan objek [[yii\db\ActiveRecord|ActiveRecord]], Anda mungkin ingin menyambung dengan [[yii\db\ActiveQuery::asArray()|asArray()]]
ketika membangun query untuk mendapatkan sejumlah besar data. Hal ini akan menyebabkan hasil query dikembalikan
sebagai array, yang dapat secara signifikan mengurangi waktu CPU yang dibutuhkan dan memori jika terdapat sejumlah besar data. Sebagai contoh:

$customers = Customer::find()->asArray()->all();

Perubahan lain adalah bahwa Anda tidak dapat menentukan nilai default atribut melalui properti publik lagi.
Jika Anda membutuhkan mereka, Anda harus mengatur mereka dalam metode init kelas record Anda.

public function init()
{
 parent::init();
 $this->status = self::STATUS_NEW;
}

Ada beberapa masalah dengan override konstruktor dari kelas ActiveRecord di 1.1. Ini tidak lagi hadir di
versi 2.0. Perhatikan bahwa ketika menambahkan parameter ke constructor Anda mungkin harus mengganti [[yii\db\ActiveRecord::instantiate()]].

Ada banyak perubahan lain dan perangkat tambahan untuk Rekaman Aktif. Silakan merujuk ke
bagian Rekaman Aktif untuk rincian lebih lanjut.

Active Record Behaviors

Dalam 2.0, kami telah membuang kelas behavior dasar CActiveRecordBehavior. Jika Anda ingin membuat behavior Active Record,
Anda akan harus memperluasnya langsung dari yii\base\Behavior. Jika kelas behavior perlu menanggapi beberapa event
dari pemilik, Anda harus mengganti method events() seperti berikut ini,

namespace app\components;

use yii\db\ActiveRecord;
use yii\base\Behavior;

class MyBehavior extends Behavior
{
 // ...

 public function events()
 {
 return [
 ActiveRecord::EVENT_BEFORE_VALIDATE => 'beforeValidate',
];
 }

 public function beforeValidate($event)
 {
 // ...
 }
}

Pengguna dan IdentityInterface

Kelas CWebUser di 1.1 kini digantikan oleh [[yii\web\User]], dan sekarang tidak ada lagi
Kelas CUserIdentity. Sebaliknya, Anda harus menerapkan [[yii\web\IdentityInterface]] yang
jauh lebih mudah untuk digunakan. Template proyek lanjutan memberikan contoh seperti itu.

Silakan merujuk ke bagian Otentikasi, Otorisasi,
dan [Template Proyek Lanjutan](https://github.com/yiisoft/yii2-app-advanced/blob /master/docs/guide/README.md) untuk lebih jelasnya.

Manajemen URL

Manajemen URL di Yii 2 mirip dengan yang di 1.1. Tambahan utamanya adalah, sekarang manajemen URL mendukung opsional
parameter. Misalnya, jika Anda memiliki aturan dinyatakan sebagai berikut, maka akan cocok
baik dengan post/popular maupun post/1/popular. Dalam 1.1, Anda akan harus menggunakan dua aturan untuk mencapai
tujuan yang sama.

[
 'pattern' => 'post/<page:\d+>/<tag>',
 'route' => 'post/index',
 'defaults' => ['page' => 1],
]

Silakan merujuk ke bagian docs manajer Url untuk lebih jelasnya.

Perubahan penting dalam konvensi penamaan untuk rute adalah bahwa nama-nama camelcase dari controller
dan action sekarang dikonversi menjadi huruf kecil di mana setiap kata dipisahkan oleh hypen, misal controller
id untuk CamelCaseController akan menjadi camel-case.
Lihat bagian tentang Kontroler ID dan Action ID untuk lebih jelasnya.

Menggunakan Yii 1.1 dan 2.x bersama-sama

Jika Anda memiliki warisan kode Yii 1.1 yang ingin Anda gunakan bersama-sama dengan Yii 2.0, silakan lihat
bagian Menggunakan Yii 1.1 dan 2.0 Bersama.

 Apa Itu Yii

Apa Itu Yii

Yii adalah kerangka kerja PHP berkinerja tinggi, berbasis komponen yang digunakan untuk mengembangkan aplikasi web modern dengan cepat.
Nama Yii (diucapkan Yee atau [ji:]) yang berarti “sederhana dan berevolusi” dalam bahasa Cina. Hal ini dapat juga
dianggap sebagai singkatan Yes It Is (Ya, Itu Dia)!

Yii Terbaik untuk Apa?

Yii adalah kerangka kerja pemrograman web umum, yang berarti bahwa hal itu dapat digunakan untuk mengembangkan semua jenis
aplikasi Web yang menggunakan PHP. Karena arsitektur berbasis komponen dan dukungan caching yang canggih, Yii sangat cocok untuk mengembangkan aplikasi skala besar seperti portal, forum, sistem manajemen konten (CMS), proyek e-commerce, layanan web REST, dan sebagainya.

Bagaimana jika Yii Dibandingkan dengan Frameworks lain?

Jika Anda sudah akrab dengan framework lain, Anda mungkin menghargai pengetahuan bagaimana Yii dibandingkan:

	Seperti kebanyakan PHP framework, Yii mengimplementasikan pola arsitektur MVC (Model-View-Controller) dan mempromosikan kode organisasi berdasarkan pola itu.

	Yii mengambil filosofi bahwa kode harus ditulis dengan cara sederhana namun elegan. Yii tidak akan pernah mencoba untuk mendesain berlebihan terutama untuk mengikuti beberapa pola desain secara ketat.

	Yii adalah framework penuh yang menyediakan banyak fitur teruji dan siap pakai seperti: query builder dan ActiveRecord baik untuk relasional maupun NoSQL database; dukungan pengembangan API REST; dukungan caching banyak lapis dan masih banyak lagi.

	Yii sangat extensible. Anda dapat menyesuaikan atau mengganti hampir setiap bagian dari kode inti Yii. Anda juga bisa mengambil keuntungan dari arsitektur ekstensi Yii yang solid untuk menggunakan atau mengembangkan ekstensi untuk disebarkan kembali.

	Kinerja tinggi selalu menjadi tujuan utama dari Yii.

Yii tidak dikerjakan oleh satu orang, Yii didukung oleh tim pengembang inti yang kuat [http://www.yiiframework.com/about/], serta komunitas besar
profesional yang terus memberikan kontribusi bagi pengembangan Yii. Tim pengembang Yii
terus mengamati perkembangan tren terbaru Web, pada penerapan terbaik serta fitur yang
ditemukan dalam framework dan proyek lain. Penerapan terbaik yang paling relevan dan fitur yang ditemukan di tempat lain secara teratur
dimasukkan ke dalam kerangka inti dan menampakkannya melalui antarmuka yang sederhana dan elegan.

Versi Yii

Yii saat ini memiliki dua versi utama yang tersedia: 1.1 dan 2.0. Versi 1.1 adalah generasi lama dan sekarang dalam mode pemeliharaan.
Versi 2.0 adalah penulisan ulang lengkap dari Yii, mengadopsi teknologi dan protokol terbaru, termasuk composer, PSR, namespace, trait, dan sebagainya.
Versi 2.0 merupakan generasi framework yang sekarang dan terus menerima upaya pengembangan selama beberapa tahun ke depan.
Panduan ini terutama tentang versi 2.0.

Persyaratan dan Prasyarat

Yii 2.0 memerlukan PHP 5.4.0 atau versi lebih tinggi. Anda dapat menemukan persyaratan yang lebih rinci untuk setiap fitur
dengan menjalankan pengecek persyaratan yang diikutsertakan dalam setiap rilis Yii.

Menggunakan Yii memerlukan pengetahuan dasar tentang pemrograman berorientasi objek (OOP), mengingat Yii adalah framework berbasis OOP murni.
Yii 2.0 juga memanfaatkan fitur terbaru dari PHP, seperti namespace [http://www.php.net/manual/en/language.namespaces.php] dan traits [http://www.php.net/manual/en/language.oop5.traits.php].
Memahami konsep-konsep ini akan membantu Anda lebih mudah memahami Yii 2.0.

 Bekerja dengan Database

Bekerja dengan Database

Bagian ini akan memaparkan bagaimana membuat halaman yang menampilkan daftar data negara yang diambil dari
tabel country pada database. Untuk menyelesaikan tugas ini, anda akan melakukan konfigurasi koneksi ke database,
membuat class Active Record, membuat action,
dan membuat view.

Sepanjang tutorial ini, anda akan mempelajari bagaimana cara untuk:

	konfigurasi koneksi ke database,

	membuat class ActiveRecord,

	mengambil (query) data menggunakan class ActiveRecord,

	menampilkan data ke view dengan halaman per halaman.

Sebagai catatan untuk menyelesaikan bagian ini, anda harus memiliki pengetahuan dan pengalaman dasar dalam menggunakan database.
Secara khusus, anda harus mengetahui cara membuat database, dan cara menjalankan perintah SQL menggunakan aplikasi klien database.

Menyiapkan Database

Untuk memulai, buatlah database dengan nama yii2basic, yang akan digunakan untuk mengambil data dalam aplikasi anda.
Anda bisa membuat database SQLite, MySQL, PostgreSQL, MSSQL, atau Oracle, dimana Yii mendukung banyak aplikasi database. Untuk memudahkan, database yang digunakan adalah MySQL.

Selanjutnya, buat tabel dengan nama country pada database, dan insert beberapa data sampel. Anda bisa menjalankan perintah SQL dibawah untuk memudahkan:

CREATE TABLE `country` (
 `code` CHAR(2) NOT NULL PRIMARY KEY,
 `name` CHAR(52) NOT NULL,
 `population` INT(11) NOT NULL DEFAULT '0'
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

INSERT INTO `country` VALUES ('AU','Australia',24016400);
INSERT INTO `country` VALUES ('BR','Brazil',205722000);
INSERT INTO `country` VALUES ('CA','Canada',35985751);
INSERT INTO `country` VALUES ('CN','China',1375210000);
INSERT INTO `country` VALUES ('DE','Germany',81459000);
INSERT INTO `country` VALUES ('FR','France',64513242);
INSERT INTO `country` VALUES ('GB','United Kingdom',65097000);
INSERT INTO `country` VALUES ('IN','India',1285400000);
INSERT INTO `country` VALUES ('RU','Russia',146519759);
INSERT INTO `country` VALUES ('US','United States',322976000);

Hingga saat ini, anda memiliki database bernama yii2basic, dan didalamnya terdapat tabel country dengan tiga kolom, berisi 10 baris data.

Konfigurasi Koneksi Database

Sebelum melanjutkan, pastikan anda memasang ekstensi PHP PDO [http://www.php.net/manual/en/book.pdo.php] dan
driver PDO untuk database yang anda gunakan (misal, pdo_mysql untuk MySQL). Ini adalah kebutuhan mendasar
jika aplikasi anda menggunakan relational database.

Jika sudah terpasang, buka file config/db.php dan sesuaikan parameter yang sesuai untuk database anda. Secara default,
isi file konfigurasi tersebut adalah:

<?php

return [
 'class' => 'yii\db\Connection',
 'dsn' => 'mysql:host=localhost;dbname=yii2basic',
 'username' => 'root',
 'password' => '',
 'charset' => 'utf8',
];

File config/db.php adalah tipikal konfigurasi yang menggunakan file. File konfigurasi seperti ini menentukan parameter-parameter
yang dibutuhkan untuk membuat dan menginisialisasi objek [[yii\db\Connection]], dimana anda dapat menjalankan perintah SQL
dengan database yang dituju.

Konfigurasi koneksi database di atas dapat diakses pada kode aplikasi melalui expression Yii::$app->db.

Info: File config/db.php akan di include oleh konfigurasi aplikasi utama config/web.php,
yang berfungsi sebagai konfigurasi untuk inisialisasi objek aplikasi.
Untuk penjelasan lebih lengkap, silahkan lihat bagian Konfigurasi.

Jika anda membutuhkan dukungan database yang tidak didukung oleh Yii, silahkan cek extensions di bawah ini:

	Informix [https://github.com/edgardmessias/yii2-informix]

	IBM DB2 [https://github.com/edgardmessias/yii2-ibm-db2]

	Firebird [https://github.com/edgardmessias/yii2-firebird]

Membuat Active Record

Untuk mengambil data di tabel country, buat class turunan Active Record
dengan nama Country, dan simpan pada file models/Country.php.

<?php

namespace app\models;

use yii\db\ActiveRecord;

class Country extends ActiveRecord
{
}

Class Country di extends dari [[yii\db\ActiveRecord]]. Anda tidak perlu untuk menulis kode di dalamnya! Hanya dengan kode di atas,
Yii akan mengetahui nama tabel yang dimaksud dari nama class tersebut.

Info: Jika nama class tidak sesuai dengan nama tabel, anda dapat meng-override
method [[yii\db\ActiveRecord::tableName()]] untuk menentukan nama tabel secara eksplisit.

Menggunakan class Country, anda bisa memanipulasi data pada tabel country dengan mudah, sebagaimana yang ditunjukkan pada kode di bawah ini:

use app\models\Country;

// mengambil semua negara dari tabel country, dan mengurutkan berdasarkan "name" (nama)
$countries = Country::find()->orderBy('name')->all();

// mengambil negara yang memiliki primary key "US"
$country = Country::findOne('US');

// menampilkan "United States"
echo $country->name;

// Mengganti nama negara menjadi "U.S.A." dan menyimpan ke database
$country->name = 'U.S.A.';
$country->save();

Info: Active Record adalah cara yang efektif untuk mengakses dan memanipulasi data dari database secara object-oriented.
Anda bisa mengetahui lebih banyak lagi pada bagian Active Record. Sebagai alternatif, anda mungkin berinteraksi dengan database menggunakan metode data akses yang lebih mendasar yang disebut Data Access Objects.

Membuat Action

Untuk menampilkan data negara ke pengguna, anda harus membuat action. Dibanding menempatkan action baru ini pada controller site
seperti yang sudah anda lakukan pada bagian sebelumnya, sekarang ini ada baiknya membuat spesifik controller
untuk semua action yang berhubungan dengan data negara. Namakan controller baru ini dengan CountryController, dan buat
action index pada controller tersebut, seperti yang ditunjukkan di bawah ini.

<?php

namespace app\controllers;

use yii\web\Controller;
use yii\data\Pagination;
use app\models\Country;

class CountryController extends Controller
{
 public function actionIndex()
 {
 $query = Country::find();

 $pagination = new Pagination([
 'defaultPageSize' => 5,
 'totalCount' => $query->count(),
]);

 $countries = $query->orderBy('name')
 ->offset($pagination->offset)
 ->limit($pagination->limit)
 ->all();

 return $this->render('index', [
 'countries' => $countries,
 'pagination' => $pagination,
]);
 }
}

Simpan kode di atas pada file controllers/CountryController.php.

Action index memanggil Country::find(). Method Active Record ini membuat query ke database dan mengambil semua data negara dari tabel country.
Untuk membatasi jumlah negara yang didapatkan pada setiap pengambilan data, query tersebut dipecah menjadi halaman per halaman dengan bantuan dari
objek [[yii\data\Pagination]]. Objek Pagination diperuntukkan untuk dua tujuan:

	Menentukan klausa offset dan limit pada perintah SQL yang digunakan untuk query agar mengambil
hanya satu halaman data dalam sekali perintah (pada umumnya akan mengambil 5 baris dalam satu halaman).

	Digunakan pada view untuk menampilkan tombol halaman yang terdiri dari tombol-tombol nomor halaman, yang selanjutnya akan dijelaskan
pada sub bagian berikutnya.

Di akhir kode, action index me-render view dengan nama index, dan mengirimkan data negara beserta dengan informasi
halaman dari data tersebut.

Membuat View

Di dalam folder views, pertama-tama buatlah sub-folder dengan nama country. Folder ini akan digunakan untuk menyimpan semua
view yang akan di render oleh controller country. Di dalam folder views/country, buatlah file dengan nama index.php
berisi kode di bawah ini:

<?php
use yii\helpers\Html;
use yii\widgets\LinkPager;
?>
<h1>Countries</h1>

<?php foreach ($countries as $country): ?>

 <?= Html::encode("{$country->name} ({$country->code})") ?>:
 <?= $country->population ?>

<?php endforeach; ?>

<?= LinkPager::widget(['pagination' => $pagination]) ?>

Terkait dengan tampilan data negara, view ini terdiri dari dua bagian. Bagian pertama, dilakukan perulangan (looping) pada data negara yang tersedia dan di-render sebagai unordered list HTML.
Bagian kedua, widget [[yii\widgets\LinkPager]] di-render menggunakan informasi halaman (pagination) yang dikirimkan dari action.
Widget LinkPager menampilkan tombol-tombol halaman. Mengklik pada salah satu tombol tersebut akan melakukan pengambilan data negara
terkait dengan halaman yang diklik.

Mari Kita Coba

Untuk melihat bagaimana kode-kode di atas bekerja, gunakan browser anda untuk mengakses URL ini:

http://hostname/index.php?r=country%2Findex

[image: Daftar Country]

Awalnya, anda akan melihat sebuah halaman yang menampilkan 5 negara. Dibawah daftar negara tersebut, anda akan melihat tombol halaman yang berjumlah empat tombol.
Jika anda mengklik tombol “2”, anda akan melihat halaman tersebut menampilkan 5 negara lain pada database: halaman kedua pada record.
Silahkan melakukan observasi secara perlahan-lahan dan anda akan mengetahui bahwa URL pada browser juga akan berganti menjadi

http://hostname/index.php?r=country%2Findex&page=2

Di belakang layar, [[yii\data\Pagination|Pagination]] menyediakan semua kebutuhkan untuk memecah data menjadi halaman per halaman:

	Pertama-tama, [[yii\data\Pagination|Pagination]] menampilkan halaman pertama, dimana menjalankan perintah SELECT pada tabel country
dengan klausa LIMIT 5 OFFSET 0. Hasilnya, 5 negara pertama akan diambil dan ditampilkan.

	Widget [[yii\widgets\LinkPager|LinkPager]] me-render tombol halaman menggunakan URL
yang dibentuk oleh method [[yii\data\Pagination::createUrl()|Pagination]]. URL tersebut mengandung query string page, yang
merupakan representasi dari nomor halaman.

	Jika anda mengklik tombol halaman “2”, sebuah request yang mengarah ke route country/index akan dijalankan hingga selesai.
[[yii\data\Pagination|Pagination]] membaca query string page dari URL dan kemudian menentukan halaman sekarang adalah halaman 2.
Query data negara yang baru mengandung klausa LIMIT 5 OFFSET 5 dan mengambil 5 data negara selanjutnya untuk
kemudian ditampilkan.

Rangkuman

Pada bagian ini, anda mempelajari bagaimana bekerja dengan database. Anda juga mempelajari bagaimana cara mengambil dan membagi
data dengan halaman per halaman dengan bantuan [[yii\data\Pagination]] dan [[yii\widgets\LinkPager]].

Di bagian selanjutnya, anda akan mempelajari bagaimana menggunakan generator kode yang disebut Gii [https://github.com/yiisoft/yii2-gii/blob/master/docs/guide/README.md],
untuk membantu anda mengimplementasikan fitur-fitur umum pada aplikasi secara instan, seperti operasi Create-Read-Update-Delete (CRUD)
untuk bekerja dengan data yang terdapat pada tabel di sebuah database. Sebenarnya, kode-kode yang barusan anda tulis, semuanya bisa
di generate secara otomatis oleh Yii menggunakan tool Gii.

 Bekerja dengan Form

Bekerja dengan Form

Bagian ini memaparkan bagaimana membuat halaman dengan form untuk mengambil data dari pengguna.
Halaman akan menampilkan form dengan input field Nama dan Email.
Setelah mendapatkan dua data dari pengguna, halaman akan menampilkan kembali data yang diinput pada form sebagai konfirmasi.

Untuk mencapai tujuan, disamping membuat sebuah action, dan
dua view, anda juga harus membuat model.

Sepanjang tutorial ini, anda akan mempelajari bagaimana cara untuk:

	Membuat sebuah model sebagai representasi data yang diinput oleh pengguna melalui form,

	Membuat rules untuk memvalidasi data yang telah diinput.

	Membuat form HTML di dalam view.

Membuat Model

Data yang akan diambil dari pengguna akan direpresentasikan oleh class model EntryForm sebagaimana ditunjukkan di bawah dan
di simpan pada file models/EntryForm.php. Silahkan membaca bagian Class Autoloading
untuk penjelasan lengkap mengenai penamaan file class.

<?php

namespace app\models;

use Yii;
use yii\base\Model;

class EntryForm extends Model
{
 public $name;
 public $email;

 public function rules()
 {
 return [
 [['name', 'email'], 'required'],
 ['email', 'email'],
];
 }
}

Class di extends dari [[yii\base\Model]], class standar yang disediakan oleh Yii, yang secara umum digunakan
untuk representasi data dari form.

Info: [[yii\base\Model]] digunakan sebagai parent untuk class model yang tidak berhubungan dengan database.
[[yii\db\ActiveRecord]] normalnya digunakan sebagai parent untuk class model yang berhubungan dengan tabel di database.

Class EntryForm terdiri dari dua public property, name dan email, dimana akan digunakan untuk menyimpan
data yang diinput oleh pengguna. Class ini juga terdapat method yang dinamakan rules(), yang akan mengembalikan (return) sejumlah
pengaturan (rules) untuk memvalidasi data. Pengaturan validasi (Validation Rules) yang di deklarasikan harus mendeskripsikan bahwa

	kedua field, yaitu name and email wajib di input

	data email harus merupakan alamat email yang valid

Jika anda memiliki objek EntryForm yang sudah mengandung data yang di input oleh pengguna, anda boleh memanggil
method [[yii\base\Model::validate()|validate()]] untuk melaksanakan validasi data. Kegagalan validasi data
akan menentukan (set) property [[yii\base\Model::hasErrors|hasErrors]] menjadi true, dan anda dapat mengetahui pesan kegagalan validasi
melalui [[yii\base\Model::getErrors|errors]].

<?php
$model = new EntryForm();
$model->name = 'Qiang';
$model->email = 'bad';
if ($model->validate()) {
 // Valid!
} else {
 // Tidak Valid!
 // Panggil $model->getErrors()
}

Membuat Action

Selanjutnya, anda harus membuat entry action pada controller site yang akan memanfaatkan model yang baru saja dibuat. Proses
membuat dan menggunakan action dijelaskan pada bagian Mengatakan Hello.

<?php

namespace app\controllers;

use Yii;
use yii\web\Controller;
use app\models\EntryForm;

class SiteController extends Controller
{
 // ...kode lain...

 public function actionEntry()
 {
 $model = new EntryForm();

 if ($model->load(Yii::$app->request->post()) && $model->validate()) {
 // data yang valid diperoleh pada $model

 // lakukan sesuatu terhadap $model di sini ...

 return $this->render('entry-confirm', ['model' => $model]);
 } else {
 // menampilkan form pada halaman, ada atau tidaknya kegagalan validasi tidak masalah
 return $this->render('entry', ['model' => $model]);
 }
 }
}

Pertama-tama, action membuat objek EntryForm. Kemudian objek tersebut membangun model
menggunakan data dari $_POST, yang disediakan oleh Yii dengan method [[yii\web\Request::post()]].
Jika model berhasil dibuat (misal, jika pengguna telah mengirim form HTML), action akan memanggil method
[[yii\base\Model::validate()|validate()]] untuk memastikan data yang di input tersebut valid.

Info : Expression Yii::$app adalah representasi dari objek aplikasi,
dimana objek tersebut adalah singleton yang bebas diakses secara global. Objek tersebut juga merupakan service locator yang
menyediakan components seperti request, response, db, dll. untuk mendukung pekerjaan yang spesifik.
Pada kode di atas, component request dari objek aplikasi digunakan untuk mengakses data $_POST.

Jika tidak ada error, action akan me-render view bernama entry-confirm untuk menginformasikan ke pengguna bahwa pengiriman
data tersebut berhasil. Jika tidak ada data yang dikirim atau data tersebut tidak valid, view entry yang akan di render,
dimana form HTML akan ditampilkan, beserta informasi kegagalan pengiriman form tersebut.

Note: Pada contoh sederhana ini kita hanya me-render halaman konfirmasi jika data yang dikirim tersebut valid. Pada prakteknya,
anda harus pertimbangkan untuk menggunakan [[yii\web\Controller::refresh()|refresh()]] atau [[yii\web\Controller::redirect()|redirect()]]
untuk mencegah permasalahan pengiriman form [http://en.wikipedia.org/wiki/Post/Redirect/Get].

Membuat View

Terakhir, buatlah dua file view dengan nama entry-confirm dan entry. View ini akan di-render oleh action entry,
yang sebelumnya dibahas.

View entry-confirm hanya menampilkan data nama dan email. File view tersebut harus di simpan di views/site/entry-confirm.php.

<?php
use yii\helpers\Html;
?>
<p>You have entered the following information:</p>

 <label>Name</label>: <?= Html::encode($model->name) ?>
 <label>Email</label>: <?= Html::encode($model->email) ?>

View entry akan menampilkan form HTML. File view tersebut harus di simpan di views/site/entry.php.

<?php
use yii\helpers\Html;
use yii\widgets\ActiveForm;
?>
<?php $form = ActiveForm::begin(); ?>

 <?= $form->field($model, 'name') ?>

 <?= $form->field($model, 'email') ?>

 <div class="form-group">
 <?= Html::submitButton('Submit', ['class' => 'btn btn-primary']) ?>
 </div>

<?php ActiveForm::end(); ?>

View ini menggunakan widget yaitu [[yii\widgets\ActiveForm|ActiveForm]] untuk
membangun form HTML. Method begin() dan end() dari widget masing-masing berfungsi untuk me-render tag pembuka dan penutup
dari form tag. Diantara dua method tersebut, akan dibuat field input oleh
method [[yii\widgets\ActiveForm::field()|field()]]. Input field yang pertama diperuntukkan untuk data “name”,
dan yang kedua diperuntukkan untuk data “email”. Setelah field input, method [[yii\helpers\Html::submitButton()]]
akan dipanggil untuk me-render tombol pengiriman data.

Mari kita uji

Untuk melihat bagaimana prosesnya, gunakan browser anda untuk mengakses URL ini :

http://hostname/index.php?r=site%2Fentry

Anda akan melihat halaman yang menampilkan form dengan dua field input. Dibagian atas dari semua input field, ada label yang menginformasikan data yang mana yang akan diinput. Jika anda menekan tombol pengiriman data tanpa
menginput apapun, atau anda tidak menginput email address yang tidak valid, anda akan melihat pesan kegagalan yang di tampilkan di bagian bawah field input yang bermasalah.

[image: Form yang validasinya gagal]

Setelah menginput nama dan alamat email yang benar dan menekan tombol kirim, anda akan melihat halaman baru
yang menampilkan data yang barusan anda input.

[image: Konfirmasi penginputan data]

Penjelasan

Anda mungkin bertanya-tanya bagaimana form HTML bekerja dibelakang layar, sepertinya tampak ajaib karna form tersebut mampu
menampilkan label di setiap field input dan menampilkan pesan kegagalan jika anda tidak menginput data dengan benar
tanpa me-reload halaman.

Betul, validasi data sebenarnya dilakukan di sisi klien menggunakan Javascript, dan selanjutnya dilakukan lagi di sisi server menggunakan PHP.
[[yii\widgets\ActiveForm]] cukup cerdas untuk menerjemahkan pengaturan validasi yang anda deklarasikan pada class EntryForm,
kemudian merubahnya menjadi kode Javascript, dan menggunakan Javascript untuk melakukan validasi data. Jika saja anda menonaktifkan
Javascript pada browser anda, validasi tetap akan dilakukan di sisi server, sepertinya yang ditunjukkan pada
method actionEntry. Hal ini memastikan bahwa data akan divalidasi dalam segala kondisi.

Warning: Validasi melalui sisi klien akan membuat pengalaman pengguna lebih baik. Validasi di sisi server
harus selalu dilakukan, walaupun validasi melalui sisi klien digunakan atau tidak.

Label untuk field input dibuat oleh method field(), menggunakan nama property dari model.
Contoh, label Name akan dibuat untuk property name.

Anda boleh memodifikasi label di dalam view menggunakan
kode seperti di bawah ini:

<?= $form->field($model, 'name')->label('Your Name') ?>
<?= $form->field($model, 'email')->label('Your Email') ?>

Info: Yii menyediakan banyak widget untuk membantu anda dalam membangun view yang kompleks dan dinamis.
Sebentar lagi anda akan mengetahui, bahwa menulis widget juga sangat mudah. Anda mungkin akan mengganti sebagian besar
dari kode view anda menjadi widget-widget yang mampu digunakan ulang untuk menyederhanakan penulisan view ke depannya.

Rangkuman

Pada bagian kali ini, anda telah mengetahui semua bagian dari pola arsitektur MVC. Anda sudah mempelajari bagaimana
untuk membuat class model sebagai representasi data pengguna dan memvalidasinya.

Anda juga mempelajari bagaimana mengambil data dari pengguna dan bagaimana menampilkan kembali data tersebut ke browser. Pekerjaan seperti ini
biasanya memakan waktu lama pada saat mengembangkan aplikasi, tetapi Yii menyediakan widget yang bermanfaat
yang akan membuat pekerjaan ini menjadi lebih mudah.

Di bagian selanjutnya, anda akan mempelajari bagaimana untuk bekerja dengan database, dimana hal tersebut hampir sangat dibutuhkan pada setiap aplikasi.

 Membuat Kode menggunakan Gii

Membuat Kode menggunakan Gii

Bagian ini akan menjelaskan bagaimana cara menggunakan Gii [https://github.com/yiisoft/yii2-gii/blob/master/docs/guide/README.md] untuk membuat kode secara otomatis
yang mengimplementasikan fitur-fitur yang bersifat umum dalam sebuah web site. Menggunakan Gii untuk membuat kode sesederhana menginput informasi yang sesuai per satu instruksi seperti yang diterangkan pada halaman web Gii.

Sepanjang bagian ini, anda akan mempelajari bagaimana cara untuk:

	Mengaktifkan Gii pada aplikasi anda,

	Menggunakan Gii untuk membuat class ActiveRecord

	Menggunakan Gii untuk membuat kode yang mengoperasikan CRUD untuk database,

	Memodifikasi kode yang sudah dibuat oleh Gii.

Memulai Gii

Gii [https://github.com/yiisoft/yii2-gii/blob/master/docs/guide/README.md] telah disediakan oleh Yii sebagai module. Anda dapat mengaktifkan Gii
dengan mengatur konfigurasi Gii pada properti [[yii\base\Application::modules|modules]] dari objek aplikasi. Tergantung bagaimana anda mengatur aplikasi anda, kode di bawah ini sudah disediakan pada file konfigurasi config/web.php:

$config = [...];

if (YII_ENV_DEV) {
 $config['bootstrap'][] = 'gii';
 $config['modules']['gii'] = [
 'class' => 'yii\gii\Module',
];
}

Konfigurasi di atas menyatakan bahwa, ketika mode development environment aktif,
maka aplikasi harus mengikutkan module yang bernama gii, dimana objek tersebut merupakan class [[yii\gii\Module]].

Jika anda melihat entry script web/index.php pada aplikasi anda, anda akan
menemukan baris dibawah ini, yang menyatakan secara explisit bahwa YII_ENV_DEV sama dengan true.

defined('YII_ENV') or define('YII_ENV', 'dev');

Karna baris tersebut, aplikasi anda harusnya sudah berada pada mode development, dan secara otomatis mengaktifkan Gii karena konfigurasi sebelumnya. Anda dapat mengakses Gii melalui URL di bawah ini:

http://hostname/index.php?r=gii

Note: Jika anda mengakses Gii melalui komputer diluar komputer localhost anda, secara default akses tidak akan diperbolehkan
karna alasan keamanan. Anda dapat mengatur Gii untuk menambah alamat IP yang di perbolehkan seperti ini,

'gii' => [
 'class' => 'yii\gii\Module',
 'allowedIPs' => ['127.0.0.1', '::1', '192.168.0.*', '192.168.178.20'] // adjust this to your needs
],

[image: Gii]

Membuat class Active Record

Untuk menggunakan Gii dalam membuat class Active Record, pilih “Model Generator” (dengan cara mengklik link pada halaman index Gii). Kemudian isi form dengan data berikut:

	Table Name: country

	Model Class: Country

[image: Pembuat Model]

Selanjutnya, klik pada tombol “Preview”. Anda akan melihat models/Country.php pada daftar class yang akan dibuat. Anda bisa mengklik nama dari class tersebut untuk melihat isi kodenya.

Pada saat menggunakan Gii, jika anda sudah membuat file dengan nama yang sama sebelumnya dan akan menimpanya, klik
tombol diff disebelah nama file untuk melihat perbedaan antara kode yang akan dibuat
dengan kode yang ada saat ini.

[image: Preview Pembuat Model]

Jika akan menimpa file yang sudah ada, centang kotak di sebelah tulisan “overwrite” dan kemudian klik tombol “Generate”. Jika anda membuat file baru, anda cukup mengklik tombol “Generate”.

Selanjutnya, anda akan melihat
halaman konfirmasi yang memberitahui bahwa kode berhasil dibuat. Jika sebelumnya anda sudah mempunyai file yang sama, anda juga akan melihat pesan yang memberitahukan bahwa file tersebut sudah ditimpa dengan file yang baru.

Membuat CRUD

CRUD adalah Create, Read, Update, dan Delete, yang merepresentasikan empat tugas umum yang melibatkan website secara umum. Untuk membuat CRUD menggunakan Gii, pilih tombol “CRUD Generator” (dengan cara mengklik pada halaman index Gii). Untuk contoh “negara”, isi form yang ditampilkan dengan data berikut:

	Model Class: app\models\Country

	Search Model Class: app\models\CountrySearch

	Controller Class: app\controllers\CountryController

[image: Pembuat CRUD]

Selanjutnya, klik tombol “Preview”. Anda akan melihat daftar file-file yang akan dibuat, seperti gambar dibawah ini.

[image: Preview Pembuat CRUD]

Jika anda sebelumnya sudah membuat file controllers/CountryController.php dan
views/country/index.php (pada bagian bekerja dengan database), centang kotak “overwrite” untuk menimpa file tersebut. (File pada bagian bekerja dengan database tidak memiliki dukungan CRUD secara penuh.)

Mari kita coba

Untuk melihat bagaimana proses kerjanya, gunakan browser anda untuk mengakses URL dibawah ini:

http://hostname/index.php?r=country%2Findex

Anda akan melihat tabel data yang menampilkan negara dari tabel pada database. Anda dapat mengurutkan tabel,
atau memfilter dengan menginput pencarian filter pada baris judul kolom.

Disetiap negara yang tampil pada tabel, anda dapat memilih apakah akan melihat (view) detail, memperbaharui (update), atau menghapus (delete) data tersebut,
anda juga dapat mengklik tombol “Create Country” yang berada di atas tabel tersebut untuk menampilkan form untuk membuat data negara yang baru.

[image: Tabel data negara]

[image: Memperbaharui data negara]

Dibawah ini adalah daftar file yang dihasilkan oleh Gii, mungkin saja anda ingin melakukan observasi bagaimana fitur-fitur ini di implementasikan,
atau melakukan modifikasi terhadap file-file yang dihasilkan:

	Controller: controllers/CountryController.php

	Model: models/Country.php dan models/CountrySearch.php

	View: views/country/*.php

Info: Gii di desain agar mudah di modifikasi, dan dikembangkan. Menggunakan Gii
dapat membuat pengembangan aplikasi anda menjadi lebih cepat. Untuk informasi lebih lanjut, silahkan melihat
bagian Gii [https://github.com/yiisoft/yii2-gii/blob/master/docs/guide/README.md].

Penutup

Pada bagian ini, anda telah mengetahui bagaimana cara menggunakan Gii untuk membuat kode yang mengimplementasikan
fungsi CRUD secara lengkap dalam mengelola data yang tersimpan pada database.

 Katakan Hello

Katakan Hello

Bagian ini menjelaskan cara membuat halaman “Hello” baru dalam aplikasi Anda.
Untuk mencapai tujuan ini, Anda akan membuat action dan
sebuah view:

	Aplikasi ini akan mengirimkan permintaan halaman ke action.

	Dan action pada gilirannya akan membuat tampilan yang menunjukkan kata “Hello” kepada pengguna akhir.

Melalui tutorial ini, Anda akan belajar tiga hal:

	Cara membuat action untuk menanggapi permintaan,

	Cara membuat view untuk menyusun konten respon, dan

	bagaimana aplikasi mengirimkan permintaan ke action.

Membuat Action

Untuk tugas “Hello”, Anda akan membuat action say yang membaca
parameter message dari request dan menampilkan pesan bahwa kembali ke pengguna. Jika request
tidak memberikan parameter message, aksi akan menampilkan pesan “Hello”.

Info: Action adalah objek yang pengguna akhir dapat langsung merujuk ke
 eksekusi. Action dikelompokkan berdasarkan controllers. Hasil eksekusi
 action adalah respon yang pengguna akhir akan terima.

Action harus dinyatakan di controllers. Untuk mempermudah, Anda mungkin
mendeklarasikan action say diSiteController yang ada. kontroler ini didefinisikan
dalam file kelas controllers/SiteController.php. Berikut adalah awal dari action baru:

<?php

namespace app\controllers;

use yii\web\Controller;

class SiteController extends Controller
{
 // ...existing code...

 public function actionSay($message = 'Hello')
 {
 return $this->render('say', ['message' => $message]);
 }
}

Pada kode di atas, action say didefinisikan sebagai metode bernamaactionSay di kelas SiteController.
Yii menggunakan awalan action untuk membedakan metode action dari metode non-action dalam kelas controller.
Nama setelah awalan action peta untuk ID tindakan ini.

Untuk sampai pada penamaan action, Anda harus memahami bagaimana Yii memperlakukan ID action. ID action selalu
direferensikan dalam huruf kecil. Jika ID tindakan membutuhkan beberapa kata, mereka akan digabungkan dengan tanda hubung
(Mis, create-comment). nama metode aksi yang dipetakan ke ID tindakan diperoleh dengan menghapus tanda hubung apapun dari ID,
mengkapitalkan huruf pertama di setiap kata, dan awalan string yang dihasilkan dengan action. Sebagai contoh,
ID action create-comment sesuai dengan nama method action actionCreateComment.

Metode action dalam contoh kita mengambil parameter $message, yang nilai defaultnya adalah "Hello" (persis
dengan cara yang sama Anda menetapkan nilai default untuk fungsi atau metode apapun argumen di PHP). Ketika aplikasi
menerima permintaan dan menentukan bahwa action say bertanggung jawab untuk penanganan request, aplikasi akan
mengisi parameter ini dengan parameter bernama sama yang ditemukan dalam request. Dengan kata lain, jika permintaan mencakup
a parameter message dengan nilai"Goodbye", maka variabel $message dalam aksi akan ditugaskan nilai itu.

Dalam metode action, [[yii\web\Controller::render()|render()]] dipanggil untuk membuat
sebuah view dari file bernama say. Parameter message juga diteruskan ke view
sehingga dapat digunakan di sana. Hasil render dikembalikan dengan metode tindakan. Hasil yang akan diterima
oleh aplikasi dan ditampilkan kepada pengguna akhir di browser (sebagai bagian dari halaman HTML yang lengkap).

Membuat View

View adalah skrip yang Anda tulis untuk menghasilkan konten respon.
Untuk “Hello” tugas, Anda akan membuat view say yang mencetak parameter message yang diterima dari metode aksi:

<?php
use yii\helpers\Html;
?>
<?= Html::encode($message) ?>

View say harus disimpan dalam file views/site/say.php. Ketika metode [[yii\web\Controller::render()|render()]]
disebut dalam tindakan, itu akan mencari file PHP bernama views/ControllerID/ViewName.php.

Perhatikan bahwa dalam kode di atas, parameter message adalah di-[[yii\helpers\Html::encode()|HTML-encoded]]
sebelum dicetak. Hal ini diperlukan karena sebagai parameter yang berasal dari pengguna akhir, sangat rentan terhadap
serangan Cross-site scripting (XSS) [http://en.wikipedia.org/wiki/Cross-site_scripting] dengan melekatkan
kode JavaScript berbahaya dalam parameter.

Tentu, Anda dapat menempatkan lebih banyak konten di view say. konten dapat terdiri dari tag HTML, teks biasa, dan bahkan pernyataan PHP.
Nyatanya, view say hanyalah sebuah script PHP yang dijalankan oleh metode [[yii\web\Controller::render()|render()]].
Isi dicetak oleh skrip view akan dikembalikan ke aplikasi sebagai hasil respon ini. Aplikasi ini pada gilirannya akan mengeluarkan hasil ini kepada pengguna akhir.

Trying it Out

Setelah membuat action dan view, Anda dapat mengakses halaman baru dengan mengakses URL berikut:

http://hostname/index.php?r=site%2Fsay&message=Hello+World

[image: Hello World]

URL ini akan menghasilkan halaman yang menampilkan “Hello World”. Halaman yang berbagi header dan footer yang sama dengan halaman aplikasi lainnya.

Jika Anda menghilangkan parameter message dalam URL, Anda akan melihat tampilan halaman “Hello”. Hal ini karena message dilewatkan sebagai parameter untuk metode actionSay(), dan ketika itu dihilangkan,
nilai default "Hello" akan digunakan sebagai gantinya.

Info: Halaman baru berbagi header dan footer yang sama dengan halaman lain karena metode [[yii\web\Controller::render()|render()]]
 otomatis akan menanamkan hasil view say kedalam apa yang disebut layout yang dalam hal ini
 Kasus terletak di views/layouts/main.php.

Parameter r di URL di atas memerlukan penjelasan lebih lanjut. Ini adalah singkatan dari route, sebuah ID unik aplikasi
yang mengacu pada action. format rute ini adalah ControllerID/ActionID. Ketika aplikasi menerima
permintaan, itu akan memeriksa parameter ini, menggunakan bagian ControllerID untuk menentukan kontroler
kelas harus dipakai untuk menangani permintaan. Kemudian, controller akan menggunakan bagian ActionID
untuk menentukan action yang harus dipakai untuk melakukan pekerjaan yang sebenarnya. Dalam contoh kasus ini, rute site/say
akan diselesaikan dengan kontroler kelas SiteController dan action say. Sebagai hasilnya,
metode SiteController::actionSay() akan dipanggil untuk menangani permintaan.

Info: Seperti action, kontroler juga memiliki ID yang unik mengidentifikasi mereka dalam sebuah aplikasi.
 ID kontroler menggunakan aturan penamaan yang sama seperti ID tindakan. nama kelas controller yang berasal dari
 kontroler ID dengan menghapus tanda hubung dari ID, memanfaatkan huruf pertama di setiap kata,
 dan suffixing string yang dihasilkan dengan kata Controller. Misalnya, controller ID post-comment berkorespondensi
 dengan nama kelas controller PostCommentController.

Ringkasan

Pada bagian ini, Anda telah menyentuh controller dan melihat bagian dari pola arsitektur MVC.
Anda menciptakan sebuah action sebagai bagian dari controller untuk menangani permintaan khusus. Dan Anda juga menciptakan view
untuk menulis konten respon ini. Dalam contoh sederhana ini, tidak ada model yang terlibat. Satu-satunya data yang digunakan adalah parameter message.

Anda juga telah belajar tentang rute di Yii, yang bertindak sebagai jembatan antara permintaan pengguna dan tindakan controller.

Pada bagian berikutnya, Anda akan belajar cara membuat model, dan menambahkan halaman baru yang berisi bentuk HTML.

 Instalasi Yii

Instalasi Yii

Anda dapat menginstal Yii dalam dua cara, menggunakan Composer [https://getcomposer.org/] paket manager atau dengan mengunduh file arsip.
Yang pertama adalah cara yang lebih disukai, karena memungkinkan Anda untuk menginstal ekstensi baru atau memperbarui Yii dengan hanya menjalankan command line.

Hasil instalasi standar Yii baik framework maupun template proyek keduanya akan terunduh dan terpasang.
Sebuah template proyek adalah proyek Yii yang menerapkan beberapa fitur dasar, seperti login, formulir kontak, dll.
Kode diatur dalam cara yang direkomendasikan. Oleh karena itu, dapat berfungsi sebagai titik awal yang baik untuk proyek-proyek Anda.

Dalam hal ini dan beberapa bagian berikutnya, kita akan menjelaskan cara menginstal Yii dengan apa yang disebut Template Proyek Dasar dan
bagaimana menerapkan fitur baru di atas template ini. Yii juga menyediakan template lain yang disebut
yang Template Proyek Lanjutan [https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/README.md] yang lebih baik digunakan dalam lingkungan pengembangan tim
untuk mengembangkan aplikasi dengan beberapa tingkatan.

Info: Template Proyek Dasar ini cocok untuk mengembangkan 90 persen dari aplikasi Web. Ini berbeda
 dari Template Proyek Lanjutan terutama dalam bagaimana kode mereka diatur. Jika Anda baru untuk Yii, kami sangat
 merekomendasikan Anda tetap pada Template Proyek Dasar untuk kesederhanaan dan fungsi yang cukup.

Menginstal melalui Komposer

Jika Anda belum memiliki Composer terinstal, Anda dapat melakukannya dengan mengikuti petunjuk di
[getcomposer.org] (https://getcomposer.org/download/). Pada Linux dan Mac OS X, Anda akan menjalankan perintah berikut:

curl -sS https://getcomposer.org/installer | php
mv composer.phar /usr/local/bin/composer

Pada Windows, Anda akan mengunduh dan menjalankan Composer-Setup.exe [https://getcomposer.org/Composer-Setup.exe].

Silakan merujuk ke Dokumentasi Composer [https://getcomposer.org/doc/] jika Anda menemukan
masalah atau ingin mempelajari lebih lanjut tentang penggunaan Composer.

Jika Composer sudah terinstal sebelumnya, pastikan Anda menggunakan versi terbaru. Anda dapat memperbarui Komposer
dengan menjalankan composer self-update.

Dengan Komposer diinstal, Anda dapat menginstal Yii dengan menjalankan perintah berikut di bawah folder yang terakses web:

composer global require "fxp/composer-asset-plugin:^1.4.1"
composer create-project --prefer-dist yiisoft/yii2-app-basic basic

Perintah pertama menginstal komposer aset Plugin [https://github.com/francoispluchino/composer-asset-plugin/]
yang memungkinkan mengelola bower dan paket npm melalui Composer. Anda hanya perlu menjalankan perintah ini
sekali untuk semua. Perintah kedua menginstal Yii dalam sebuah direktori bernama basic. Anda dapat memilih nama direktori yang berbeda jika Anda ingin.

Catatan: Selama instalasi, Composer dapat meminta login Github Anda. Ini normal karena Komposer
Perlu mendapatkan cukup API rate-limit untuk mengambil informasi paket dari Github. Untuk lebih jelasnya,
Silahkan lihat Documentation Composer [https://getcomposer.org/doc/articles/troubleshooting.md#api-rate-limit-and-oauth-tokens].

Tip: Jika Anda ingin menginstal versi pengembangan terbaru dari Yii, Anda dapat menggunakan perintah berikut sebagai gantinya,
Yang menambahkan opsi stabilitas [https://getcomposer.org/doc/04-schema.md#minimum-stability]:

composer create-project --prefer-dist --stability=dev yiisoft/yii2-app-basic basic

Perhatikan bahwa versi pengembangan dari Yii tidak boleh digunakan untuk produksi karena kemungkinan dapat merusak kode Anda yang sedang berjalan.

Instalasi dari file Arsip

Instalasi Yii dari file arsip melibatkan tiga langkah:

	Download file arsip dari yiiframework.com [http://www.yiiframework.com/download/].

	Uraikan file yang didownload ke folder yang bisa diakses web.

	Memodifikasi config/web.php dengan memasukkan kunci rahasia untuk cookieValidationKey.
 (Ini dilakukan secara otomatis jika Anda menginstal Yii menggunakan Composer):

// !!! Isikan nilai key jika kosong - ini diperlukan oleh cookie validation
'cookieValidationKey' => 'enter your secret key here',

Pilihan Instalasi lainnya

Petunjuk instalasi di atas menunjukkan cara menginstal Yii, yang juga menciptakan aplikasi Web dasar yang bekerja di luar kotak.
Pendekatan ini adalah titik awal yang baik untuk sebagian besar proyek, baik kecil atau besar. Hal ini terutama cocok jika Anda hanya
mulai belajar Yii.

Tetapi ada pilihan instalasi lain yang tersedia:

	Jika Anda hanya ingin menginstal kerangka inti dan ingin membangun seluruh aplikasi dari awal,
 Anda dapat mengikuti petunjuk seperti yang dijelaskan dalam Membangun Aplikasi dari Scratch.

	Jika Anda ingin memulai dengan aplikasi yang lebih canggih, lebih cocok untuk tim lingkungan pengembangan,
 Anda dapat mempertimbangkan memasang [Template Lanjutan Proyek] (https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide/README.md).

Memverifikasi Instalasi

Setelah instalasi selesai, baik mengkonfigurasi web server Anda (lihat bagian berikutnya) atau menggunakan
[Built-in web server PHP] (https://secure.php.net/manual/en/features.commandline.webserver.php) dengan menjalankan berikut
konsol perintah sementara dalam proyek web direktori:

php yii serve

Catatan: Secara default HTTP-server akan mendengarkan port 8080. Namun jika port yang sudah digunakan atau Anda ingin
melayani beberapa aplikasi dengan cara ini, Anda mungkin ingin menentukan port apa yang harus digunakan. Cukup tambahkan argumen –port:

php yii serve --port = 8888

Anda dapat menggunakan browser untuk mengakses aplikasi Yii yang diinstal dengan URL berikut:

http://localhost:8080/

[image: Instalasi Sukses dari Yii]

Anda seharusnya melihat halaman “Congratulations!” di browser Anda. Jika tidak, periksa apakah instalasi PHP Anda memenuhi
persyaratan Yii. Anda dapat memeriksa apakah persyaratan minimumnya cocok dengan menggunakan salah satu pendekatan berikut:

	Copy /requirements.php ke /web/requirements.php kemudian gunakan browser untuk mengakses melalui http://localhost/requirements.php

	Jalankan perintah berikut:

bash cd basic php requirements.php

Anda harus mengkonfigurasi instalasi PHP Anda sehingga memenuhi persyaratan minimal Yii. Yang paling penting, Anda
harus memiliki PHP versi 5.4 atau lebih. Anda juga harus menginstal PDO PHP Ekstensi [http://www.php.net/manual/en/pdo.installation.php]
dan driver database yang sesuai (seperti pdo_mysql untuk database MySQL), jika aplikasi Anda membutuhkan database.

Konfigurasi Web Server

Info: Anda dapat melewati seksi ini untuk saat ini jika Anda hanya menguji sebuah Yii dengan niat
 penggelaran itu untuk server produksi.

Aplikasi yang diinstal sesuai dengan petunjuk di atas seharusnya bekerja dengan baik
pada Apache HTTP server [http://httpd.apache.org/] atau Nginx HTTP server [http://nginx.org/], pada
Windows, Mac OS X, atau Linux yang menjalankan PHP 5.4 atau lebih tinggi. Yii 2.0 juga kompatibel dengan facebook
HHVM [http://hhvm.com/]. Namun, ada beberapa kasus di mana HHVM berperilaku berbeda dari PHP asli,
sehingga Anda harus mengambil beberapa perlakuan ekstra ketika menggunakan HHVM.

Pada server produksi, Anda mungkin ingin mengkonfigurasi server Web Anda sehingga aplikasi dapat diakses
melalui URL http://www.example.com/index.php bukannya http://www.example.com/dasar/web/index.php. konfigurasi seperti itu
membutuhkan root dokumen server Web Anda menunjuk ke folder basic/web. Anda mungkin juga
ingin menyembunyikan index.php dari URL, seperti yang dijelaskan pada bagian Routing dan Penciptaan URL.
Dalam bagian ini, Anda akan belajar bagaimana untuk mengkonfigurasi Apache atau Nginx server Anda untuk mencapai tujuan tersebut.

Info: Dengan menetapkan basic/web sebagai akar dokumen, Anda juga mencegah pengguna akhir mengakses
kode private aplikasi Anda dan file data sensitif yang disimpan dalam direktori sejajar
dari basic/web. Mencegah akses ke folder lainnya adalah sebuah peningkatan keamanan.

Info: Jika aplikasi Anda akan berjalan di lingkungan shared hosting di mana Anda tidak memiliki izin
untuk memodifikasi konfigurasi server Web-nya, Anda mungkin masih menyesuaikan struktur aplikasi Anda untuk keamanan yang lebih baik. Silakan merujuk ke
yang lebih baik. Lihat bagian Shared Hosting Lingkungan untuk rincian lebih lanjut.

Konfigurasi Apache yang Direkomendasikan

Gunakan konfigurasi berikut di file httpd.conf Apache atau dalam konfigurasi virtual host. Perhatikan bahwa Anda
harus mengganti path/to/basic/web dengan path dasar/web yang sebenarnya.

Set document root to be "basic/web"
DocumentRoot "path/to/basic/web"

<Directory "path/to/basic/web">
 # use mod_rewrite for pretty URL support
 RewriteEngine on
 # If a directory or a file exists, use the request directly
 RewriteCond %{REQUEST_FILENAME} !-f
 RewriteCond %{REQUEST_FILENAME} !-d
 # Otherwise forward the request to index.php
 RewriteRule . index.php

 # ...other settings...
</Directory>

Konfigurasi Nginx yang Direkomendasikan

Untuk menggunakan Nginx [http://wiki.nginx.org/], Anda harus menginstal PHP sebagai FPM SAPI [http://php.net/install.fpm].
Anda dapat menggunakan konfigurasi Nginx berikut, menggantikan path/to/basic/web dengan path yang sebenarnya untuk
basic/web dan mysite.test dengan hostname yang sebenarnya untuk server.

server {
 charset utf-8;
 client_max_body_size 128M;

 listen 80; ## listen for ipv4
 #listen [::]:80 default_server ipv6only=on; ## listen for ipv6

 server_name mysite.test;
 root /path/to/basic/web;
 index index.php;

 access_log /path/to/basic/log/access.log;
 error_log /path/to/basic/log/error.log;

 location / {
 # Redirect everything that isn't a real file to index.php
 try_files $uri $uri/ /index.php$is_args$args;
 }

 # uncomment to avoid processing of calls to non-existing static files by Yii
 #location ~ \.(js|css|png|jpg|gif|swf|ico|pdf|mov|fla|zip|rar)$ {
 # try_files $uri =404;
 #}
 #error_page 404 /404.html;

 location ~ \.php$ {
 include fastcgi_params;
 fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name;
 fastcgi_pass 127.0.0.1:9000;
 #fastcgi_pass unix:/var/run/php5-fpm.sock;
 try_files $uri =404;
 }

 location ~ /\.(ht|svn|git) {
 deny all;
 }
}

Bila menggunakan konfigurasi ini, Anda juga harus menetapkan cgi.fix_pathinfo=0 di filephp.ini
untuk menghindari banyak panggilan stat() sistem yang tidak perlu.

Sekalian catat bahwa ketika menjalankan server HTTPS, Anda perlu menambahkan fastcgi_param HTTPS on; sehingga Yii
benar dapat mendeteksi jika sambungan aman.

 Menatap ke Depan

Menatap ke Depan

Jika anda membaca sepanjang bab “Mulai”, sekarang anda sudah membuat aplikasi dengan Yii. Pada proses ini, anda sudah mempelajari bagaimana mengimplementasikan fitur-fitur umum
yang dibutuhkan, seperti mengambil data dari pengguna melalui form HTML, mengambil data dari database, dan
menampilkan data dengan halaman per halaman. Anda juga sudah mempelajari bagaimana menggunakan Gii [https://github.com/yiisoft/yii2-gii/blob/master/docs/guide/README.md] untuk membuat
kode secara otomatis. Menggunakan Gii dalam membuat kode, mengubah tugas-tugas pengembangan web yang cukup banyak menjadi satu tugas sederhana, sesederhana mengisi form.

Bagian ini akan merangkum bacaan Yii yang tersedia untuk membantu anda menjadi lebih produktif dalam menggunakan framework ini.

	Dokumentasi

	Panduan Definitif [http://www.yiiframework.com/doc-2.0/guide-README.html]:
Sesuai dengan judulnya, panduan ini merincikan bagaimana Yii seharusnya bekerja dan menyediakan petunjuk umum
tentang menggunakan Yii. Panduan ini sangat-sangat penting, dan panduan ini yang harus anda baca
sebelum menulis kode Yii.

	Referensi Class [http://www.yiiframework.com/doc-2.0/index.html]:
Ini menjelaskan bagaimana menggunakan semua class yang disediakan oleh Yii. Pada umumnya anda akan menggunakan ini ketika anda sedang menulis
kode dan ingin memahami bagaimana penggunaan class, method, property. Sebaiknya anda membaca referensi class ini ketika anda memilik pemahaman dasar tentang seluruh bagian framework.

	Artikel Wiki [http://www.yiiframework.com/wiki/?tag=yii2]:
Artikel wiki ditulis oleh para pengguna Yii berdasarkan pengalaman pribadi masing-masing. Kebanyakan dari artikel ini ditulis
seperti layaknya panduan memasak, dan menunjukkan bagaimana menyelesaikan beberapa masalah dengan menggunakan Yii. Walaupun kualitas artikel-artikel ini
mungkin tidak selengkap Panduan Definitif, tetapi artikel ini terkadang lebih bermanfaat karna membahas topik yang cukup luas
dan mungkin mampu menyediakan solusi-solusi yang sederhana.

	Buku [http://www.yiiframework.com/doc/]

	Extensions [http://www.yiiframework.com/extensions/]:
Yang harus dibanggakan adalah Yii memiliki ribuan library extension yang dibuat oleh pengguna yang dapat dipasang di aplikasi anda dengan mudah, dan akan membuat pengembangan aplikasi anda lebih mudah dan cepat.

	Komunitas

	Forum: http://www.yiiframework.com/forum/

	IRC: Kanal #yii di freenode (irc://irc.freenode.net/yii)

	Gitter: https://gitter.im/yiisoft/yii2

	GitHub: https://github.com/yiisoft/yii2

	Facebook: https://www.facebook.com/groups/yiitalk/

	Twitter: https://twitter.com/yiiframework

	LinkedIn: https://www.linkedin.com/groups/yii-framework-1483367

	Stackoverflow: http://stackoverflow.com/questions/tagged/yii2

 Menjalankan Aplikasi

Menjalankan Aplikasi

Setelah menginstal Yii, Anda memiliki aplikasi Yii yang dapat diakses melalui
URL http://hostname/basic/web/index.php atau http://hostname/index.php, tergantung
pada konfigurasi Anda. Bagian ini akan memperkenalkan fungsi built-in aplikasi,
bagaimana kode ini disusun, dan bagaimana aplikasi menangani permintaan secara umum.

Info: Untuk mempermudah, selama tutorial “Mulai”, itu diasumsikan bahwa Anda telah menetapkan basic/web
 sebagai root dokumen server Web Anda, dan URL dikonfigurasi untuk mengakses
 aplikasi Anda untuk menjadi http://hostname/index.php atau sesuatu yang serupa.
 Untuk kebutuhan Anda, silakan menyesuaikan URL sesuai deskripsi kami.

Perhatikan bahwa tidak seperti framework itu sendiri, setelah template proyek diinstal, itu semua milikmu. Anda bebas untuk menambah atau menghapus
kode dan memodifikasi keseluruhannya sesuai yang Anda butuhkan.

Fungsi

Aplikasi dasar diinstal berisi empat halaman:

	Homepage, ditampilkan saat Anda mengakses URL http://hostname/index.php,

	Halaman “About”,

	Halaman “Contact”, yang menampilkan formulir kontak yang memungkinkan pengguna akhir untuk menghubungi Anda melalui email,

	Dan halaman “Login”, yang menampilkan form login yang dapat digunakan untuk otentikasi pengguna akhir. Cobalah masuk
 dengan “admin/admin”, dan Anda akan menemukan item “Login” di menu utama akan berubah menjadi “Logout”.

Halaman ini berbagi header umum dan footer. header berisi menu bar utama untuk memungkinkan navigasi
antara halaman yang berbeda.

Anda juga harus melihat toolbar di bagian bawah jendela browser.
Ini adalah debugger tool [https://github.com/yiisoft/yii2-debug/blob/master/docs/guide/README.md] yang disediakan oleh Yii
untuk merekam dan menampilkan banyak informasi debug, seperti log pesan, status respon, query database berjalan, dan sebagainya.

Selain itu untuk aplikasi web, ada script konsol yang disebut yii, yang terletak di direktori aplikasi dasar.
Script ini dapat digunakan untuk menjalankan aplikasi background dan tugas pemeliharaan untuk aplikasi, yang diuraikan
di bagian Console Application.

Struktur aplikasi

Direktori yang paling penting dan file dalam aplikasi Anda (dengan asumsi direktori root aplikasi adalah basic):

basic/ path aplikasi dasar
 composer.json digunakan oleh Composer, package information
 config/ berisi konfigurasi aplikasi dan yang lain
 console.php konfigurasi aplikasi konsole
 web.php konfigurasi aplikasi web
 commands/ contains console command classes
 controllers/ contains controller classes
 models/ contains model classes
 runtime/ contains files generated by Yii during runtime, such as logs and cache files
 vendor/ contains the installed Composer packages, including the Yii framework itself
 views/ contains view files
 web/ application Web root, contains Web accessible files
 assets/ contains published asset files (javascript and css) by Yii
 index.php the entry (or bootstrap) script for the application
 yii the Yii console command execution script

Secara umum, file dalam aplikasi dapat dibagi menjadi dua jenis: mereka yang di bawah basic/web dan mereka yang
di bawah direktori lain. Yang pertama dapat langsung diakses melalui HTTP (yaitu, di browser), sedangkan yang kedua tidak dapat dan tidak seharusnya boleh.

Yii mengimplementasikan pola arsitektur model-view-controller (MVC) [http://wikipedia.org/wiki/Model-view-controller],
yang tercermin dalam organisasi direktori di atas. Direktori models berisi semua Model kelas,
direktori views berisi semua [view script] structure-views.md), dan direktori controllers mengandung
semua kelas kontroler.

Diagram berikut memperlihatkan struktur statis dari sebuah aplikasi.

[image: Struktur statis aplikasi]

Setiap aplikasi memiliki naskah entri web/index.php yang merupakan satu-satunya PHP skrip dalam aplikasi yang dapat diakses web.
Naskah entri mengambil permintaan masuk dan menciptakan aplikasi untuk menanganinya.
Aplikasi menyelesaikan permintaan dengan bantuan komponennya,
dan mengirimkan permintaan ke elemen MVC. Widget digunakan dalam view
untuk membantu membangun elemen antarmuka pengguna yang kompleks dan dinamis.

Daur Hidup Request

Diagram berikut menunjukkan bagaimana aplikasi menangani permintaan.

[image: Request Lifecycle]

	Pengguna membuat permintaan ke skrip entri web/index.php.

	Naskah entri memuat konfigurasi aplikasi dan menciptakan
 aplikasi untuk menangani permintaan.

	Aplikasi menyelesaikan route yang diminta dengan bantuan
 komponen request aplikasi.

	Aplikasi ini menciptakan kontroler untuk menangani permintaan.

	Controller menciptakan action dan melakukan filter untuk action.

	Jika filter gagal, aksi dibatalkan.

	Jika semua filter lulus, aksi dieksekusi.

	Action memuat model data, mungkin dari database.

	Aksi meyiapkan view, menyediakannya dengan model data.

	Hasilnya diberikan dikembalikan ke komponen aplikasi respon.

	Komponen respon mengirimkan hasil yang diberikan ke browser pengguna.

 Komponen Aplikasi

Komponen Aplikasi

Objek Aplikasi (Application) adalah service locators. Objek ini menampung seperangkat
apa yang kita sebut sebagai komponen aplikasi yang menyediakan berbagai layanan untuk menangani proses request. Sebagai contoh,
component urlManager bertanggung jawab untuk menentukan route dari request menuju controller yang sesuai;
component db menyediakan layanan terkait database; dan sebagainya.

Setiap component aplikasi memiliki sebuah ID yang mengidentifikasi dirinya secara unik dengan component aplikasi lainnya
di dalam aplikasi yang sama. Anda dapat mengakses component aplikasi melalui expression berikut ini:

\Yii::$app->componentID

Sebagai contoh, anda dapat menggunakan \Yii::$app->db untuk mengambil [[yii\db\Connection|koneksi ke DB]],
dan \Yii::$app->cache untuk mengambil [[yii\caching\Cache|cache utama]] yang terdaftar dalam aplikasi.

Sebuah component aplikasi dibuat pertama kali pada saat objek tersebut pertama diakses menggunakan expression di atas. Pengaksesan
berikutnya akan mengembalikan objek component yang sama.

Component aplikasi bisa merupakan objek apa saja. Anda dapat mendaftarkannya dengan mengatur
property [[yii\base\Application::components]] pada konfigurasi aplikasi.
Sebagai contoh,

[
 'components' => [
 // mendaftarkan component "cache" menggunakan nama class
 'cache' => 'yii\caching\ApcCache',

 // mendaftaran component "db" menggunakan konfigurasi array
 'db' => [
 'class' => 'yii\db\Connection',
 'dsn' => 'mysql:host=localhost;dbname=demo',
 'username' => 'root',
 'password' => '',
],

 // mendaftaran component "search" menggunakan anonymous function
 'search' => function () {
 return new app\components\SolrService;
 },
],
]

Info: Walaupun anda dapat mendaftarkan component aplikasi sebanyak yang anda inginkan, anda harus bijaksana dalam melakukan hal ini.
Component aplikasi seperti layaknya variabel global. Menggunakan component aplikasi yang terlalu banyak dapat berpotensi
membuat kode anda menjadi rumit untuk diujicoba dan dikelola. Dalam banyak kasus, anda cukup membuat component lokal
dan menggunakannya pada saat diperlukan.

Bootstrap Components

Seperti yang disebutkan di atas, sebuah component aplikasi akan dibuat ketika component diakses pertama kali.
Jika tidak diakses sepanjang request diproses, objek tersebut tidak akan dibuat. Terkadang, anda ingin
membuat objek component aplikasi tersebut untuk setiap request, walaupun component tersebut tidak diakses secara eksplisit.
Untuk melakukannya, anda dapat memasukkan ID component tersebut ke property [[yii\base\Application::bootstrap|bootstrap]] dari objek Application.

Sebagai contoh, konfigurasi aplikasi di bawah ini memastikan bahwa objek component log akan selalu dibuat disetiap request:

[
 'bootstrap' => [
 'log',
],
 'components' => [
 'log' => [
 // Konfigurasi untuk component "log"
],
],
]

Component Aplikasi Inti

Yii menentukan seperangkat component aplikasi inti dengan ID tetap dan konfigurasi default. Sebagai contoh,
component [[yii\web\Application::request|request]] digunakan untuk memperoleh informasi tentang
request dari pengguna dan merubahnya menjadi route. Component [[yii\base\Application::db|db]]
merepresentasikan sebuah koneksi ke database yang bisa anda gunakan untuk menjalankan query ke database.
Dengan bantuan component inti inilah maka aplikasi Yii bisa menangani request dari pengguna.

Dibawah ini adalah daftar dari component aplikasi inti. Anda dapat mengatur dan memodifikasinya
seperti component aplikasi pada umumnya. Ketika anda mengatur component aplikasi inti,
jika anda tidak mendefinisikan class-nya, maka class default yang akan digunakan.

	[[yii\web\AssetManager|assetManager]]: mengatur bundel aset (asset bundles) dan publikasi aset (asset publishing).
Harap melihat bagian Pengelolaan Aset untuk informasi lebih lanjut.

	[[yii\db\Connection|db]]: merepresentasikan sebuah koneksi database yang bisa anda gunakan untuk melakukan query ke database.
Sebagai catatan, ketika anda mengatur component ini, anda harus menentukan nama class dari component dan property lain dari
component yang dibutuhkan, seperti [[yii\db\Connection::dsn]].
Harap melihat bagian Data Access Objects untuk informasi lebih lanjut.

	[[yii\base\Application::errorHandler|errorHandler]]: menangani error PHP dan exception.
Harap melihat bagian Menangani Error untuk informasi lebih lanjut.

	[[yii\i18n\Formatter|formatter]]: memformat data ketika data tersebut ditampilkan ke pengguna. Sebagai contoh, sebuah angka
mungkin ditampilkan menggunakan separator ribuan, dan tanggal mungkin diformat dalam format panjang.
Harap melihat bagian Memformat Data untuk informasi lebih lanjut.

	[[yii\i18n\I18N|i18n]]: mendukung penerjemahan dan format pesan (message).
Harap melihat bagian Internasionalisasi untuk informasi lebih lanjut.

	[[yii\log\Dispatcher|log]]: mengelola target log.
Harap melihat bagian Log untuk informasi lebih lanjut.

	[[yii\swiftmailer\Mailer|mailer]]: mendukung pembuatan dan pengiriman email.
Harap melihat bagian Mail untuk informasi lebih lanjut.

	[[yii\base\Application::response|response]]: merepresentasikan response yang dikirimkan ke pengguna.
Harap melihat bagian Response untuk informasi lebih lanjut.

	[[yii\base\Application::request|request]]: merepresentasikan request yang diterima dari pengguna.
Harap melihat bagian Request untuk informasi lebih lanjut.

	[[yii\web\Session|session]]: merepresentasikan informasi session. Component ini hanya tersedia pada
objek [[yii\web\Application|Aplikasi Web]].
Harap melihat bagian Session dan Cookie untuk informasi lebih lanjut.

	[[yii\web\UrlManager|urlManager]]: mendukung penguraian dan pembuatan URL.
Harap melihat bagian Route dan Pembuatan URL untuk informasi lebih lanjut.

	[[yii\web\User|user]]: merepresentasikan informasi otentikasi dari pengguna. Component ini hanya tersedia pada
objek [[yii\web\Application|Aplikasi Web]].
Harap melihat bagian Otentikasi untuk informasi lebih lanjut.

	[[yii\web\View|view]]: mendukung proses render view.
Harap melihat bagian View untuk informasi lebih lanjut.

 Aplikasi

Aplikasi

Aplikasi (Application) adalah objek yang mengelola semua struktur dan siklus dari sistem aplikasi Yii.
Setiap aplikasi sistem Yii mengandung satu objek aplikasi yang dibuat dalam
skrip masuk dan mampu diakses secara global melalui expression \Yii::$app.

Info: Jika kami mengatakan “sebuah aplikasi”, itu bisa diartikan sebagai sebuah objek aplikasi
atau sebuah sistem aplikasi, tergantung bagaimana konteksnya.

Terdapat dua tipe aplikasi: [[yii\web\Application|Aplikasi Web]] dan
[[yii\console\Application|Aplikasi Konsol]]. Sesuai dengan namanya, yang pertama bertujuan untuk menangani
web request, sedangkan yang kedua menangani request perintah pada konsol.

Konfigurasi Aplikasi

Ketika skrip masuk membuat objek aplikasi, objek ini akan mengambil dan memuat
sebuah array konfigurasi dan menerapkannya pada objek aplikasi seperti berikut ini:

require __DIR__ . '/../vendor/autoload.php';
require __DIR__ . '/../vendor/yiisoft/yii2/Yii.php';

// memuat konfigurasi aplikasi
$config = require __DIR__ . '/../config/web.php';

// membuat objek aplikasi & menerapkan konfigurasi
(new yii\web\Application($config))->run();

Seperti layaknya konfigurasi normal, konfigurasi aplikasi menentukan bagaimana
proses inisialisasi property dari objek aplikasi. Karena konfigurasi aplikasi pada umumnya
sangat kompleks, oleh karena itu konfigurasi tersebut di simpan dalam file konfigurasi,
seperti file web.php pada contoh di atas.

Property Aplikasi

Terdapat cukup banyak property aplikasi penting yang harus anda atur dalam konfigurasi aplikasi.
Property ini secara khusus menjelaskan environment yang sedang dijalankan oleh aplikasi.
Sebagai contoh, aplikasi ingin mengetahui bagaimana cara memuat controller,
dimana seharusnya aplikasi menyimpan file-file yang bersifat sementara (temporary files), dll. Kami akan meringkas property tersebut dibawah ini:

Property Wajib

Dalam aplikasi apapun, anda harus menentukan setidaknya dua property:[[yii\base\Application::id|id]]
dan [[yii\base\Application::basePath|basePath]].

[[yii\base\Application::id|id]]

Property [[yii\base\Application::id|id]] menentukan ID unik yang membedakan objek aplikasi
dengan yang lainnya. Ini pada umumnya digunakan secara programatik. Walaupun hal ini bukanlah sebuah keharusan, karena persoalan pertukaran informasi,
anda sangat direkomendasikan hanya menggunakan karakter alfanumerik ketika menentukan ID dari sebuah aplikasi.

[[yii\base\Application::basePath|basePath]]

Property [[yii\base\Application::basePath|basePath]] menentukan direktori root dari sebuah aplikasi.
Yaitu direktori yang menyimpan semua sumber kode aplikasi sistem, dan aksesnya diproteksi dari luar. Didalam direktori ini,
anda akan melihat sub-direktori seperti models, views, dan controllers yang menyimpan sumber kode
dari pola MVC.

Anda dapat menentukan property [[yii\base\Application::basePath|basePath]] menggunakan directory path
atau path alias. Kedua bentuk ini, direktori yang dimaksud harus benar-benar ada, jika tidak maka sebuah exception
akan di-throw. Path akan dinormalkan dengan memanggil function realpath().

Property [[yii\base\Application::basePath|basePath]] pada umumnya digunakan untuk mengambil path penting
lainnya (contoh runtime path). Karna itulah alias path yang dinamakan @app disediakan untuk merepresentasikan path
ini. Path-path lainnya boleh dipanggil menggunakan alias ini (contoh: @app/runtime untuk merujuk ke direktori runtime).

Property Penting

Property yang dijelaskan di sub-bagian ini cenderung harus di tentukan karena mereka digunakan secara berbeda
di lintas aplikasi.

[[yii\base\Application::aliases|Alias]]

Property ini memungkinkan anda untuk menentukan seperangkat alias dalam bentuk array.
Array Key merupakan nama alias, dan Array Value adalah definisi path yang dimaksud.
Sebagai contoh:

[
 'aliases' => [
 '@nama1' => 'path/menuju/ke/path1',
 '@nama2' => 'path/menuju/ke/path2',
],
]

Karna tersedianya property ini, anda bisa menentukan beberapa alias pada konfigurasi aplikasi dibanding
dengan memanggil method [[Yii::setAlias()]].

[[yii\base\Application::bootstrap|bootstrap]]

Property ini merupakan property yang bermanfaat. Property ini memungkinkan anda untuk menentukan component berbentuk array yang harus
dijalankan dalam [[yii\base\Application::bootstrap()|proses bootstrap]].
Sebagai contoh, jika anda memerintahkan sebuah module untuk merubah pengaturan URL,
anda dapat menyusun ID-nya sebagai elemen dari property ini.

Setiap component yang terdaftar pada property ini dapat ditentukan berdasarkan salah satu dari format berikut ini:

	ID dari Component aplikasi yang ditentukan melalui component,

	ID dari module yang ditentukan melalui module,

	Nama class,

	Konfigurasi array,

	anonymous function yang membuat dan mengembalikan (return) sebuah component.

Sebagai contoh:

[
 'bootstrap' => [
 // Component ID atau Module ID
 'demo',

 // Nama Class
 'app\components\Profiler',

 // Konfigurasi dalam bentuk array
 [
 'class' => 'app\components\Profiler',
 'level' => 3,
],

 // anonymous function
 function () {
 return new app\components\Profiler();
 }
],
]

Info: Jika ID module tersebut sama dengan ID component aplikasi, component aplikasi tersebut yang akan dipakai
pada saat proses boostrap. Jika anda ingin menggunakan module, anda dapat menentukannya melalui anonymous function
seperti berikut ini:

[
 function () {
 return Yii::$app->getModule('user');
 },
]

Sepanjang proses bootstrap, setiap component akan dibuat objeknya. Jika class component
mengimplementasikan method interface [[yii\base\BootstrapInterface]], method [[yii\base\BootstrapInterface::bootstrap()|bootstrap()]] dari class tersebut
juga akan dipanggil.

Salah satu contoh praktis lainnya adalah konfigurasi aplikasi untuk Template Proyek Dasar,
dimana module debug dan gii ditentukan sebagai component bootstrap ketika aplikasi sedang dijalankan
dalam mode pengembangan:

if (YII_ENV_DEV) {
 // penyesuaian konfigurasi untuk environment 'dev'
 $config['bootstrap'][] = 'debug';
 $config['modules']['debug'] = 'yii\debug\Module';

 $config['bootstrap'][] = 'gii';
 $config['modules']['gii'] = 'yii\gii\Module';
}

Note: Menentukan terlalu banyak component pada bootstrap akan menurunkan performa dari aplikasi anda, dikarenakan
component yang sama tersebut harus dijalakan dalam setiap request. Jadi gunakanlah component bootstrap dengan bijaksana.

[[yii\web\Application::catchAll|catchAll]]

Property ini hanya dikenali oleh [[yii\web\Application|Web applications]]. Property ini menentukan
sebuah action dari controller yang ditugaskan menangani semua request dari pengguna. Property ini biasanya
digunakan ketika aplikasi dalam mode pemeliharaan (maintenance) yang mengarahkan semua request menuju satu action.

Konfigurasinya yaitu sebuah array dimana elemen pertama menentukan route dari action.
Element lainnya (sepasang key-value) menentukan parameter yang akan diteruskan ke action. Sebagai contoh:

[
 'catchAll' => [
 'offline/notice',
 'param1' => 'value1',
 'param2' => 'value2',
],
]

Info: Panel Debug pada development environment tidak akan berfungsi ketika property ini diisi.

[[yii\base\Application::components|components]]

Property ini adalah salah satu property yang sangat penting. Property ini memperbolehkan anda mendaftarkan beberapa component
yang disebut component aplikasi yang bisa anda gunakan di tempat lain. Sebagai contoh:

[
 'components' => [
 'cache' => [
 'class' => 'yii\caching\FileCache',
],
 'user' => [
 'identityClass' => 'app\models\User',
 'enableAutoLogin' => true,
],
],
]

Setiap component aplikasi ditentukan dengan sepasang key-value ke dalam array. Key merepresentasikan ID component,
dimana value merepresentasikan nama class dari component atau konfigurasi array.

Anda dapat mendaftaran component apapun ke dalam objek aplikasi, dan nantinya component tersebut dapat diakses secara global
menggunakan expression \Yii::$app->componentID.

Harap membaca bagian Component Aplikasi untuk penjelasan lebih lanjut.

[[yii\base\Application::controllerMap|controllerMap]]

Property ini memperbolehkan anda untuk melakukan mapping sebuah ID controller ke class controller yang anda inginkan. Secara default, Yii melakukan mapping
ID controller ke class controller berdasarkan kaidah yang ditentukan (Contoh: ID post akan di mapping
ke app\controllers\PostController). Dengan menentukan property ini, anda diperbolehkan untuk tidak mengikuti kaidah untuk
spesifik controller. Pada contoh dibawah ini, account akan di mapping ke
app\controllers\UserController, sedangkan article akan di mapping ke app\controllers\PostController.

[
 'controllerMap' => [
 'account' => 'app\controllers\UserController',
 'article' => [
 'class' => 'app\controllers\PostController',
 'enableCsrfValidation' => false,
],
],
]

Key array dari property ini merepresentasikan ID controller, sedangkan value merepresentasikan nama _class
yang dimaksud atau konfigurasi array.

[[yii\base\Application::controllerNamespace|controllerNamespace]]

Property ini menentukan namespace default dimana class controller tersebut harus dicari. Default ke
app\controllers. Jika ID controller adalah post, secara kaidah, nama class controller-nya (tanpa
namespace) adalah PostController, dan app\controllers\PostController adalah nama class lengkapnya (Fully Qualified Class Name).

class controller juga boleh disimpan dalam sub-direktori dari direktori yang dimaksud namespace ini.
Sebagai contoh, jika ada ID controller admin/post, nama class lengkap yang dimaksud adalah
app\controllers\admin\PostController.

Sangatlah penting bahwa nama class lengkap dari controller tersebut bisa di-autoload
dan namespace dari class controller anda cocok dengan nilai dari property ini. Jika tidak,
anda akan melihat error “Halaman tidak ditemukan” ketika mengakses aplikasi.

Jika saja anda tidak ingin mengikut kaidah-kaidah yang dijelaskan di atas, anda boleh menentukan property
controllerMap.

[[yii\base\Application::language|language]]

Property ini menentukan bahasa apa yang seharusnya ditampilkan pada konten aplikasi ke pengguna.
Nilai default dari property ini adalah en, yang merupakan Bahasa Inggris. Anda harus menentukan property ini
jika aplikasi anda menyediakan konten dalam berbagai bahasa.

Nilai dari property ini menentukan banyak aspek dari internasionalisasi,
termasuk penerjemahan pesan, format tanggal, format penomoran, dll. Sebagai contoh, widget [[yii\jui\DatePicker]]
akan menggunakan property ini secara default untuk menentukan bahasa apa yang digunakan pada kalender yang ditampilkan dan bagaimana
format tanggal pada kalender tersebut.

Disarankan agar anda menentukan bahasa dalam format Tag Bahasa IETF [http://en.wikipedia.org/wiki/IETF_language_tag].
Sebagai contoh, en berarti Bahasa Inggris, sedangkan en-US berarti Bahasa Inggris yang digunakan di Amerika Serikat.

Informasi selengkapnya mengenai property ini dapat dipelajari di bagian Internasionalisasi.

[[yii\base\Application::modules|modules]]

Property ini menentukan module apa yang akan digunakan oleh aplikasi.

Property ini ditentukan menggunakan array dari class class modul atau konfigurasi array dimana array key
merupakan ID dari module tersebut. Berikut contohnya:

[
 'modules' => [
 // modul "booking" dengan class module yang ditentukan
 'booking' => 'app\modules\booking\BookingModule',

 // modul "comment" yang ditentukan menggunakan konfigurasi array
 'comment' => [
 'class' => 'app\modules\comment\CommentModule',
 'db' => 'db',
],
],
]

Silahkan melihat bagian Modules untuk informasi lebih lanjut.

[[yii\base\Application::name|name]]

Property ini menentukan nama aplikasi yang bisa ditampilkan ke pengguna. Berbeda dengan
property [[yii\base\Application::id|id]], yang mengharuskan nilainya unik, nilai dari property ini secara umum bertujuan untuk
keperluan tampilan saja; tidak perlu unik.

Anda tidak perlu menentukan property ini jika memang tidak ada kode anda yang akan menggunakannya.

[[yii\base\Application::params|params]]

Property ini menentukan parameter berbentuk array yang bisa diakses secara global oleh aplikasi. Dibanding menuliskan secara manual
angka dan string di kode anda, merupakan hal yang bagus jika anda menentukan hal tersebut sebagai parameter-parameter aplikasi
di satu tempat yang sama, dan menggunakannya pada tempat dimana dia dibutuhkan. Sebagai contoh, anda mungkin menentukan ukuran thumbnail
sebagai parameter seperti contoh dibawah ini:

[
 'params' => [
 'thumbnail.size' => [128, 128],
],
]

Kemudian, pada kode dimana anda akan menggunakan ukuran tersebut, anda cukup menggunakannya seperti kode dibawah ini:

$size = \Yii::$app->params['thumbnail.size'];
$width = \Yii::$app->params['thumbnail.size'][0];

Jika di suatu hari anda memutuskan untuk mengganti ukuran thumbnail tersebut, anda cukup menggantinya di konfigurasi aplikasi;
anda tidak perlu mengganti di semua kode dimana anda menggunakannya.

[[yii\base\Application::sourceLanguage|sourceLanguage]]

Property ini menentukan bahasa apa yang digunakan dalam menulis kode aplikasi. Nilai default-nya adalah 'en-US',
yang berarti Bahasa Inggris (Amerika Serikat). Anda sebaiknya menentukan property ini jika teks pada kode anda bukanlah Bahasa Inggris.

Seperti layaknya property language, anda seharusnya menentukan property ini dalam
format Tag Bahasa IETF [http://en.wikipedia.org/wiki/IETF_language_tag]. Sebagai contoh, en berarti Bahasa Inggris,
sedangkan en-US berarti Bahasa Inggris (Amerika Serikat).

Untuk informasi lebih lanjut mengenai property ini bisa anda pelajari pada bagian Internasionalisasi.

[[yii\base\Application::timeZone|timeZone]]

Property ini disediakan sebagai cara alternatif untuk menentukan zona waktu default dari PHP runtime.
Dengan menentukan property ini, pada dasarnya anda memanggil function PHP
date_default_timezone_set() [http://php.net/manual/en/function.date-default-timezone-set.php]. Sebagi contoh:

[
 'timeZone' => 'America/Los_Angeles',
]

[[yii\base\Application::version|version]]

Property ini menentukan versi dari aplikasi anda. Secara default nilainya adalah '1.0'. Anda tidak harus menentukan
property ini jika tidak ada kode anda yang akan menggunakannya.

Property yang Bermanfaat

Property yang dijelaskan pada sub-bagian ini tidak secara umum digunakan karena nilai default-nya
sudah ditentukan berdasarkan kaidah-kaidah yang umum digunakan. Tetapi anda boleh menentukannya sendiri jikalau anda tidak ingin mengikuti kaidah-kaidah tersebut.

[[yii\base\Application::charset|charset]]

Property ini menentukan charset yang digunakan oleh aplikasi. Nilai default-nya adalah 'UTF-8', dimana harus
digunakan sebisa mungkin pada kebanyakan aplikasi, kecuali anda sedang membangun sistem lama yang banyak menggunakan data yang tidak termasuk dalam Unicode.

[[yii\base\Application::defaultRoute|defaultRoute]]

Property ini menentukan route yang harus aplikasi gunakan ketika sebuah request
tidak memiliki route. Route dapat terdiri dari ID child module, ID controller, dan/atau ID action.
Sebagai contoh, help, post/create, atau admin/post/create. Jika ID action tidak diberikan, maka property ini akan mengambil
nilai default yang ditentukan di [[yii\base\Controller::defaultAction]].

Untuk [[yii\web\Application|aplikasi Web]], nilai default dari property ini adalah 'site', yang berarti
controller SiteController dan default action-nya yang akan digunakan. Hasilnya, jika anda mengakses
aplikasi tanpa menentukan route yang spesifik, maka akan menampilkan output dari app\controllers\SiteController::actionIndex().

Untuk [[yii\console\Application|aplikasi konsol]], nilai default-nya adalah 'help', yang berarti akan menggunakan
[[yii\console\controllers\HelpController::actionIndex()]] sebagai perintah utamanya. Hasilnya, jika anda menjalankan perintah yii
tanpa memasukkan argumen, maka akan menampilkan informasi bantuan penggunaan.

[[yii\base\Application::extensions|extensions]]

Property ini menentukan daftar dari extension yang terpasang dan digunakan oleh aplikasi.
Secara default, akan mengambil array yang dikembalikan oleh file @vendor/yiisoft/extensions.php. File extensions.php
dibuat dan dikelola secara otomatis jika anda menggunakan Composer [https://getcomposer.org] untuk memasang extensions.
Secara umum, anda tidak perlu menentukan property ini.

Dalam kasus khusus jika anda ingin mengelola extension secara manual, anda boleh menentukan property ini seperti kode dibawah ini:

[
 'extensions' => [
 [
 'name' => 'extension name',
 'version' => 'version number',
 'bootstrap' => 'BootstrapClassName', // Tidak wajib, bisa juga berupa konfigurasi array
 'alias' => [// Tidak Wajib
 '@alias1' => 'to/path1',
 '@alias2' => 'to/path2',
],
],

 // ... extension lain yang ditentukan seperti kode di atas ...

],
]

Seperti yang anda lihat, property ini menerima spesifikasi extension dalam bentuk array. Setiap extension ditentukan dengan array
yang terdiri dari elemen name dan version. Jika extension harus dijalankan ketika proses bootstrap
, elemen bootstrap dapat dispesifikasikan dengan nama class bootstrap-nya atau konfigurasi array
. Extension juga dapat menentukan beberapa alias.

[[yii\base\Application::layout|layout]]

Property ini menentukan nama dari default layout yang akan digunakan ketika me-render sebuah view.
Nilai default-nya adalah 'main', yang berarti akan menggunakan file layout main.php yang disimpan di layout path.
Jika kedua dari layout path dan view path mengambil nilai default,
maka representasi file layoutnya adalah path alias @app/views/layouts/main.php.

Anda dapat menentukan nilai property ini menjadi false jika anda ingin menonaktifkan layout secara default, tetapi anda seharusnya tidak memerlukannya.

[[yii\base\Application::layoutPath|layoutPath]]

Property ini menentukan path dimana sistem akan mencari file layout. Nilai default-nya adalah
sub-direktori layouts di dalam view path. Jika view path mengambil
nilai defaultnya, maka path layout defaultnya adalah path alias @app/views/layouts.

Anda dapat menentukannya sebagai direktori atau path alias.

[[yii\base\Application::runtimePath|runtimePath]]

Property ini menentukan dimana path file yang bersifat sementara, seperti file log dan cache.
Nilai default-nya adalah direktori yang direpresentasikan oleh alias @app/runtime.

Anda dapat menentukan nilainya dengan direktori atau path alias. Sebagai catatan, path runtime wajib
memiliki akses tulis (writeable) oleh web server yang menjalankan aplikasi. Dan path tersebut sebaiknya diproteksi aksesnya dari
pengguna, karena file yang bersifat sementara di dalamnya mungkin mengandung informasi sensitif.

Untuk menyederhanakan akses ke path ini, Yii sudah menentukan path alias dengan nama @runtime.

[[yii\base\Application::viewPath|viewPath]]

Property ini menentukan direktori root dimana file-file view akan disimpan. Nilai default-nya adalah direktori
yang di representasikan oleh alias @app/views. Anda dapat menentukan nilainya dengan direktori atau path alias.

[[yii\base\Application::vendorPath|vendorPath]]

Property ini menentukan direktori vendor yang di kelola oleh Composer [https://getcomposer.org]. Direktori ini akan
menyimpan semua library pihak ketiga yang digunakan oleh aplikasi anda, termasuk Yii framework. Nilai default-nya adalah
direktori yang di representasikan oleh alias @app/vendor.

Anda dapat menentukan nilai property ini dengan direktori atau path alias. Jika anda mengganti
nilai property ini, pastikan anda juga menyesuaikan konfigurasi Composer.

Untuk memudahkan akses ke path ini, Yii sudah menentukan path alias dengan nama @vendor.

[[yii\console\Application::enableCoreCommands|enableCoreCommands]]

Property ini hanya dikenali oleh [[yii\console\Application|console applications]]. Property ini menentukan
apakah perintah inti yang dibawa oleh rilisan Yii harus diaktifkan. Nilai default-nya adalah true.

Event Aplikasi

Sebuah objek aplikasi menjalankan beberapa event sepanjang siklus penanganan request. Anda dapat menempelkan penanganan event
untuk event-event ini di dalam konfigurasi aplikasi seperti di bawah ini:

[
 'on beforeRequest' => function ($event) {
 // ...
 },
]

Penggunaan dari sintaks on eventName akan dijelaskan pada bagian
Konfigurasi.

Sebagai alternatif, anda dapat menempelkan penanganan event ke dalam proses bootstrap
setelah objek aplikasi telah dibuat. Sebagai contoh:

\Yii::$app->on(\yii\base\Application::EVENT_BEFORE_REQUEST, function ($event) {
 // ...
});

[[yii\base\Application::EVENT_BEFORE_REQUEST|EVENT_BEFORE_REQUEST]]

Event ini dijalankan sebelum objek aplikasi menangani sebuah request. Nama event-nya adalah beforeRequest.

Ketika event ini dijalankan, objek aplikasi sudah dibuat dan di inisialisasi. Jadi waktu ini merupakan waktu yang tepat
untuk memasukkan kode anda melalui mekanisme event untuk mengintervensi penanganan request. Sebagai contoh,
di penanganan event, anda dapat menentukan property [[yii\base\Application::language]] secara dinamis berdasarkan parameter tertentu.

[[yii\base\Application::EVENT_AFTER_REQUEST|EVENT_AFTER_REQUEST]]

Event ini dijalankan setelah objek aplikasi menyelesaikan penanganan sebuah request tetapi sebelum mengirimkan response.

Ketika event ini dijalankan, proses penanganan request sudah selesai dan anda dapat menggunakan kesempatan untuk melakukan beberapa tugas
untuk memodifikasi request atau response.

Sebagai catatan, component [[yii\web\Response|response]] juga menjalankan beberapa event pada saat mengirim
isi response ke pengguna. Event tersebut akan dijalankan setelah event ini.

[[yii\base\Application::EVENT_BEFORE_ACTION|EVENT_BEFORE_ACTION]]

Event ini dijalankan sebelum semua action dari controller diproses.
Nama event-nya adalah beforeAction.

Parameter event merupakan objek dari [[yii\base\ActionEvent]]. Sebuah penanganan event boleh menentukan
property [[yii\base\ActionEvent::isValid]] menjadi false untuk memberhentikan proses jalannya action.
Sebagai contoh:

[
 'on beforeAction' => function ($event) {
 if (kondisi tertentu) {
 $event->isValid = false;
 } else {
 }
 },
]

Sebagai catatan, event beforeAction yang sama juga dijalankan oleh module
dan controller. Event pada objek aplikasi yang menjalankan event ini
untuk pertama kali, dilanjutkan oleh module (jika ada), dan terakhir oleh controller. Jika sebuah penanganan event
menentukan property [[yii\base\ActionEvent::isValid]] menjadi false, semua event selanjutnya TIDAK akan dijalankan.

[[yii\base\Application::EVENT_AFTER_ACTION|EVENT_AFTER_ACTION]]

Event ini dijalankan setelah menjalankan seluruh action dari controller.
Nama event-nya adalah afterAction.

Parameter event adalah objek dari [[yii\base\ActionEvent]]. Menggunakan
property [[yii\base\ActionEvent::result]], method penanganan event dapat mengakses atau merubah hasil dari action.
Sebagai contoh:

[
 'on afterAction' => function ($event) {
 if (kondisi tertentu) {
 // rubah nilai dari $event->result
 } else {
 }
 },
]

Sebagai catatan, event afterAction yang sama juga dijalankan oleh module
dan controllers. Objek-objek ini menjalankan event ini sama seperti beforeAction,
hanya saja urutannya merupakan kebalikan dari urutan di event beforeAction. Controller adalah objek pertama yang menjalankan event ini,
setelah itu module (jika ada), dan terakhir di level aplikasi.

Application Lifecycle

[image: Siklus Aplikasi]

Ketika skrip masuk sedang dijalankan untuk menangani sebuah request,
aplikasi akan melewati proses siklus dibawah ini:

	Skrip masuk mengambil konfigurasi aplikasi dalam bentuk array.

	Skrip masuk membuat objek aplikasi:

	[[yii\base\Application::preInit()|preInit()]] dipanggil, dimana akan mengatur beberapa property aplikasi
yang sangat penting seperti [[yii\base\Application::basePath|basePath]].

	Mendaftarkan [[yii\base\Application::errorHandler|penanganan error]].

	Mengatur property aplikasi.

	[[yii\base\Application::init()|init()]] dipanggil, yang selanjutnya memanggil
[[yii\base\Application::bootstrap()|bootstrap()]] untuk menjalankan proses bootstrap component.

	Skrip masuk memanggil [[yii\base\Application::run()]] untuk menjalankan aplikasi:

	Menjalankan event [[yii\base\Application::EVENT_BEFORE_REQUEST|EVENT_BEFORE_REQUEST]].

	Menangani request: memproses request menjadi route dan parameter-parameternya;
membuat objek module, controller, dan action yang dispesifikasikan oleh route; dan menjalankan action.

	Menjalankan event [[yii\base\Application::EVENT_AFTER_REQUEST|EVENT_AFTER_REQUEST]].

	Mengirim response ke pengguna.

	Skrip masuk mendapatkan status exit dari aplikasi dan menyelesaikan proses penanganan request.

 Skrip Masuk

Skrip Masuk

Skrip masuk adalah langkah pertama pada proses bootstrap aplikasi. Dalam sebuah aplikasi (apakah
itu aplikasi web atau aplikasi konsol) memiliki satu skrip masuk. Pengguna mengirim request ke
skrip masuk dimana skrip tersebut membangun objek aplikasi dan meneruskan request ke objek tersebut.

Skrip masuk untuk aplikasi web harus disimpan pada direktori yang dapat diakses dari web sehingga
dapat di akses oleh pengguna. Secara umum, skrip tersebut diberi nama index.php, tetapi boleh menggunakan nama lain,
selama web server bisa mengakses skrip tersebut.

Skrip masuk untuk aplikasi konsol pada umumnya disimpan di dalam base path
dari objek aplikasi dan diberi nama yii (dengan suffix .php). Skrip tersebut harus memiliki akses execute
sehingga pengguna dapat menjalan aplikasi konsol menggunakan perintah ./yii <route> [argument] [option].

Skrip masuk umumnya mengerjakan tugas berikut ini:

	Menentukan global constant;

	Mendaftarkan autoloader Composer [https://getcomposer.org/doc/01-basic-usage.md#autoloading];

	Memasukkan file class [[Yii]];

	Mengambil konfigurasi aplikasi, dan memuatnya;

	Membuat dan mengatur objek application;

	Memanggil [[yii\base\Application::run()]] untuk memproses request yang diterima;

Aplikasi Web

Kode berikut ini adalah kode yang terdapat pada skrip masuk Template Proyek Dasar.

<?php

defined('YII_DEBUG') or define('YII_DEBUG', true);
defined('YII_ENV') or define('YII_ENV', 'dev');

// mendaftarkan autoloader Composer
require __DIR__ . '/../vendor/autoload.php';

// memasukkan file class Yii
require __DIR__ . '/../vendor/yiisoft/yii2/Yii.php';

// Mengambil konfigurasi aplikasi
$config = require __DIR__ . '/../config/web.php';

// Membuat, mengkonfigurasi, dan menjalankan aplikasi
(new yii\web\Application($config))->run();

Aplikasi Konsol

Demikian juga dengan aplikasi konsol, kode berikut ini adalah kode yang terdapat pada skrip masuk aplikasi konsol :

#!/usr/bin/env php
<?php
/**
 * Yii console bootstrap file.
 *
 * @link http://www.yiiframework.com/
 * @copyright Copyright (c) 2008 Yii Software LLC
 * @license http://www.yiiframework.com/license/
 */

defined('YII_DEBUG') or define('YII_DEBUG', true);
defined('YII_ENV') or define('YII_ENV', 'dev');

// mendaftarkan autoloader composer
require __DIR__ . '/vendor/autoload.php';

// memasukkan file class Yii
require __DIR__ . '/vendor/yiisoft/yii2/Yii.php';

// Mengambil konfigurasi aplikasi
$config = require __DIR__ . '/config/console.php';

$application = new yii\console\Application($config);
$exitCode = $application->run();
exit($exitCode);

Menentukan Constant

Skrip masuk adalah file yang tepat untuk menentukan global constant. Yii mengenali tiga constant berikut ini:

	YII_DEBUG: untuk menentukan apakah aplikasi sedang dalam mode debug. Pada saat mode debug, aplikasi
akan menyimpan informasi log lebih banyak, dan akan menampilkan detail error urutan pemanggilan (error call stack) jika ada exception yang di-throw. Alasan inilah,
kenapa mode debug sebaiknya digunakan pada tahap pengembangan. Nilai default dari YII_DEBUG adalah false.

	YII_ENV: untuk menentukan pada mode environment manakah aplikasi ini dijalankan. Constant ini akan dijelaskan lebih lanjut di
bagian Konfigurasi.
Nilai default dari YII_ENV adalah prod, yang berarti aplikasi sedang dijalankan pada production environment.

	YII_ENABLE_ERROR_HANDLER: untuk menentukan apakah akan mengaktifkan penanganan eror yang disediakan oleh Yii. Nilai default
dari constant ini adalah true.

Untuk menentukan constant, kita biasanya menggunakan kode berikut ini:

defined('YII_DEBUG') or define('YII_DEBUG', true);

kode di atas memiliki tujuan yang sama dengan kode berikut ini:

if (!defined('YII_DEBUG')) {
 define('YII_DEBUG', true);
}

Jelas, kode yang pertama lah yang lebih ringkas dan lebih mudah untuk dimengerti.

Penentuan constant sebaiknya ditulis di baris-baris awal pada skrip masuk sehingga akan berfungsi
ketika file PHP lain akan dimasukkan (include).

 Tinjauan

Tinjauan

Aplikasi Yii diorganisir berdasarkan pola arsitektur model-view-controller (MVC) [http://wikipedia.org/wiki/Model-view-controller].
Model merepresentasikan data, pengaturan dan proses bisnis; view
adalah output yang merepresentasikan model; dan controller mengelola input dan merubahnya
menjadi perintah-perintah untuk model dan view.

Selain MVC, aplikasi Yii juga memiliki entitas berikut:

	entry scripts: Ini adalah skrip PHP yang diakses secara langsung oleh pengguna.
Ini bertugas untuk memulai siklus penanganan request.

	applications: Ini adalah objek yang dapat diakses secara global, yang mengelola component aplikasi
dan mengaturnya untuk memenuhi sebuah request.

	application components: Ini adalah objek-objek yang didaftarkan pada objek application dan
menyediakan beragam layanan untuk memenuhi request.

	modules: Ini adalah paket (package) mandiri yang berisikan MVC lengkap.
Sebuah aplikasi boleh diistilahkan sebagai module-module yang telah diorganisir.

	filters: Ini merepresentaikan kode yang mutlak untuk dijalakan sebelum dan sesudah
penanganan dari tiap-tiap request yang dikelola oleh controller.

	widgets: Ini adalah objek-objek yang dapat ditanam kedalam views. Ini
dapat mengandung logika controller dan dapat digunakan berulang-ulang pada view yang berbeda.

Diagram dibawah ini menunjukkan struktur statis dari sebuah aplikasi:

[image: Struktur Statis Aplikasi]

 La guida definitiva a Yii 2.0

La guida definitiva a Yii 2.0

Questa guida è rilasciata nei termini della documentazione di Yii [http://www.yiiframework.com/doc/terms/].

Tutti i diritti riservati.

2014 (c) Yii Software LLC.

Traduzione italiana a cura di Lorenzo Milesi (yetopen.it [http://www.yetopen.it]).

Introduzione

	Informazioni su Yii

	Aggiornare dalla versione 1.1

Primi passi

	Installare Yii

	Esecuzione applicazioni

	Dire Ciao

	Utilizzo dei form

	Utilizzo dei database

	Generare codice con Gii

	Passi successivi

Struttura dell’applicazione

	Panoramica

	Entry Scripts

	Applicazioni

	Componenti applicazioni

	Controller

	Modelli

	Viste

	Moduli

	Filtri

	Widget

	Asset

	Estensioni

Gestione delle richieste

	Panoramica

	Bootstrapping

	Instradamenti (routing)

	Richieste

	Risposte

	TBD Sessioni e cookie

	Analisi e generazione URL

	Gestione errori

	Log

Concetti chiave

	Componenti

	Proprietà

	Eventi

	Behavior

	Configurazioni

	Alias

	Caricamento automatico delle classi (autoload)

	Service Locator

	Container per Dependency Injection

Utilizzo del database

	Data Access Objects: Connessione ad un database, query semplici, transazioni e modifiche allo schema

	Query Builder: Esecuzione di query al database usando un semplice livello di astrazione

	Active Record: The Active Record ORM, retrieving and manipulating records, and defining relations

	Migrazoni: Applicare il controllo di versione al database in un ambiente di sviluppo di gruppo

	TBD Sphinx

	TBD Redis

	TBD MongoDB

	TBD ElasticSearch

Ricezione dati dagli utenti

	Creare form

	Validazione informazioni

	TBD Caricamento file

	TBD Raccogliere dati per più modelli

Visualizzazione dei dati

	TBD Formattazione

	TBD Paginazione

	TBD Ordinamento

	Data Provider

	Data Widget

	Utilizzo del Client Scripts

	Temi

Sicurezza

	Autenticazione

	Autorizzazione

	Utilizzo delle password

	TBD Auth Clients

	TBD Buona prassi

Cache

	Panoramica

	Cache dati

	Fragment Caching

	Cache pagina

	Cache HTTP

Servizi web RESTful

	Avvio veloce

	Risorse

	Controller

	Instradamenti

	Formattazione risposte

	Autenticazione

	Limitazione di utilizzo

	Versioning

	Gestione degli errori

Strumenti di sviluppo

	Barra di debug e debugger

	Generazione codice con Gii

	TBD Generazione documentazione API

Test

	Panoramica

	Inizializzazione ambiente di test

	Unit Test

	Functional Test

	Acceptance Test

	Fixture

Argomenti speciali

	Modello di applicazione avanzata

	Creazione di una applicazione da zero

	Comandi da console

	Validazioni predefinite

	Internazionalizzazione

	Invio email

	Ottimizzazione delle prestazioni

	TBD Ambienti di hosting condiviso

	Template Engine

	Utilizzo di codice di terze parti

Widget

	GridView: link to demo page

	ListView: link to demo page

	DetailView: link to demo page

	ActiveForm: link to demo page

	Pjax: link to demo page

	Menu: link to demo page

	LinkPager: link to demo page

	LinkSorter: link to demo page

	Widget Bootstrap

	Widget Jquery UI

Helper

	Panoramica

	TBD ArrayHelper

	TBD Html

	TBD Url

	TBD Security

 Aggiornare dalla versione 1.1

Aggiornare dalla versione 1.1

Ci sono molte differenze tra la versione 1.1 e la 2.0 di Yii, dato che il framework è stato completamente riscritto.
Di conseguenza l’aggiornamento dalla versione 1.1 non è così semplice come passare da una versione minore all’altra. In questa guida
troverai le differenze principali tra le due versioni.

Se non hai mai usato Yii 1.1 puoi ignorare questa sezione e passare direttamente a “Come inizare”.

Considera che Yii 2.0 introduce più funzionalità di quelle descritte in questo riepilogo. Ti consigliamo di leggere tutta la
guida definitiva per apprenderle tutte. C’è la possibilità che alcune funzionalità che prima dovevi sviluppare da solo sono state
implementate nel codice principale.

Installazione

Yii 2.0 usa Composer [https://getcomposer.org/], lo standard di fatto per la gestione dei pacchetti PHP. L’installazione del
framework di base, così come delle estensioni, sono gestite da Composer. Per favore leggi la guida Installare Yii
per comprendere come installare Yii 2.0. Se vuoi creare una nuova estensione, o trasformarne una sviluppata per 1.1 a 2.0, fai riferimento
alla sezione Creazione estensioni.

Richieste PHP

Yii 2.0 richiede PHP 5.4 o superiore, il che è un passaggio notevole rispetto alla richiesta di PHP 5.2 di Yii 1.1.
Di conseguenza ci sono diverse differenze a livello di linguaggio a cui devi fare attenzione.
Di seguito un riepilogo delle principali differenze relative a PHP:

	Namespace [http://php.net/manual/en/language.namespaces.php].

	Funzioni anonime [http://php.net/manual/en/functions.anonymous.php].

	La sintassi breve per gli array [...elementi...] è utilizzabile invece di array(...elementi...).

	Le tag brevi per le echo <?= sono utilizzabili nei file delle viste. Il loro utilizzo è sicuro da PHP 5.4.

	Interfacce e classi SPL [http://php.net/manual/en/book.spl.php].

	Late Static Bindings [http://php.net/manual/en/language.oop5.late-static-bindings.php].

	Data e ora [http://php.net/manual/en/book.datetime.php].

	Trait [http://php.net/manual/en/language.oop5.traits.php].

	intl [http://php.net/manual/en/book.intl.php]. Yii 2.0 utilizza l’estensione PHP intl per le funzionalità di
internazionalizzazione.

Namespace

Il cambiamento più evidente in Yii 2.0 è l’uso dei namespace. Praticamente tutte le classi del codice
principale sono sotto namespace, ad esempio yii\web\Request. Il prefisso “C” non è più utilizzato nei nomi delle classi.
Lo schema dei nomi segue la struttura delle directory. Per esempio yii\web\Request indica che il file corrispondente per quella
classe si trova in web/Request.php nella directory principale del framework Yii.

(Puoi utilizzare qualunque classe del core di Yii senza dover includere il file relativo, grazie al loader delle classi di Yii.)

Componenti ed oggetti

Yii 2 divide la classe CComponent della versione 1.1 in due classi: [[yii\base\BaseObject]] and [[yii\base\Component]].
La classe [[yii\base\BaseObject|BaseObject]] è una classe leggera da usare come base, che consente la definizione di
proprietà dell’oggetto tramite geters e setters. La classe [[yii\base\Component|Component]] estende
[[yii\base\BaseObject|BaseObject]] e supporta eventi e behavior.

Se la tua classe non ha necessità di usare eventi o behavior conviene usare [[yii\base\BaseObject|BaseObject]] come classe base.
Di solito viene impiegata per classi che rappresentano strutture di dati semplici.

Configurazione oggetti

La classe [[yii\base\BaseObject|BaseObject]] introduce un metodo uniforme per la configurazione degli oggetti.
Ogni classe figlia di [[yii\base\BaseObject|BaseObject]] dovrebbe dichiarare il suo costruttore (se necessario) in questo modo, così da essere
configurato correttamente:

class MyClass extends \yii\base\BaseObject
{
 public function __construct($param1, $param2, $config = [])
 {
 // ... inizializzazione prima della configurazione

 parent::__construct($config);
 }

 public function init()
 {
 parent::init();

 // ... inizializzazione dopo la configurazione
 }
}

Nell’esempio sopra, l’ultimo parametro del costruttore riceve l’array di configurazione che contiene coppie di nome-valore per
inizializzare le proprietà alla fine del costruttore.
Puoi sovrascrivere il metodo [[yii\base\BaseObject::init()|init()]] per eseguire operazioni dopo che la configurazione è stata applicata.

Seguendo questa convenzione potrai creare e configurare nuovi oggetti usando un array di configurazione:

$object = Yii::createObject([
 'class' => 'MyClass',
 'proprieta1' => 'abc',
 'proprieta2' => 'cde',
], [$param1, $param2]);

Maggiori dettagli sulla configurazione si trovano nella sezione Configurazione oggetti.

Eventi

In Yii 1 gli eventi venivano creati definendo un metodo on-qualcosa (ad es. onBeforeSave). In Yii 2 ora puoi usare un qualunque
nome per l’evento. Puoi scatenare un evento chiamando il metodo [[yii\base\Component::trigger()|trigger()]]:

$event = new \yii\base\Event;
$component->trigger($eventName, $event);

Per collegare un metodo ad un evento usa il metodo [[yii\base\Component::on()|on()]]:

$component->on($eventName, $handler);
// Per scollegare il metodo dall'evento, usa:
// $component->off($eventName, $handler);

Ci sono molti miglioramenti sulle funzionalità degli eventi. Per maggiori dettagli fai riferimento alla sezione
Eventi.

Alias percorsi

Yii 2.0 espande l’utilizzo degli alias di percorso (Path alias, in inglese) a file e directory sia locali che remoti (URL). Yii 2.0
richiede ora che un percorso alias inizi con il carattere @, per differenziarli da normali percorsi o URL.
Per esempio, l’alias @yii si riferisce alla directory di installazione di Yii. Gli alias di percorso sono supportati nella maggior
parte del codice base di Yii. Per esempio, [[yii\caching\FileCache::cachePath]] può ricevere sia un alias che un percorso normale ad
una directory.

Un alias di percorso è strettamente legato al namespace della classe. Si saccomanda di definire un alias per ogni namespace root,
consentendo così di usare le funzioni di autoload di Yii senza configurazioni aggiuntive. Per esempio, visto che @yii si riferisce
alla directory di instllazione di Yii, una classe come yii\web\Request può essere caricata automaticamente. Se usi una libreria di terze
parti, come ad esempio il framework Zend, puoi definire un alias @Zend che si riferisce alla sua directory di installazione. Fatto
questo, Yii sarà in grado di caricare automaticamente qualunque classe della libreria Zend.

Maggiori informazioni sugli alias di percorso nella sezione Aliase.

Viste

Il cambiamento più evidente riguardante le viste è che in Yii 2 la variabile speciale $this in una vista non si riferisce più
al controller o al widget corrente. Invece $this si riferisce ora all’oggetto view, un nuovo concetto introdotto nella versione 2.0.
L’oggetto view è di tipo [[yii\web\View]], che rappresenta la parte della vista nel modello MVC. Per accedere al controller o al
widget dalla vista, puoi usare $this->context.

Per effettuare il render di una vista parzioale all’interno di un’altra vista devi usare $this->render(), non $this->renderPartial().
La chiamata a render deve essere ora esplicitamente mandata in output (tramite echo), dato che ora il metodo render() restituisce
il risultato dell’elaborazione della vista piuttosto che visualizzarlo. Per esempio:

echo $this->render('_item', ['item' => $item]);

Oltre ad usare PHP come linguaggio principale di template, Yii 2.0 supporta ufficialmente anche altri due motori di template:
Smarty e Twig. Il motore Prado non è più supportato.
Per usare questi engine devi configurare il componente view impostando la proprietà [[yii\base\View::$renderers|View::$renderers]].
Fai riferimento alla sezione Template Engine per maggiori dettagli.

Modelli

Yii 2.0 usa [[yii\base\Model]] come modello base, simile a CModel di 1.1.
La classe CFormModel è stata rimossa. In Yii 2 invece devi estendere [[yii\base\Model]] per creare un modello da impiegare in un form.

Yii 2.0 introduce il nuovo metodo [[yii\base\Model::scenarios()|scenarios()]] per dichiarare gli scenari supportati, e per indicare
in quale scenario devono essere validati gli attributi, se devono essere considerati safe o no, e così via. PEr esempio:

public function scenarios()
{
 return [
 'backend' => ['email', 'role'],
 'frontend' => ['email', '!role'],
];
}

Nell’esempio sopra sono stati definiti due scenari: backend e frontend. Per lo scenario backend sono considerati sicuri (safe)
entrambi gli attributi email e role, e possono essere assegnati massivamente. Per lo scenario frontend l’email può essere
assegnata in sicurezza mentre il role no. Entrambi i campi dovrebbero essere validati usando regole opportune.

Viene ancora usato il metodo [[yii\base\Model::rules()|rules()]] per definire le regole di validazione. Nota che in conseguenza
dell’introduzione del metodo [[yii\base\Model::scenarios()|scenarios()]] non esiste più la validazione unsafe.

Nella maggior parte dei casi non avrai la necessità di sovrascrivere [[yii\base\Model::scenarios()|scenarios()]] se il metodo
[[yii\base\Model::rules()|rules()]] specifica già tutti gli scenari esistenti, e se non hai necessità di dichiarare attributi unsafe.

Per apprendere più dettagli in merito ai modelli, fare riferimento alla sezione Modelli.

Controller

Yii 2.0 use [[yii\web\Controller]] come classe base per i controller, che è simile a CController di Yii 1.1.
[[yii\base\Action]] è la classe base per le classi di azioni.

L’impatto più ovvio di questi cambiamenti nel tuo codice è che l’azione di un controller deve tornare il contenuto da visualizzare, invece
di emetterlo direttamente:

public function actionView($id)
{
 $model = \app\models\Post::findOne($id);
 if ($model) {
 return $this->render('view', ['model' => $model]);
 } else {
 throw new \yii\web\NotFoundHttpException;
 }
}

Fai riferimento alla sezione Controller per maggiori dettagli in merito.

Widget

Yii 2.0 use [[yii\base\Widget]] come classe base per i widget, simile a CWidget di Yii 1.1.

Per ottenere un supporto migliore al framework usando le IDE, Yii 2.0 introduce una nuova sintassi per l’utilizzo dei widget. Sono stati
introdotti i metodi statici [[yii\base\Widget::begin()|begin()]], [[yii\base\Widget::end()|end()]], e [[yii\base\Widget::widget()|widget()]]
da usare così:

use yii\widgets\Menu;
use yii\widgets\ActiveForm;

// Nota che devi emettere a video ("echo") il risultato per visualizzarlo
echo Menu::widget(['items' => $items]);

// Passaggio di un array per inizializzare le proprietà dell'oggetto
$form = ActiveForm::begin([
 'options' => ['class' => 'form-horizontal'],
 'fieldConfig' => ['inputOptions' => ['class' => 'input-xlarge']],
]);
... campi di input del form ...
ActiveForm::end();

Fai riferimento alla sezione Widget per maggiori dettagli.

Temi

I temi sono completamente diversi nella versione 2.0. Ora sono basati su un meccanismo di mappatura dei percorsi, in modo da
creare una corrispondenza tra il percorso di un file vista sorgente e il percorso di un file di vista del tema. Per esempio se la mappa
è ['/web/views' => '/web/themes/basic'], la versione personalizzata del tema del file
/web/views/site/index.php sarà /web/themes/basic/site/index.php. Per questo motivo ora i temi possono essere applicati a qualunque
file di vista, anche per una vista elaborata al di fuori del contesto di un controller o di un widget.

Inoltre non c’è più il componenteCThemeManager. Esiste invece una proprietà configurabile theme del componente view.

Fai rfierimento alla sezione Temi per maggiori dettagli.

Applicazioni da console

Le applicazioni da console (linea di comando) sono ora organizzate come controller, come le applicazioni web. I controller devono quindi
estendere [[yii\console\Controller]], simile alla classe CConsoleCommand della versione 1.1.

Per eseguire un comando da terminale usare yii <route>, dove <route> rappresenta la rotta di un controller
(es. sitemap/index). I parametri anonimi aggiuntivi vengono passati come parametri al relativo metodo dell’azione nel controller, mentre
i parametri specifici (con nome) vengono processati secondo le specifiche di [[yii\console\Controller::options()]].

Yii 2.0 supporta la generazione automatica dell’help dei comandi prelevando le informazioni dai blocchi di commento.

Fai riferimento alla sezione Console Commands per ulteriori dettagli.

I18N

Yii 2.0 ha rimosso la formattazione interna di date e numeri in favore del modulo PECL di PHP [http://pecl.php.net/package/intl].

La traduzione dei messaggi viene effettuata dal componente i18n.
Questo componente gestisce una serie di sorgenti di messaggi, il che ti consente di usare diverse sorgenti di messaggio basate sulle
categorie.

Fai riferimento alla sezione Internazionalizzazione per maggiori dettagli.

Filtri azioni

I filtri sulle azioni vengono ora implementati tramite i behavior. Per definire un nuovo filtro personalizzato devi estendere da
[[yii\base\ActionFilter]]. Per usare un filtro collega la relativa classe ai behavior del controller. Per esempio, per usare
il filtro [[yii\filters\AccessControl]] dovrai avere questo codice nel controller:

public function behaviors()
{
 return [
 'access' => [
 'class' => 'yii\filters\AccessControl',
 'rules' => [
 ['allow' => true, 'actions' => ['admin'], 'roles' => ['@']],
],
],
];
}

Fai riferimento alla sezione Filtri per maggiori dettagli.

Asset

Yii 2.0 introduce un nuovo concetto chiamato asset bundle che rimpiazza il concetto dei pacchetti di script di Yii 1.1.

Un asset bundle è una collezione di file di asset (ad es. file Javascript, CSS, immagini…) all’interno di una directory.
Ogni asset bundle è rappresentato da una classe che estende [[yii\web\AssetBundle]].
Registrando un asset bundle tramite il metodo [[yii\web\AssetBundle::register()]], renderai disponibile gli asset di quel pachetto
disponibili via web. Diversamente da Yii 1.1 la pagina che registra il pacchetto conterrà automaticamente le referenze ai file Javascript
e CSS specificati al suo interno.

Fai riferimento alla sezione Gestione asset per maggiori informazioni.

Helper

Yii 2.0 introduce molte classi statiche di uso comune, tra cui:

	[[yii\helpers\Html]]

	[[yii\helpers\ArrayHelper]]

	[[yii\helpers\StringHelper]]

	[[yii\helpers\FileHelper]]

	[[yii\helpers\Json]]

Fai riferimento alla sezione Panoramica sugli Helper per maggiori dettagli.

Form

Yii 2.0 introduce il concetto di campo per la costruzione dei form usando [[yii\widgets\ActiveForm]]. Un campo è un
contentitore costituito da un’etichetta, un input, un messaggio di errore e/o un testo di suggerimento.
Un campo è rappresentato come un oggetto [[yii\widgets\ActiveField|ActiveField]].
Usando i campi potrai creare un form in un modo molto più pulito che in precedenza:

<?php $form = yii\widgets\ActiveForm::begin(); ?>
 <?= $form->field($model, 'username') ?>
 <?= $form->field($model, 'password')->passwordInput() ?>
 <div class="form-group">
 <?= Html::submitButton('Login') ?>
 </div>
<?php yii\widgets\ActiveForm::end(); ?>

Fai riferimento alla sezione Creazione form per maggiori dettagli.

Query Builder

In 1.1 la costruzione di query era dispersa in diverse classi, inclusa CDbcommand,
CDbCriteria, e CDbCommandBuilder. Yii 2.0 gestisce le query mediante un oggetto [[yii\db\Query|Query]]
che può essere trasformato in un comando SQL con l’aiuto di [[yii\db\QueryBuilder|QueryBuilder]] dietro le quinte.
Per esempio:

$query = new \yii\db\Query();
$query->select('id, nome')
 ->from('user')
 ->limit(10);

$comando = $query->createCommand();
$sql = $command->sql;
$righe = $command->queryAll();

Ma la cosa migliore di tutte è che gli stessi metodi di costruzione delle query possono essere usati con oggetti di
tipo Active Record.

Fai riferimento alla sezione Query Builder per maggiori dettagli.

Active Record

Yii 2.0 introduce molti cambiamenti agli Active Record. I due più evidenti riguardano la costruzione delle
query e la gestione delle relazioni.

La classe CDbCriteria della versione 1.1 è stata rimpiazzata da [[yii\db\ActiveQuery]]. Questa classe estende [[yii\db\Query]], e
ne eredita quindi tutti i metodi di costruzione delle query. Per iniziare la costruzione di una query devi chiamare
[[yii\db\ActiveRecord::find()]]:

// Per ottenere tutti i clienti *attivi* e ordinarli per ID:
$clienti = Clienti::find()
 ->where(['stato' => $attivo])
 ->orderBy('id')
 ->all();

Per dichiarare una relazione devi semplicemente definire una getter che ritorna un oggetto [[yii\db\ActiveQuery|ActiveQuery]].
Il nome della proprietà definito dalla getter rappresenta il nome della relazione. Ad esempio il codice qui di seguito dichiara
una relazione ordini (in 1.1 avresti dovuto farlo nel metodo relations()):

class Cliente extends \yii\db\ActiveRecord
{
 public function getOrdini()
 {
 return $this->hasMany('Ordine', ['cliente_id' => 'id']);
 }
}

Ora puoi usare $cliente->ordini per accedere agli ordini del cliente nella tabella collegata. Puoi usare anche questo codice
per effettuare una query relazionale al volo con una condizione di ricerca personalizzata:

$ordini = $cliente->getOrdini()->andWhere('stato=1')->all();

Quando si usa il caricamento immediato di una relazione, Yii 2.0 si comporta diversamente rispetto alla versione precedente. In
particolare, Yii 1.1 creava una query con JOIN con sia il record primario che la relazione. In Yii 2.0 vengono invece eseguite due
query SQL distinte, senza JOIN: la prima carica le righe della tabella primaria e la seconda recupera le righe della tabella in relazione
basandosi sulle chiavi ottenute dalla prima.

Invece di tornare oggetti [[yii\db\ActiveRecord|ActiveRecord]], puoi sfruttare il metodo [[yii\db\ActiveQuery::asArray()|asArray()]]
in caso di query che tornano un cospicuo numero di risultati. In questo modo i risultati saranno in formato di array, il che consente
di risparmiare l’utilizzo di CPU e memoria in caso di grandi volumi di record. Per esempio:

$clienti = Cliente::find()->asArray()->all();

Un’altra differenza è che non puoi più definire valori predefiniti per gli attributi tramite proprietà pubbliche.
Se ti servono li puoi impostare nel metodo init della tua classe ActiveRecord.

public function init()
{
 parent::init();
 $this->stato = self::STATO_NUOVO;
}

Nella versione precedente c’erano problemi nell’override del costruttore di un ActiveRecord. Questi problemi sono stati risolti
in questa versione. Tieni presente che se devi aggiungere parametri al costruttore devi probabilmente sovrascrivere
[[yii\db\ActiveRecord::instantiate()]].

Ci sono molti altri cambiamenti e miglioramenti sugli Active Record. Fai riferimento alla sezione
Active Record per maggiori dettagli.

Behavior di Active Record

Nella 2.0 è stata rimossa la classe base CActiveRecordBehavior. Per creare un nuovo behavior devi estendere direttamente
yii\base\Behavior. Se la classe deve gestire degli eventi dell’owner, devi sovrascrivere il metodo events() come qui di seguito:

namespace app\components;

use yii\db\ActiveRecord;
use yii\base\Behavior;

class MioBehavior extends Behavior
{
 // ...

 public function events()
 {
 return [
 ActiveRecord::EVENT_BEFORE_VALIDATE => 'beforeValidate',
];
 }

 public function beforeValidate($event)
 {
 // ...
 }
}

Utenti e IdentityInterface

La classe CWebUser di Yii 1.1 è stata rimpiazzata da [[yii\web\User]], e non esiste più la
CUserIdentity. In Yii 2.0 devi implementare [[yii\web\IdentityInterface]] che risulterà molto più immediata da usare.
Il template dell’applicazione avanzata fornisce un esempio di implementazione di quella libreria.

Fai riferimento alle sezioni Autenticazione, Autorizzazione e
Template applicazione avanzata per maggiori informazioni.

Gestione degli URL

La gestione degli URL è molto simile a quella implementata in Yii 1.1. Uno dei miglioramenti più rilevanti è che ora sono supportati
i parametri. Per esempio, una regola dichiarata come qui di seguito prenderà sia post/popolari che post/1/popolari. Nella 1.1
ci sarebbero volute due regole per lo stesso risultato.

[
 'pattern' => 'post/<page:\d+>/<tag>',
 'route' => 'post/index',
 'defaults' => ['page' => 1],
]

Fai riferimento alla sezione Url manager per ulteriori dettagli.

Usare Yii 1.1 e 2.x insieme

Se hai del vecchio codice scritto per Yii 1.1 che vuoi usare insieme a Yii 2.0, fai riferimento alla sezione
Usare Yii 1.1 e 2.0 insieme.

 Cos’è Yii

Cos’è Yii

Yii è un framework PHP ad alte prestazioni, basato su component, per lo sviluppo veloce di applicazioni web moderne.
Il nome Yii (pronunciato Yii o [ji:]) significa “semplice ed evoutivo” in cinese. Può anche essere visto come un acronimo di Yes It Iss (si lo è)!

Qual’è il migliore impiego di Yii?

Yii è un framework di programmazione, il che significa che può essere utilizzato per sviluppare ogni
tipo di appicazione con PHP. Grazie alla sua architettura basata sui componenti e al suo avanzato
supporto della cache, è particolarmente adeguato per lo sviluppo di applicazioni su larga scala quali
portali, forum, gestori di contenuti (CMS), progetti di e-commerce, servizi web RESTful, e così via.

Come si pone Yii rispetto ad altri framework?

Se hai già familiarità con altri framework potrai apprezzare questi punti in comune:

	Come la maggior parte dei framework, Yii implementa il paradigma di sviluppo MVC (Model-View-Controller) e
promuove l’organizzazione del codice secondo quelle regole.

	Yii usa la filosofia secondo cui il codice dovrebbe essere semplice ed elegante. Yii non cercherà mai di
ridisegnare le cose solo per seguire dei pattern di sviluppo.

	Yii è un framework completo in grado di fornire diverse funzionalità testate e pronte all’uso: costruttori di
query ed ActiveRecord sia per i database relazionali che NoSQL; supporto allo sviluppo di applicazioni RESTful;
supporto di caching a diversi livelli; e altro.

	Yii è estremamente estensibile. Puoi pesonalizzare o sostituire quasi ogni singolo pezzo del codice base. Puoi anche
sfuttare la solida architettura delle estensioni di Yii per usare o sviluppare estensioni ridistribuibili.

	Le prestazioni elevate sono sempre il focus primario di Yii.

Yii non è frutto di un uomo solo, ma è supportato da un folto gruppo di sviluppatori [http://www.yiiframework.com/about/], così come da una numerosa
comunità di professionisti che contribuiscono costantemente allo sviluppo. Il gruppo di sviluppatori tiene sempre
sott’occhio le ultime tendenze e tecnologie di sviluppo web, sulle pratiche ottimali e funzionalità degli altri
framework e progetti. Le peculiarità più rilevanti che si trovano altrove sono regolarmente incorporate nel
codice principale del framework, e rese disponibili tramite semplici ed eleganti interfacce.

Versioni di Yii

Yii al momento ha due versioni principali disponibili: 1.1 e 2.0. La versione 1.1 è la vecchia generazione ed è ora in
uno stato di manutenzione. La versione 2.0 è una riscrittura completa di Yii che utilizza le ultime tecnologie e protocolli,
inclusi Composer, PSR, namespace, trait, e così via. La versione 2.0 rappresenta l’attuale generazione del framework e
riceverà i maggiori sforzi di sviluppo nei prossimi anni.
Questa guida è focalizzata principalmente sulla versione 2.0.

Richieste e requisiti di sistema

Yii 2.0 richiede PHP 5.4.0 o successivo. Puoi trovare maggiori dettagli sulle richieste delle singole funzionalità
eseguendo lo script di verifica requisiti incluso in ogni versione di Yii.

L’uso di Yii richiede una conoscenza base della programmazione ad oggetti (OOP), dato che Yii è un framework puramente OOP.
Yii 2.0 fa uso delle più recenti funzionalità di PHP, come i namespace [http://www.php.net/manual/it/language.namespaces.php] e
trait [http://www.php.net/manual/it/language.oop5.traits.php]. La compresione di questi concetti ti aiuterà a semplificare
l’uso di Yii 2.0.

 Installare Yii

Installare Yii

Puoi installare Yii in due modi, usando Composer [https://getcomposer.org/] o scaricando un archivio.
Il metodo preferito è il primo, perché ti consente di installare estensioni o aggiornare il core di Yii
semplicemente eseguendo un comando.

Nota: diversamente da Yii 1, le installazioni standard di Yii 2 comportano il download e l’installazione sia del framework che dello scheletro dell’applicazione

Installazione via Composer

Se non hai già installato Composer puoi farlo seguendo le istruzioni al sito
getcomposer.org [https://getcomposer.org/download/]. Su Linux e Mac OS X puoi installare Composer con questo comando:

curl -sS https://getcomposer.org/installer | php
mv composer.phar /usr/local/bin/composer

Su Windows devi scaricare ed eseguire Composer-Setup.exe [https://getcomposer.org/Composer-Setup.exe].

Fai riferimento alla documentazione di Composer [https://getcomposer.org/doc/] in casodi errori o se vuoi apprendere maggiori
informazioni sull’uso di Composer.

Se hai già Composer installato assicurati di avere una versione aggiornata. Puoi aggiornare Composer con il comando
composer self-update.

Una volta installato Composer, puoi installare Yii eseguendo questo comando in una directory accessbile via web:

composer global require "fxp/composer-asset-plugin:^1.4.1"
composer create-project --prefer-dist yiisoft/yii2-app-basic basic

Il primo comando installa il plugin composer asset [https://github.com/francoispluchino/composer-asset-plugin/]
che consente di gestire le dipendenze di bower e npm tramite Composer. Devi eseguire questo comando solo una volta. Il secondo
installa Yii in una directory di nome basic. Puoi scegliere un nome diverso, se preferisci.

Nota: durante l’installazione potrebbe essere che Composer ti chieda le credenziali di Github, per superato limite di utilizzo
delle API di Github. Questa situazione è normale perché Composer deve scaricare molte informazioni per tutti i pacchetti da Github.
Accedendo a Github aumenterà il limite di utilizzo delle API, consentendo a Composer di completare il suo lavoro. Per maggiori
dettagli fai riferimento alla
documentazione di Composer [https://getcomposer.org/doc/articles/troubleshooting.md#api-rate-limit-and-oauth-tokens].

Suggerimento: se vuoi installare l’ultima versione di sviluppo di Yii, puoi usare questo comando che aggiunge una
opzione di stabilità [https://getcomposer.org/doc/04-schema.md#minimum-stability]:

composer create-project --prefer-dist --stability=dev yiisoft/yii2-app-basic basic

Considera che la versione di sviluppo di Yii non dovrebbe essere utilizzata per siti di produzione perché potrebbe rendere instabile
il tuo codice.

Installazione da un archivio

L’installazione da un archivio compresso comporta tre passaggi:

	Scaricare l’archivio da yiiframework.com [http://www.yiiframework.com/download/].

	Scompattare l’archivio in una directory accessible via web.

	Modificare il file config/web.php inserendo una chiave segreta per il parametro di configurazione cookieValidationKey
(questa operazione viene fatta automaticamente se installi tramite Composer):

// !!! insert a secret key in the following (if it is empty) - this is required by cookie validation
'cookieValidationKey' => 'enter your secret key here',

Altre modalità di installazione

Le istruzioni sopra elencate mostrano come installare Yii, e creano inoltre un’applicazione web base funzionante.
Questo approccio è un ottimo punto di partenza per progetti minori, o se stai imparando Yii.

Ma ci sono altre opzioni disponibili per l’installazione:

	se vuoi installare solo il core e costruire l’applocazione da zero puoi seguire le istruzioni della sezione
costruire un’applicazione da zero.

	se vuoi avviare un’applicazione più sofisticata, che meglio si sposa per uno sviluppo di gruppo, puoi considerare l’insallazione del
template di applicazione avanzata.

Verifica dell’installazione

Dopo l’installazione puoi usare il tuo browser per accedere all’applicazione Yii installata con l’URL seguente:

http://localhost/basic/web/index.php

Questo indirizzo assume che hai installato Yii in una directory di nome basic, direttamente nella root del tuo webserver,
e che il webserver è in esecuzione sulla tua macchina locale (localhost). Potresti doverlo modificare a seconda del tuo ambiente
di installazione.

[image: Installazione di Yii completata con successo]

Dovresti vedere la pagina sopra di congratulazioni. In caso contrario verifica se la tua installazione di PHP soddisfa i requisiti minimi
di Yii. Puoi verificare le richieste in due modi:

	accedere all’indirizzo http://localhost/basic/requirements.php tramite browser;

	lanciando questi comandi:

cd basic
php requirements.php

Devi configurare la tua installazione di PHP in modo che soddisfi le richieste minime di Yii. E’ molto importante che tu stia usando
PHP 5.4 o successivo. Devi inoltre installare le estensioni PDO di PHP [http://www.php.net/manual/en/pdo.installation.php] e un driver
di database di PDO (come ad esempio pdo_mysql per i database MySQL), se la tua applicazione richiede un database.

Configurazione del webserver

Informazione: puoi saltare questa parte per ora se stai solo provando Yii e non hai intenzione di installarlo su un server di produzione.

L’applicazione installata secondo le istruzioni sopra dovrebbe funzionare senza problemi su un server
Apache [http://httpd.apache.org/] o Nginx [http://nginx.org/], su Windows, Mac OS X, or Linux equipaggiati con PHP 5.4 o successivo.
Yii 2.0 è anche compatibile con le librerie HHVM [http://hhvm.com/] di Facebook, tuttavia ci sono alcuni casi limite dove HHVM si
comporta diversamente dal PHP nativo, quindi devi avere maggiore cura se intendi usare HHVM.

Su un server di produzione vorrai probabilmente che la tua applicazione sia accessibile tramite l’url
http://www.example.com/index.php invece di http://www.example.com/basic/web/index.php. Questo risultato richiede che punti la
document root del tuo webserver nella directory basic/web. Vorrai magari anche nascondere index.php dall’URL, come descritto
nella sezione analizzare e generare URL.
In questa parte vedrai configurare il tuo server Apache o Nginx per ottenere questo risultato.

Informazione: impostando basic/web come document root impedisci agli utenti finali di accedere al codice e a file/informazioni
riservate memorizzate nelle directory superiori a basic/web. Negare l’accesso a queste altre cartelle è sicuramente un vantaggio
per la sicurezza.

Informazione: se la tua applicazione andrà installata su un servizio di hosting condiviso non avrai il permesso di modificare la
configurazione del webserver, ma dovrai comunque correggere la struttura della tua applicazione per migliorare la sicurezza. Fai
riferimento alla sezione ambienti di hosting condiviso per maggiori dettagli.

Configurazione consigliata di Apache

Usa questa configurazione nel file httpd.conf di Apache o nella definizione del tuo VirtualHost. Tieni presente che dovrai
modificare path/to/basic/web con il percorso reale della tua basic/web.

Imposta *DocumentRoot* per essere "basic/web"
DocumentRoot "path/to/basic/web"

<Directory "path/to/basic/web">
 # usa mod_rewrite per gli url SEF
 RewriteEngine on
 # If a directory or a file exists, use the request directly
 RewriteCond %{REQUEST_FILENAME} !-f
 RewriteCond %{REQUEST_FILENAME} !-d
 # Otherwise forward the request to index.php
 RewriteRule . index.php

 # ...altre impostazioni...
</Directory>

Configurazione consigliata di Nginx

Devi aver installato PHP con il demone FPM [http://php.net/install.fpm] per usare Nginx [http://wiki.nginx.org/].
Usa questa configurazione per Nginx, sostituendo path/to/basic/web con il percorso reale di basic/web e mysite.test con
il nome reale del server web.

server {
 charset utf-8;
 client_max_body_size 128M;

 listen 80; ## listen for ipv4
 #listen [::]:80 default_server ipv6only=on; ## listen for ipv6

 server_name mysite.test;
 root /path/to/basic/web;
 index index.php;

 access_log /path/to/basic/log/access.log main;
 error_log /path/to/basic/log/error.log;

 location / {
 # Redirect everything that isn't a real file to index.php
 try_files $uri $uri/ /index.php?$args;
 }

 # uncomment to avoid processing of calls to non-existing static files by Yii
 #location ~ \.(js|css|png|jpg|gif|swf|ico|pdf|mov|fla|zip|rar)$ {
 # try_files $uri =404;
 #}
 #error_page 404 /404.html;

 location ~ \.php$ {
 include fastcgi.conf;
 fastcgi_pass 127.0.0.1:9000;
 #fastcgi_pass unix:/var/run/php5-fpm.sock;
 try_files $uri =404;
 }

 location ~ /\.(ht|svn|git) {
 deny all;
 }
}

Usando questa configurazione dovresti anche impostare cgi.fix_pathinfo=0 in php.ini per evitare molte chiamate di sistema stat()
inutili.

Inoltre considera che nel caso di server HTTPS dovrai aggiungere fastcgi_param HTTPS on; così che Yii possa correttamente rilevare
se la connessione è sicura.

 Yii 2.0 決定版ガイド

Yii 2.0 決定版ガイド

このチュートリアルは Yii ドキュメント許諾条件 [http://www.yiiframework.com/doc/terms/] の下にリリースされています。

All Rights Reserved.

2014 (c) Yii Software LLC.

導入

	Yii について

	バージョン 1.1 からのアップグレード

始めよう

	何を知っている必要があるか

	Yii をインストールする

	アプリケーションを走らせる

	こんにちは、と言う

	フォームを扱う

	データベースを扱う

	Gii でコードを生成する

	先を見通す

アプリケーションの構造

	アプリケーションの構造の概要

	エントリ・スクリプト

	アプリケーション

	アプリケーション・コンポーネント

	コントローラ

	モデル

	ビュー

	モジュール

	フィルタ

	ウィジェット

	アセット

	エクステンション

リクエストの処理

	リクエストの処理の概要

	ブートストラップ

	ルーティングと URL 生成

	リクエスト

	レスポンス

	セッションとクッキー

	エラー処理

	ロギング

鍵となる概念

	コンポーネント

	プロパティ

	イベント

	ビヘイビア

	構成情報

	エイリアス

	クラスのオートロード

	サービス・ロケータ

	依存注入コンテナ

データベースの取り扱い

	データベース・アクセス・オブジェクト: データベースへの接続、基本的なクエリ、トランザクション、および、スキーマ操作

	クエリ・ビルダ: シンプルな抽象レイヤを使ってデータベースに対してクエリを行う

	アクティブ・レコード: アクティブ・レコード ORM、レコードの読み出しと操作、リレーションの定義

	マイグレーション: チーム開発環境においてデータベースにバージョン・コントロールを適用

	Sphinx [https://www.yiiframework.com/extension/yiisoft/yii2-sphinx/doc/guide]

	Redis [https://www.yiiframework.com/extension/yiisoft/yii2-redis/doc/guide]

	MongoDB [https://www.yiiframework.com/extension/yiisoft/yii2-mongodb/doc/guide]

	ElasticSearch [https://www.yiiframework.com/extension/yiisoft/yii2-elasticsearch/doc/guide]

ユーザからのデータ取得

	フォームを作成する

	入力を検証する

	ファイルをアップロードする

	表形式インプットのデータ収集

	複数のモデルのデータを取得する

	クライアント・サイドで ActiveForm を拡張する

データの表示

	データのフォーマット

	ページネーション

	並べ替え

	データ・プロバイダ

	データ・ウィジェット

	クライアント・スクリプトを扱う

	テーマ

セキュリティ

	セキュリティの概要

	認証

	権限付与

	パスワードを扱う

	暗号化

	認証クライアント [https://www.yiiframework.com/extension/yiisoft/yii2-authclient/doc/guide]

	ベスト・プラクティス

キャッシュ

	キャッシュの概要

	データ・キャッシュ

	フラグメント・キャッシュ

	ページ・キャッシュ

	HTTP キャッシュ

RESTful ウェブ・サービス

	クイック・スタート

	リソース

	コントローラ

	ルーティング

	レスポンス形式の設定

	認証

	レート制限

	バージョン管理

	エラー処理

開発ツール

	デバッグ・ツールバーとデバッガ [https://www.yiiframework.com/extension/yiisoft/yii2-debug/doc/guide]

	Gii を使ってコードを生成する [https://www.yiiframework.com/extension/yiisoft/yii2-gii/doc/guide]

	API ドキュメントを生成する [https://www.yiiframework.com/extension/yiisoft/yii2-apidoc]

テスト

	テストの概要

	テスト環境の構築

	単体テスト

	機能テスト

	受入テスト

	フィクスチャ

スペシャル・トピック

	アドバンスト・プロジェクト・テンプレート [https://www.yiiframework.com/extension/yiisoft/yii2-app-advanced/doc/guide]

	アプリケーションを一から構築する

	コンソール・コマンド

	コア・バリデータ

	国際化

	メール送信

	パフォーマンス・チューニング

	共有ホスティング環境

	テンプレート・エンジン

	サードパーティのコードを扱う

	Yii をマイクロ・フレームワークとして使う

ウィジェット

	GridView [https://www.yiiframework.com/doc-2.0/yii-grid-gridview.html]

	ListView [https://www.yiiframework.com/doc-2.0/yii-widgets-listview.html]

	DetailView [https://www.yiiframework.com/doc-2.0/yii-widgets-detailview.html]

	ActiveForm [https://www.yiiframework.com/doc/guide/2.0/ja/input-forms#activerecord-based-forms-activeform]

	Pjax [https://www.yiiframework.com/doc-2.0/yii-widgets-pjax.html]

	Menu [https://www.yiiframework.com/doc-2.0/yii-widgets-menu.html]

	LinkPager [https://www.yiiframework.com/doc-2.0/yii-widgets-linkpager.html]

	LinkSorter [https://www.yiiframework.com/doc-2.0/yii-widgets-linksorter.html]

	Bootstrap ウィジェット [https://www.yiiframework.com/extension/yiisoft/yii2-bootstrap/doc/guide]

	jQuery UI ウィジェット [https://www.yiiframework.com/extension/yiisoft/yii2-jui/doc/guide]

ヘルパ

	ヘルパの概要

	配列ヘルパ

	Html ヘルパ

	Url ヘルパ

 データ・キャッシュ

データ・キャッシュ

データ・キャッシュは PHP の変数をキャッシュに格納し、あとでキャッシュからそれらを読み込みます。
これは、クエリ・キャッシュ や ページ・キャッシュ など、
より高度なキャッシュ機能の基礎でもあります。

以下のコードが、データ・キャッシュの典型的な利用パターンです。ここで、$cache は キャッシュ・コンポーネント
を指しています。

// キャッシュから $data を取得しようと試みる
$data = $cache->get($key);

if ($data === false) {
 // キャッシュの中に $data が見つからない場合は一から作る
 $data = $this->calculateSomething();

 // $data をキャッシュに格納して、次回はそれを取得できるようにする
 $cache->set($key, $data);
}

// この時点で $data は利用可能になっている

バージョン 2.0.11 以降は、キャッシュ・コンポーネント が提供する [yii\caching\Cache::getOrSet()|getOrSet()] メソッドを使って、
データを取得、計算、保存するためのコードを単純化することが出来ます。
次に示すコードは、上述の例と全く同じことをするものです。

$data = $cache->getOrSet($key, function () {
 return $this->calculateSomething();
});

キャッシュが $key と関連づけられたデータを保持している場合は、キャッシュされている値が返されます。
そうでない場合は、渡された無名関数が実行されて値が計算され、その値がキャッシュされるとともに返されます。

無名関数が外部のスコープの何らかのデータを必要とする場合は、それを use 文を使って渡すことが出来ます。
例えば、

$user_id = 42;
$data = $cache->getOrSet($key, function () use ($user_id) {
 return $this->calculateSomething($user_id);
});

Note: [yii\caching\Cache::getOrSet()|getOrSet()] メソッドは、有効期限と依存もサポートしています。
詳しくは キャッシュの有効期限 と キャッシュの依存 を参照してください。

キャッシュ・コンポーネント

データ・キャッシュはメモリ、ファイル、データベースなどさまざまなキャッシュ・ストレージを表す、
いわゆる キャッシュ・コンポーネント に依存しています。

キャッシュ・コンポーネントは通常グローバルに設定しアクセスできるように
アプリケーション・コンポーネント として登録されます。
以下のコードは、二台のキャッシュ・サーバを用いる Memcached [http://memcached.org/] を使うように
cache アプリケーション・コンポーネントを構成する方法を示すものです。

'components' => [
 'cache' => [
 'class' => 'yii\caching\MemCache',
 'servers' => [
 [
 'host' => 'server1',
 'port' => 11211,
 'weight' => 100,
],
 [
 'host' => 'server2',
 'port' => 11211,
 'weight' => 50,
],
],
],
],

こうすると、上記のキャッシュ・コンポーネントに Yii::$app->cache という式でアクセスできるようになります。

すべてのキャッシュ・コンポーネントは同じ API をサポートしているので、アプリケーションの構成情報で設定しなおせば、
キャッシュを使っているコードに変更を加えることなく、異なるキャッシュ・コンポーネントに入れ替えることができます。
例えば上記の構成を [[yii\caching\ApcCache|APC キャッシュ]] を使うように変更する場合は以下のようにします:

'components' => [
 'cache' => [
 'class' => 'yii\caching\ApcCache',
],
],

Tip: キャッシュ・コンポーネントは複数登録することができます。cache という名前のコンポーネントが、
キャッシュに依存する多数のクラスによってデフォルトで使用されます (例えば [[yii\web\UrlManager]] など) 。

サポートされているキャッシュ・ストレージ

Yii はさまざまなキャッシュ・ストレージをサポートしています。以下がその概要です:

	[[yii\caching\ApcCache]]: PHP の APC [http://php.net/manual/ja/book.apc.php] 拡張モジュールを使用します。
集中型の重厚なアプリケーションのキャッシュを扱うときには最速の一つとして考えることができます
(例えば、サーバが一台で、専用のロード・バランサを持っていない、などの場合)。

	このキャッシュを使用するには [[yii\caching\DbCache::cacheTable]] で指定したテーブルを作成する必要があります。

	ArrayCache のパフォーマンスを高めるために、[[yii\caching\ArrayCache::$serializer]] を false に設定して、
保存するデータのシリアライズを無効にすることが出来ます。 .

	このコンポーネントの目的は、キャッシュの可用性をチェックする必要があるコードを簡略化することです。
たとえば、開発中やサーバに実際のキャッシュ・サポートがない場合でも、
このキャッシュを使用するようにキャッシュ・コンポーネントを構成することができます。
そして、実際のキャッシュ・サポートが有効になったときに、対応するキャッシュ・コンポーネントに切替えて使用します。
どちらの場合も、Yii::$app->cache が null かも知れないと心配せずに、
データを取得するために同じコード Yii::$app->cache->get($key) を使用できます。

	これはページ・コンテントなど大きなかたまりのデータに特に適しています。

	[[yii\caching\MemCache]]: PHP の Memcache [http://php.net/manual/ja/book.memcache.php] と
Memcached [http://php.net/manual/ja/book.memcached.php] 拡張モジュールを使用します。
分散型のアプリケーションでキャッシュを扱うときには最速の一つとして考えることができます
(例えば、複数台のサーバで、ロード・バランサがある、などの場合) 。

	[[yii\redis\Cache]]: Redis [http://redis.io/] の key-value ストアに基づいてキャッシュ・コンポーネントを実装しています。
(Redis の バージョン 2.6.12 以降が必要とされます) 。

	[[yii\caching\WinCache]]: PHP の WinCache [http://iis.net/downloads/microsoft/wincache-extension] エクステンションを使用します。
(参照リンク [http://php.net/manual/ja/book.wincache.php])

	[[yii\caching\XCache]] (非推奨): PHP の XCache [http://xcache.lighttpd.net/] 拡張モジュールを使用します。

	[[yii\caching\ZendDataCache]] (非推奨):
キャッシュ・メディアとして Zend Data Cache [http://files.zend.com/help/Zend-Server-6/zend-server.htm#data_cache_component.htm]
を使用します。

Tip: 同じアプリケーション内で異なるキャッシュを使用することもできます。
一般的なやり方として、小さくとも常に使用されるデータ (例えば、統計データ) を格納する場合はメモリ・ベースのキャッシュ・ストレージを使用し、
大きくて使用頻度の低いデータ (例えば、ページ・コンテント) を格納する場合はファイル・ベース、またはデータベースのキャッシュ・ストレージを使用します 。

キャッシュ API

すべてのキャッシュ・コンポーネントが同じ基底クラス [[yii\caching\Cache]] を持っているので、以下の API をサポートしています。

	データが見つからないか、もしくは有効期限が切れたり無効になったりしている場合は false を返します。

	

	

	取得できなかった場合は、渡されたコールバック関数を実行し、関数の返り値をそのキーでキャッシュに保存し、そしてその値を返します。

	

	

	各データはキーによって識別されます。もしキャッシュ内にキーがすでに存在する場合はスキップされます。

	

	

	

Note: boolean 型の false を直接にキャッシュしてはいけません。
なぜなら、[yii\caching\Cache::get()|get()] メソッドは、データがキャッシュ内に見つからないことを示すために戻り値として false を使用しているからです。
代りに、配列内に false を置いてキャッシュすることによって、この問題を回避して下さい。

キャッシュされたデータを取得する際に発生するオーバーヘッドを減らすために、MemCache, APC などのいくつかのキャッシュ・ストレージは、
バッチ・モードで複数のキャッシュされた値を取得することをサポートしています。
[yii\caching\Cache::multiGet()|multiGet()] や [yii\caching\Cache::multiAdd()|multiAdd()] などの API はこの機能を十分に引き出すために提供されています。
基礎となるキャッシュ・ストレージがこの機能をサポートしていない場合には、シミュレートされます。

[[yii\caching\Cache]] は ArrayAccess インタフェイスを継承しているので、キャッシュ・コンポーネントは配列のように扱うことができます。
以下はいくつかの例です:

$cache['var1'] = $value1; // $cache->set('var1', $value1); と同等
$value2 = $cache['var2']; // $value2 = $cache->get('var2'); と同等

キャッシュのキー

キャッシュに格納される各データは、一意のキーによって識別されます。
キャッシュ内にデータを格納するときはキーを指定する必要があります。
また、あとでキャッシュからデータを取得するときは、それに対応するキーを提供しなければなりません。

キャッシュのキーとしては、文字列または任意の値を使用することができます。
キーが文字列でない場合は、自動的に文字列にシリアライズされます。

キャッシュのキーを定義する一般的なやり方として、全ての決定要素を配列の形で含めるという方方があります。
例えば [[yii\db\Schema]] はデータベース・テーブルのスキーマ情報を以下のキーを使用してキャッシュしています。

[
 __CLASS__, // スキーマ・クラス名
 $this->db->dsn, // データベース接続のデータ・ソース名
 $this->db->username, // データベース接続のログイン・ユーザ
 $name, // テーブル名
];

見ての通り、キーは一意にデータベースのテーブルを指定するために必要なすべての情報を含んでいます。

Note: [yii\caching\Cache::multiSet()|multiSet()] または [yii\caching\Cache::multiAdd()|multiAdd()] によってキャッシュに保存される値が持つことが出来るのは、
文字列または整数のキーだけです。それらより複雑なキーを設定する必要がある場合は、
[yii\caching\Cache::set()|set()] または [yii\caching\Cache::add()|add()] によって、値を個別に保存してください。

同じキャッシュ・ストレージが異なるアプリケーションによって使用されているときは、
キャッシュのキーの競合を避けるために、各アプリケーションではユニークなキーの接頭辞を指定する必要があります。
これは [[yii\caching\Cache::keyPrefix]] プロパティを設定することで出来ます。例えば、アプリケーション構成情報で以下のように書くことができます:

'components' => [
 'cache' => [
 'class' => 'yii\caching\ApcCache',
 'keyPrefix' => 'myapp', // ユニークなキャッシュのキーの接頭辞
],
],

相互運用性を確保するために、英数字のみを使用する必要があります。

キャッシュの有効期限

キャッシュに格納されたデータは、何らかのキャッシュ・ポリシー (例えば、キャッシュ・スペースがいっぱいになったときは最も古いデータが削除される、など)
の執行によって除去されない限り、永遠に残り続けます。
この動作を変えるために [yii\caching\Cache::set()|set()] を呼んでデータ・アイテムを保存するときに、有効期限パラメータを指定することができます。
このパラメータは、データ・アイテムが何秒間有効なものとしてキャッシュ内に残ることが出来るかを示します。
[yii\caching\Cache::get()|get()] でデータ・アイテムを取得する際に有効期限が切れていた場合は、
キャッシュ内にデータが見つからなかったことを示す false が返されます。例えば、

// 最大で 45 秒間キャッシュ内にデータを保持する
$cache->set($key, $data, 45);

sleep(50);

$data = $cache->get($key);
if ($data === false) {
 // $data は有効期限が切れているか、またはキャッシュ内に見つからない
}

バージョン 2.0.11 以降は、デフォルトの無限の有効期限に替えて特定の有効期限を指定したい場合には、
キャッシュ・コンポーネントの構成で [[yii\caching\Cache::$defaultDuration|defaultDuration]] の値を指定することが出来ます。
これによって、特定の duration パラメータを毎回 [yii\caching\Cache::set()|set()] に渡さなくてもよくなります。

キャッシュの依存

有効期限の設定に加えて、キャッシュされたデータは、いわゆる キャッシュの依存 (キャッシュが依存している事物) の変化によって無効にすることもできます。
例えば [yii\caching\FileDependency] は、キャッシュがファイルの更新時刻に依存していることを表しています。
この依存が変化したときは、対応するファイルが更新されたことを意味します。
その結果、キャッシュ内で見つかった古いファイルのコンテントは、無効とされるべきであり
[yii\caching\Cache::get()|get()] は false を返さなければなりません。

キャッシュの依存は [[yii\caching\Dependency]] の子孫クラスのオブジェクトとして表現されます。
[yii\caching\Cache::set()|set()] でキャッシュにデータ・アイテムを格納する際に、
関連するキャッシュの依存のオブジェクトを一緒に渡すことができます。例えば、

// example.txt ファイルの更新日時への依存を作成します。
$dependency = new \yii\caching\FileDependency(['fileName' => 'example.txt']);

// データは 30 秒で期限切れになります。
// さらに、example.txt が変更された場合、有効期限内でも無効になります。
$cache->set($key, $data, 30, $dependency);

// キャッシュはデータの有効期限が切れているかをチェックします。
// 同時に、関連付けられた依存が変更されているかもチェックします。
// これらの条件のいずれかが満たされている場合は false を返します。
$data = $cache->get($key);

以下は利用可能なキャッシュの依存の概要です:

	

	[[yii\caching\DbDependency]]: 指定された SQL 文のクエリ結果が変更された場合、依存が変更されます。

	[[yii\caching\ExpressionDependency]]: 指定された PHP の式の結果が変更された場合、依存が変更されます。

	

	[[yii\caching\TagDependency::invalidate()]] を呼び出すことによって、指定されたタグ (複数可) を持つキャッシュされたデータ・アイテムを無効にすることができます。

Note: 依存を有するキャッシュについて [yii\caching\Cache::exists()|exists()] メソッドを使用することは避けてください。
このメソッドは、キャッシュされたデータに関連づけられた依存がある場合でも、依存が変化したかどうかをチェックしません。
つまり、[yii\caching\Cache::exists()|exists()] が true を返しているのに、 [yii\caching\Cache::get()|get()] が false を返すという場合があり得ます。

クエリ・キャッシュ

クエリ・キャッシュは、データ・キャッシュ上に構築された特別なキャッシュ機能で、
データベースのクエリ結果をキャッシュするために提供されています。

クエリ・キャッシュは [[yii\db\Connection|データベース接続]] と有効な cache アプリケーション・コンポーネント を必要とします。
$db を [[yii\db\Connection]] のインスタンスと仮定した場合、クエリ・キャッシュの基本的な使い方は以下のようになります:

$result = $db->cache(function ($db) {

 // クエリ・キャッシュが有効で、かつクエリ結果がキャッシュ内にある場合、
 // SQL クエリ結果がキャッシュから提供されます
 return $db->createCommand('SELECT * FROM customer WHERE id=1')->queryOne();

});

クエリ・キャッシュは DAO だけではなく アクティブ・レコード でも使用することができます。

$result = Customer::getDb()->cache(function ($db) {
 return Customer::find()->where(['id' => 1])->one();
});

Info: いくつかの DBMS (例えば MySQL [http://dev.mysql.com/doc/refman/5.1/ja/query-cache.html])
もデータベース・サーバ・サイドのクエリ・キャッシュをサポートしています。
どちらのクエリ・キャッシュ・メカニズムを選んでも構いません。
前述した Yii のクエリ・キャッシュにはキャッシュの依存を柔軟に指定できるという利点があり、潜在的にはより効率的です。

2.0.14 以降は、下記のショートカットを使用することが出来ます。

(new Query())->cache(7200)->all();
// および
User::find()->cache(7200)->all();

構成

クエリ・キャッシュには [[yii\db\Connection]] を通して設定可能な三つのグローバルなオプションがあります:

	[[yii\db\Connection::enableQueryCache|enableQueryCache]]: クエリ・キャッシュを可能にするかどうか。デフォルトは true です。
実効的にクエリ・キャッシュをオンにするには [[yii\db\Connection::queryCache|queryCache]]
によって指定される有効なキャッシュを持っている必要があることに注意してください。

	持続できる秒数を表します。
クエリ・キャッシュを永遠にキャッシュに残したい場合は 0 を指定することができます。
このプロパティは [[yii\db\Connection::cache()]] が持続時間を指定せず呼び出されたときに使用されるデフォルト値です。

	[[yii\db\Connection::queryCache|queryCache]]: これはキャッシュ・アプリケーション・コンポーネントの ID を表します。
デフォルトは 'cache' です。有効なキャッシュ・コンポーネントが存在する場合にのみ、クエリ・キャッシュが使用可能になります。

使い方

クエリ・キャッシュを使用する必要がある複数の SQL クエリを持っている場合は [[yii\db\Connection::cache()]]
を使用することができます。使い方は以下のとおりです。

$duration = 60; // クエリ結果を 60 秒間 キャッシュ
$dependency = ...; // 依存のオプション

$result = $db->cache(function ($db) {

 // ... ここで SQL クエリを実行します ...

 return $result;

}, $duration, $dependency);

無名関数内の任意の SQL クエリは、指定した依存とともに指定された期間キャッシュされます。
もしキャッシュ内に有効なクエリ結果が見つかった場合は、クエリはスキップされ、代りに結果がキャッシュから提供されます。
$duration の指定がない場合 [yii\db\Connection::queryCacheDuration|queryCacheDuration]
で指定されている値が代りに使用されます。

場合によっては cache() 内でいくつかの特定のクエリに対してクエリ・キャッシュを無効にしたいことが有るでしょう。
そのときは [[yii\db\Connection::noCache()]] を使用します。

$result = $db->cache(function ($db) {

 // クエリ・キャッシュを使用する SQL クエリ

 $db->noCache(function ($db) {

 // クエリ・キャッシュを使用しない SQL クエリ

 });

 // ...

 return $result;
});

単一のクエリのためだけにクエリ・キャッシュを使用したい場合は、コマンドを構築するときに [[yii\db\Command::cache()]]
を呼び出すことができます。例えば、

// クエリ・キャッシュを使い、期間を 60 秒にセットする
$customer = $db->createCommand('SELECT * FROM customer WHERE id=1')->cache(60)->queryOne();

また、一つのコマンドに対してクエリ・キャッシュを無効にするために [[yii\db\Command::noCache()]] を使用することもできます。例えば、

$result = $db->cache(function ($db) {

 // クエリ・キャッシュを使用する SQL クエリ

 // このコマンドにはクエリ・キャッシュを使用しない
 $customer = $db->createCommand('SELECT * FROM customer WHERE id=1')->noCache()->queryOne();

 // ...

 return $result;
});

制約

リソース・ハンドラを返すようなクエリにはクエリ・キャッシュは働きません。
例えば、いくつかの DBMS において BLOB 型のカラムを用いる場合、
クエリ結果はカラム・データに対するリソース・ハンドラを返します。

いくつかのキャッシュ・ストレージはサイズに制約があります。
例えば Memcache では、各エントリのサイズは 1MB が上限値です。
そのためクエリ結果のサイズがこの制約を越える場合、キャッシュは失敗します。

キャッシュのフラッシュ

 フラグメント・キャッシュ

フラグメント・キャッシュ

フラグメント・キャッシュは、ウェブ・ページの断片をキャッシュすることを指します。
例えば、ページ内の表に年間販売の概要が表示されている場合、リクエスト毎にこの表を生成するのにかかる時間を削減するために、キャッシュにこの表を格納することができます。
フラグメント・キャッシュは データ・キャッシュ 上に構築されています。

フラグメント・キャッシュを使用するには ビュー で以下の構文を使用します:

if ($this->beginCache($id)) {

 // ... ここに生成するコンテントを書く ...

 $this->endCache();
}

つまり、コンテント生成ロジックを [[yii\base\View::beginCache()|beginCache()]] と [[yii\base\View::endCache()|endCache()]] の呼び出しのペアで囲みます。
コンテントがキャッシュ内で見つかった場合、[[yii\base\View::beginCache()|beginCache()]] はキャッシュされたコンテントをレンダリングして
false を返し、結果として、コンテント生成ロジックがスキップされます。
それ以外の場合はコンテント生成ロジックが呼ばれ、そして [[yii\base\View::endCache()|endCache()]] が呼ばれたときに、
生成されたコンテントがキャプチャされ、キャッシュに格納されます。

データ・キャッシュ と同様に、キャッシュされるコンテントを識別するためにユニークな $id が必要になります。

キャッシュのオプション

[[yii\base\View::beginCache()|beginCache()]] メソッドの 2 番目のパラメータとしてオプションの配列を渡すことによって、
フラグメント・キャッシュに関する追加のオプションを指定することができます。
舞台の裏側では、このオプションの配列が、実際のフラグメント・キャッシュ機能を実装する
[[yii\widgets\FragmentCache]] ウィジェットを構成するために使用されます。

持続時間

おそらくフラグメント・キャッシュで通常よく使われるであろうオプションは [[yii\widgets\FragmentCache::duration|duration]] でしょう。
このオプションはコンテントがどれだけの時間キャッシュ内において有効であるかを指定します。
以下のコードは最大で 1 時間コンテントの断片をキャッシュします:

if ($this->beginCache($id, ['duration' => 3600])) {

 // ... ここに生成するコンテントを書く ...

 $this->endCache();
}

このオプションがセットされていない場合は、デフォルトである 60 が使われます。すなわち、キャッシュされたコンテントの有効期限は 60 秒後に切れることになります。

依存

データ・キャッシュ と同様に、キャッシュされたコンテントの断片は依存を持つことができます。
例えば、表示されている投稿の内容は、投稿が変更されたか否かに依存します。

依存を指定するには [[yii\widgets\FragmentCache::dependency|dependency]] オプションに [[yii\caching\Dependency]]
オブジェクトを指定するか、または依存オブジェクトを作成するための構成情報配列を指定します。
以下のコードはコンテントの断片が updated_at カラムの値の変化に依存していることを指定しています:

$dependency = [
 'class' => 'yii\caching\DbDependency',
 'sql' => 'SELECT MAX(updated_at) FROM post',
];

if ($this->beginCache($id, ['dependency' => $dependency])) {

 // ... ここに生成するコンテントを書く ...

 $this->endCache();
}

バリエーション

キャッシュされるコンテントには、何らかのパラメータによってバリエーションを持たせることが出来ます。
例えば、複数の言語をサポートしているウェブ・アプリケーションでは、ビュー・コードの同じ部分が言語によってさまざまに異なるコンテントを生成することが有り得ます。
従って、現在のアプリケーションの言語に応じて、キャッシュされるコンテントのバリエーションを持つ必要があります。

キャッシュのバリエーションを指定するには [[yii\widgets\FragmentCache::variations|variations]] オプションを指定します。
このオプションは、それぞれが特定のバリエーションの要素を表すスカラ値の配列でなければなりません。
例えば、言語によるキャッシュ・コンテントのバリエーションを持つためには、以下のコードを使います。

if ($this->beginCache($id, ['variations' => [Yii::$app->language]])) {

 // ... ここに生成するコンテントを書く ...

 $this->endCache();
}

キャッシュをトグルする

時として、ある条件が満たされた場合にのみフラグメント・キャッシュを有効にしたい場合があるでしょう。
たとえば、フォームが表示されているページでは、フォームをキャッシュしたいのは最初の (GET リクエストによる) リクエストの場合だけです。
その後の (POST リクエストによる) フォームの表示では、フォームにユーザ入力が含まれている可能性があるため、キャッシュをすべきではありません。
これを行うには、以下のように [[yii\widgets\FragmentCache::enabled|enabled]] オプションをセットします:

if ($this->beginCache($id, ['enabled' => Yii::$app->request->isGet])) {

 // ... ここに生成するコンテントを書く ...

 $this->endCache();
}

キャッシュのネスト

フラグメント・キャッシュはネストすることができます。つまり、キャッシュされる断片を、それ自体もキャッシュされる別の断片に入れることができます。
例えば、内側のフラグメント・キャッシュにはコメントがキャッシュされており、外側のフラグメント・キャッシュには記事内容と一緒にコメントもキャッシュされている、という形です。
以下のコードは 2 つのフラグメント・キャッシュをネストする方法を示すものです。

if ($this->beginCache($id1)) {

 // ...コンテント生成ロジック...

 if ($this->beginCache($id2, $options2)) {

 // ...コンテント生成ロジック...

 $this->endCache();
 }

 // ...コンテント生成ロジック...

 $this->endCache();
}

ネストされたキャッシュには、異なるキャッシュ・オプションを設定することができます。
たとえば、上記の例における内側のキャッシュと外側のキャッシュに対して、異なる持続期間の値を設定する事が可能です。
これによって、外側のキャッシュでキャッシュされたデータが無効になった場合でも、内側のキャッシュが有効な内側の断片を提供することが可能になります。
しかし、その逆は真ではありません。
外側のキャッシュが有効であると判断された場合には、内側のキャッシュが無効になった後でも、外側のキャッシュが古くなったコンテントのコピーを提供し続けます。
従って、ネストされたキャッシュの持続時間や依存の設定を間違うと、無効になった内側のキャッシュ・データが外側のキャッシュに残り続けることになるので、注意が必要です。

ダイナミック・コンテント

フラグメント・キャッシュを使用する際、出力全体が比較的静的で、一ヶ所ないし数ヶ所だけが例外的に動的であるというような状況に遭遇するでしょう。
例えば、ページのヘッダがメイン・メニュー・バーと現在のユーザ名を一緒に表示している場合です。
もう一つの問題は、キャッシュされるコンテントに、リクエスト毎に実行しなければいけない PHP のコード
(例えば、アセット・バンドルを登録するためのコード) が含まれている場合です。
この両方の問題は、いわゆる ダイナミック・コンテント 機能によって解決することができます。

ダイナミック・コンテントは、それがフラグメント・キャッシュの中に含まれていても、キャッシュすべきではない出力の部分を意味します。
このコンテントを常に動的にするためには、外側のコンテントがキャッシュから提供されている場合でも、
すべてのリクエストに対して、何らかの PHP コードを実行することにより生成しなければいけません。

ダイナミック・コンテントを目的の場所に挿入するには、以下のように、キャッシュされる断片内で
[[yii\base\View::renderDynamic()]] を呼び出します。

if ($this->beginCache($id1)) {

 // ...コンテント生成ロジック...

 echo $this->renderDynamic('return Yii::$app->user->identity->name;');

 // ...コンテント生成ロジック...

 $this->endCache();
}

[[yii\base\View::renderDynamic()|renderDynamic()]] メソッドはパラメータとして PHP コードを取ります。
この PHP コードの戻り値が、ダイナミック・コンテントとして扱われます。
囲んでいる断片がキャッシュから提供されるか否かにかかわらず、同じ PHP コードがすべてのリクエストに対して実行されます。

Note: バージョン 2.0.14 以降、[[yii\base\DynamicContentAwareInterface]] インタフェイスとその [[yii\base\DynamicContentAwareTrait]] トレイトによって、ダイナミック・コンテント API が公開されています。.
その一例としては、 [[yii\widgets\FragmentCache]] クラスを参照して下さい。

 HTTP キャッシュ

HTTP キャッシュ

これまでのセクションで説明したサーバ・サイドのキャッシュに加えて、ウェブ・アプリケーションは、
同じページ・コンテントを生成し送信する時間を節約するために、クライアント・サイドでもキャッシュを利用することができます。

クライアント・サイドのキャッシュを使用するには、レンダリング結果をキャッシュできるように、
コントローラ・アクションのフィルタとして [[yii\filters\HttpCache]] を設定します。
[[yii\filters\HttpCache]] は GET と HEAD リクエストに対してのみ動作し、それらのリクエストに対する 3 種類のキャッシュ関連の HTTP ヘッダを扱うことができます:

	[[yii\filters\HttpCache::lastModified|Last-Modified]]

	[[yii\filters\HttpCache::etagSeed|Etag]]

	[[yii\filters\HttpCache::cacheControlHeader|Cache-Control]]

Last-Modified ヘッダ

Last-Modified ヘッダは、クライアントがキャッシュした時からページが変更されたかどうかを示すために、タイムスタンプを使用しています。

Last-Modified ヘッダの送信を有効にするには [[yii\filters\HttpCache::lastModified]] プロパティを構成します。
このプロパティは、ページの更新時刻に関する UNIX タイムスタンプを返す PHP のコーラブルでなければなりません。
この PHP コーラブルのシグニチャは以下のとおりです。

/**
 * @param Action $action 現在扱っているアクション・オブジェクト
 * @param array $params "params" プロパティの値
 * @return int ページの更新時刻を表す UNIX タイムスタンプ
 */
function ($action, $params)

以下は Last-Modified ヘッダを使用する例です:

public function behaviors()
{
 return [
 [
 'class' => 'yii\filters\HttpCache',
 'only' => ['index'],
 'lastModified' => function ($action, $params) {
 $q = new \yii\db\Query();
 return $q->from('post')->max('updated_at');
 },
],
];
}

上記のコードは index アクションでのみ HTTP キャッシュを有効にすべきことを記述しています。
Last-Modified は、投稿の最終更新時刻に基づいて生成される必要があります。
ブラウザが初めて index ページにアクセスしたときは、ページはサーバ上で生成されブラウザに送信されます。
もしブラウザが再度同じページにアクセスし、その期間中に投稿に変更がない場合は、サーバはページを再生成せず、
ブラウザはクライアント・サイドにキャッシュしたものを使用します。
その結果、サーバ・サイドのレンダリング処理とページ・コンテントの送信は両方ともスキップされます。

ETag ヘッダ

“Entity Tag” (略して ETag) ヘッダはページ・コンテントを表すためのハッシュです。
ページが変更された場合ハッシュも同様に変更されます。
サーバ・サイドで生成されたハッシュとクライアント・サイドで保持しているハッシュを比較することによって、ページが変更されたかどうか、そして再送信するべきかどうかを決定します。

ETag ヘッダの送信を有効にするには [[yii\filters\HttpCache::etagSeed]] プロパティを設定します。
プロパティは ETag のハッシュを生成するためのシードを返す PHP のコーラブルで、
以下のようなシグネチャを持たなければなりません。

/**
 * @param Action $action 現在扱っているアクション・オブジェクト
 * @param array $params "params" プロパティの値
 * @return string ETag のハッシュを生成するためのシードとして使用する文字列
 */
function ($action, $params)

以下は ETag ヘッダを使用している例です:

public function behaviors()
{
 return [
 [
 'class' => 'yii\filters\HttpCache',
 'only' => ['view'],
 'etagSeed' => function ($action, $params) {
 $post = $this->findModel(\Yii::$app->request->get('id'));
 return serialize([$post->title, $post->content]);
 },
],
];
}

上記のコードは view アクションでのみ HTTP キャッシュを有効にすべきことを記述しています。
Etag HTTP ヘッダは、リクエストされた投稿のタイトルとコンテントに基づいて生成されなければなりません。
ブラウザが初めて view ページにアクセスしたときは、ページがサーバ上で生成されブラウザに送信されます。
ブラウザが再度同じページにアクセスし、投稿のタイトルやコンテントに変更がない場合には、
サーバはページを再生成せず、ブラウザはクライアント・サイドにキャッシュしたものを使用します。
その結果、サーバ・サイドのレンダリング処理とページ・コンテント送信は両方ともスキップされます。

ETag は Last-Modified ヘッダよりも複雑 かつ/または より正確なキャッシング方式を可能にします。
例えば、サイトが別のテーマに切り替わった場合には ETag を無効化する、といったことができます。

ETag はリクエスト毎に再評価する必要があるため、負荷の高い生成方法を使うと HttpCache
の本来の目的を損なって不必要なオーバーヘッドが生じる場合があります。
ページのコンテントが変更されたときにキャッシュを無効化するための式は単純なものを指定するようにして下さい。

Note: RFC 7232 [http://tools.ietf.org/html/rfc7232#section-2.4] に準拠して
Etag と Last-Modified ヘッダの両方を設定した場合、
HttpCache はその両方とも送信します。 また、もし If-None-Match ヘッダと
If-Modified-Since ヘッダの両方を送信した場合は前者のみが尊重されます。

Cache-Control ヘッダ

Cache-Control ヘッダはページのための一般的なキャッシュ・ポリシーを指定します。
[[yii\filters\HttpCache::cacheControlHeader]] プロパティにヘッダの値を設定することで、それを送ることができます。
デフォルトでは、以下のヘッダが送信されます:

Cache-Control: public, max-age=3600

セッション・キャッシュ・リミッタ

ページでセッションを使用している場合、PHP はいくつかのキャッシュ関連の HTTP ヘッダ
(PHP の INI 設定ファイル内で指定されている session.cache_limiter など) を自動的に送信します。
これらのヘッダが HttpCache が実現しようとしているキャッシュ機能を妨害したり無効にしたりすることがあります。
この問題を防止するために、HttpCache はこれらのヘッダの送信をデフォルトで自動的に無効化します。
この動作を変更したい場合は [[yii\filters\HttpCache::sessionCacheLimiter]] プロパティを設定します。
このプロパティには public、private、private_no_expire、そして nocache などの文字列の値を使用することができます。
これらの値についての説明は session_cache_limiter() [http://www.php.net/manual/ja/function.session-cache-limiter.php]
を参照してください。

SEO への影響

検索エンジンのボットはキャッシュ・ヘッダを尊重する傾向があります。
クローラの中には、一定期間内に処理するドメインごとのページ数に制限を持っているものもあるため、
キャッシュ・ヘッダを導入して、処理の必要があるページ数を減らしてやると、サイトのインデックスの作成を促進できるかも知れません。

 キャッシュ

キャッシュ

キャッシュはウェブ・アプリケーションのパフォーマンスを向上させるための安価で効果的な方法です。
比較的静的なデータをキャッシュに格納し、要求に応じてキャッシュからそれを取得します。
これによって、アプリケーションは、毎回一からデータを生成した場合に必要になるであろう時間を節約することができます。

キャッシュはアプリケーション内のさまざまなレベルと場所で使用することができます。
例えばサーバ・サイドでの低いレベルでは、データベースから取得した最新の記事情報リストのような
基本的なデータを格納するためにキャッシュを使用することが出来ます。
より高いレベルでは、ウェブ・ページの断片または全体、例えば、最新の記事のレンダリング結果を格納するためにキャッシュを使用することが出来ます。
クライアント・サイドでは、最近訪れたページの内容をブラウザのキャッシュに格納するために、HTTP キャッシュを使用することができます。

Yii はこれら全てのキャッシュ機構をサポートしています:

	データ・キャッシュ

	フラグメント・キャッシュ

	ページ・キャッシュ

	HTTP キャッシュ

 ページ・キャッシュ

ページ・キャッシュ

ページ・キャッシュはサーバ・サイドでページ全体のコンテントをキャッシュするものです。
後で再び同じページがリクエストされた場合に、その内容を一から生成するのではなく、キャッシュから提供します。

ページ・キャッシュは [[yii\filters\PageCache]] という アクション・フィルタ によってサポートされています。
これは、コントローラ・クラスで以下のように使用することができます：

public function behaviors()
{
 return [
 [
 'class' => 'yii\filters\PageCache',
 'only' => ['index'],
 'duration' => 60,
 'variations' => [
 \Yii::$app->language,
],
 'dependency' => [
 'class' => 'yii\caching\DbDependency',
 'sql' => 'SELECT COUNT(*) FROM post',
],
],
];
}

上記のコードは、ページ・キャッシュが index アクションのみで使用されることを示しています。
ページのコンテントは最大 60 秒間キャッシュされ、現在のアプリケーションの言語によるバリエーションを持ち、
投稿の総数に変化があった場合キャッシュされたページが無効になります。

御覧のように、ページ・キャッシュは フラグメント・キャッシュ ととてもよく似ています。
それらは両方とも duration、dependencies、variations、そして enabled などのオプションをサポートしています。
主な違いとしては、ページ・キャッシュは アクション・フィルタ として、フラグメント・キャッシュは ウィジェット として実装されているということです。

フラグメント・キャッシュ も、ダイナミック・コンテント も、
ページ・キャッシュと併用することができます。

 エイリアス

エイリアス

ファイル・パスや URL を表すのにエイリアスを使用すると、あなたはプロジェクト内で絶対パスや URL をハードコードする必要がなくなります。
エイリアスは、通常のファイル・パスや URL と区別するために、 @ 文字で始まる必要があります。
先頭に @ を付けずに定義されたエイリアスは、@ 文字が先頭に追加されます。

Yii はすでに利用可能な多くの事前定義エイリアスを持っています。
たとえば、 @yii というエイリアスは Yii フレームワークのインストール・パスを表し、@web は現在実行中のウェブ・アプリケーションのベース URL を表します。

エイリアスを定義する

[[Yii::setAlias()]] を呼び出すことにより、ファイル・パスまたは URL のエイリアスを定義することができます。

// ファイル・パスのエイリアス
Yii::setAlias('@foo', '/path/to/foo');

// URL のエイリアス
Yii::setAlias('@bar', 'http://www.example.com');

// \foo\Bar クラスを保持する具体的なファイルのエイリアス
Yii::setAlias('@foo/Bar.php', '/definitely/not/foo/Bar.php');

Note: エイリアスされているファイル・パスや URL は、必ずしも実在するファイルまたはリソースを参照しない場合があります。

定義済みのエイリアスがあれば、スラッシュ / に続けて 1 つ以上のパス・セグメントを追加することで（[[Yii::setAlias()]]
の呼び出しを必要とせずに) 新しいエイリアスを導出することができます。 [[Yii::setAlias()]] を通じて定義されたエイリアスは
ルート・エイリアス となり、それから派生したエイリアスは 派生エイリアス になります。たとえば、 @foo がルート・エイリアスなら、
@foo/bar/file.php は派生エイリアスです。

エイリアスを、他のエイリアス (ルートまたは派生のいずれか) を使用して定義することができます:

Yii::setAlias('@foobar', '@foo/bar');

ルート・エイリアスは通常、 ブートストラップ 段階で定義されます。
たとえば、エントリ・スクリプト で [[Yii::setAlias()]] を呼び出すことができます。
便利なように、 アプリケーション は、aliases という名前の書き込み可能なプロパティを提供しており、
それをアプリケーションの 構成情報 で設定することが可能です。

return [
 // ...
 'aliases' => [
 '@foo' => '/path/to/foo',
 '@bar' => 'http://www.example.com',
],
];

エイリアスを解決する

[[Yii::getAlias()]] を呼び出して、ルート・エイリアスが表すファイル・パスまたは URL を解決することができます。
同メソッドで、派生エイリアスを対応するファイル・パスまたは URL に解決することもできます。

echo Yii::getAlias('@foo'); // /path/to/foo を表示
echo Yii::getAlias('@bar'); // http://www.example.com を表示
echo Yii::getAlias('@foo/bar/file.php'); // /path/to/foo/bar/file.php を表示

派生エイリアスによって表されるパスや URL は、
派生エイリアス内のルート・エイリアス部分を対応するパスや URL で置換して決定されます。

Note: [[Yii::getAlias()]] メソッドは、 結果のパスや URL が実在するファイルやリソースを参照しているかをチェックしません。

ルート・エイリアス名にはスラッシュ / 文字を含むことができます。 [[Yii::getAlias()]] メソッドは、
エイリアスのどの部分がルート・エイリアスであるかを賢く判別し、
正確に対応するファイル・パスや URL を決定します:

Yii::setAlias('@foo', '/path/to/foo');
Yii::setAlias('@foo/bar', '/path2/bar');
Yii::getAlias('@foo/test/file.php'); // /path/to/foo/test/file.php を表示
Yii::getAlias('@foo/bar/file.php'); // /path2/bar/file.php を表示

もし @foo/bar がルート・エイリアスとして定義されていなければ、最後のステートメントは /path/to/foo/bar/file.php を表示します。

エイリアスを使用する

Yii では、多くの場所で、パスや URL に変換する [[Yii::getAlias()]] を呼び出す必要なく、
エイリアスが認識されます。
たとえば、 [[yii\caching\FileCache::cachePath]] は、ファイル・パスとファイル・パスを表すエイリアスの両方を受け入れることが出来ます。
これは、接頭辞 @ によって、ファイル・パスとエイリアスを区別することが出来るためです。

use yii\caching\FileCache;

$cache = new FileCache([
 'cachePath' => '@runtime/cache',
]);

プロパティやメソッドのパラメータがエイリアスをサポートしているかどうかは、API ドキュメントに注意を払ってください。

事前定義されたエイリアス

Yii では、一般的に使用されるファイルのパスと URL を簡単に参照できるよう、エイリアスのセットが事前に定義されています:

	@yii, BaseYii.php ファイルがあるディレクトリ (フレームワーク・ディレクトリとも呼ばれます)

	@app, 現在実行中のアプリケーションの [[yii\base\Application::basePath|ベース・パス]]

	@runtime, 現在実行中のアプリケーションの [[yii\base\Application::runtimePath|ランタイム・パス]] 。デフォルトは @app/runtime 。

	@webroot, 現在実行中のウェブ・アプリケーションのウェブ・ルート・ディレクトリ。
エントリス・クリプトを含むディレクトリによって決定されます。

	@web, 現在実行中のウェブ・アプリケーションのベース URL。これは、 [[yii\web\Request::baseUrl]] と同じ値を持ちます。

	@vendor, [[yii\base\Application::vendorPath|Composer のベンダー・ディレクトリ]] 。デフォルトは @app/vendor 。

	@bower, bower パッケージ [http://bower.io/] が含まれるルート・ディレクトリ。デフォルトは @vendor/bower 。

	@npm, npm パッケージ [https://www.npmjs.org/] が含まれるルート・ディレクトリ。デフォルトは @vendor/npm 。

@yii エイリアスは エントリ・スクリプト に Yii.php ファイルを読み込んだ時点で定義されます。
エイリアスの残りの部分は、アプリケーションのコンストラクタ内で、アプリケーションの 構成情報
を適用するときに定義されます。

Note: @web と @webroot のエイリアスは、その説明が示しているように、[[yii\web\Application|ウェブ・アプリケーション]] の中で定義されます。従って、デフォルトでは [[yii\console\Application|コンソール・アプリケーション]] では利用できません。

エクステンションのエイリアス

Composer でインストールされる エクステンション のそれぞれに対してエイリアスが自動的に定義されます。
各エイリアスは、その composer.json ファイルで宣言されたエクステンションのルート名前空間にちなんで名付けられ、
パッケージのルート・ディレクトリを表します。たとえば、あなたが yiisoft/yii2-jui エクステンションをインストールしたとすると、
自動的に @yii/jui というエイリアスが ブートストラップ 段階で定義されます。これは次のものと等価です。

Yii::setAlias('@yii/jui', 'VendorPath/yiisoft/yii2-jui');

 クラスのオートローディング

クラスのオートローディング

Yiiは、必要となるすべてのクラス・ファイルを特定してインクルードするにあたり、
クラスのオートローディング・メカニズム [http://www.php.net/manual/ja/language.oop5.autoload.php] を頼りにします。
Yii は、PSR-4 標準 [https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-4-autoloader.md] に準拠した、高性能なクラスのオートローダを提供しています。
このオートローダは、あなたが Yii.php ファイルをインクルードするときにインストールされます。

Note: 説明を簡単にするため、このセクションではクラスのオートローディングについてのみ話します。しかし、
ここに記述されている内容は、インタフェイスとトレイトのオートローディングにも同様に適用されることに注意してください。

Yii オートローダを使用する

Yii のクラス・オートローダを使用するには、クラスを作成して名前を付けるとき、次の二つの単純なルールに従わなければなりません:

	各クラスは 名前空間 [http://php.net/manual/ja/language.namespaces.php] の下になければなりません (例 foo\bar\MyClass)

	各クラスは次のアルゴリズムで決定される個別のファイルに保存されなければなりません:

// $className は先頭にバック・スラッシュを持たない完全修飾クラス名
$classFile = Yii::getAlias('@' . str_replace('\\', '/', $className) . '.php');

たとえば、クラス名と名前空間が foo\bar\MyClass であれば、対応するクラス・ファイルのパスの エイリアス は、
@foo/bar/MyClass.php になります。このエイリアスがファイル・パスとして解決できるようにするためには、@foo または @foo/bar
のどちらかが、 ルート・エイリアス でなければなりません。

ベーシック・プロジェクト・テンプレート を使用している場合、最上位の名前空間 app の下にクラスを置くことができ、
そうすると、新しいエイリアスを定義しなくても、Yii によってそれらをオートロードできるようになります。これは @app
が 事前定義されたエイリアス であるためで、app\components\MyClass のようなクラス名を
今説明したアルゴリズムに従って、クラス・ファイル AppBasePath/components/MyClass.php であると解決することが出来ます。

アドバンスト・プロジェクト・テンプレート [https://github.com/yiisoft/yii2-app-advanced/blob/master/docs/guide-ja/README.md] では、各層がそれ自身のルート・エイリアスを持っています。たとえば、
フロントエンド層はルート・エイリアス @frontend を持ち、バックエンド層のルート・エイリアスは @backend です。その結果、名前空間 frontend の下に
フロントエンド・クラスを置き、バックエンド・クラスを backend の下に置けます。これで、これらのクラスは Yii のオートローダによって
オートロードできるようになります。

独自の名前空間をオートローダに追加するためには、[[Yii::setAlias()]] を使って、その名前空間のベース・ディレクトリに対するエイリアスを定義する必要があります。
例えば、path/to/foo ディレクトリに配置されている foo 名前空間に属するクラスをロードするためには、`Yii::setAlias(‘@foo’, ‘path/to/foo’) を呼び出します。

クラス・マップ

Yii のクラス・オートローダは、 クラス・マップ 機能をサポートしており、クラス名を対応するクラス・ファイルのパスにマップできます。
オートローダがクラスをロードするときは、クラスがマップに見つかるかどうかを最初にチェックします。もしあれば、対応する
ファイル・パスは、それ以上チェックされることなく、直接インクルードされます。これでクラスのオートローディングを非常に高速化できます。
実際のところ、すべての Yii のコア・クラスは、この方法でオートロードされています。

次の方法で、 Yii::$classMap に格納されるクラス・マップにクラスを追加できます:

Yii::$classMap['foo\bar\MyClass'] = 'path/to/MyClass.php';

クラス・ファイルのパスを指定するのに、 エイリアス を使うことができます。クラスが使用される前にマップが準備できるように、
クラス・マップの設定は ブートストラップ プロセス内でする必要があります。

他のオートローダの使用

Yii はパッケージ依存関係マネージャとして Composer を包含しているので、Composer のオートローダもインストールすることをお勧めします。
あなたが独自のオートローダを持つサードパーティ・ライブラリを使用している場合は、
それらもインストールする必要があります。

Yii オートローダを他のオートローダと一緒に使うときは、他のすべてのオートローダがインストールされた 後で 、 Yii.php
ファイルをインクルードする必要があります。これで Yii のオートローダが、任意クラスのオートローディング要求に応答する最初のものになります。
たとえば、次のコードは ベーシック・プロジェクト・テンプレート の
エントリ・スクリプト から抜き出したものです。
最初の行は、Composer のオートローダをインストールしており、二行目は Yii のオートローダをインストールしています。

require __DIR__ . '/../vendor/autoload.php';
require __DIR__ . '/../vendor/yiisoft/yii2/Yii.php';

あなたは Yii のオートローダを使わず、Composer のオートローダだけを単独で使用することもできます。しかし、そうすることによって、
あなたのクラスのオートローディングのパフォーマンスは低下し、クラスをオートロード可能にするために
Composer が設定したルールに従わなければならなくなります。

Info: Yiiのオートローダを使用したくない場合は、Yii.php ファイルのあなた独自のバージョンを作成し、
それを エントリ・スクリプト でインクルードする必要があります。

エクステンション・クラスのオートロード

Yii のオートローダは、 エクステンション クラスのオートロードが可能です。唯一の要件は、
エクステンションがその composer.json ファイルに正しく autoload セクションを指定していることです。
autoload の指定方法の詳細については Composer のドキュメント [https://getcomposer.org/doc/04-schema.md#autoload] 参照してください。

Yii のオートローダを使用しない場合でも、まだ Composer のオートローダがエクステンション・クラスをオートロードすることが可能です。

 ビヘイビア

ビヘイビア

ビヘイビアは [[yii\base\Behavior]] またその子クラスのインスタンスです。ビヘイビアは
ミックスイン [http://en.wikipedia.org/wiki/Mixin] としても知られ、既存の [[yii\base\Component|component]] クラスの
機能を、クラスの継承を変更せずに拡張することができます。コンポーネントにビヘイビアをアタッチすると、その
コンポーネントにはビヘイビアのメソッドとプロパティが “注入” され、それらのメソッドとプロパティは、
コンポーネント・クラス自体に定義されているかのようにアクセスできるようになります。また、ビヘイビアは、
コンポーネントによってトリガされた イベント に応答することができるので、ビヘイビアでコンポーネントの通常のコード実行をカスタマイズすることができます。

ビヘイビアを定義する

ビヘイビアを定義するには、 [[yii\base\Behavior]] あるいは子クラスを継承するクラスを作成します。たとえば:

namespace app\components;

use yii\base\Behavior;

class MyBehavior extends Behavior
{
 public $prop1;

 private $_prop2;

 public function getProp2()
 {
 return $this->_prop2;
 }

 public function setProp2($value)
 {
 $this->_prop2 = $value;
 }

 public function foo()
 {
 // ...
 }
}

上のコードは、prop1、prop2 という2つのプロパティと foo() というメソッドを持つ app\components\MyBehavior ビヘイビア・クラスを定義します。
prop2 プロパティは、 getProp2() getter メソッドと setProp2() setter メソッドで定義されることに着目してください。
[[yii\base\Behavior]] は [[yii\base\BaseObject]] を継承しているので、getter と​​ setter による プロパティ 定義をサポートします。

このクラスはビヘイビアなので、コンポーネントにアタッチされると、そのコンポーネントは prop1 と prop2 のプロパティと foo() メソッドを持つようになります。

Tip: ビヘイビア内から、[[yii\base\Behavior::owner]] プロパティを介して、ビヘイビアをアタッチしたコンポーネントにアクセスすることができます。

Note: ビヘイビアの [[yii\base\Behavior::__get()]] および/または [[yii\base\Behavior::__set()]] メソッドをオーバーライドする場合は、
同時に [[yii\base\Behavior::canGetProperty()]] および/または [[yii\base\Behavior::canSetProperty()]] もオーバーライドする必要があります。

コンポーネントのイベントを処理する

ビヘイビアが、アタッチされたコンポーネントがトリガするイベントに応答する必要がある場合は、
[[yii\base\Behavior::events()]] メソッドをオーバーライドしなければなりません。たとえば:

namespace app\components;

use yii\db\ActiveRecord;
use yii\base\Behavior;

class MyBehavior extends Behavior
{
 // ...

 public function events()
 {
 return [
 ActiveRecord::EVENT_BEFORE_VALIDATE => 'beforeValidate',
];
 }

 public function beforeValidate($event)
 {
 // ...
 }
}

[[yii\base\Behavior::events()]] メソッドは、イベントとそれに対応するハンドラのリストを返します。
上の例では [[yii\db\ActiveRecord::EVENT_BEFORE_VALIDATE|EVENT_BEFORE_VALIDATE]] イベントがあること、
そのハンドラ定義である beforeValidate() を宣言しています。イベント・ハンドラを指定するときは、以下の表記方法が使えます:

	ビヘイビア・クラスのメソッド名を参照する文字列 (上の例など)

	オブジェクトまたはクラス名と文字列のメソッド名 (括弧なし) 例 [$object, 'methodName']

	無名関数

イベント・ハンドラのシグニチャは次のようにしてください。$event はイベントのパラメータを参照します。イベントの詳細については
イベント セクションを参照してください。

function ($event) {
}

ビヘイビアをアタッチする

[[yii\base\Component|コンポーネント]] へのビヘイビアのアタッチは、静的にも動的にも可能です。実際は、前者のほうがより一般的ですが。

ビヘイビアを静的にアタッチするには、ビヘイビアをアタッチしたいコンポーネント・クラスの [[yii\base\Component::behaviors()|behaviors()]] メソッドをオーバーライドします。
[[yii\base\Component::behaviors()|behaviors()]] メソッドは、ビヘイビアの 構成 のリストを返さなければなりません。
各ビヘイビアの構成内容は、ビヘイビアのクラス名でも、構成情報配列でもかまいません。

namespace app\models;

use yii\db\ActiveRecord;
use app\components\MyBehavior;

class User extends ActiveRecord
{
 public function behaviors()
 {
 return [
 // 無名ビヘイビア ビヘイビア・クラス名のみ
 MyBehavior::className(),

 // 名前付きビヘイビア ビヘイビア・クラス名のみ
 'myBehavior2' => MyBehavior::className(),

 // 無名ビヘイビア 構成情報配列
 [
 'class' => MyBehavior::className(),
 'prop1' => 'value1',
 'prop2' => 'value2',
],

 // 名前付きビヘイビア 構成情報配列
 'myBehavior4' => [
 'class' => MyBehavior::className(),
 'prop1' => 'value1',
 'prop2' => 'value2',
]
];
 }
}

ビヘイビア構成に対応する配列のキーを指定することによって、ビヘイビアに名前を関連付けることができます。この場合、ビヘイビアは 名前付きビヘイビア と呼ばれます。上の例では、2つの名前付きビヘイビア​​
myBehavior2 と myBehavior4 があります。ビヘイビアが名前と関連付けられていない場合は、 無名ビヘイビア と呼ばれます。

ビヘイビアを動的にアタッチするには、ビヘイビアがアタッチされるコンポーネントの [[yii\base\Component::attachBehavior()]] メソッドを呼びます:

use app\components\MyBehavior;

// ビヘイビア・オブジェクトをアタッチ
$component->attachBehavior('myBehavior1', new MyBehavior);

// ビヘイビア・クラスをアタッチ
$component->attachBehavior('myBehavior2', MyBehavior::className());

// 構成情報配列をアタッチ
$component->attachBehavior('myBehavior3', [
 'class' => MyBehavior::className(),
 'prop1' => 'value1',
 'prop2' => 'value2',
]);

[[yii\base\Component::attachBehaviors()]] メソッドを使うと、いちどに複数のビヘイビアをアタッチできます:

$component->attachBehaviors([
 'myBehavior1' => new MyBehavior, // 名前付きビヘイビア
 MyBehavior::className(), // 無名ビヘイビア
]);

次のように、 構成情報 を通じてビヘイビアをアタッチすることもできます:

[
 'as myBehavior2' => MyBehavior::className(),

 'as myBehavior3' => [
 'class' => MyBehavior::className(),
 'prop1' => 'value1',
 'prop2' => 'value2',
],
]

詳しくは 構成情報
のセクションを参照してください。

ビヘイビアを使用する

ビヘイビアを使用するには、まず上記の方法に従って [[yii\base\Component|コンポーネント]] にアタッチします。ビヘイビアがコンポーネントにアタッチされれば、その使用方法はシンプルです。

あなたは、アタッチされているコンポーネントを介して、ビヘイビアの パブリック メンバ変数、
または getter や setter によって定義されたプロパティにアクセスすることができます:

// "prop1" はビヘイビア・クラス内で定義されたプロパティ
echo $component->prop1;
$component->prop1 = $value;

また同様に、ビヘイビアの パブリック・メソッドも呼ぶことができます:

// foo() はビヘイビア・クラス内で定義されたパブリック・メソッド
$component->foo();

ご覧のように、 $component は prop1 と foo() を定義していないにもかかわらず、
アタッチされたビヘイビアによって、それらをコンポーネント定義の一部であるかのように使うことができるのです。

もし2つのビヘイビアが同じプロパティやメソッドを定義し、かつ両方とも同じコンポーネントにアタッチされている場合は、
プロパティやメソッドのアクセス時に、最初に コンポーネントにアタッチされたビヘイビアが優先されます。

ビヘイビアはコンポーネントにアタッチされるとき、名前と関連付けられているかもしれません。その場合、
その名前を使用してビヘイビア・オブジェクトにアクセスすることができます:

$behavior = $component->getBehavior('myBehavior');

また、コンポーネントにアタッチされた全てのビヘイビアを取得することもできます:

$behaviors = $component->getBehaviors();

ビヘイビアをデタッチする

ビヘイビアをデタッチするには、ビヘイビアに付けられた名前とともに [[yii\base\Component::detachBehavior()]] を呼び出します:

$component->detachBehavior('myBehavior1');

全ての ビヘイビアをデタッチすることもできます:

$component->detachBehaviors();

TimestampBehavior を利用する

しめくくりに、[[yii\behaviors\TimestampBehavior]] を見てみましょう。このビヘイビアは、
insert()、update() または save() のメソッドを通じて [[yii\db\ActiveRecord|アクティブ・レコード]] モデルが保存されるときに、
タイムスタンプ属性の自動的な更新をサポートします。

まず、使用しようと考えている [[yii\db\ActiveRecord|アクティブ・レコード]] クラスに、このビヘイビアをアタッチします:

namespace app\models\User;

use yii\db\ActiveRecord;
use yii\behaviors\TimestampBehavior;

class User extends ActiveRecord
{
 // ...

 public function behaviors()
 {
 return [
 [
 'class' => TimestampBehavior::className(),
 'attributes' => [
 ActiveRecord::EVENT_BEFORE_INSERT => ['created_at', 'updated_at'],
 ActiveRecord::EVENT_BEFORE_UPDATE => ['updated_at'],
],
 // UNIX タイムスタンプではなく datetime を使う場合は
 // 'value' => new Expression('NOW()'),
],
];
 }
}

上のビヘイビア構成は、レコードが:

	挿入されるとき、ビヘイビアは現在の UNIX タイムスタンプを
created_at と updated_at 属性に割り当てます

	更新されるとき、ビヘイビアは現在の UNIX タイムスタンプを updated_at 属性に割り当てます

Note: 上記の実装が MySQL データベースで動作するようにするためには、created_at と updated_at のカラムを UNIX タイムスタンプ になるように int(11) として宣言してください。

このコードが所定の位置にあれば、例えば User オブジェクトがあって、それを保存しようとしたら、そこで、
created_at と updated_at が自動的に現在の UNIX タイムスタンプで埋められます。

$user = new User;
$user->email = 'test@example.com';
$user->save();
echo $user->created_at; // 現在のタイムスタンプが表示される

[[yii\behaviors\TimestampBehavior|TimestampBehavior]] は、また、指定された属性に現在のタイムスタンプを割り当てて
それをデータベースに保存する、便利なメソッド [[yii\behaviors\TimestampBehavior::touch()|touch()]]
を提供しています。

$user->touch('login_time');

その他のビヘイビア

その他にも、内蔵または外部ライブラリによって利用できるビヘイビアがいくつかあります。

	[[yii\behaviors\BlameableBehavior]] - 指定された属性に現在のユーザ ID を自動的に設定します。

	[[yii\behaviors\SluggableBehavior]] - 指定された属性に、URL のスラグとして使用できる値を
自動的に設定します。

	[[yii\behaviors\AttributeBehavior]] - 特定のイベントが発生したときに、ActiveRecord オブジェクトの一つまたは複数の属性に、
指定された値を自動的に設定します。

	yii2tech\ar\softdelete\SoftDeleteBehavior [https://github.com/yii2tech/ar-softdelete] - ActiveRecord をソフト・デリートおよびソフト・リストアするメソッド、
すなわち、レコードの削除を示すフラグまたはステータスを設定するメソッドを提供します。

	yii2tech\ar\position\PositionBehavior [https://github.com/yii2tech/ar-position] - レコードの順序を整数のフィールドによって管理することが出来るように、
順序変更メソッドを提供します。

ビヘイビアとトレイトの比較

ビヘイビアは、主となるクラスにそのプロパティやメソッドを「注入する」という点で トレイト [http://www.php.net/traits]
に似ていますが、これらは多くの面で異なります。以下に説明するように、それらは互いに長所と短所を持っています。
それらは代替手段というよりも、むしろ相互補完関係のようなものです。

ビヘイビアを使う理由

ビヘイビアは通常のクラスのように、継承をサポートしています。いっぽうトレイトは、
言語サポートされたコピー&ペーストとみなすことができます。トレイトは継承をサポートしません。

ビヘイビアは、コンポーネント・クラスの変更を必要とせず、コンポーネントに動的にアタッチまたはデタッチすることが可能です。
トレイトを使用するには、トレイトを使うクラスのコードを書き換える必要があります。

ビヘイビアは構成可能ですがトレイトは不可能です。

ビヘイビアは、イベントに応答することで、コンポーネントのコード実行をカスタマイズできます。

同じコンポーネントにアタッチされた異なるビヘイビア間で名前の競合がある場合、その競合は自動的に、
先にコンポーネントにアタッチされたものを優先することで解消されます。
異なるトレイトによって引き起こされる名前競合の場合は、
影響を受けるプロパティやメソッドの名前変更による、手動での解決が必要です。

トレイトを使う理由

ビヘイビアは時間もメモリも食うオブジェクトなので、トレイトはビヘイビアよりはるかに効率的です。

トレイトはネイティブな言語構造であるため、IDE との相性に優れています。

 コンポーネント

コンポーネント

コンポーネントは、Yiiアプリケーションの主要な構成ブロックです。コンポーネントは [[yii\base\Component]] 、
またはその派生クラスのインスタンスです。コンポーネントが他のクラスに提供する主な機能は次の 3 つです:

	プロパティ

	イベント

	ビヘイビア

個々にでも、組み合わせでも、これらの機能は Yii のクラスのカスタマイズ性と使いやすさをとても高めてくれます。
たとえば、ユーザ・インタフェイス·コンポーネントである [[yii\jui\DatePicker|デイト・ピッカー]] は、
ビュー で次のように使用して、対話型の日付選択 UI を生成することができます:

use yii\jui\DatePicker;

echo DatePicker::widget([
 'language' => 'ja',
 'name' => 'country',
 'clientOptions' => [
 'dateFormat' => 'yy-mm-dd',
],
]);

クラスが [[yii\base\Component]] を継承しているおかげで、ウィジェットのプロパティは簡単に記述できます。

コンポーネントは非常に強力ですが、 イベント と ビヘイビア をサポートするため、
余分にメモリと CPU 時間を要し、通常のオブジェクトよりも少し重くなります。
あなたのコンポーネントがこれら2つの機能を必要としない場合、[[yii\base\Component]] の代わりに、
[[yii\base\BaseObject]] からコンポーネント・クラスを派生することを検討してもよいでしょう。
そうすることで、あなたのコンポーネントは、 プロパティ のサポートが維持されたまま、通常の PHP オブジェクトのように効率的になります。

[[yii\base\Component]] または [[yii\base\BaseObject]] からクラスを派生するときは、
次の規約に従うことが推奨されます:

	コンストラクタをオーバーライドする場合は、コンストラクタの 最後の パラメータとして $config パラメータを指定し、
親のコンストラクタにこのパラメータを渡すこと。

	自分がオーバーライドしたコンストラクタの 最後で 、必ず親クラスのコンストラクタを呼び出すこと。

	[[yii\base\BaseObject::init()]] メソッドをオーバーライドする場合は、自分の init() メソッドの 最初に 、必ず init() の親実装を呼び出すようにすること。

例えば、

<?php

namespace yii\components\MyClass;

use yii\base\BaseObject;

class MyClass extends BaseObject
{
 public $prop1;
 public $prop2;

 public function __construct($param1, $param2, $config = [])
 {
 // ... 構成前の初期化

 parent::__construct($config);
 }

 public function init()
 {
 parent::init();

 // ... 構成後の初期化
 }
}

このガイドラインに従うことで、あなたのコンポーネントは生成時に コンフィグ可能 になります。例えば、

$component = new MyClass(1, 2, ['prop1' => 3, 'prop2' => 4]);
// あるいは、また
$component = \Yii::createObject([
 'class' => MyClass::className(),
 'prop1' => 3,
 'prop2' => 4,
], [1, 2]);

Note: [[Yii::createObject()]] を呼び出すアプローチは複雑に見えますが、より強力です。
というのも、それが 依存性注入コンテナ 上に実装されているからです。

[[yii\base\BaseObject]] クラスには、次のオブジェクト・ライフサイクルが適用されます:

	コンストラクタ内の事前初期化。ここでデフォルトのプロパティ値を設定することができます。

	$config によるオブジェクトの構成。構成情報は、コンストラクタ内で設定されたデフォルト値を上書きすることがあります。

	[[yii\base\BaseObject::init()|init()]] 内の事後初期化。サニティ・チェックやプロパティの正規化を行いたいときは、このメソッドをオーバーライドします。

	オブジェクトのメソッド呼び出し。

最初の 3 つのステップは、すべて、オブジェクトのコンストラクタ内で発生します。これは、あなたがクラス・インスタンス (つまり、オブジェクト) を得たときには、
すでにそのオブジェクトが適切な、信頼性の高い状態に初期化されていることを意味します。

 構成情報

構成情報

新しいオブジェクトを作成したり、既存のオブジェクトを初期化するとき、Yii では構成情報が広く使用されています。
構成情報は通常、作成されるオブジェクトのクラス名、およびオブジェクトの プロパティ
に割り当てられる初期値のリストを含みます。
構成情報は、オブジェクトの イベント にアタッチされるハンドラのリストや、オブジェクトにアタッチされる
ビヘイビア のリストを含むこともできます。

以下では、データベース接続を作成して初期化するために、構成情報が使用されています:

$config = [
 'class' => 'yii\db\Connection',
 'dsn' => 'mysql:host=127.0.0.1;dbname=demo',
 'username' => 'root',
 'password' => '',
 'charset' => 'utf8',
];

$db = Yii::createObject($config);

[[Yii::createObject()]] メソッドは引数に構成情報の配列を受け取り、構成情報で名前指定されたクラスをインスタンス化してオブジェクトを作成します。
オブジェクトがインスタンス化されるとき、構成情報の残りの部分を使って、
オブジェクトのプロパティ、イベント・ハンドラ、およびビヘイビアが初期化されます。

すでにオブジェクトがある場合は、構成情報配列でオブジェクトのプロパティを初期化するのに [[Yii::configure()]]
を使用することができます:

Yii::configure($object, $config);

なお、この場合には、構成情報配列に class 要素を含んではいけません。

構成情報の形式

構成情報の形式は、フォーマルには次のように説明できます:

[
 'class' => 'ClassName',
 'propertyName' => 'propertyValue',
 'on eventName' => $eventHandler,
 'as behaviorName' => $behaviorConfig,
]

ここで

	class 要素は、作成されるオブジェクトの完全修飾クラス名を指定します。

	propertyName 要素は、名前で指定されたプロパティの初期値を指定します。
キーはプロパティ名で、値はそれに対応する初期値です。
パブリック・メンバ変数と getter/setter によって定義されている プロパティ のみを設定することができます。

	on eventName 要素は、どのようなハンドラがオブジェクトの イベント にアタッチされるかを指定します。
配列のキーが on に続けてイベント名という書式になることに注意してください。サポートされているイベント・ハンドラの形式については、
イベント のセクションを参照してください。

	as behaviorName 要素は、どのような ビヘイビア がオブジェクトにアタッチされるかを指定します。
配列のキーが as に続けてビヘイビア名という書式になり、$behaviorConfig で示される値が、ここで説明する一般的な構成情報のような、
ビヘイビアを作成するための構成情報になることに注意してください。

下記は、初期プロパティ値、イベント・ハンドラ、およびビヘイビアでの構成を示した例です:

[
 'class' => 'app\components\SearchEngine',
 'apiKey' => 'xxxxxxxx',
 'on search' => function ($event) {
 Yii::info("Keyword searched: " . $event->keyword);
 },
 'as indexer' => [
 'class' => 'app\components\IndexerBehavior',
 // ... プロパティ初期値 ...
],
]

構成情報を使用する

構成情報は Yii の多くの場所で使用されています。このセクションの冒頭では、 [[Yii::createObject()]]
を使って、構成情報に応じてオブジェクトを作成する方法を示しました。この項では、
アプリケーションの構成とウィジェットの構成という、二つの主要な構成情報の用途を説明します。

アプリケーションの構成

アプリケーション の構成情報は、おそらく Yii の中で最も複雑な配列のひとつです。
それは [[yii\web\Application|アプリケーション]] クラスが、設定可能なプロパティとイベントを数多く持つためです。
さらに重要なことは、その [[yii\web\Application::components|components]] プロパティが、アプリケーションに登録されている
コンポーネントの生成用の構成情報配列を受け取ることができることです。以下は、 ベーシック・プロジェクト・テンプレート
のアプリケーション構成ファイルの概要です。

$config = [
 'id' => 'basic',
 'basePath' => dirname(__DIR__),
 'extensions' => require __DIR__ . '/../vendor/yiisoft/extensions.php',
 'components' => [
 'cache' => [
 'class' => 'yii\caching\FileCache',
],
 'mailer' => [
 'class' => 'yii\swiftmailer\Mailer',
],
 'log' => [
 'class' => 'yii\log\Dispatcher',
 'traceLevel' => YII_DEBUG ? 3 : 0,
 'targets' => [
 [
 'class' => 'yii\log\FileTarget',
],
],
],
 'db' => [
 'class' => 'yii\db\Connection',
 'dsn' => 'mysql:host=localhost;dbname=stay2',
 'username' => 'root',
 'password' => '',
 'charset' => 'utf8',
],
],
];

この構成情報には、 class キーがありません。それは、エントリ・スクリプト で以下のように、
クラス名が既に与えられて使用されているためです。

(new yii\web\Application($config))->run();

アプリケーションの components プロパティ構成の詳細については、 アプリケーション のセクションと
サービス・ロケータ のセクションにあります。

バージョン 2.0.11 以降では、アプリケーション構成で container プロパティを使って
依存注入コンテナ を構成することがサポートされています。例えば、

$config = [
 'id' => 'basic',
 'basePath' => dirname(__DIR__),
 'extensions' => require __DIR__ . '/../vendor/yiisoft/extensions.php',
 'container' => [
 'definitions' => [
 'yii\widgets\LinkPager' => ['maxButtonCount' => 5]
],
 'singletons' => [
 // 依存注入コンテナのシングルトンの構成
]
]
];

definitions と singletons の構成情報配列に使用できる値とその実例についてさらに知るためには、
依存注入コンテナ の記事の 高度な実際の使用方法
のセクションを読んでください。

ウィジェットの構成

ウィジェット を使用するときは、多くの場合、ウィジェットのプロパティをカスタマイズするために、構成情報を使用する必要があります。
[[yii\base\Widget::widget()]] と [[yii\base\Widget::begin()]] の両メソッドを使って、ウィジェットを作成できます。
それらは、以下のような構成情報配列を取ります。

use yii\widgets\Menu;

echo Menu::widget([
 'activateItems' => false,
 'items' => [
 ['label' => 'ホーム', 'url' => ['site/index']],
 ['label' => '製品', 'url' => ['product/index']],
 ['label' => 'ログイン', 'url' => ['site/login'], 'visible' => Yii::$app->user->isGuest],
],
]);

上記のコードは、 Menu ウィジェットを作成し、その activateItems プロパティが false になるよう初期化します。
items プロパティも、表示されるメニュー項目で構成されます。

クラス名がすでに与えられているので、構成情報配列が class キーを持つべきではないことに注意してください。

構成情報ファイル

構成情報がとても複雑になる場合、一般的な方法は、 構成情報ファイル と呼ばれる、ひとつまたは複数の PHP ファイルにそれを格納することです。
構成情報ファイルは、構成情報を表す PHP 配列を返します。
たとえば、次のように、 web.php と名づけたファイルにアプリケーションの構成情報を保持することができます。

return [
 'id' => 'basic',
 'basePath' => dirname(__DIR__),
 'extensions' => require __DIR__ . '/../vendor/yiisoft/extensions.php',
 'components' => require __DIR__ . '/components.php',
];

components の構成情報もまた複雑になるため、上記のように、 components.php と呼ぶ別のファイルにそれを格納し web.php でそのファイルを “require” しています。
この components.php の内容は、次のようになっています。

return [
 'cache' => [
 'class' => 'yii\caching\FileCache',
],
 'mailer' => [
 'class' => 'yii\swiftmailer\Mailer',
],
 'log' => [
 'class' => 'yii\log\Dispatcher',
 'traceLevel' => YII_DEBUG ? 3 : 0,
 'targets' => [
 [
 'class' => 'yii\log\FileTarget',
],
],
],
 'db' => [
 'class' => 'yii\db\Connection',
 'dsn' => 'mysql:host=localhost;dbname=stay2',
 'username' => 'root',
 'password' => '',
 'charset' => 'utf8',
],
];

構成情報ファイルに格納されている構成情報を取得するには、以下のように、それを “require” するだけです:

$config = require 'path/to/web.php';
(new yii\web\Application($config))->run();

デフォルト設定

[[Yii::createObject()]] メソッドは、 依存性注入コンテナ をベースに実装されています。
そのため、指定されたクラスが [[Yii::createObject()]] を使用して作成されるとき、そのすべてのインスタンスに適用される、
いわゆる デフォルト設定 のセットを指定することができます。デフォルト設定は、
ブートストラップ 段階のコード内で Yii::$container->set() を呼び出すことで指定することができます。

たとえばあなたが、すべてのリンク・ページャが最大で5つのページ・ボタン (デフォルト値は10) を伴って表示されるよう
[[yii\widgets\LinkPager]] をカスタマイズしたいとき、その目標を達成するには次のコードを使用することができます。

\Yii::$container->set('yii\widgets\LinkPager', [
 'maxButtonCount' => 5,
]);

デフォルト設定を使用しなければ、あなたは、リンク・ページャを使うすべての箇所で
maxButtonCount を設定しなければなりません。

環境定数

構成情報は、多くの場合、アプリケーションが実行される環境に応じて変化します。たとえば、
開発環境では mydb_dev という名前のデータベースを使用し、本番サーバ上では mydb_prod データベースを
使用したいかもしれません。環境の切り替えを容易にするために、Yii は、あなたのアプリケーションの
エントリ・スクリプト で定義可能な YII_ENV という名前の定数を提供します。
たとえば:

defined('YII_ENV') or define('YII_ENV', 'dev');

YII_ENV を次のいずれかの値と定義することができます:

	prod: 本番環境。定数 YII_ENV_PROD が true と評価されます。
とくに定義しない場合、これが YII_ENV のデフォルト値です。

	dev: 開発環境。定数 YII_ENV_DEV が true と評価されます。

	test: テスト環境。定数 YII_ENV_TEST が true と評価されます。

これらの環境定数を使用すると、現在の環境に基づいて条件付きで構成情報を指定することもできます。
たとえば、アプリケーション構成情報には、開発環境での デバッグ・ツールバーとデバッガ
を有効にするために、次のコードを含むことができます。

$config = [...];

if (YII_ENV_DEV) {
 // 'dev' 環境用に構成情報を調整
 $config['bootstrap'][] = 'debug';
 $config['modules']['debug'] = 'yii\debug\Module';
}

return $config;

 依存注入コンテナ

依存注入コンテナ

依存注入 (DI) コンテナは、オブジェクトとそれが依存するすべてのオブジェクトを、インスタンス化し、設定する方法を知っているオブジェクトです。
なぜ DI コンテナが便利なのかは、Martin Fowler の記事 [http://martinfowler.com/articles/injection.html] の説明がわかりやすいでしょう。
ここでは、主に Yii の提供する DI コンテナの使用方法を説明します。

依存注入

Yii は [[yii\di\Container]] クラスを通して DI コンテナの機能を提供します。
これは、次の種類の依存注入をサポートしています:

	コンストラクタ・インジェクション

	メソッド・インジェクション

	セッター/プロパティ・インジェクション

	PHP コーラブル・インジェクション

コンストラクタ・インジェクション

DI コンテナは、コンストラクタ引数の型ヒントの助けを借りて、コンストラクタ・インジェクションをサポートしています。
コンテナが新しいオブジェクトの作成に使用されるさい、そのオブジェクトがどういうクラスやインタフェイスに依存しているかを、型ヒントがコンテナに教えます。
コンテナは、依存するクラスやインタフェイスのインスタンスを取得して、
コンストラクタを通して、新しいオブジェクトにそれらを注入しようと試みます。たとえば

class Foo
{
 public function __construct(Bar $bar)
 {
 }
}

$foo = $container->get('Foo');
// これは下記と等価:
$bar = new Bar;
$foo = new Foo($bar);

メソッド・インジェクション

通常、クラスの依存はコンストラクタに渡されて、そのクラスの内部でライフサイクル全体にわたって利用可能になります。
メソッド・インジェクションを使うと、クラスのメソッドの一つだけに必要となる依存、例えば、コンストラクタに渡すことが不可能であったり、
大半のユース・ケースにおいてはオーバーヘッドが大きすぎるような依存を提供することが可能になります。

クラス・メソッドを次の例の doSomething メソッドのように定義することが出来ます。

class MyClass extends \yii\base\Component
{
 public function __construct(/* 軽量の依存はここに */, $config = [])
 {
 // ...
 }

 public function doSomething($param1, \my\heavy\Dependency $something)
 {
 // $something を使って何かをする
 }
}

このメソッドを呼ぶためには、あなた自身で \my\heavy\Dependency のインスタンスを渡すか、または、次のように [[yii\di\Container::invoke()]] を使います。

$obj = new MyClass(/*...*/);
Yii::$container->invoke([$obj, 'doSomething'], ['param1' => 42]); // $something は DI コンテナによって提供される

セッター/プロパティ・インジェクション

セッター/プロパティ・インジェクションは、構成情報 を通してサポートされます。
依存を登録するときや、新しいオブジェクトを作成するときに、対応するセッターまたはプロパティを通しての依存注入に使用される構成情報を、
コンテナに提供することが出来ます。
たとえば

use yii\base\BaseObject;

class Foo extends BaseObject
{
 public $bar;

 private $_qux;

 public function getQux()
 {
 return $this->_qux;
 }

 public function setQux(Qux $qux)
 {
 $this->_qux = $qux;
 }
}

$container->get('Foo', [], [
 'bar' => $container->get('Bar'),
 'qux' => $container->get('Qux'),
]);

Info: [[yii\di\Container::get()]] メソッドは三番目のパラメータを、生成されるオブジェクトに適用されるべき構成情報配列として受け取ります。
クラスが [[yii\base\Configurable]] インタフェイスを実装している場合 (例えば、クラスが [[yii\base\BaseObject]] である場合) には、
この構成情報配列がクラスのコンストラクタの最後のパラメータとして渡されます。
そうでない場合は、構成情報はオブジェクトが生成された 後で 適用されることになります。

PHP コーラブル・インジェクション

この場合、コンテナは、登録された PHP のコーラブルを使用して、クラスの新しいインスタンスを構築します。
[[yii\di\Container::get()]] が呼ばれるたびに、対応するコーラブルが起動されます。
このコーラブルが、依存を解決し、新しく作成されたオブジェクトに適切に依存を注入する役目を果たします。
たとえば

$container->set('Foo', function ($container, $params, $config) {
 $foo = new Foo(new Bar);
 // ... その他の初期化 ...
 return $foo;
});

$foo = $container->get('Foo');

新しいオブジェクトを構築するための複雑なロジックを隠蔽するために、スタティックなクラスメソッドをコーラブルとして使うことが出来ます。例えば、

class FooBuilder
{
 public static function build($container, $params, $config)
 {
 $foo = new Foo(new Bar);
 // ... その他の初期化 ...
 return $foo;
 }
}

$container->set('Foo', ['app\helper\FooBuilder', 'build']);

$foo = $container->get('Foo');

このようにすれば、Foo クラスを構成しようとする人は、Foo がどのように構築されるかを気にする必要はもうなくなります。

依存を登録する

[[yii\di\Container::set()]] を使って依存を登録することができます。登録には依存の名前だけでなく、依存の定義が必要です。
依存の名前は、クラス名、インタフェイス名、エイリアス名を指定することができます。
依存の定義には、クラス名、構成情報配列、PHPのコーラブルを指定できます。

$container = new \yii\di\Container;

// クラス名そのままの登録。これは省略可能です。
$container->set('yii\db\Connection');

// インタフェイスの登録
// クラスがインタフェイスに依存する場合、対応するクラスが
// 依存オブジェクトとしてインスタンス化されます
$container->set('yii\mail\MailInterface', 'yii\swiftmailer\Mailer');

// エイリアス名の登録。$container->get('foo') を使って
// Connection のインスタンスを作成できます
$container->set('foo', 'yii\db\Connection');

// 構成情報をともなうクラスの登録。クラスが get() でインスタンス化
// されるとき構成情報が適用されます
$container->set('yii\db\Connection', [
 'dsn' => 'mysql:host=127.0.0.1;dbname=demo',
 'username' => 'root',
 'password' => '',
 'charset' => 'utf8',
]);

// クラスの構成情報をともなうエイリアス名の登録
// この場合、クラスを指定する "class" 要素が必要です
$container->set('db', [
 'class' => 'yii\db\Connection',
 'dsn' => 'mysql:host=127.0.0.1;dbname=demo',
 'username' => 'root',
 'password' => '',
 'charset' => 'utf8',
]);

// PHP コーラブルの登録
// このコーラブルは $container->get('db') が呼ばれるたびに実行されます
$container->set('db', function ($container, $params, $config) {
 return new \yii\db\Connection($config);
});

// コンポーネント・インスタンスの登録
// $container->get('pageCache') は呼ばれるたびに毎回同じインスタンスを返します
$container->set('pageCache', new FileCache);

Note: 依存の名前が対応する依存の定義と同じである場合は、
それを DI コンテナに登録する必要はありません。

set() を介して登録された依存は、依存が必要とされるたびにインスタンスを生成します。
[[yii\di\Container::setSingleton()]] を使うと、
単一のインスタンスしか生成しない依存を登録することができます:

$container->setSingleton('yii\db\Connection', [
 'dsn' => 'mysql:host=127.0.0.1;dbname=demo',
 'username' => 'root',
 'password' => '',
 'charset' => 'utf8',
]);

依存を解決する

依存を登録すると、新しいオブジェクトを作成するのに DI コンテナを使用することができます。
そして、コンテナが自動的に依存をインスタンス化し、新しく作成されたオブジェクトに注入して、
依存を解決します。依存の解決は再帰的に行われます。つまり、ある依存が他の依存を持っている場合、
それらの依存も自動的に解決されます。

[[yii\di\Container::get()|get()]] を使って、オブジェクトのインスタンスを作成または取得することができます。
このメソッドは依存の名前を引数として取りますが、依存の名前は、クラス名、インタフェイス名、あるいは、エイリアス名で指定できます。
依存の名前は、 [[yii\di\Container::set()|set()]] を介して登録されていることもあれば、
[[yii\di\Container::setSingleton()|setSingleton()]] を介して登録されていることもあります。
オプションで、クラスのコンストラクタのパラメータのリストや、設定情報 を渡して、新しく作成されるオブジェクトを構成することも出来ます。

たとえば、

// "db" は事前に登録されたエイリアス名
$db = $container->get('db');

// これと同じ意味: $engine = new \app\components\SearchEngine($apiKey, $apiSecret, ['type' => 1]);
$engine = $container->get('app\components\SearchEngine', [$apiKey, $apiSecret], ['type' => 1]);

見えないところで、DIコンテナは、単に新しいオブジェクトを作成するよりもはるかに多くの作業を行います。
コンテナは、最初にクラスのコンストラクタを調査し、依存するクラスまたはインタフェイスの名前を見つけると、
自動的にそれらの依存を再帰的に解決します。

次のコードでより洗練された例を示します。UserLister クラスは UserFinderInterface
インタフェイスを実装するオブジェクトに依存します。UserFinder クラスはこのインタフェイスを実装していて、かつ、
Connection オブジェクトに依存します。これらのすべての依存は、クラスのコンストラクタのパラメータの型ヒントによって宣言されています。
依存の登録が適切にされていれば、DI コンテナは自動的にこれらの依存を解決し、単純に get('userLister')
を呼び出すだけで新しい UserLister インスタンスを作成できます。

namespace app\models;

use yii\base\BaseObject;
use yii\db\Connection;
use yii\di\Container;

interface UserFinderInterface
{
 function findUser();
}

class UserFinder extends BaseObject implements UserFinderInterface
{
 public $db;

 public function __construct(Connection $db, $config = [])
 {
 $this->db = $db;
 parent::__construct($config);
 }

 public function findUser()
 {
 }
}

class UserLister extends BaseObject
{
 public $finder;

 public function __construct(UserFinderInterface $finder, $config = [])
 {
 $this->finder = $finder;
 parent::__construct($config);
 }
}

$container = new Container;
$container->set('yii\db\Connection', [
 'dsn' => '...',
]);
$container->set('app\models\UserFinderInterface', [
 'class' => 'app\models\UserFinder',
]);
$container->set('userLister', 'app\models\UserLister');

$lister = $container->get('userLister');

// と、いうのはこれと同じ:

$db = new \yii\db\Connection(['dsn' => '...']);
$finder = new UserFinder($db);
$lister = new UserLister($finder);

実際の使用方法

あなたのアプリケーションの エントリ・スクリプト で Yii.php ファイルをインクルードするとき、
Yii は DI コンテナを作成します。この DI コンテナは [[Yii::$container]] を介してアクセス可能です。 [[Yii::createObject()]] を呼び出したとき、
このメソッドは実際にはコンテナの [[yii\di\Container::get()|get()]] メソッドを呼び出して新しいオブジェクトを作成します。
前述のとおり、DI コンテナは(もしあれば)自動的に依存を解決し、取得されたオブジェクトにそれらを注入します。
Yii は、新しいオブジェクトを作成するコアコードのほとんどにおいて [[Yii::createObject()]] を使用しています。このことは、
[[Yii::$container]] を操作することでグローバルにオブジェクトをカスタマイズすることができるということを意味しています。

例として、 [[yii\widgets\LinkPager]] のページ・ネーションボタンのデフォルト個数をグローバルにカスタマイズしてみましょう。

\Yii::$container->set('yii\widgets\LinkPager', ['maxButtonCount' => 5]);

そして、次のコードでビューでウィジェットを使用すれば、maxButtonCount プロパティは、
クラスで定義されているデフォルト値 10 の代わりに 5 で初期化されます。

echo \yii\widgets\LinkPager::widget();

ただし、DI コンテナを経由して設定された値を上書きすることは、まだ可能です:

echo \yii\widgets\LinkPager::widget(['maxButtonCount' => 20]);

Tip: ウィジェットの呼び出しで与えられたプロパティは常に DI コンテナが持つ定義を上書きします。
たとえ、'options' => ['id' => 'mypager'] のように配列を指定したとしても、
それらは他のオプションとマージされるのでなく、他のオプションを置換えてしまいます。

もう一つの例は、DI コンテナの自動コンストラクタ・インジェクションの利点を活かすものです。
あなたのコントローラ・クラスが、ホテル予約サービスのような、いくつかの他のオブジェクトに依存するとします。
あなたは、コンストラクタのパラメータを通して依存を宣言して、DI コンテナにそれを解決させることができます。

namespace app\controllers;

use yii\web\Controller;
use app\components\BookingInterface;

class HotelController extends Controller
{
 protected $bookingService;

 public function __construct($id, $module, BookingInterface $bookingService, $config = [])
 {
 $this->bookingService = $bookingService;
 parent::__construct($id, $module, $config);
 }
}

あなたがブラウザからこのコントローラにアクセスすると、BookingInterface をインスタンス化できない、という不平を言う
エラーが表示されるでしょう。これは、この依存に対処する方法を DI コンテナに教える必要があるからです:

\Yii::$container->set('app\components\BookingInterface', 'app\components\BookingService');

これで、あなたが再びコントローラにアクセスするときは、app\components\BookingService
のインスタンスが作成され、コントローラのコンストラクタに3番目のパラメータとして注入されるようになります。

高度な実際の使用方法

API アプリケーションを開発していて、以下のクラスを持っているとします。

	app\components\Request クラス。yii\web\Request から拡張され、追加の機能を提供する。

	app\components\Response クラス。yii\web\Response から拡張。
生成されるときに、format プロパティが json に設定されなければならない。

	app\storage\FileStorage および app\storage\DocumentsReader クラス。
何らかのファイルストレージに配置されているドキュメントを操作するロジックを実装する。

class FileStorage
{
 public function __construct($root) {
 // あれやこれや
 }
}

class DocumentsReader
{
 public function __construct(FileStorage $fs) {
 // なんやかんや
 }
}

[[yii\di\Container::setDefinitions()|setDefinitions()]] または [[yii\di\Container::setSingletons()|setSingletons()]]
のメソッドに構成情報の配列を渡して、複数の定義を一度に構成することが可能です。
これらのメソッドは、構成情報配列を反復して、各アイテムに対し、
それぞれ [[yii\di\Container::set()|set()]] を呼び出します。

構成情報配列のフォーマットは、

	key: クラス名、インタフェイス名、または、エイリアス名。
このキーが [[yii\di\Container::set()|set()]] メソッドの最初の引数 $class として渡されます。

	value: $class と関連づけられる定義。指定できる値は、[[yii\di\Container::set()|set()]] の $definition
パラメータのドキュメントで説明されています。
[[set()]] メソッドに二番目のパラメータ $definition として渡されます。

例として、上述の要求に従うように私たちのコンテナを構成しましょう。

$container->setDefinitions([
 'yii\web\Request' => 'app\components\Request',
 'yii\web\Response' => [
 'class' => 'app\components\Response',
 'format' => 'json'
],
 'app\storage\DocumentsReader' => function ($container, $params, $config) {
 $fs = new app\storage\FileStorage('/var/tempfiles');
 return new app\storage\DocumentsReader($fs);
 }
]);

$reader = $container->get('app\storage\DocumentsReader);
// 構成情報に書かれている依存とともに DocumentReader オブジェクトが生成されます

Tip: バージョン 2.0.11 以降では、アプリケーションの構成情報を使って、宣言的なスタイルでコンテナを構成することが出来ます。
構成情報 のガイドの アプリケーションの構成
のセクションを参照してください。

これで全部動きますが、DocumentWriter クラスを生成する必要がある場合には、FileStorage オブジェクトを生成する行をコピペすることになるでしょう。
もちろん、それが一番スマートな方法ではありません。

依存を解決する のセクションで説明したように、[[yii\di\Container::set()|set()]] と [[yii\di\Container::setSingleton()|setSingleton()]] は、
オプションで、第三の引数として依存のコンストラクタのパラメータを取ることが出来ます。
コンストラクタのパラメータを設定するために、以下の構成情報配列の形式を使うことが出来ます。

	key: クラス名、インタフェイス名、または、エイリアス名。
このキーが [[yii\di\Container::set()|set()]] メソッドの最初の引数 $class として渡されます。

	value: 二つの要素を持つ配列。最初の要素は [[set()]] メソッドに二番目のパラメータ $definition
として渡され、第二の要素が $params として渡されます。

では、私たちの例を修正しましょう。

$container->setDefinitions([
 'tempFileStorage' => [// 便利なようにエイリアスを作りました
 ['class' => 'app\storage\FileStorage'],
 ['/var/tempfiles'] // 何らかの構成ファイルから抽出することも可能
],
 'app\storage\DocumentsReader' => [
 ['class' => 'app\storage\DocumentsReader'],
 [Instance::of('tempFileStorage')]
],
 'app\storage\DocumentsWriter' => [
 ['class' => 'app\storage\DocumentsWriter'],
 [Instance::of('tempFileStorage')]
]
]);

$reader = $container->get('app\storage\DocumentsReader);
// 前の例と全く同じオブジェクトが生成されます

Instance::of('tempFileStorage') という記法に気づいたことでしょう。
これは、[[yii\di\Container|Container]] が、tempFileStorage という名前で登録されている依存を黙示的に提供して、
app\storage\DocumentsWriter のコンストラクタの最初の引数として渡す、ということを意味しています。

Note: [[yii\di\Container::setDefinitions()|setDefinitions()]] および [[yii\di\Container::setSingletons()|setSingletons()]]
のメソッドは、バージョン 2.0.11 以降で利用できます。

構成情報の最適化にかかわるもう一つのステップは、いくつかの依存をシングルトンとして登録することです。
[[yii\di\Container::set()|set()]] を通じて登録された依存は、必要になるたびに、毎回インスタンス化されます。
しかし、ある種のクラスは実行時を通じて状態を変化させませんので、
アプリケーションのパフォーマンスを高めるためにシングルトンとして登録することが出来ます。

app\storage\FileStorage クラスが好例でしょう。これは単純な API によってファイル・システムに対する何らかの操作を実行するもの
(例えば $fs->read() や $fs->write()) ですが、これらの操作はクラスの内部状態を変化させないものです。
従って、このクラスのインスタンスを一度だけ生成して、それを複数回使用することが可能です。

$container->setSingletons([
 'tempFileStorage' => [
 ['class' => 'app\storage\FileStorage'],
 ['/var/tempfiles']
],
]);

$container->setDefinitions([
 'app\storage\DocumentsReader' => [
 ['class' => 'app\storage\DocumentsReader'],
 [Instance::of('tempFileStorage')]
],
 'app\storage\DocumentsWriter' => [
 ['class' => 'app\storage\DocumentsWriter'],
 [Instance::of('tempFileStorage')]
]
]);

$reader = $container->get('app\storage\DocumentsReader');

いつ依存を登録するか

依存は、新しいオブジェクトが作成されるとき必要とされるので、それらの登録は可能な限り早期に行われるべきです。
推奨されるプラクティスは以下のとおりです:

	あなたがアプリケーションの開発者である場合は、アプリケーションの構成情報を使って依存を登録することが出来ます。
構成情報 のガイドの アプリケーションの構成
のセクションを読んでください。

	あなたが再配布可能な エクステンション の開発者である場合は、エクステンションのブートストラップ・クラス内で
依存を登録することができます。

まとめ

依存注入と サービス・ロケータ はともに、疎結合でよりテストしやすい方法でのソフトウェア構築を可能にする、
定番のデザインパターンです。
依存注入とサービス・ロケータへのより深い理解を得るために、 Martin の記事 [http://martinfowler.com/articles/injection.html]
を読むことを強くお勧めします。

Yii はその サービス・ロケータ を、依存注入 (DI) コンテナの上に実装しています。
サービス・ロケータは、新しいオブジェクトのインスタンスを作成しようとするとき、DI コンテナに呼び出しを転送します。
後者は、依存を、上で説明したように自動的に解決します。

 イベント

イベント

イベントを使うと、既存のコードの特定の実行ポイントに、カスタム・コードを挿入することができます。イベントにカスタム・コードをアタッチすると、
イベントがトリガされたときにコードが自動的に実行されます。たとえば、メーラ・オブジェクトがメッセージを正しく送信できたとき、
messageSent イベントをトリガするとします。もしメッセージの送信がうまく行ったことを知りたければ、単に messageSent
イベントにトラッキング・コードを付与するだけで、それが可能になります。

Yiiはイベントをサポートするために、 [[yii\base\Component]] と呼ばれる基底クラスを導入してします。クラスがイベントをトリガする必要がある場合は、
[[yii\base\Component]] もしくはその子クラスを継承する必要があります。

イベント・ハンドラ

イベント・ハンドラとは、アタッチされたイベントがトリガされたときに実行される PHP コールバック [http://www.php.net/manual/ja/language.types.callable.php]
です。次のコールバックのいずれも使用可能です:

	文字列で指定されたグローバル PHP 関数 (括弧を除く)、例えば 'trim'。

	オブジェクトとメソッド名文字列の配列で指定された、オブジェクトのメソッド (括弧を除く)、例えば [$object, 'methodName']。

	クラス名文字列とメソッド名文字列の配列で指定された、静的なクラス・メソッド (括弧を除く)、例えば ['ClassName', 'methodName']。

	無名関数、例えば function ($event) { ... }。

イベント・ハンドラのシグネチャはこのようになります:

function ($event) {
 // $event は yii\base\Event またはその子クラスのオブジェクト
}

$event パラメータを介して、イベント・ハンドラは発生したイベントに関して次の情報を得ることができます:

	[[yii\base\Event::name|イベント名]]

	[[yii\base\Event::sender|イベント送信元]]: trigger() メソッドが呼ばれたオブジェクト

	

イベント・ハンドラをアタッチする

イベント・ハンドラは [[yii\base\Component::on()]] を呼び出すことでアタッチできます。たとえば:

$foo = new Foo;

// このハンドラはグローバル関数です
$foo->on(Foo::EVENT_HELLO, 'function_name');

// このハンドラはオブジェクトのメソッドです
$foo->on(Foo::EVENT_HELLO, [$object, 'methodName']);

// このハンドラは静的なクラスメソッドです
$foo->on(Foo::EVENT_HELLO, ['app\components\Bar', 'methodName']);

// このハンドラは無名関数です
$foo->on(Foo::EVENT_HELLO, function ($event) {
 // イベント処理ロジック
});

また、 構成情報 を通じてイベント・ハンドラをアタッチすることもできます。詳細については
構成情報 の章を参照してください。

イベント・ハンドラをアタッチするとき、 [[yii\base\Component::on()]] の3番目のパラメータとして、付加的なデータを提供することができます。
そのデータは、イベントがトリガされてハンドラが呼び出されるときに、ハンドラ内で利用きます。たとえば:

// 次のコードはイベントがトリガされたとき "abc" を表示します
// "on" に3番目の引数として渡されたデータを $event->data が保持しているからです
$foo->on(Foo::EVENT_HELLO, 'function_name', 'abc');

function function_name($event) {
 echo $event->data;
}

イベント・ハンドラの順序

ひとつのイベントには、ひとつだけでなく複数のハンドラをアタッチすることができます。イベントがトリガされると、アタッチされたハンドラは、
それらがイベントにアタッチされた順序どおりに呼び出されます。あるハンドラがその後に続くハンドラの呼び出しを停止する必要がある場合は、
$event パラメータの [[yii\base\Event::handled]] プロパティを true に設定します:

$foo->on(Foo::EVENT_HELLO, function ($event) {
 $event->handled = true;
});

デフォルトでは、新たに接続されたハンドラは、イベントの既存のハンドラのキューに追加されます。その結果、
イベントがトリガされたとき、そのハンドラは一番最後に呼び出されます。もし、そのハンドラが最初に呼び出されるよう、
ハンドラのキューの先頭に新しいハンドラを挿入したい場合は、[[yii\base\Component::on()]] を呼び出すとき、4番目のパラメータ $append に false を渡します:

$foo->on(Foo::EVENT_HELLO, function ($event) {
 // ...
}, $data, false);

イベントをトリガする

イベントは、 [[yii\base\Component::trigger()]] メソッドを呼び出すことでトリガされます。このメソッドには イベント名 が必須で、
オプションで、イベント・ハンドラに渡されるパラメータを記述したイベント・オブジェクトを渡すこともできます。たとえば:

namespace app\components;

use yii\base\Component;
use yii\base\Event;

class Foo extends Component
{
 const EVENT_HELLO = 'hello';

 public function bar()
 {
 $this->trigger(self::EVENT_HELLO);
 }
}

上記のコードでは、すべての bar() の呼び出しは、 hello という名前のイベントをトリガします。

Tip: イベント名を表すときはクラス定数を使用することをお勧めします。上記の例では、定数 EVENT_HELLO は
hello イベントを表しています。このアプローチには 3 つの利点があります。まず、タイプミスを防ぐことができます。次に、IDE の自動補完サポートでイベントを
認識できるようになります。第 3 に、クラスでどんなイベントがサポートされているかを表したいとき、定数の宣言をチェックするだけで済みます。

イベントをトリガするとき、イベント・ハンドラに追加情報を渡したいことがあります。たとえば、メーラーが messageSent イベントのハンドラに
メッセージ情報を渡して、ハンドラが送信されたメッセージの詳細を知ることができるようにしたいかもしれません。
これを行うために、 [[yii\base\Component::trigger()]] メソッドの2番目のパラメータとして、イベント・オブジェクトを与えることができます。
イベント・オブジェクトは [[yii\base\Event]] クラスあるいはその子クラスのインスタンスでなければなりません。
たとえば:

namespace app\components;

use yii\base\Component;
use yii\base\Event;

class MessageEvent extends Event
{
 public $message;
}

class Mailer extends Component
{
 const EVENT_MESSAGE_SENT = 'messageSent';

 public function send($message)
 {
 // ... $message 送信 ...

 $event = new MessageEvent;
 $event->message = $message;
 $this->trigger(self::EVENT_MESSAGE_SENT, $event);
 }
}

[[yii\base\Component::trigger()]] メソッドが呼び出されたとき、この名前を付けられたイベントに
アタッチされたハンドラがすべて呼び出されます。

イベント・ハンドラをデタッチする

イベントからハンドラを取り外すには、 [[yii\base\Component::off()]] メソッドを呼び出します。たとえば:

// このハンドラはグローバル関数です
$foo->off(Foo::EVENT_HELLO, 'function_name');

// このハンドラはオブジェクトのメソッドです
$foo->off(Foo::EVENT_HELLO, [$object, 'methodName']);

// このハンドラは静的なクラスメソッドです
$foo->off(Foo::EVENT_HELLO, ['app\components\Bar', 'methodName']);

// このハンドラは無名関数です
$foo->off(Foo::EVENT_HELLO, $anonymousFunction);

一般的には、イベントにアタッチされたときどこかに保存してある場合を除き、無名関数を取り外そうとはしないでください。
上記の例は、無名関数は変数 $anonymousFunction として保存されていたものとしています。

イベントから すべて のハンドラを取り外すには、単純に、第 2 パラメータを指定せずに [[yii\base\Component::off()]] を呼び出します。

$foo->off(Foo::EVENT_HELLO);

クラス・レベル・イベント・ハンドラ

ここまでの項では、インスタンス・レベル でのイベントにハンドラをアタッチする方法を説明してきました。
場合によっては、特定のインスタンスだけではなく、
クラスのすべてのインスタンスがトリガしたイベントに応答したいことがあります。
すべてのインスタンスにイベント・ハンドラをアタッチする代わりに、静的メソッド [[yii\base\Event::on()]] を呼び出すことで、
クラス・レベル でハンドラをアタッチすることができます。

たとえば、アクティブ・レコード オブジェクトは、データベースに新しいレコードを挿入するたびに、
[[yii\db\BaseActiveRecord::EVENT_AFTER_INSERT|EVENT_AFTER_INSERT]] イベントをトリガします。 すべての
アクティブ・レコード オブジェクトによって行われる挿入を追跡するには、次のコードが使えます：

use Yii;
use yii\base\Event;
use yii\db\ActiveRecord;

Event::on(ActiveRecord::className(), ActiveRecord::EVENT_AFTER_INSERT, function ($event) {
 Yii::debug(get_class($event->sender) . ' が挿入されました');
});

[[yii\db\ActiveRecord|ActiveRecord]] またはその子クラスのいずれかが、 [[yii\db\BaseActiveRecord::EVENT_AFTER_INSERT|EVENT_AFTER_INSERT]]
をトリガするといつでも、このイベント・ハンドラが呼び出されます。ハンドラの中では、 $event->sender を通して、
イベントをトリガしたオブジェクトを取得することができます。

オブジェクトがイベントをトリガするときは、最初にインスタンス・レベルのハンドラを呼び出し、続いてクラス・レベルのハンドラとなります。

静的メソッド [[yii\base\Event::trigger()]] を呼び出すことによって、 クラス・レベル でイベントをトリガすることができます。
クラス・レベルでのイベントは、特定のオブジェクトに関連付けられていません。そのため、これはクラス・レベルのイベント・ハンドラだけを
呼び出します。たとえば:

use yii\base\Event;

Event::on(Foo::className(), Foo::EVENT_HELLO, function ($event) {
 var_dump($event->sender); // "null" を表示
});

Event::trigger(Foo::className(), Foo::EVENT_HELLO);

この場合、$event->sender は、オブジェクト・インスタンスではなく、null になることに注意してください。

Note: クラス・レベルのハンドラは、そのクラスのあらゆるインスタンス、またはあらゆる子クラスのインスタンスがトリガしたイベントに応答
してしまうため、よく注意して使わなければなりません。 [[yii\base\BaseObject]] のように、クラスが低レベルの基底クラスの場合は特にそうです。

クラス・レベルのイベント・ハンドラを取り外すときは、 [[yii\base\Event::off()]] を呼び出します。たとえば:

// $handler をデタッチ
Event::off(Foo::className(), Foo::EVENT_HELLO, $handler);

// Foo::EVENT_HELLO のすべてのハンドラをデタッチ
Event::off(Foo::className(), Foo::EVENT_HELLO);

インタフェイスを使うイベント

イベントを扱うためには、もっと抽象的な方法もあります。
特定のイベントのために専用のインタフェイスを作っておき、必要な場合にいろいろなクラスでそれを実装するのです。

例えば、次のようなインタフェイスを作ります。

namespace app\interfaces;

interface DanceEventInterface
{
 const EVENT_DANCE = 'dance';
}

そして、それを実装する二つのクラスを作ります。

class Dog extends Component implements DanceEventInterface
{
 public function meetBuddy()
 {
 echo "ワン!";
 $this->trigger(DanceEventInterface::EVENT_DANCE);
 }
}

class Developer extends Component implements DanceEventInterface
{
 public function testsPassed()
 {
 echo "よっしゃ!";
 $this->trigger(DanceEventInterface::EVENT_DANCE);
 }
}

これらのクラスのどれかによってトリガされた EVENT_DANCE を扱うためには、インタフェイス・クラスの名前を最初の引数にして
[[yii\base\Event::on()|Event::on()]] を呼びます。

Event::on('app\interfaces\DanceEventInterface', DanceEventInterface::EVENT_DANCE, function ($event) {
 Yii::debug(get_class($event->sender) . ' が躍り上がって喜んだ。'); // 犬または開発者が躍り上がって喜んだことをログに記録。
});

これらのクラスのイベントをトリガすることも出来ます。

// trigger event for Dog class
Event::trigger(Dog::className(), DanceEventInterface::EVENT_DANCE);

// trigger event for Developer class
Event::trigger(Developer::className(), DanceEventInterface::EVENT_DANCE);

ただし、このインタフェイスを実装する全クラスのイベントをトリガすることは出来ない、ということに注意して下さい。

// これは動かない。このインタフェイスを実装するクラスのイベントはトリガされない。
Event::trigger('app\interfaces\DanceEventInterface', DanceEventInterface::EVENT_DANCE);

イベント・ハンドラをデタッチするためには、[[yii\base\Event::off()|Event::off()]] を呼びます。例えば、

// $handler をデタッチ
Event::off('app\interfaces\DanceEventInterface', DanceEventInterface::EVENT_DANCE, $handler);

// DanceEventInterface::EVENT_DANCE の全てのハンドラをデタッチ
Event::off('app\interfaces\DanceEventInterface', DanceEventInterface::EVENT_DANCE);

グローバル・イベント

Yiiは、いわゆる グローバル・イベント をサポートしています。これは、実際には、上記のイベント・メカニズムに基づいたトリックです。
グローバル・イベントは、 アプリケーション インスタンス自身などの、グローバルにアクセス可能なシングルトンを必要とします。

グローバル・イベントを作成するには、イベント送信者は、送信者の自前の trigger() メソッドを呼び出す代わりに、シングルトンの
trigger() メソッドを呼び出してイベントをトリガします。同じく、イベント・ハンドラも、シングルトンのイベントにアタッチされます。たとえば:

use Yii;
use yii\base\Event;
use app\components\Foo;

Yii::$app->on('bar', function ($event) {
 echo get_class($event->sender); // "app\components\Foo" を表示
});

Yii::$app->trigger('bar', new Event(['sender' => new Foo]));

グローバル・イベントを使用する利点は、オブジェクトによってトリガされるイベント・ハンドラを設けたいとき、オブジェクトがなくてもいい
ということです。その代わりに、ハンドラのアタッチとイベントのトリガはともに、(アプリケーションのインスタンスなど) シングルトンを
介して行われます。

しかし、グローバル・イベントの名前空間はあらゆる部分から共有されているので、ある種の名前空間 (“frontend.mail.sent”、”backend.mail.sent” など)
を導入するというような、賢いグローバル・イベントの名前付けをする必要があります。

ワイルドカード・イベント

2.0.14 以降は、ワイルドカード・パターンに一致する複数のイベントに対してイベント・ハンドラを設定することが出来ます。
例えば、

use Yii;

$foo = new Foo();

$foo->on('foo.event.*', function ($event) {
 // 'foo.event.' で始まる全てのイベントに対してトリガされる
 Yii::debug('trigger event: ' . $event->name);
});

クラス・レベル・イベントに対してもワイルドカード・パターンを用いることが出来ます。例えば、

use yii\base\Event;
use Yii;

Event::on('app\models*', 'before*', function ($event) {
 // 名前空間 'app\models' の全てのクラスで、名前が 'before' で始まる全てのイベントに対してトリガされる
 Yii::debug('trigger event: ' . $event->name . ' for class: ' . get_class($event->sender));
});

これを利用すると、以下のコードを使って、全てのアプリケーション・イベントを一つのハンドラでキャッチすることが出来ます。

use yii\base\Event;
use Yii;

Event::on('*', '*', function ($event) {
 // 全てのクラスの全てのイベントに対してトリガされる
 Yii::debug('trigger event: ' . $event->name);
});

Note: イベント・ハンドラにワイルドカードを使用する設定は、アプリケーションの性能を低下させ得ます。
可能であれば避ける方が良いでしょう。

ワイルドカード・パターンで指定されたイベント・ハンドラをデタッチするためには、[[yii\base\Component::off()]] または [[yii\base\Event::off()]] の呼び出しにおいて、
同じパターンを使用しなければなりません。
イベント・ハンドラをデタッチする際にワイルドカードを指定すると、そのワイルドカードで指定されたハンドラだけがデタッチされることに留意して下さい。
通常のイベント名でアタッチされたハンドラは、パターンに合致する場合であっても、デタッチされません。例えば、

use Yii;

$foo = new Foo();

// 通常のハンドラをアタッチする
$foo->on('event.hello', function ($event) {
 echo 'direct-handler'
});

// ワイルドカード・ハンドラをアタッチする
$foo->on('*', function ($event) {
 echo 'wildcard-handler'
});

// ワイルドカード・ハンドラをデタッチする!
$foo->off('*');

$foo->trigger('event.hello'); // 出力: 'direct-handler'

 プロパティ

プロパティ

PHPでは、クラスのメンバ変数は プロパティ とも呼ばれます。
これらの変数は、クラス定義の一部で、クラスのインスタンスの状態を表すために(すなわち、クラスのあるインスタンスを別のものと区別するために) 使用されます。
現実には、特別な方法でこのプロパティの読み書きを扱いたい場合がよくあります。
たとえば、label プロパティに割り当てられる文字列が常にトリミングされるようにしたい、など。
その仕事を成し遂げるために、あなたは次のようなコードを使おうと思えば使うことも出来ます。

$object->label = trim($label);

上記のコードの欠点は、label プロパティを設定するすべてのコードで、trim() を呼び出す必要があるということです。
もし将来的に、label プロパティに、最初の文字を大文字にしなければならない、といった新たな要件が発生したら、
label に値を代入するすべてのコードを変更しなければなりません。
コードの繰り返しはバグを誘発するので、可能な限り避けたいところです。

この問題を解決するために、Yii は getter メソッドと setter メソッドをベースにしたプロパティ定義をサポートする、
[[yii\base\BaseObject]] 基底クラスを提供しています。
クラスがその機能を必要とするなら、[[yii\base\BaseObject]] またはその子クラスを継承しましょう。

Note: Yiiのフレームワークのほぼすべてのコア・クラスは、 [[yii\base\BaseObject]] またはその子クラスを継承しています。
これは、コア・クラスに getter または setter があれば、それをプロパティのように使用できることを意味します。

getter メソッドは、名前が get で始まるメソッドで、setter メソッドは、set で始まるメソッドです。
get または set 接頭辞の後の名前で、プロパティ名を定義します。次のコードに示すように、たとえば、getLabel() という getter と setLabel() という setter は、
label という名前のプロパティを定義します:

namespace app\components;

use yii\base\BaseObject;

class Foo extends BaseObject
{
 private $_label;

 public function getLabel()
 {
 return $this->_label;
 }

 public function setLabel($value)
 {
 $this->_label = trim($value);
 }
}

詳しく言うと、getter および setter メソッドは、この場合には、内部的に _label と名付けられた private な属性を参照する
label というプロパティを作っています。

getter と setter によって定義されたプロパティは、クラスのメンバ変数のように使用することができます。主な違いは、
それらのプロパティが読み取りアクセスされるときは、対応する getter メソッドが呼び出されることであり、プロパティに値が割り当てられるときには、
対応する setter メソッドが呼び出されるということです。例えば、

// $label = $object->getLabel(); と同じ
$label = $object->label;

// $object->setLabel('abc'); と同じ
$object->label = 'abc';

setter なしの getter で定義されたプロパティは、 読み取り専用 です。そのようなプロパティに値を代入しようとすると、
[[yii\base\InvalidCallException|InvalidCallException]] が発生します。同様に、getter なしの setter で定義されたプロパティは、
書き込み専用 で、そのようなプロパティを読み取りしようとしても、例外が発生します。
書き込み専用のプロパティを持つのは一般的ではありませんが。

getter と setter で定義されたプロパティには、いくつかの特別なルールと制限があります:

	この種のプロパティでは、名前の 大文字と小文字を区別しません 。たとえば、 $object->label と $object->Label は同じです。
これは、PHP のメソッド名が大文字と小文字を区別しないためです。

	この種のプロパティの名前と、クラスのメンバ変数の名前とが同じである場合、後者が優先されます。
たとえば、上記の Foo クラスがメンバ変数 label を持っている場合は、$object->label = 'abc'
という代入は メンバ変数の label に作用することになります。その行から setLabel() setter メソッドは呼び出されません。

	これらのプロパティは可視性をサポートしていません。プロパティが public、protected、private であるかどうかを、getter または setter メソッドの定義によって決めることは出来ません。

	プロパティは、 静的でない getter および setter によってのみ定義することが出来ます。静的なメソッドは同様には扱われません。

	通常の property_exists() の呼び出しでは、マジック・プロパティが存在するかどうかを知ることは出来ません。
それぞれ、[[yii\base\BaseObject::canGetProperty()|canGetProperty()]] または [[yii\base\BaseObject::canSetProperty()|canSetProperty()]] を呼び出さなければなりません。

このガイドの冒頭で説明した問題に戻ると、 label に値が代入されているあらゆる箇所で trim() を呼ぶのではなく、
もう setLabel() という setter の内部だけで trim() を呼べば済むのです。
さらに、新しい要求でラベルの先頭を大文字にする必要が発生しても、他のいっさいのコードに触れることなく、
すぐに setLabel() メソッドを変更することができます。一箇所の変更は、すべての label への代入に普遍的に作用します。

 サービス・ロケータ

サービス・ロケータ

サービス・ロケータは、アプリケーションが必要とする可能性のある各種のサービス (またはコンポーネント) を提供する方法を知っているオブジェクトです。
サービス・ロケータ内では、各コンポーネントは単一のインスタンスとして存在し、ID によって一意に識別されます。
あなたは、この ID を使用してサービス・ロケータからコンポーネントを取得できます。

Yii では、サービス・ロケータは単純に [[yii\di\ServiceLocator]] のインスタンス、またはその子クラスのインスタンスです。

Yii の中で最も一般的に使用されるサービス・ロケータは、\Yii::$app を通じてアクセスできる アプリケーション・オブジェクトです。
これが提供するサービスは、 アプリケーション・コンポーネント と呼ばれる request 、
response、 urlManager などのコンポーネントです。あなたはサービス・ロケータによって提供される機能を通じて、
簡単に、これらのコンポーネントを構成、あるいは独自の実装に置き換え、といったことができます。

アプリケーション・オブジェクトの他に、各モジュール・オブジェクトもまたサービス・ロケータです。モジュールは ツリー走査 を実装しています。

サービス・ロケータを使用する最初のステップは、コンポーネントを登録することです。コンポーネントは、 [[yii\di\ServiceLocator::set()]]
を通じて登録することができます。次のコードは、コンポーネントを登録するさまざまな方法を示しています。

use yii\di\ServiceLocator;
use yii\caching\FileCache;

$locator = new ServiceLocator;

// コンポーネントの作成に使われるクラス名を使用して "cache" を登録
$locator->set('cache', 'yii\caching\ApcCache');

// コンポーネントの作成に使われる構成情報配列を使用して "db" を登録
$locator->set('db', [
 'class' => 'yii\db\Connection',
 'dsn' => 'mysql:host=localhost;dbname=demo',
 'username' => 'root',
 'password' => '',
]);

// コンポーネントを構築する匿名関数を使って "search" を登録
$locator->set('search', function () {
 return new app\components\SolrService;
});

// コンポーネントを使って "pageCache" を登録
$locator->set('pageCache', new FileCache);

いったんコンポーネントが登録されたら、次の二つの方法のいずれかで、その ID を使ってそれにアクセスすることができます:

$cache = $locator->get('cache');
// または代りに
$cache = $locator->cache;

上記のように、[[yii\di\ServiceLocator]] を使うと、コンポーネント ID を使用して、プロパティのようにコンポーネントにアクセスすることができます。
あなたが最初にコンポーネントにアクセスしたとき、[[yii\di\ServiceLocator]] は
コンポーネントの登録情報を使用してコンポーネントの新しいインスタンスを作成し、
それを返します。後でそのコンポーネントが再度アクセスされた場合、サービス・ロケータは同じインスタンスを返します。

[[yii\di\ServiceLocator::has()]] を使って、コンポーネント ID がすでに登録されているかをチェックできます。
無効な ID で [[yii\di\ServiceLocator::get()]] を呼び出した場合、例外が投げられます。

サービス・ロケータは多くの場合、 構成情報 で作成されるため、
[[yii\di\ServiceLocator::setComponents()|components]] という名前の書き込み可能プロパティが提供されています。
これで一度に複数のコンポーネントを設定して登録することができます。
次のコードは、サービス・ロケータ (例えば アプリケーション) を
db、cache、tz、search コンポーネントとともに構成するための構成情報配列を示しています。

return [
 // ...
 'components' => [
 'db' => [
 'class' => 'yii\db\Connection',
 'dsn' => 'mysql:host=localhost;dbname=demo',
 'username' => 'root',
 'password' => '',
],
 'cache' => 'yii\caching\ApcCache',
 'tz' => function() {
 return new \DateTimeZone(Yii::$app->formatter->defaultTimeZone);
 },
 'search' => function () {
 $solr = new app\components\SolrService('127.0.0.1');
 // ... その他の初期化 ...
 return $solr;
 },
],
];

上記において、search コンポーネントを構成する別の方法があります。
SolrService のインスタンスを構築する PHP コールバックを直接に書く代りに、
下記のように、そういうコールバックを返すスタティックなクラス・メソッドを使うことが出来ます。

class SolrServiceBuilder
{
 public static function build($ip)
 {
 return function () use ($ip) {
 $solr = new app\components\SolrService($ip);
 // ... その他の初期化 ...
 return $solr;
 };
 }
}

return [
 // ...
 'components' => [
 // ...
 'search' => SolrServiceBuilder::build('127.0.0.1'),
],
];

この方法は、Yii に属さないサードパーティのライブラリをカプセル化する Yii コンポーネントをリリースしようとする場合に、特に推奨される代替手法です。
上で示されているようなスタティックなメソッドを使ってサードパーティのオブジェクトを構築する複雑なロジックを表現します。
そうすれば、あなたのコンポーネントのユーザは、コンポーネントを構成するスタティックなメソッドを呼ぶ必要があるだけになります。

ツリー走査

モジュールは任意にネストすることが出来ます。Yii アプリケーションは本質的にモジュールのツリーなのです。
これらのモジュールのそれぞれがサービス・ロケータである訳ですから、子がその親にアクセスできるようにするのは理にかなった事です。
これによって、モジュールは、ルートのサービス・ロケータを参照して Yii::$app->get('db') とする代りに、$this->get('db') とすることが出来ます。
また、開発者にモジュール内で構成をオーバーライドするオプションを提供できることも、この仕組の利点です。

モジュールからサービスを引き出そうとする全てのリクエストは、そのモジュールが要求に応じられない場合は、すべてその親に渡されます。

モジュール内のコンポーネントの構成情報は、親モジュール内のコンポーネントの構成情報とは決してマージされないことに注意して下さい。
サービス・ロケータ・パターンによって私たちは名前の付いたサービスを定義することが出来ますが、同じ名前のサービスが同じ構成パラメータを使用すると想定することは出来ません。

 アクティブ・レコード

アクティブ・レコード

アクティブ・レコード [http://ja.wikipedia.org/wiki/Active_Record] は、データベースに保存されているデータにアクセスするために、
オブジェクト指向のインタフェイスを提供するものです。
アクティブ・レコード・クラスはデータベース・テーブルと関連付けられます。
アクティブ・レコードのインスタンスはそのテーブルの行に対応し、アクティブ・レコードのインスタンスの 属性 がその行にある特定のカラムの値を表現します。
生の SQL 文を書く代りに、アクティブ・レコードの属性にアクセスしたり、アクティブ・レコードのメソッドを呼んだりして、
データベース・テーブルに保存さているデータにアクセスしたり、データを操作したりします。

例えば、Customer が customer テーブルに関連付けられたアクティブ・レコード・クラスであり、
name が customer テーブルのカラムであると仮定しましょう。
customer テーブルに新しい行を挿入するために次のコードを書くことが出来ます。

$customer = new Customer();
$customer->name = 'Qiang';
$customer->save();

上記のコードは、MySQL では、次のような生の SQL 文を使うのと等価なものです。
しかし、生の SQL 文の方は、直感的でなく、間違いも生じやすく、また、別の種類のデータベースを使う場合には、互換性の問題も生じ得ます。

$db->createCommand('INSERT INTO `customer` (`name`) VALUES (:name)', [
 ':name' => 'Qiang',
])->execute();

Yii は次のリレーショナル・データベースに対して、アクティブ・レコードのサポートを提供しています。

	MySQL 4.1 以降: [[yii\db\ActiveRecord]] による。

	PostgreSQL 7.3 以降: [[yii\db\ActiveRecord]] による。

	SQLite 2 および 3: [[yii\db\ActiveRecord]] による。

	Microsoft SQL Server 2008 以降: [[yii\db\ActiveRecord]] による。

	Oracle: [[yii\db\ActiveRecord]] による。

	CUBRID 9.3 以降: [[yii\db\ActiveRecord]] による。(cubrid PDO 拡張の バグ [http://jira.cubrid.org/browse/APIS-658]
のために、値を引用符で囲む機能が動作しません。そのため、サーバだけでなくクライアントも CUBRID 9.3 が必要になります)

	Sphinx: [[yii\sphinx\ActiveRecord]] による。yii2-sphinx エクステンションが必要。

	ElasticSearch: [[yii\elasticsearch\ActiveRecord]] による。yii2-elasticsearch エクステンションが必要。

これらに加えて、Yii は次の NoSQL データベースに対しても、アクティブ・レコードの使用をサポートしています。

	Redis 2.6.12 以降: [[yii\redis\ActiveRecord]] による。yii2-redis エクステンションが必要。

	MongoDB 1.3.0 以降: [[yii\mongodb\ActiveRecord]] による。yii2-mongodb エクステンションが必要。

このチュートリアルでは、主としてリレーショナル・データベースのためのアクティブ・レコードの使用方法を説明します。
しかし、ここで説明するほとんどの内容は NoSQL データベースのためのアクティブ・レコードにも適用することが出来るものです。

アクティブ・レコード・クラスを宣言する

まずは、[[yii\db\ActiveRecord]] を拡張してアクティブ・レコード・クラスを宣言するところから始めましょう。

テーブル名を設定する

デフォルトでは、すべてのアクティブ・レコード・クラスはデータベース・テーブルと関連付けられます。
[[yii\db\ActiveRecord::tableName()|tableName()]] メソッドが、クラス名を [[yii\helpers\Inflector::camel2id()]] によって変換して、テーブル名を返します。
テーブル名がこの規約に従っていない場合は、このメソッドをオーバライドすることが出来ます。

同時に、デフォルトの [[yii\db\Connection::$tablePrefix|tablePrefix]] を適用することも可能です。
例えば、[[yii\db\Connection::$tablePrefix|tablePrefix]] が tbl_ である場合は、Customer は tbl_customer になり、OrderItem はtbl_order_item になります。

テーブル名が {{%TableName}} という形式で与えられた場合は、パーセント記号 % がテーブルプレフィックスに置き換えられます。
例えば、{{%post}} は {{tbl_post}} となります。
テーブル名を囲む二重波括弧は、テーブル名を囲む引用符号 となります。

次の例では、customer というデータベース・テーブルのための Customer という名前のアクティブ・レコード・クラスを宣言しています。

namespace app\models;

use yii\db\ActiveRecord;

class Customer extends ActiveRecord
{
 const STATUS_INACTIVE = 0;
 const STATUS_ACTIVE = 1;

 /**
 * @return string このアクティブ・レコード・クラスと関連付けられるテーブルの名前
 */
 public static function tableName()
 {
 return '{{customer}}';
 }
}

アクティブ・レコードは「モデル」と呼ばれる

アクティブ・レコードのインスタンスは モデル であると見なされます。
この理由により、私たちは通常 app\models 名前空間 (あるいはモデル・クラスを保管するための他の名前空間) の下にアクティブ・レコード・クラスを置きます。

[[yii\db\ActiveRecord]] は [[yii\base\Model]] から拡張していますので、属性、検証規則、データのシリアル化など、
モデル が持つ 全ての 機能を継承しています。

データベースに接続する

デフォルトでは、アクティブ・レコードは、db アプリケーション・コンポーネント を
[[yii\db\Connection|DB 接続]] として使用して、データベースのデータにアクセスしたり操作したりします。
データベース・アクセス・オブジェクト で説明したように、次のようにして、アプリケーションの構成情報ファイルの中で
db コンポーネントを構成することが出来ます。

return [
 'components' => [
 'db' => [
 'class' => 'yii\db\Connection',
 'dsn' => 'mysql:host=localhost;dbname=testdb',
 'username' => 'demo',
 'password' => 'demo',
],
],
];

db コンポーネントとは異なるデータベース接続を使いたい場合は、[[yii\db\ActiveRecord::getDb()|getDb()]]
メソッドをオーバーライドしなければなりません。

class Customer extends ActiveRecord
{
 // ...

 public static function getDb()
 {
 // "db2" アプリケーション・コンポーネントを使用
 return \Yii::$app->db2;
 }
}

データをクエリする

アクティブ・レコード・クラスを宣言した後、それを使って対応するデータベース・テーブルからデータをクエリすることが出来ます。
このプロセスは通常次の三つのステップを踏みます。

	[[yii\db\ActiveRecord::find()]] メソッドを呼んで、新しいクエリ・オブジェクトを作成する。

	クエリ構築メソッド を呼んで、クエリ・オブジェクトを構築する。

	クエリ・メソッド を呼んで、アクティブ・レコードのインスタンスの形でデータを取得する。

ご覧のように、このプロセスは クエリ・ビルダ による手続きと非常によく似ています。
唯一の違いは、new 演算子を使ってクエリ・オブジェクトを生成する代りに、[[yii\db\ActiveQuery]] クラスであるクエリ・オブジェクトを返す
[[yii\db\ActiveRecord::find()]] を呼ぶ、という点です。

以下の例は、アクティブ・クエリを使ってデータをクエリする方法を示すものです。

// ID が 123 である一人の顧客を返す
// SELECT * FROM `customer` WHERE `id` = 123
$customer = Customer::find()
 ->where(['id' => 123])
 ->one();

// アクティブな全ての顧客を返して、ID によって並べる
// SELECT * FROM `customer` WHERE `status` = 1 ORDER BY `id`
$customers = Customer::find()
 ->where(['status' => Customer::STATUS_ACTIVE])
 ->orderBy('id')
 ->all();

// アクティブな顧客の数を返す
// SELECT COUNT(*) FROM `customer` WHERE `status` = 1
$count = Customer::find()
 ->where(['status' => Customer::STATUS_ACTIVE])
 ->count();

// 全ての顧客を顧客IDによってインデックスされた配列として返す
// SELECT * FROM `customer`
$customers = Customer::find()
 ->indexBy('id')
 ->all();

上記において、$customer は Customer オブジェクトであり、$customers は Customer オブジェクトの配列です。
全てこれらには customer テーブルから取得されたデータが投入されます。

Info: [[yii\db\ActiveQuery]] は [[yii\db\Query]] から拡張しているため、クエリ・ビルダ
のセクションで説明されたクエリ構築メソッドとクエリ・メソッドの 全て を使うことが出来ます。

プライマリ・キーの値や一群のカラムの値でクエリをすることはよく行われる仕事ですので、Yii はこの目的のために、
二つのショートカット・メソッドを提供しています。

	

	[[yii\db\ActiveRecord::findAll()]]: 全ての クエリ結果をアクティブ・レコード・インスタンスの配列に投入して返す。

どちらのメソッドも、次のパラメータ形式のどれかを取ることが出来ます。

	スカラ値: 値は検索時に求められるプライマリ・キーの値として扱われます。
Yii は、データベースのスキーマ情報を読んで、どのカラムがプライマリ・キーのカラムであるかを自動的に判断します。

	スカラ値の配列: 配列は検索時に求められるプライマリ・キーの値の配列として扱われます。

	連想配列: キーはカラム名であり、値は検索時に求められる対応するカラムの値です。
詳細については、ハッシュ形式 を参照してください。

次のコードは、これらのメソッドの使用方法を示すものです。

// ID が 123 である一人の顧客を返す
// SELECT * FROM `customer` WHERE `id` = 123
$customer = Customer::findOne(123);

// ID が 100, 101, 123, 124 のどれかである顧客を全て返す
// SELECT * FROM `customer` WHERE `id` IN (100, 101, 123, 124)
$customers = Customer::findAll([100, 101, 123, 124]);

// ID が 123 であるアクティブな顧客を返す
// SELECT * FROM `customer` WHERE `id` = 123 AND `status` = 1
$customer = Customer::findOne([
 'id' => 123,
 'status' => Customer::STATUS_ACTIVE,
]);

// アクティブでない全ての顧客を返す
// SELECT * FROM `customer` WHERE `status` = 0
$customers = Customer::findAll([
 'status' => Customer::STATUS_INACTIVE,
]);

Warning: これらのメソッドにユーザ入力を渡す必要がある場合は、入力値がスカラ値であること、または、
入力値が配列形式の条件である場合は配列の構造が外部から変更され得ないことを保証して下さい。

// yii\web\Controller が $id はスカラ値であることを保証しています
public function actionView($id)
{
 $model = Post::findOne($id);
 // ...
}

// 検索するカラムを明示的に指定する場合。ここでは、どんなスカラ値または配列を渡しても、単一のレコードを発見する結果になります。
$model = Post::findOne(['id' => Yii::$app->request->get('id')]);

// 次のコードを使用してはいけません! 任意のカラムの値による検索が可能な配列形式の条件を挿入される可能性があります!
$model = Post::findOne(Yii::$app->request->get('id'));

Note: [yii\db\ActiveRecord::findOne()] も [[yii\db\ActiveQuery::one()]] も、生成される SQL 文に LIMIT 1 を追加しません。
あなたのクエリが多数のデータ行を返すかもしれない場合は、パフォーマンスを向上させるために、limit(1) を明示的に呼ぶべきです。
例えば Customer::find()->limit(1)->one() のように。

クエリ構築メソッドを使う以外に、生の SQL を書いてデータをクエリして結果をアクティブ・レコード・オブジェクトに投入することも出来ます。
そうするためには [[yii\db\ActiveRecord::findBySql()]] メソッドを呼ぶことが出来ます。

// アクティブでない全ての顧客を返す
$sql = 'SELECT * FROM customer WHERE status=:status';
$customers = Customer::findBySql($sql, [':status' => Customer::STATUS_INACTIVE])->all();

[[yii\db\ActiveRecord::findBySql()|findBySql()]] を呼んだ後は、追加でクエリ構築メソッドを呼び出してはいけません。
呼んでも無視されます。

データにアクセスする

既に述べたように、データベースから取得されたデータはアクティブ・レコードのインスタンスに投入されます。
そして、クエリ結果の各行がアクティブ・レコードの一つのインスタンスに対応します。
アクティブ・レコード・インスタンスの属性にアクセスすることによって、カラムの値にアクセスすることが出来ます。例えば、

// "id" と "email" は "customer" テーブルのカラム名
$customer = Customer::findOne(123);
$id = $customer->id;
$email = $customer->email;

Note: アクティブ・レコードの属性の名前は、関連付けられたテーブルのカラムの名前に従って、大文字と小文字を区別して名付けられます。
Yii は、関連付けられたテーブルの全てのカラムに対して、アクティブ・レコードの属性を自動的に定義します。
これらの属性は、すべて、再宣言してはいけません。

アクティブ・レコードの属性はテーブルのカラムに従って命名されるため、
テーブルのカラム名がアンダースコアで単語を分ける方法で命名されている場合は、
$customer->first_name のような属性名を使って PHP コードを書くことになります。
コード・スタイルの一貫性が気になるのであれば、テーブルのカラム名を (例えば camelCase を使う名前に) 変更しなければなりません。

データ変換

入力または表示されるデータの形式が、データベースにデータを保存するときに使われるものと異なる場合がよくあります。
例えば、データベースでは顧客の誕生日を UNIX タイムスタンプで保存している (まあ、あまり良い設計ではありませんが)
けれども、ほとんどの場合において誕生日を 'YYYY/MM/DD' という形式の文字列として操作したい、というような場合です。
この目的を達するために、次のように、Customer アクティブ・レコード・クラスにおいて データ変換
メソッドを定義することが出来ます。

class Customer extends ActiveRecord
{
 // ...

 public function getBirthdayText()
 {
 return date('Y/m/d', $this->birthday);
 }

 public function setBirthdayText($value)
 {
 $this->birthday = strtotime($value);
 }
}

このようにすれば、PHP コードにおいて、$customer->birthday にアクセスする代りに、$customer->birthdayText にアクセスすれば、
顧客の誕生日を 'YYYY/MM/DD' の形式で入力および表示することが出来ます。

Tip: 上記は、一般にデータの変換を達成するための簡単な方法を示すためのものです。
日付の値については、Yii は、DateValidator と DatePicker ウィジェットを使用するという、より良い方法を提供しています。
DatePicker については、JUI ウィジェットのセクション で説明されています。

データを配列に取得する

データをアクティブ・レコード・オブジェクトの形で取得するのは便利であり柔軟ですが、大きなメモリ使用量を要するために、
大量のデータを取得しなければならない場合は、必ずしも望ましい方法ではありません。
そういう場合は、クエリ・メソッドを実行する前に [[yii\db\ActiveQuery::asArray()|asArray()]] を呼ぶことによって、PHP 配列を使ってデータを取得することが出来ます。

// すべての顧客を返す
// 各顧客は連想配列として返される
$customers = Customer::find()
 ->asArray()
 ->all();

Note: このメソッドはメモリを節約してパフォーマンスを向上させますが、低レベルの DB 抽象レイヤに近いものであり、
あなたはアクティブ・レコードの機能のほとんどを失うことになります。非常に重要な違いが、カラムの値のデータ型に現れます。
アクティブ・レコード・インスタンスとしてデータを返す場合、カラムの値は実際のカラムの型に従って自動的に型キャストされます。
一方、配列としてデータを返す場合は、実際のカラムの型に関係なく、カラムの値は文字列になります。
なぜなら、何も処理をしない場合の PDO の結果は文字列だからです。

データをバッチ・モードで取得する

クエリ・ビルダ において、大量のデータをデータベースから検索する場合に、メモリ使用量を最小化するために
バッチ・クエリ を使うことが出来るということを説明しました。おなじテクニックをアクティブ・レコードでも使うことが出来ます。例えば、

// 一度に 10 人の顧客を読み出す
foreach (Customer::find()->batch(10) as $customers) {
 // $customers は 10 以下の Customer オブジェクトの配列
}

// 一度に 10 人の顧客を読み出して、一人ずつ反復する
foreach (Customer::find()->each(10) as $customer) {
 // $customer は Customer オブジェクト
}

// イーガー・ローディングをするバッチ・クエリ
foreach (Customer::find()->with('orders')->each() as $customer) {
 // $customer は 'orders' リレーションを投入された Customer オブジェクト
}

データを保存する

アクティブ・レコードを使えば、次のステップを踏んで簡単にデータをデータベースに保存することが出来ます。

	アクティブ・レコードのインスタンスを準備する

	アクティブ・レコードの属性に新しい値を割り当てる

	[[yii\db\ActiveRecord::save()]] を呼んでデータをデータベースに保存する

例えば、

// 新しいデータ行を挿入する
$customer = new Customer();
$customer->name = 'James';
$customer->email = 'james@example.com';
$customer->save();

// 既存のデータ行を更新する
$customer = Customer::findOne(123);
$customer->email = 'james@newexample.com';
$customer->save();

[[yii\db\ActiveRecord::save()|save()]] メソッドは、アクティブ・レコード・インスタンスの状態に従って、データ行を挿入するか、
または、更新することが出来ます。インスタンスが new 演算子によって新しく作成されたものである場合は、
[[yii\db\ActiveRecord::save()|save()]] を呼び出すと、新しい行が挿入されます。インスタンスがクエリ・メソッドの結果である場合は、
[[yii\db\ActiveRecord::save()|save()]] を呼び出すと、そのインスタンスと関連付けられた行が更新されます。

アクティブ・レコード・インスタンスの二つの状態は、その [[yii\db\ActiveRecord::isNewRecord|isNewRecord]]
プロパティの値をチェックすることによって区別することが出来ます。
下記のように、このプロパティは [[yii\db\ActiveRecord::save()|save()]] によっても内部的に使用されています。

public function save($runValidation = true, $attributeNames = null)
{
 if ($this->getIsNewRecord()) {
 return $this->insert($runValidation, $attributeNames);
 } else {
 return $this->update($runValidation, $attributeNames) !== false;
 }
}

Tip: [[yii\db\ActiveRecord::insert()|insert()]] または [[yii\db\ActiveRecord::update()|update()]] を直接に呼んで、
行を挿入または更新することも出来ます。

データの検証

[[yii\db\ActiveRecord]] は [[yii\base\Model]] を拡張したものですので、同じ データ検証 機能を共有しています。
[[yii\db\ActiveRecord::rules()|rules()]] メソッドをオーバーライドすることによって検証規則を宣言し、
[[yii\db\ActiveRecord::validate()|validate()]] メソッドを呼ぶことによってテータの検証を実行することが出来ます。

[[yii\db\ActiveRecord::save()|save()]] を呼ぶと、デフォルトでは [[yii\db\ActiveRecord::validate()|validate()]] が自動的に呼ばれます。
検証が通った時だけ、実際にデータが保存されます。
検証が通らなかった時は単に false が返され、[[yii\db\ActiveRecord::errors|errors]] プロパティをチェックして検証エラー・メッセージを取得することが出来ます。

Tip: データが検証を必要としないことが確実である場合 (例えば、データが信頼できるソースに由来するものである場合) は、
検証をスキップするために save(false) を呼ぶことが出来ます。

一括代入

通常の モデル と同じように、アクティブ・レコードのインスタンスも 一括代入機能 を享受することが出来ます。
この機能を使うと、下記で示されているように、一つの PHP 文で、アクティブ・レコード・インスタンスの複数の属性に値を割り当てることが出来ます。
ただし、安全な属性 だけが一括代入が可能であることを記憶しておいてください。

$values = [
 'name' => 'James',
 'email' => 'james@example.com',
];

$customer = new Customer();

$customer->attributes = $values;
$customer->save();

カウンタを更新する

データベース・テーブルのあるカラムの値を増加・減少させるのは、よくある仕事です。私たちはそのようなカラムをカウンタ・カラムと呼んでいます。
[[yii\db\ActiveRecord::updateCounters()|updateCounters()]] を使って一つまたは複数のカウンタ・カラムを更新することが出来ます。
例えば、

$post = Post::findOne(100);

// UPDATE `post` SET `view_count` = `view_count` + 1 WHERE `id` = 100
$post->updateCounters(['view_count' => 1]);

Note: カウンタ・カラムを更新するのに [[yii\db\ActiveRecord::save()]] を使うと、不正確な結果になってしまう場合があります。
というのは、同じカウンタの値を読み書きする複数のリクエストによって、同一のカウンタが保存される可能性があるからです。

ダーティな属性

[[yii\db\ActiveRecord::save()|save()]] を呼んでアクティブ・レコード・インスタンスを保存すると、ダーティな属性 だけが保存されます。
属性は、DB からロードされた後、または、最後に保存された後にその値が変更されると、ダーティ であると見なされます。
ただし、データ検証は、アクティブ・レコード・インスタンスがダーティな属性を持っているかどうかに関係なく実施される
ことに注意してください。

アクティブ・レコードはダーティな属性のリストを自動的に保守します。
そうするために、一つ前のバージョンの属性値を保持して、最新のバージョンと比較します。
[[yii\db\ActiveRecord::getDirtyAttributes()]] を呼ぶと、現在ダーティである属性を取得することが出来ます。
また、[[yii\db\ActiveRecord::markAttributeDirty()]] を呼んで、ある属性をダーティであると明示的にマークすることも出来ます。

最新の修正を受ける前の属性値を知りたい場合は、[[yii\db\ActiveRecord::getOldAttributes()|getOldAttributes()]]
または [[yii\db\ActiveRecord::getOldAttribute()|getOldAttribute()]] を呼ぶことが出来ます。

Note: 新旧の値は === 演算子を使って比較されるため、同じ値を持っていても型が違うとダーティであると見なされます。
このことは、モデルが HTML フォームからユーザの入力を受け取るときにしばしば生じます。
HTML フォームでは全ての値が文字列として表現されるからです。
入力値が正しい型、例えば整数値となることを保証するために、['attributeName', 'filter', 'filter' => 'intval'] のように
検証フィルタ を適用することが出来ます。
このフィルタは、intval() [http://php.net/manual/ja/function.intval.php], floatval() [http://php.net/manual/ja/function.floatval.php],
boolval [http://php.net/manual/ja/function.boolval.php] など、PHP の全てのタイプキャスト関数で動作します。

デフォルト属性値

あなたのテーブルのカラムの中には、データベースでデフォルト値が定義されているものがあるかも知れません。
そして、場合によっては、アクティブ・レコード・インスタンスのウェブ・フォームに、そういうデフォルト値をあらかじめ投入したいことがあるでしょう。
同じデフォルト値を繰り返して書くことを避けるために、[[yii\db\ActiveRecord::loadDefaultValues()|loadDefaultValues()]]
を呼んで、DB で定義されたデフォルト値を対応するアクティブ・レコードの属性に投入することが出来ます。

$customer = new Customer();
$customer->loadDefaultValues();
// $customer->xyz には、"xyz" カラムを定義するときに宣言されたデフォルト値が割り当てられる

属性の型キャスト

[[yii\db\ActiveRecord]] は、クエリの結果を投入されるときに、データベース・テーブル・スキーマ
からの情報を使って、自動的な型キャストを実行します。これによって、整数として宣言されているテーブルカラムから取得されるデータを
アクティブ・レコードのインスタンスでも PHP の integer として投入し、真偽値として宣言されているデータを boolean として投入することが出来るようになっています。
しかしながら、型キャストのメカニズムには、いくつかの制約があります。

	浮動小数点数値は変換されず、文字列として表されます。そうしないと精度が失われるおそれがあるからです。

	整数値の変換は、あなたが使っているオペレーティング・システムの整数の大きさに依存します。具体的に言うと、
‘unsigned integer’ または ‘big integer’ として宣言されたカラムの値は、64-bit オペレーティングシステムでのみ PHP の integer に変換されます。
32-bit オペレーティングシステムでは、文字列として表されます。

属性の型キャストは、アクティブ・レコードのインスタンスにクエリの結果から値を投入するときだけしか実行されないことに注意してください。
HTTP リクエストから値をロードしたり、プロパティにアクセスして直接に値を設定したりするときには、自動的な変換は行われません。
また、アクティブ・レコードのデータ保存のための SQL 文を準備する際にもテーブル・スキーマが使用されて、
値が正しい型でクエリにバインドされることを保証します。
しかし、アクティブ・レコードのインスタンスの属性値は保存の過程において変換されることはありません。

Tip: アクティブ・レコードの検証や保存の際の属性型キャストを楽にするために
[[yii\behaviors\AttributeTypecastBehavior]] を使うことが出来ます。

2.0.14 以降、Yii のアクティブ・レコードは、JSON や多次元配列のような複雑な型をサポートしています。

MySQL および PostgreSQL における JSON

データが取得された後、JSON カラムの値は標準的な JSON デコード規則に従って、
自動的に JSON からデコードされます。

アクティブ・レコードは、属性値を JSON カラムに保存するために [[yii\db\JsonExpression|JsonExpression]]
オブジェクトを自動的に生成します。このオブジェクトが クエリ・ビルダ レベルで JSON 文字列にエンコードされます。

PostgreSQL における配列

データが取得された後、配列カラムの値は PgSQL 記法から自動的に [[yii\db\ArrayExpression|ArrayExpression]] オブジェクトにデコードされます。
このオブジェクトは PHP の ArrayAccess インタフェイスを実装しているため、これを配列として使うこと事が出来ます。また、->getValue() を呼んで配列そのものを取得することも出来ます。

アクティブ・レコードは、属性値を配列カラムに保存するために [[yii\db\ArrayExpression|ArrayExpression]]
オブジェクトを生成します。このオブジェクトが クエリ・ビルダ のレベルで配列を表す PgSQL 文字列にエンコードされます。

JSON カラムに対して条件を使用することも出来ます。

$query->andWhere(['=', 'json', new ArrayExpression(['foo' => 'bar'])

式を構築するシステムについて更に学習するためには クエリ・ビルダ – 特製の条件や式を追加する
という記事を参照して下さい。

複数の行を更新する

上述のメソッドは、すべて、個別のアクティブ・レコード・インスタンスに対して作用し、個別のテーブル行を挿入したり更新したりするものです。
複数の行を同時に更新するためには、代りに、スタティックなメソッドである [[yii\db\ActiveRecord::updateAll()|updateAll()]]
を呼ばなければなりません。

// UPDATE `customer` SET `status` = 1 WHERE `email` LIKE `%@example.com`
Customer::updateAll(['status' => Customer::STATUS_ACTIVE], ['like', 'email', '@example.com']);

同様に、[[yii\db\ActiveRecord::updateAllCounters()|updateAllCounters()]] を呼んで、
複数の行のカウンタカラムを同時に更新することが出来ます。

// UPDATE `customer` SET `age` = `age` + 1
Customer::updateAllCounters(['age' => 1]);

データを削除する

一行のデータを削除するためには、最初にその行に対応するアクティブ・レコード・インスタンスを取得して、
次に [[yii\db\ActiveRecord::delete()]] メソッドを呼びます。

$customer = Customer::findOne(123);
$customer->delete();

[[yii\db\ActiveRecord::deleteAll()]] を呼んで、複数またはすべてのデータ行を削除することが出来ます。例えば、

Customer::deleteAll(['status' => Customer::STATUS_INACTIVE]);

Note: [[yii\db\ActiveRecord::deleteAll()|deleteAll()]] を呼ぶときは、十分に注意深くしてください。
なぜなら、条件の指定を間違うと、あなたのテーブルからすべてのデータを完全に消し去ってしまうことになるからです。

アクティブ・レコードのライフサイクル

アクティブ・レコードがさまざまな目的で使用される場合のそれぞれのライフサイクルを理解しておくことは重要なことです。
それぞれのライフサイクルにおいては、特定の一続きのメソッドが呼び出されます。
そして、これらのメソッドをオーバーライドして、ライフサイクルをカスタマイズするチャンスを得ることが出来ます。
また、ライフサイクルの中でトリガされる特定のアクティブ・レコード・イベントに反応して、あなたのカスタム・コードを挿入することも出来ます。
これらのイベントが特に役に立つのは、アクティブ・レコードのライフサイクルをカスタマイズする必要のあるアクティブ・レコード・ビヘイビア を開発する際です。

次に、さまざまなアクティブ・レコードのライフサイクルと、
そのライフサイクルに含まれるメソッドやイベントを要約します。

新しいインスタンスのライフサイクル

new 演算子によって新しいアクティブ・レコード・インスタンスを作成する場合は、次のライフサイクルを経ます。

	クラスのコンストラクタ。

	[[yii\db\ActiveRecord::init()|init()]]: [[yii\db\ActiveRecord::EVENT_INIT|EVENT_INIT]] イベントをトリガ。

データをクエリする際のライフサイクル

クエリ・メソッド のどれか一つによってデータをクエリする場合は、
新しくデータを投入されるアクティブ・レコードは次のライフサイクルを経ます。

	クラスのコンストラクタ。

	[[yii\db\ActiveRecord::init()|init()]]: [[yii\db\ActiveRecord::EVENT_INIT|EVENT_INIT]] イベントをトリガ。

	[[yii\db\ActiveRecord::afterFind()|afterFind()]]: [[yii\db\ActiveRecord::EVENT_AFTER_FIND|EVENT_AFTER_FIND]] イベントをトリガ。

データを保存する際のライフサイクル

[[yii\db\ActiveRecord::save()|save()]] を呼んでアクティブ・レコード・インスタンスを挿入または更新する場合は、
次のライフサイクルを経ます。

	[[yii\db\ActiveRecord::beforeValidate()|beforeValidate()]]: [[yii\db\ActiveRecord::EVENT_BEFORE_VALIDATE|EVENT_BEFORE_VALIDATE]] イベントをトリガ。
このメソッドが false を返すか、[[yii\base\ModelEvent::isValid]] が false であった場合、
残りのステップはスキップされる。

	データ検証を実行。データ検証が失敗した場合、3 より後のステップはスキップされる。

	[[yii\db\ActiveRecord::afterValidate()|afterValidate()]]: [[yii\db\ActiveRecord::EVENT_AFTER_VALIDATE|EVENT_AFTER_VALIDATE]]
イベントをトリガ。

	[[yii\db\ActiveRecord::beforeSave()|beforeSave()]]: [[yii\db\ActiveRecord::EVENT_BEFORE_INSERT|EVENT_BEFORE_INSERT]]
または [[yii\db\ActiveRecord::EVENT_BEFORE_UPDATE|EVENT_BEFORE_UPDATE]] イベントをトリガ。
このメソッドが false を返すか、[[yii\base\ModelEvent::isValid]] が false であった場合、
残りのステップはスキップされる。

	実際のデータの挿入または更新を実行。

	[[yii\db\ActiveRecord::afterSave()|afterSave()]]: [[yii\db\ActiveRecord::EVENT_AFTER_INSERT|EVENT_AFTER_INSERT]]
または [[yii\db\ActiveRecord::EVENT_AFTER_UPDATE|EVENT_AFTER_UPDATE]]
イベントをトリガ。

データを削除する際のライフサイクル

[[yii\db\ActiveRecord::delete()|delete()]] を呼んでアクティブ・レコード・インスタンスを削除する際は、
次のライフサイクルを経ます。

	[[yii\db\ActiveRecord::beforeDelete()|beforeDelete()]]: [[yii\db\ActiveRecord::EVENT_BEFORE_DELETE|EVENT_BEFORE_DELETE]]
イベントをトリガ。このメソッドが false を返すか、[[yii\base\ModelEvent::isValid]] が false であった場合は、
残りのステップはスキップされる。

	実際のデータの削除を実行。

	[[yii\db\ActiveRecord::afterDelete()|afterDelete()]]: [[yii\db\ActiveRecord::EVENT_AFTER_DELETE|EVENT_AFTER_DELETE]]
イベントをトリガ。

Note: 次のメソッドを呼んだ場合は、いずれの場合も、上記のライフサイクルのどれかを開始させることはありません。
これらのメソッドは、レコード単位ではなく、データベース上で直接に動作するためです。

	[[yii\db\ActiveRecord::updateAll()]]

	[[yii\db\ActiveRecord::deleteAll()]]

	[[yii\db\ActiveRecord::updateCounters()]]

	[[yii\db\ActiveRecord::updateAllCounters()]]

データをリフレッシュする際のライフサイクル

[[yii\db\ActiveRecord::refresh()|refresh()]] を呼んでアクティブ・レコード・インスタンスをリフレッシュする際は、リフレッシュが成功してメソッドが true を返すと
[[yii\db\ActiveRecord::EVENT_AFTER_REFRESH|EVENT_AFTER_REFRESH]] イベントがトリガされます。

トランザクションを扱う

アクティブ・レコードを扱う際には、二つの方法で トランザクション を処理することができます。

最初の方法は、次に示すように、アクティブ・レコードのメソッドの呼び出しを明示的にトランザクションのブロックで囲む方法です。

$customer = Customer::findOne(123);

Customer::getDb()->transaction(function($db) use ($customer) {
 $customer->id = 200;
 $customer->save();
 // ... 他の DB 操作 ...
});

// あるいは、別の方法

$transaction = Customer::getDb()->beginTransaction();
try {
 $customer->id = 200;
 $customer->save();
 // ... 他の DB 操作 ...
 $transaction->commit();
} catch(\Exception $e) {
 $transaction->rollBack();
 throw $e;
} catch(\Throwable $e) {
 $transaction->rollBack();
 throw $e;
}

Note: 上記のコードでは、PHP 5.x と PHP 7.x との互換性のために、二つの catch ブロックを持っています。
\Exception は PHP 7.0 以降では、\Throwable インタフェイス [http://php.net/manual/ja/class.throwable.php] を実装しています。
従って、あなたのアプリケーションが PHP 7.0 以上しか使わない場合は、\Exception の部分を省略することが出来ます。

第二の方法は、トランザクションのサポートが必要な DB 操作を [[yii\db\ActiveRecord::transactions()]]
メソッドに列挙するという方法です。

class Post extends \yii\db\ActiveRecord
{
 public function transactions()
 {
 return [
 'admin' => self::OP_INSERT,
 'api' => self::OP_INSERT | self::OP_UPDATE | self::OP_DELETE,
 // 上は次と等価
 // 'api' => self::OP_ALL,
];
 }
}

[[yii\db\ActiveRecord::transactions()]] メソッドが返す配列では、キーは シナリオ の名前であり、
値はトランザクションで囲まれるべき操作でなくてはなりません。
いろいろな DB 操作を参照するのには、次の定数を使わなければなりません。

	[[yii\db\ActiveRecord::OP_INSERT|OP_INSERT]]: [[yii\db\ActiveRecord::insert()|insert()]] によって実行される挿入の操作。

	[[yii\db\ActiveRecord::OP_UPDATE|OP_UPDATE]]: [[yii\db\ActiveRecord::update()|update()]] によって実行される更新の操作。

	[[yii\db\ActiveRecord::OP_DELETE|OP_DELETE]]: [[yii\db\ActiveRecord::delete()|delete()]] によって実行される削除の操作。

複数の操作を示すためには、| を使って上記の定数を連結してください。
ショートカット定数 [[yii\db\ActiveRecord::OP_ALL|OP_ALL]] を使って、上記の三つの操作すべてを示すことも出来ます。

このメソッドを使って生成されたトランザクションは、[[yii\db\ActiveRecord::beforeSave()|beforeSave()]] を呼ぶ前に開始され、
[[yii\db\ActiveRecord::afterSave()|afterSave()]] を実行した後にコミットされます。

楽観的ロック

楽観的ロックは、一つのデータ行が複数のユーザによって更新されるときに発生しうる衝突を回避するための方法です。
例えば、ユーザ A と ユーザ B が 同時に同じ wiki 記事を編集しており、ユーザ A が自分の編集結果を保存した後に、
ユーザ B も自分の編集結果を保存しようとして「保存」ボタンをクリックする場合を考えてください。
ユーザ B は、実際には古くなったバージョンの記事に対する操作をしようとしていますので、彼が記事を保存するのを防止し、
彼に何らかのヒント・メッセージを表示する方法があることが望まれます。

楽観的ロックは、あるカラムを使って各行のバージョン番号を記録するという方法によって、上記の問題を解決します。
古くなったバージョン番号とともに行を保存しようとすると、[[yii\db\StaleObjectException]] 例外が投げられて、
行が保存されるのが防止されます。
楽観的ロックは、 [[yii\db\ActiveRecord::update()]] または [[yii\db\ActiveRecord::delete()]]
メソッドを使って既存の行を更新または削除しようとする場合にだけサポートされます。

楽観的ロックを使用するためには、次のようにします。

	アクティブ・レコード・クラスと関連付けられている DB テーブルに、各行のバージョン番号を保存するカラムを作成します。
カラムは長倍精度整数 (big integer) タイプでなければなりません (MySQL では BIGINT DEFAULT 0 です)。

	[[yii\db\ActiveRecord::optimisticLock()]] メソッドをオーバーライドして、このカラムの名前を返すようにします。

	あなたのモデル・クラスの中で [[\yii\behaviors\OptimisticLockBehavior|OptimisticLockBehavior]] を実装し、受信したリクエストからその値を自動的に解析できるようにします。
[[\yii\behaviors\OptimisticLockBehavior|OptimisticLockBehavior]] が検証を処理すべきですので、バージョンの属性は検証規則から削除します。

	ユーザ入力を収集するウェブフォームに、更新されるレコードの現在のバージョン番号を保持する隠しフィールドを追加します。

	アクティブ・レコードを使って行の更新を行うコントローラ・アクションにおいて、[[\yii\db\StaleObjectException]] 例外を捕捉して、
衝突を解決するために必要なビジネス・ロジック (例えば、変更をマージしたり、データの陳腐化を知らせたり) を実装します。

例えば、バージョン番号のカラムが version と名付けられているとすると、
次のようなコードによって楽観的ロックを実装することが出来ます。

// ------ ビューのコード -------

use yii\helpers\Html;

// ... 他の入力フィールド
echo Html::activeHiddenInput($model, 'version');

// ------ コントローラのコード -------

use yii\db\StaleObjectException;

public function actionUpdate($id)
{
 $model = $this->findModel($id);

 try {
 if ($model->load(Yii::$app->request->post()) && $model->save()) {
 return $this->redirect(['view', 'id' => $model->id]);
 } else {
 return $this->render('update', [
 'model' => $model,
]);
 }
 } catch (StaleObjectException $e) {
 // 衝突を解決するロジック
 }
}

// ------ モデルのコード -------

use yii\behaviors\OptimisticLockBehavior;

public function behaviors()
{
 return [
 OptimisticLockBehavior::className(),
];
}

Note: [[\yii\behaviors\OptimisticLockBehavior|OptimisticLockBehavior]] は、ユーザが正しいバージョン番号を送信したときにだけ
レコードが保存されるという事を保証します。そして、そのために、[[\yii\web\Request::getBodyParam()|getBodyParam()]] の結果を直接に解析します。
そこで、あなたのモデル・クラスを拡張して、親モデルで第2段階を行い、ビヘイビアのアタッチ(第3段階)を子モデルで行うようにすると便利でしょう。
そうすれば、一方を内部使用のためだけのインスタンスとして使うことが出来、他方をエンド・ユーザの入力の受信に責任を持つモデルとしてコントローラと結びつける事が出来ます。
もう一つのやり方としては、[[\yii\behaviors\OptimisticLockBehavior::$value|value]] プロパティを構成して独自のロジックを実装することも可能です。

リレーショナル・データを扱う

個々のデータベース・テーブルを扱うだけでなく、アクティブ・レコードは関連したテーブルのデータも一緒に読み出して、
主たるデータを通して簡単にアクセス出来るようにすることが出来ます。
例えば、一人の顧客は一つまたは複数の注文を発することがあり得ますので、顧客のデータは注文のデータと関連を持っていることになります。
このリレーションが適切に宣言されていれば、$customer->orders という式を使って顧客の注文情報にアクセスすることが出来ます。
$customer->orders は、顧客の注文情報を Order アクティブ・レコード・インスタンスの配列として返してくれます。

リレーションを宣言する

アクティブ・レコードを使ってリレーショナル・データを扱うためには、最初に、アクティブ・レコード・クラスの中でリレーションを宣言する必要があります。
これは、以下のように、関心のあるそれぞれのリレーションについて リレーション・メソッド を宣言するだけの簡単な作業です。

class Customer extends ActiveRecord
{
 // ...

 public function getOrders()
 {
 return $this->hasMany(Order::className(), ['customer_id' => 'id']);
 }
}

class Order extends ActiveRecord
{
 // ...

 public function getCustomer()
 {
 return $this->hasOne(Customer::className(), ['id' => 'customer_id']);
 }
}

上記のコードでは、Customer クラスのために orders リレーションを宣言し、Order クラスのために customer
リレーションを宣言しています。

各リレーション・メソッドは getXyz という名前にしなければなりません。ここで xyz (最初の文字は小文字です) が リレーション名 と呼ばれます。
リレーション名は 大文字と小文字を区別する ことに注意してください。

リレーションを宣言する際には、次の情報を指定しなければなりません。

	リレーションの多重性: [[yii\db\ActiveRecord::hasMany()|hasMany()]] または [[yii\db\ActiveRecord::hasOne()|hasOne()]]
のどちらかを呼ぶことによって指定されます。
上記の例では、リレーションの宣言において、顧客は複数の注文を持ち得るが、一方、注文は一人の顧客しか持たない、ということが容易に読み取れます。

	関連するアクティブ・レコード・クラスの名前: [[yii\db\ActiveRecord::hasMany()|hasMany()]] または [[yii\db\ActiveRecord::hasOne()|hasOne()]]
の最初のパラメータとして指定されます。
クラス名を取得するのに Xyz::className() を呼ぶのが推奨されるプラクティスです。
そうすれば、IDE の自動補完のサポートを得ることことが出来るだけでなく、コンパイル段階でエラーを検出することが出来ます。

	二つの型のデータ間のリンク: 二つの型のデータの関連付けに用いられるカラムを指定します。
配列の値は主たるデータ (リレーションを宣言しているアクティブ・レコード・クラスによって表されるデータ) のカラムであり、
配列のキーは関連するデータのカラムです。

これを記憶するための簡単な規則は、上の例で見るように、関連するアクティブ・レコードを書いた直後に、それに属するカラムを
続けて書く、ということです。ご覧のように、customer_id は Order のプロパティであり、
id はCustomer のプロパティです。

リレーショナル・データにアクセスする

リレーションを宣言した後は、リレーション名を通じてリレーショナル・データにアクセスすることが出来ます。
これは、リレーション・メソッドによって定義されるオブジェクト・プロパティ にアクセスするのと同様です。
このため、これを リレーション・プロパティ と呼びます。例えば、

// SELECT * FROM `customer` WHERE `id` = 123
$customer = Customer::findOne(123);

// SELECT * FROM `order` WHERE `customer_id` = 123
// $orders is an array of Order objects
$orders = $customer->orders;

Info: xyz という名前のリレーションを getter メソッド getXyz() によって宣言すると、xyz を
オブジェクト・プロパティ のようにアクセスすることが出来るようになります。名前は大文字と小文字を区別することに注意してください。

リレーションが [[yii\db\ActiveRecord::hasMany()|hasMany()]] によって宣言されている場合は、
このリレーション・プロパティにアクセスすると、関連付けられたアクティブ・レコード・インスタンスの配列が返されます。
リレーションが [[yii\db\ActiveRecord::hasOne()|hasOne()]] によって宣言されている場合は、
このリレーション・プロパティにアクセスすると、関連付けられたアクティブ・レコード・インスタンスか、関連付けられたデータが見つからないときは null が返されます。

リレーション・プロパティに最初にアクセスしたときは、上記の例で示されているように、SQL 文が実行されます。
その同じプロパティに再びアクセスしたときは、SQL 文を再実行することなく、以前の結果が返されます。